1
|
Bekker A, Yang J, Wang J, Cotton MF, Cababasay M, Wiesner L, Moye J, Browning R, Nakwa FL, Rabie H, Violari A, Mirochnick M, Cressey TR, Capparelli EV. Safety and Pharmacokinetics of Lopinavir/Ritonavir Oral Solution in Preterm and Term Infants Starting Before 3 Months of Age. Pediatr Infect Dis J 2024; 43:355-360. [PMID: 38190642 PMCID: PMC10939833 DOI: 10.1097/inf.0000000000004243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
BACKGROUND Study of liquid lopinavir/ritonavir (LPV/r) in young infants has been limited by concerns for its safety in neonates. METHODS International Maternal Pediatric Adolescent AIDS Clinical Trials Network P1106 was a phase IV, prospective, trial evaluating the safety and pharmacokinetics of antiretroviral medications administered according to local guidelines to South African preterm and term infants <3 months of age. Safety evaluation through 24-week follow-up included clinical, cardiac and laboratory assessments. Pharmacokinetic data from P1106 were combined with data from International Maternal Pediatric Adolescent AIDS Clinical Trials Network studies P1030 and P1083 in a population pharmacokinetics model used to simulate LPV exposures with a weight-band dosing regimen in infants through age 6 months. RESULTS Safety and pharmacokinetics results were similar in 13/28 (46%) infants initiating LPV/r <42 weeks postmenstrual age (PMA) and in those starting ≥42 weeks PMA. LPV/r was started at a median (range) age of 47 (13-121) days. No grade 3 or higher adverse events were considered treatment related. Modeling and simulation predicted that for infants with gestational age ≥27 weeks who receive the weight-band dosing regimen, 82.6% will achieve LPV trough concentration above the target trough concentration of 1.0 µg/mL and 56.6% would exceed the observed adult lower limit of LPV exposure of 55.9 µg·h/mL through age 6 months. CONCLUSIONS LPV/r oral solution was safely initiated in a relatively small sample size of infants ≥34 weeks PMA and >2 weeks of life. No serious drug-related safety signal was observed; however, adrenal function assessments were not performed. Weight-band dosing regimen in infants with gestational age ≥27 weeks is predicted to result in LPV exposures equivalent to those observed in other pediatric studies.
Collapse
Affiliation(s)
- Adrie Bekker
- Family Centre for Research with Ubuntu, Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Jincheng Yang
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, USA
- Clinical Pharmacology and Quantitative pharmacology, CPSS, AstraZeneca R&D, Waltham, MA, USA
| | - Jiajia Wang
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mark F. Cotton
- Family Centre for Research with Ubuntu, Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Mae Cababasay
- Clinical Pharmacology and Quantitative pharmacology, CPSS, AstraZeneca R&D, Waltham, MA, USA
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Jack Moye
- Division of Extramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development
| | - Renee Browning
- Division of AIDS, National Institute of Allergy and Infectious Diseases
| | - Firdose L. Nakwa
- Department of Pediatrics and Child Health, Faculty of Health Sciences, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Helena Rabie
- Family Centre for Research with Ubuntu, Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Avy Violari
- Perinatal HIV research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Mark Mirochnick
- Division of Neonatology, Department of Pediatrics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Tim. R Cressey
- AMS-PHPT Research Collaboration, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Department of Molecular & Clinical Pharmacology, University of Liverpool, UK
| | - Edmund V. Capparelli
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, USA
| |
Collapse
|
2
|
