1
|
Grabein B, Arhin FF, Daikos GL, Moore LSP, Balaji V, Baillon-Plot N. Navigating the Current Treatment Landscape of Metallo-β-Lactamase-Producing Gram-Negative Infections: What are the Limitations? Infect Dis Ther 2024; 13:2423-2447. [PMID: 39352652 PMCID: PMC11499561 DOI: 10.1007/s40121-024-01044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/02/2024] [Indexed: 10/25/2024] Open
Abstract
The spread of carbapenemase-producing gram-negative pathogens, especially those producing metallo-β-lactamases (MBLs), has become a major health concern. MBLs are molecularly the most diverse carbapenemases, produced by a wide spectrum of gram-negative organisms, including the Enterobacterales, Pseudomonas spp., Acinetobacter baumannii, and Stenotrophomonas maltophilia, and can hydrolyze most β-lactams using metal ion cofactors in their active sites. Over the years, the prevalence of MBL-carrying isolates has increased globally, particularly in Asia. MBL infections are associated with adverse clinical outcomes including longer length of hospital stay, ICU admission, and increased mortality across the globe. The optimal treatment for MBL infections not only depends on the pathogen but also on the underlying resistance mechanisms. Currently, there are only few drugs or drug combinations that can efficiently offset MBL-mediated resistance, which makes the treatment of MBL infections challenging. The rising concern of MBLs along with the limited treatment options has led to the need and development of drugs that are specifically targeted towards MBLs. This review discusses the prevalence of MBLs, their clinical impact, and the current treatment options for MBL infections and their limitations. Furthermore, this review will discuss agents currently in the pipeline for treatment of MBL infections.
Collapse
Affiliation(s)
| | | | - George L Daikos
- National and Kapodistrian University of Athens, Athens, Greece
| | - Luke S P Moore
- Chelsea & Westminster NHS Foundation Trust, London, UK
- Imperial College London, NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, London, UK
| | - V Balaji
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | | |
Collapse
|
2
|
Jean SS, Liu CY, Huang TY, Lai CC, Liu IM, Hsieh PC, Hsueh PR. Potentially effective antimicrobial treatment for pneumonia caused by isolates of carbapenem-resistant and extensively drug-resistant Acinetobacter baumannii complex species: what can we expect in the future? Expert Rev Anti Infect Ther 2024:1-17. [PMID: 39381911 DOI: 10.1080/14787210.2024.2412637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
INTRODUCTION Acinetobacter baumannii complex (Abc) is currently a significant cause of difficult-to-treat pneumonia. Due to the high prevalence rates of carbapenem- and extensively drug-resistant (CR, XDR) phenotypes, limited antibiotic options are available for the effective treatment of pneumonia caused by CR/XDR-Abc. AREAS COVERED In vitro susceptibility data, relevant pharmacokinetic profiles (especially the penetration ratios from plasma into epithelial-lining fluid), and pharmacodynamic indices of key antibiotics against CR/XDR-Abc are reviewed. EXPERT OPINION Doubling the routine intravenous maintenance dosages of conventional tigecycline (100 mg every 12 h) and minocycline (200 mg every 12 h) might be recommended for the effective treatment of pneumonia caused by CR/XDR-Abc. Nebulized polymyxin E, novel parenteral rifabutin BV100, and new polymyxin derivatives (SPR206, MRX-8, and QPX9003) could be considered supplementary combination options with other antibiotic classes. Regarding other novel antibiotics, the potency of sulbactam-durlobactam (1 g/1 g infused over 3 h every 6 h intravenously) combined with imipenem-cilastatin, and the β-lactamase inhibitor xeruborbactam, is promising. Continuous infusion of full-dose cefiderocol is likely an effective treatment regimen for CR/XDR-Abc pneumonia. Zosurabalpin exhibits potent anti-CR/XDR-Abc activity in vitro, but its practical use in clinical therapy remains to be evaluated. The clinical application of antimicrobial peptides and bacteriophages requires validation.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
- Departments of Internal Medicine and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Chia-Ying Liu
- Department of Infectious Diseases and Department of Hospitalist, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Tzu-Yu Huang
- Department of Pharmacy, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Chih-Cheng Lai
- Division of Hospital Medicine, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - I-Min Liu
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Po-Chuen Hsieh
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Ph.D Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
3
|