Amariles P, Rivera-Cadavid M, Ceballos M. Clinical Relevance of Drug Interactions in People Living with Human Immunodeficiency Virus on Antiretroviral Therapy-Update 2022: Systematic Review. Pharmaceutics 2023; 15:2488. [PMID: 37896248 PMCID: PMC10610003 DOI: 10.3390/pharmaceutics15102488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The clinical outcomes of antiretroviral drugs may be modified through drug interactions; thus, it is important to update the drug interactions in people living with HIV (PLHIV). AIM To update clinically relevant drug interactions in PLHIV on antiretroviral therapy with novel drug interactions published from 2017 to 2022. METHODS A systematic review in Medline/PubMed database from July 2017 to December 2022 using the Mesh terms antiretroviral agents and drug interactions or herb-drug interactions or food-drug interactions. Publications with drug interactions in humans, in English or Spanish, and with full-text access were retrieved. The clinical relevance of drug interactions was grouped into five levels according to the gravity and probability of occurrence. RESULTS A total of 366 articles were identified, with 219 (including 87 citation lists) were included, which allowed for the identification of 471 drug interaction pairs; among them, 291 were systematically reported for the first time. In total 42 (14.4%) and 137 (47.1%) were level one and two, respectively, and 233 (80.1%) pairs were explained with the pharmacokinetic mechanism. Among these 291 pairs, protease inhibitors (PIs) and ritonavir/cobicistat-boosted PIs, as well as integrase strand transfer inhibitors (InSTIs), with 70 (24.1%) and 65 (22.3%) drug interaction pairs of levels one and two, respectively, were more frequent. CONCLUSIONS In PLHIV on antiretroviral therapy, we identify 291 drug interaction pairs systematically reported for the first time, with 179 (61.5%) being assessed as clinically relevant (levels one and two). The pharmacokinetic mechanism was the most frequently identified. PIs, ritonavir/cobicistat-boosted PIs, and InSTIs were the antiretroviral groups with the highest number of clinically relevant drug interaction pairs (levels one and two).
Collapse
Affiliation(s)
- Pedro Amariles
- Research Group on Pharmaceutical Promotion and Prevention, University of Antioquia, UdeA, AA 1226, Medellin 050010, Colombia; (M.R.-C.); (M.C.)
- Research Group on Pharmaceutical Care, University of Granada, 18071 Granada, Spain
| | - Mónica Rivera-Cadavid
- Research Group on Pharmaceutical Promotion and Prevention, University of Antioquia, UdeA, AA 1226, Medellin 050010, Colombia; (M.R.-C.); (M.C.)
| | - Mauricio Ceballos
- Research Group on Pharmaceutical Promotion and Prevention, University of Antioquia, UdeA, AA 1226, Medellin 050010, Colombia; (M.R.-C.); (M.C.)
- Research Group on Pharmacy Regency Technology, University of Antioquia, Medellin 050010, Colombia
| |
Collapse
|
3
|
Espinosa-Pereiro J, Sánchez-Montalvá A, Aznar ML, Espiau M. MDR Tuberculosis Treatment. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:188. [PMID: 35208510 PMCID: PMC8878254 DOI: 10.3390/medicina58020188] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 11/17/2022]
Abstract
Multidrug-resistant (MDR) tuberculosis (TB), resistant to isoniazid and rifampicin, continues to be one of the most important threats to controlling the TB epidemic. Over the last few years, there have been promising pharmacological advances in the paradigm of MDR TB treatment: new and repurposed drugs have shown excellent bactericidal and sterilizing activity against Mycobacterium tuberculosis and several all-oral short regimens to treat MDR TB have shown promising results. The purpose of this comprehensive review is to summarize the most important drugs currently used to treat MDR TB, the recommended regimens to treat MDR TB, and we also summarize new insights into the treatment of patients with MDR TB.
Collapse
Affiliation(s)
- Juan Espinosa-Pereiro
- Infectious Diseases Department, Vall d’Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, 08135 Barcelona, Spain; (J.E.-P.); (A.S.-M.)
- Mycobacteria Infection Study Group from Spanish Society of Infectious Diseases and Clinical Microbiology, 28003 Madrid, Spain
| | - Adrian Sánchez-Montalvá
- Infectious Diseases Department, Vall d’Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, 08135 Barcelona, Spain; (J.E.-P.); (A.S.-M.)
- Mycobacteria Infection Study Group from Spanish Society of Infectious Diseases and Clinical Microbiology, 28003 Madrid, Spain
| | - Maria Luisa Aznar
- Infectious Diseases Department, Vall d’Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, 08135 Barcelona, Spain; (J.E.-P.); (A.S.-M.)
- Mycobacteria Infection Study Group from Spanish Society of Infectious Diseases and Clinical Microbiology, 28003 Madrid, Spain
| | - Maria Espiau
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, 08135 Barcelona, Spain;
| |
Collapse
|
4
|
van der Laan LE, Garcia-Prats AJ, Schaaf HS, Winckler JL, Draper H, Norman J, Wiesner L, McIlleron H, Denti P, Hesseling AC. Pharmacokinetics and Drug-Drug Interactions of Abacavir and Lamuvudine Co-administered With Antituberculosis Drugs in HIV-Positive Children Treated for Multidrug-Resistant Tuberculosis. Front Pharmacol 2021; 12:722204. [PMID: 34690765 PMCID: PMC8531271 DOI: 10.3389/fphar.2021.722204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/22/2021] [Indexed: 12/01/2022] Open
Abstract
Given the high prevalence of multidrug-resistant (MDR)-TB in high HIV burden settings, it is important to identify potential drug-drug interactions between MDR-TB treatment and widely used nucleoside reverse transcriptase inhibitors (NRTIs) in HIV-positive children. Population pharmacokinetic models were developed for lamivudine (n = 54) and abacavir (n = 50) in 54 HIV-positive children established on NRTIs; 27 with MDR-TB (combinations of high-dose isoniazid, pyrazinamide, ethambutol, ethionamide, terizidone, fluoroquinolones, and amikacin), and 27 controls without TB. Two-compartment models with first-order elimination and transit compartment absorption described both lamivudine and abacavir pharmacokinetics, respectively. Allometric scaling with body weight adjusted for the effect of body size. Clearance was predicted to reach half its mature value ∼ 2 (lamivudine) and ∼ 3 (abacavir) months after birth, with completion of maturation for both drugs at ∼ 2 years. No significant difference was found in key pharmacokinetic parameters of lamivudine and abacavir when co-administered with routine drugs used for MDR-TB in HIV-positive children.
Collapse
Affiliation(s)
- Louvina E. van der Laan
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Anthony J. Garcia-Prats
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Pediatrics, Divisions of General Pediatrics and Adolescent Medicine and Global Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - H. Simon Schaaf
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jana L. Winckler
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Heather Draper
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jennifer Norman
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Lubbe Wiesner
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Helen McIlleron
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Paolo Denti
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Anneke C. Hesseling
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
5
|
Treatment Outcomes and Adverse Drug Effects of Ethambutol, Cycloserine, and Terizidone for the Treatment of Multidrug-Resistant Tuberculosis in South Africa. Antimicrob Agents Chemother 2020; 65:AAC.00744-20. [PMID: 33046491 DOI: 10.1128/aac.00744-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/30/2020] [Indexed: 11/20/2022] Open
Abstract
Treatment outcomes among multidrug-resistant tuberculosis (MDR-TB) patients receiving ethambutol, cycloserine, or terizidone as part of a standardized regimen were compared, determining occurrence of serious adverse drug events (SADEs). Newly diagnosed adult MDR-TB patients were enrolled between 2000 and 2004, receiving a standardized multidrug regimen for 18 to 24 months, including ethambutol, cycloserine, or terizidone. Cycloserine and terizidone were recorded individually. SADEs and factors associated with culture conversion and unfavorable treatment outcomes (default, death, treatment failure) were determined. Of 858 patients, 435 (51%) received ethambutol, 278 (32%) received cycloserine, and 145 (17%) received terizidone. Demographic and baseline clinical data were comparable. Successful treatment occurred in 56%, significantly more in patients receiving cycloserine (60%) and terizidone (62%) than in those receiving ethambutol (52% [P = 0.03]). Defaults rates were 30% in ethambutol patients versus 15% and 11% for cycloserine and terizidone patients, respectively. Terizidone was associated with fewer unfavorable outcomes (adjusted odds ratio [AOR], 0.4; P = 0.008; 95% confidence interval [CI], 0.2 to 0.8). Patients receiving cycloserine were more likely to achieve culture conversion than those receiving ethambutol or terizidone (AOR, 2.2; P = 0.02; 95% CI, 1.12 to 4.38). Failure to convert increased the odds of unfavorable outcomes (AOR, 23.7; P < 0.001; 95% CI, 13 to 44). SADEs were reported in two patients receiving ethambutol, seven patients receiving cycloserine, and three receiving terizidone (P = 0.05). Ethambutol was associated with high culture conversion and default rates. Cycloserine achieved higher culture conversion rates than terizidone. Fewer patients on terizidone experienced SADEs, with lower default rates. The differences that we observed between cycloserine and terizidone require further elucidation.