Chen X, Li Y, Lin Y, Guo Y, He G, Wang X, Wang M, Xu J, Song M, Tan X, Zhuo C, Lin Z. Comparison of antimicrobial activities and resistance mechanisms of eravacycline and tigecycline against clinical Acinetobacter baumannii isolates in China. Front Microbiol 2024; 15:1417237. [PMID: 39380684 PMCID: PMC11458409 DOI: 10.3389/fmicb.2024.1417237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Tigecycline (TGC) is currently used to treat carbapenem-resistant Acinetobacter baumannii (CRAB) infections, while eravacycline (ERV), a new-generation tetracycline, holds promise as a novel therapeutic option for these infections. However, differences in resistance mechanism between ERV and TGC against A. baumannii remain unclear. This study sought to compare the characteristics and mechanisms of ERV and TGC resistance among clinical A. baumannii isolates. A total of 492 isolates, including 253 CRAB and 239 carbapenem-sensitive A. baumannii (CSAB) isolates, were collected from hospitalized patients in China. The MICs of ERV and TGC against A. baumannii were determined by broth microdilution. Genetic mutations and expressions of adeB, adeG, adeJ, adeS, adeL, and adeN in resistant strains were examined by PCR and qPCR, respectively. The in vitro recombination experiments were used to verify the resistance mechanism of ERV and TGC in A. baumannii. The MIC90 of ERV in CRAB and CSAB isolates were lower than those of TGC. A total of 24 strains resistant to ERV and/or TGC were categorized into three groups: only ERV-resistant (n = 2), both ERV- and TGC-resistant (n = 7), and only TGC-resistant (n = 15). ST208 (75%, n = 18) was a major clone that has disseminated in all three groups. The ISAba1 insertion in adeS was identified in 66.7% (6/9) of strains in the only ERV-resistant and both ERV- and TGC-resistant groups, while the ISAba1 insertion in adeN was found in 53.3% (8/15) of strains in the only TGC-resistant group. The adeABC and adeRS expressions were significantly increased in the only ERV-resistant and both ERV- and TGC-resistant groups, while the adeABC and adeIJK expressions were significantly increased and adeN was significantly decreased in the only TGC-resistant group. Expression of adeS with the ISAba1 insertion in ERV- and TGC-sensitive strains significantly increased the ERV and TGC MICs and upregulated adeABC and adeRS expressions. Complementation of the wildtype adeN in TGC-resistant strains with the ISAba1 insertion in adeN restored TGC sensitivity and significantly downregulated adeIJK expression. In conclusion, our data illustrates that ERV is more effective against A. baumannii clinical isolates than TGC. ERV resistance is correlated with the ISAba1 insertion in adeS, while TGC resistance is associated with the ISAba1 insertion in adeN or adeS in A. baumannii.
Collapse
Affiliation(s)
- Xiandi Chen
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Yitan Li
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Yingzhuo Lin
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Yingyi Guo
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guohua He
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Xiaohu Wang
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Mingzhen Wang
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Jianbo Xu
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Mingdong Song
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Xixi Tan
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Chao Zhuo
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiwei Lin
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| |
Collapse
|
4
|
Chen Z, Sun W, Chi Y, Liang B, Cai Y. Efficacy and safety of eravacycline (ERV) in treating infections caused by Gram-negative pathogens: a systematic review and meta-analysis. Expert Rev Anti Infect Ther 2024:1-9. [PMID: 39258866 DOI: 10.1080/14787210.2024.2397663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Eravacycline (ERV) is a novel synthetic fluorocycline antibiotic with broad-spectrum antibacterial efficacy against pathogens. This study sought to investigate ERV's effectiveness and safety in treating Gram-negative pathogens (GNPs) infections. METHODS We conducted a comprehensive search of PubMed, Cochrane Library, Embase, Web of Science, and ClinicalTrials.gov up to September 2023. Included in the review were studies assessing the efficacy or safety of ERV in treating GNP infections. RESULTS Three randomized controlled trials, seven cohort studies, and two case reports were included. There was no statistically significant difference between ERV and comparators in clinical cure (OR = 0.84, 95% CI = 0.59-1.19), microbiologic eradication (OR = 0.69, 95% CI = 0.36-1.33), and mortality (OR = 1.66, 95% CI = 0.81-3.41). However, a significantly higher rate of adverse events with ERV was observed compared to the control group (OR = 1.55, 95% CI = 1.21-1.99). Additionally, cohort studies reported a clinical cure rate of 73.2% (88.8% in RCTs), an AE rate of 4.5% (38.3% in RCTs), and mortality of 16.2% (1.5% in RCTs). Patients in RCTs received ERV monotherapy, whereas almost half of the patients in cohort studies were treated with ERV in combination with other antibiotics. CONCLUSIONS Further studies are warranted to investigate the safety and efficacy of ERV monotherapy or combination therapy in critically ill patients.