Collapse
|
6
|
Jacobs TG, Svensson EM, Musiime V, Rojo P, Dooley KE, McIlleron H, Aarnoutse RE, Burger DM, Turkova A, Colbers A. Pharmacokinetics of antiretroviral and tuberculosis drugs in children with HIV/TB co-infection: a systematic review. J Antimicrob Chemother 2020; 75:3433-3457. [PMID: 32785712 PMCID: PMC7662174 DOI: 10.1093/jac/dkaa328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Management of concomitant use of ART and TB drugs is difficult because of the many drug-drug interactions (DDIs) between the medications. This systematic review provides an overview of the current state of knowledge about the pharmacokinetics (PK) of ART and TB treatment in children with HIV/TB co-infection, and identifies knowledge gaps. METHODS We searched Embase and PubMed, and systematically searched abstract books of relevant conferences, following PRISMA guidelines. Studies not reporting PK parameters, investigating medicines that are not available any longer or not including children with HIV/TB co-infection were excluded. All studies were assessed for quality. RESULTS In total, 47 studies met the inclusion criteria. No dose adjustments are necessary for efavirenz during concomitant first-line TB treatment use, but intersubject PK variability was high, especially in children <3 years of age. Super-boosted lopinavir/ritonavir (ratio 1:1) resulted in adequate lopinavir trough concentrations during rifampicin co-administration. Double-dosed raltegravir can be given with rifampicin in children >4 weeks old as well as twice-daily dolutegravir (instead of once daily) in children older than 6 years. Exposure to some TB drugs (ethambutol and rifampicin) was reduced in the setting of HIV infection, regardless of ART use. Only limited PK data of second-line TB drugs with ART in children who are HIV infected have been published. CONCLUSIONS Whereas integrase inhibitors seem favourable in older children, there are limited options for ART in young children (<3 years) receiving rifampicin-based TB therapy. The PK of TB drugs in HIV-infected children warrants further research.
Collapse
Affiliation(s)
- Tom G Jacobs
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Pharmacy, Nijmegen, The Netherlands
| | - Elin M Svensson
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Pharmacy, Nijmegen, The Netherlands
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Victor Musiime
- Research Department, Joint Clinical Research Centre, Kampala, Uganda
- Department of Paediatrics and Child Health, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Pablo Rojo
- Pediatric Infectious Diseases Unit. Hospital 12 de Octubre, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Kelly E Dooley
- Divisions of Clinical Pharmacology and Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Rob E Aarnoutse
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Pharmacy, Nijmegen, The Netherlands
| | - David M Burger
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Pharmacy, Nijmegen, The Netherlands
| | - Anna Turkova
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, University College London, London, UK
| | - Angela Colbers
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Pharmacy, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Hejaz HA. Palestinian strategies, guidelines, and challenges in the treatment and management of coronavirus disease-2019 (COVID-19). Avicenna J Med 2020; 10:135-162. [PMID: 33437687 PMCID: PMC7791278 DOI: 10.4103/ajm.ajm_171_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Coronavirus disease-2019 (COVID-19) outbreak is a global concern and the World Health Organization (WHO) has declared it as a Public Health Emergency of International Concern. The Palestinian Authority (PA) has quickly and effectively responded to the outbreak of COVID-19, using an internationally and nationally coordinated, to contain the spread of the virus within the borders. The PA approaches are containment and suppression, which is designed to protect the citizens from infection while also mitigating the stress on the health care system. The PA immediately declared a State of Emergency when the first cases in Palestine were diagnosed on 5 March 2020 and launched robust national containment measures to encourage the citizens to protect themselves and follow the guidance. OBJECTIVES There is currently no vaccine or effective treatment for COVID-19, the treatment is either supportive and/ or the treatment of symptoms. Several strategies in the treatment of the disease were applied including medications. This review aims to summarize the different strategies, guidelines, challenges, and treatments used against COVID-19 worldwide and in Palestine. MATERIALS AND METHODS Different literature and guidelines among different databases were searched. Literature reviewing was conducted using the following search engines, Google Scholar, Medline, Pub Med, EMBASE, Web of Science, and Science Direct. Data also obtained from WHO and PA reports, and the published peer-reviewed articles of 2019-nCoV. The review focuses on the strategies, guidelines, therapeutics, challenges, and different approaches used in the treatment and management of the disease in Palestine and globally. CONCLUSION The Palestinian Ministry of Health (MoH) strategies to end the COVID-19 pandemic were; slow and stop transmission; provide optimized care for patients; and minimize the impact of the epidemic on health systems, social services, and economic activity. Thus, proper management, right actions, and effective treatment of the disease should be considered to achieve these strategies. The biggest problem for PA to control and stop the outbreak of the disease is the different challenges which include; the Israeli military and economic control, uncontrol the borders, shortage of medical and financial resources, crowded cities and refugee camps, poverty, food insecurity, and the financial crisis. To date, there are no specific vaccines or medicines for COVID-19; and treatments are under investigation through clinical trials. However, an array of drugs approved for other indications, as well as multiple investigational agents, are being studied for the treatment of COVID-19; in several hundred clinical trials around the World. Treatment is essentially supportive and symptomatic.
Collapse
Affiliation(s)
- Hatem A. Hejaz
- College of Pharmacy & Medical Sciences, Hebron University, Hebron, Palestine
| |
Collapse
|
8
|
Pan X, Dong L, Yang L, Chen D, Peng C. Potential drugs for the treatment of the novel coronavirus pneumonia (COVID-19) in China. Virus Res 2020; 286:198057. [PMID: 32531236 PMCID: PMC7282797 DOI: 10.1016/j.virusres.2020.198057] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/15/2020] [Accepted: 06/07/2020] [Indexed: 12/27/2022]
Abstract
The fight against the novel coronavirus pneumonia (namely COVID-19) that seriously harms human health is a common task for all mankind. Currently, development of drugs against the novel coronavirus (namely SARS-CoV-2) is quite urgent. Chinese medical workers and scientific researchers have found some drugs to play potential therapeutic effects on COVID-19 at the cellular level or in preliminary clinical trials. However, more fundamental studies and large sample clinical trials need to be done to ensure the efficacy and safety of these drugs. The adoption of these drugs without further testing must be careful. The relevant articles, news, and government reports published on the official and Preprint websites, PubMed and China National Knowledge Infrastructure (CNKI) databases from December 2019 to April 2020 were searched and manually filtered. The general pharmacological characteristics, indications, adverse reactions, general usage, and especially current status of the treatment of COVID-19 of those potentially effective drugs, including chemical drugs, traditional Chinese medicines (TCMs), and biological products in China were summarized in this review to guide reasonable medication and the development of specific drugs for the treatment of COVID-19.