Collapse
Affiliation(s)
- Zehua Chen
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Graduate School of Chinese PLA General Hospital, Beijing, China
| | - Weijia Sun
- Medical Supplies Center, Chinese PLA General Hospital, Beijing, China
| | - Yulong Chi
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Graduate School of Chinese PLA General Hospital, Beijing, China
| | - Beibei Liang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing, China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Jing R, Yi QL, Zhuo C, Kang W, Yang QW, Yu YS, Zheng B, Li Y, Hu FP, Yang Y, Lin J, Zhang G, Zhang JJ, Wang T, Li J, Zhuo CY, Li X, Zhu YF, Xu YC. Establishment of epidemiological cut-off values for eravacycline, against Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Acinetobacter baumannii and Staphylococcus aureus. J Antimicrob Chemother 2024; 79:2246-2250. [PMID: 39011845 PMCID: PMC11368425 DOI: 10.1093/jac/dkae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVES To establish the epidemiology cut-off (ECOFF) values of eravacycline against Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Acinetobacter baumannii and Staphylococcus aureus, from a multi-centre study in China. METHODS We collected 2500 clinical isolates from five hospitals in China from 2017 to 2020. The MICs of eravacycline were determined using broth microdilution. The ECOFF values of eravacycline against the five species commonly causing cIAIs were calculated using visual estimation and ECOFFinder following the EUCAST guideline. RESULTS The MICs of eravacycline against all the strains were in the range of 0.004-16 mg/L. The ECOFF values of eravacycline were 0.5 mg/L for E. coli, 2 mg/L for K. pneumonia and E. cloacae, and 0.25 mg/L for A. baumannii and S. aureus, consistent with the newest EUCAST publication of eravacycline ECOFF values for the populations. No discrepancy was found between the visually estimated and 99.00% ECOFF values calculated using ECOFFinder. CONCLUSIONS The determined ECOFF values of eravacycline against the five species can assist in distinguishing wild-type from non-wild-type strains. Given its promising activity, eravacycline may represent a member of the tetracycline class in treating cIAIs caused by commonly encountered Gram-negative and Gram-positive pathogens.
Collapse
Affiliation(s)
- Ran Jing
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Qiao-Lian Yi
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Chao Zhuo
- Department of Clinical Infectious Diseases, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Wei Kang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Qi-Wen Yang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Yun-Song Yu
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Bo Zheng
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, China
| | - Yun Li
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, China
| | - Fu-Pin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, and Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
| | - Yang Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, and Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
| | - Jie Lin
- Department of Laboratory Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ge Zhang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Jing-Jia Zhang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Tong Wang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Jin Li
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Chu-Yue Zhuo
- Department of Clinical Infectious Diseases, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xue Li
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Yun-Fan Zhu
- Everest Medicines (China) Co., Ltd., Shanghai, China
| | - Ying-Chun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| |
Collapse
|
6
|
Park SY, Baek YJ, Kim JH, Seong H, Kim B, Kim YC, Yoon JG, Heo N, Moon SM, Kim YA, Song JY, Choi JY, Park YS. Guidelines for Antibacterial Treatment of Carbapenem-Resistant Enterobacterales Infections. Infect Chemother 2024; 56:308-328. [PMID: 39231504 PMCID: PMC11458495 DOI: 10.3947/ic.2024.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/19/2024] [Indexed: 09/06/2024] Open
Abstract
This guideline aims to promote the prudent use of antibacterial agents for managing carbapenem-resistant Enterobacterales (CRE) infections in clinical practice in Korea. The general section encompasses recommendations for the management of common CRE infections and diagnostics, whereas each specific section is structured with key questions that are focused on antibacterial agents and disease-specific approaches. This guideline covers both currently available and upcoming antibacterial agents in Korea.
Collapse
Affiliation(s)
- Se Yoon Park
- Division of Infectious Diseases, Department of Internal Medicine, Hanyang University Seoul Hospital, Seoul, Korea
| | - Yae Jee Baek
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Seong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Bongyoung Kim
- Division of Infectious Diseases, Department of Internal Medicine, Hanyang University Seoul Hospital, Seoul, Korea
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Yong Chan Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Infectious Diseases, Yonsei University Yongin Severance Hospital, Yongin, Korea
| | - Jin Gu Yoon
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Namwoo Heo
- Department of Infectious Diseases, Yonsei University Yongin Severance Hospital, Yongin, Korea
| | - Song Mi Moon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Young Ah Kim
- Department of Laboratory Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Jun Yong Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Soo Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Infectious Diseases, Yonsei University Yongin Severance Hospital, Yongin, Korea.