Collapse
Affiliation(s)
- Xiaoqi Pan
- School of Public Health and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lan Dong
- The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Lian Yang
- School of Public Health and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dayi Chen
- School of Public Health and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- School of Public Health and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
9
|
Han YJ, Ren ZG, Li XX, Yan JL, Ma CY, Wu DD, Ji XY. Advances and challenges in the prevention and treatment of COVID-19. Int J Med Sci 2020; 17:1803-1810. [PMID: 32714083 PMCID: PMC7378666 DOI: 10.7150/ijms.47836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Since the end of 2019, a new type of coronavirus pneumonia (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been spreading rapidly throughout the world. Previously, there were two outbreaks of severe coronavirus caused by different coronaviruses worldwide, namely Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). This article introduced the origin, virological characteristics and epidemiological overview of SARS-CoV-2, reviewed the currently known drugs that may prevent and treat coronavirus, explained the characteristics of the new coronavirus and provided novel information for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Yan-Jie Han
- Kaifeng Key Laboratory for Infectious Diseases and Biosafety, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
- Clinical Laboratory and Functional Laboratory, Kaifeng Central Hospital, Kaifeng, Henan 475000, China
| | - Zhi-Guang Ren
- Kaifeng Key Laboratory for Infectious Diseases and Biosafety, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Xin Li
- Clinical Laboratory and Functional Laboratory, Kaifeng Central Hospital, Kaifeng, Henan 475000, China
| | - Ji-Liang Yan
- Clinical Laboratory and Functional Laboratory, Kaifeng Central Hospital, Kaifeng, Henan 475000, China
| | - Chun-Yan Ma
- Clinical Laboratory and Functional Laboratory, Kaifeng Central Hospital, Kaifeng, Henan 475000, China
| | - Dong-Dong Wu
- Kaifeng Key Laboratory for Infectious Diseases and Biosafety, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Kaifeng Key Laboratory for Infectious Diseases and Biosafety, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
10
|
Kang S, Peng W, Zhu Y, Lu S, Zhou M, Lin W, Wu W, Huang S, Jiang L, Luo X, Deng M. Recent progress in understanding 2019 novel coronavirus (SARS-CoV-2) associated with human respiratory disease: detection, mechanisms and treatment. Int J Antimicrob Agents 2020; 55:105950. [PMID: 32234465 PMCID: PMC7118423 DOI: 10.1016/j.ijantimicag.2020.105950] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 01/08/2023]
Abstract
Viral respiratory diseases such as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) always pose a severe threat to people. First identified in late December 2019, a novel coronavirus (2019-nCoV; SARS-CoV-2) has affected many provinces in China and multiple countries worldwide. The viral outbreak has aroused panic and a public-health emergency around the world, and the number of infections continues to rise. However, the causes and consequences of the pneumonia remain unknown. To effectively implement epidemic prevention, early identification and diagnosis are critical to disease control. Here we scrutinise a series of available studies by global scientists on the clinical manifestations, detection methods and treatment options for the disease caused by SARS-CoV-2, named coronavirus disease 2019 (COVID-19), and also propose potential strategies for preventing the infection.
Collapse
Affiliation(s)
- Shuntong Kang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wenyao Peng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yuhao Zhu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Shiyao Lu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Min Zhou
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wei Lin
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Wenfang Wu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Shu Huang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Liping Jiang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Xuan Luo
- Hunan Yuanpin Cell Biotechnology Co., Ltd., Changsha, Hunan 410100, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
11
|
Rabie H, Rawizza H, Zuidewind P, Winckler J, Zar H, Van Rie A, Wiesner L, McIlleron H. Pharmacokinetics of adjusted-dose 8-hourly lopinavir/ritonavir in HIV-infected children co-treated with rifampicin. J Antimicrob Chemother 2019; 74:2347-2351. [PMID: 31081020 PMCID: PMC6640304 DOI: 10.1093/jac/dkz171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/03/2019] [Accepted: 04/03/2019] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To evaluate the proportion of children with lopinavir Cmin ≥1 mg/L when receiving a novel 8-hourly lopinavir/ritonavir dosing strategy during rifampicin co-treatment. METHODS HIV-infected children on lopinavir/ritonavir and rifampicin were enrolled in a prospective pharmacokinetic study. Children were switched from standard-of-care lopinavir/ritonavir-4:1 with additional ritonavir (1:1 ratio) twice daily to 8-hourly lopinavir/ritonavir-4:1 using weight-banded dosing. Rifampicin was dosed at 10-20 mg/kg/day. After 2 weeks, plasma samples were collected ∼2, 4, 6, 8 and 10 h after the morning lopinavir/ritonavir-4:1 dose, ALT was obtained to assess safety and treatment was switched back to standard of care. ClinicalTrials.gov registration number: NCT01637558. RESULTS We recruited 11 children in two weight bands: 5 (45%) were 10-13.9 kg and received 20-24 mg/kg/dose of lopinavir and 6 (55%) children weighed 6-9.9 kg and received 20-23 mg/kg/dose of lopinavir. The median age was 15 months (IQR = 12.6-28.8 months). The median (IQR) lopinavir Cmin was 3.0 (0.1-5.5) mg/L. Seven (63.6%) of the 11 children had Cmin values ≥1 mg/L. Children with a lopinavir mg/kg dose below the median 21.5 were more likely to have Cmin <1 mg/L (P = 0.02). There was a strong positive correlation between lopinavir and ritonavir concentrations. No associations were found between lopinavir AUC2-10 and age, sex, weight, nutritional status or mg/kg/dose of lopinavir. CONCLUSIONS These data do not support the use of 8-hourly lopinavir/ritonavir at studied doses. Evaluation of higher doses is needed to optimize treatment outcomes of TB and HIV in young children.
Collapse
Affiliation(s)
- Helena Rabie
- Department of Paediatrics and Child Health and Children’s Infectious Diseases Clinical Research Unit, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - Holly Rawizza
- Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Peter Zuidewind
- Department of Paediatrics and Child Health and Children’s Infectious Diseases Clinical Research Unit, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - Jana Winckler
- Department of Paediatrics and Child Health, and Medical Research Council Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Heather Zar
- Department of Paediatrics and Child Health, and Medical Research Council Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Annelies Van Rie
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- International Health Unit, Epidemiology and Social Medicine, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
|
13
|
Hecht M, Veigure R, Couchman L, S Barker CI, Standing JF, Takkis K, Evard H, Johnston A, Herodes K, Leito I, Kipper K. Utilization of data below the analytical limit of quantitation in pharmacokinetic analysis and modeling: promoting interdisciplinary debate. Bioanalysis 2018; 10:1229-1248. [PMID: 30033744 DOI: 10.4155/bio-2018-0078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traditionally, bioanalytical laboratories do not report actual concentrations for samples with results below the LOQ (BLQ) in pharmacokinetic studies. BLQ values are outside the method calibration range established during validation and no data are available to support the reliability of these values. However, ignoring BLQ data can contribute to bias and imprecision in model-based pharmacokinetic analyses. From this perspective, routine use of BLQ data would be advantageous. We would like to initiate an interdisciplinary debate on this important topic by summarizing the current concepts and use of BLQ data by regulators, pharmacometricians and bioanalysts. Through introducing the limit of detection and evaluating its variability, BLQ data could be released and utilized appropriately for pharmacokinetic research.
Collapse
Affiliation(s)
- Max Hecht
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Rūta Veigure
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
| | - Lewis Couchman
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Charlotte I S Barker
- Paediatric Infectious Diseases Research Group, Institute for Infection & Immunity, St George's University of London, London, SW17 0RE, UK
- Inflammation, Infection & Rheumatology Section, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- Paediatric Infectious Diseases Unit, St George's University Hospitals NHS Foundation Trust, London, SW17 0RE, UK
| | - Joseph F Standing
- Paediatric Infectious Diseases Research Group, Institute for Infection & Immunity, St George's University of London, London, SW17 0RE, UK
- Inflammation, Infection & Rheumatology Section, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Kalev Takkis
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Hanno Evard
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
| | - Atholl Johnston
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Clinical Pharmacology, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Koit Herodes
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
| | - Ivo Leito
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
| | - Karin Kipper
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| |
Collapse
|
14
|
|