| |
Collapse
|
7
|
Huang PY, Hsu CK, Tang HJ, Lai CC. Eravacycline: a comprehensive review of in vitro activity, clinical efficacy, and real-world applications. Expert Rev Anti Infect Ther 2024; 22:387-398. [PMID: 38703093 DOI: 10.1080/14787210.2024.2351552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION The escalating threat of multidrug-resistant organisms necessitates constant exploration for novel antimicrobial agents. Eravacycline has emerged as a promising solution due to its unique chemical structure, which enhances potency and expands its spectrum of activity. AREA COVERED This review provides a thorough examination of eravacycline, encompassing its in vitro activity against Gram-positive and Gram-negative aerobes, carbapenem-non-susceptible organisms, anaerobes, and other bacterial strains. Additionally, it evaluates evidence from clinical studies to establish its clinical effect and safety. EXPERT OPINION Eravacycline, a synthetic fluorocycline, belongs to the tetracyclines class. Similar to other tetracycline, eravacycline exerts its antibacterial action by reversibly binding to the bacterial ribosomal 30S subunit. Eravacycline demonstrates potent in vitro activity against many Gram-positive and Gram-negative aerobes, anaerobes, and multidrug-resistant organisms. Randomized controlled trials and its associated meta-analysis affirm eravacycline's efficacy in treating complicated intra-abdominal infections. Moreover, real-world studies showcase eravacycline's adaptability and effectiveness in diverse clinical conditions, emphasizing its utility beyond labeled indications. Despite common gastrointestinal adverse events, eravacycline maintains an overall favorable safety profile, reinforcing its status as a tolerable antibiotic. However, ongoing research is essential for refining eravacycline's role, exploring combination therapy, and assessing its performance against biofilms, in combating challenging bacterial infections.
Collapse
Affiliation(s)
- Po-Yu Huang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chi-Kuei Hsu
- Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Hung-Jen Tang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chih-Cheng Lai
- Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Huang YS, Yang JL, Wang JT, Sheng WH, Yang CJ, Chuang YC, Chang SC. Evaluation of the synergistic effect of eravacycline and tigecycline against carbapenemase-producing carbapenem-resistant Klebsiella pneumoniae. J Infect Public Health 2024; 17:929-937. [PMID: 38599013 DOI: 10.1016/j.jiph.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a substantial healthcare challenge. This study assessed the in vitro efficacy of selected antibiotic combinations against CRKP infections. METHODS Our research involved the evaluation of 40 clinical isolates of CRKP, with half expressing Klebsiella pneumoniae carbapenemase (KPC) and half producing Metallo-β-lactamase (MBL), two key enzymes contributing to carbapenem resistance. We determined the minimum inhibitory concentrations (MICs) of four antibiotics: eravacycline, tigecycline, polymyxin-B, and ceftazidime/avibactam. Synergistic interactions between these antibiotic combinations were examined using checkerboard and time-kill analyses. RESULTS We noted significant differences in the MICs of ceftazidime/avibactam between KPC and MBL isolates. Checkerboard analysis revealed appreciable synergy between combinations of tigecycline (35%) or eravacycline (40%) with polymyxin-B. The synergy rates for the combination of tigecycline or eravacycline with polymyxin-B were similar among the KPC and MBL isolates. These combinations maintained a synergy rate of 70.6% even against polymyxin-B resistant isolates. In contrast, combinations of tigecycline (5%) or eravacycline (10%) with ceftazidime/avibactam showed significantly lower synergy than combinations with polymyxin-B (P < 0.001 and P = 0.002, respectively). Among the MBL CRKP isolates, only one exhibited synergy with eravacycline or tigecycline and ceftazidime/avibactam combinations, and no synergistic activity was identified in the time-kill analysis for these combinations. The combination of eravacycline and polymyxin-B demonstrated the most promising synergy in the time-kill analysis. CONCLUSION This study provides substantial evidence of a significant synergy when combining tigecycline or eravacycline with polymyxin-B against CRKP strains, including those producing MBL. These results highlight potential therapeutic strategies against CRKP infections.
Collapse
Affiliation(s)
- Yu-Shan Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jia-Ling Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wang-Huei Sheng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Jui Yang
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chung Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Shan-Chwen Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
9
|
McLeod SM, O'Donnell JP, Narayanan N, Mills JP, Kaye KS. Sulbactam-durlobactam: a β-lactam/β-lactamase inhibitor combination targeting Acinetobacter baumannii. Future Microbiol 2024; 19:563-576. [PMID: 38426849 PMCID: PMC11229585 DOI: 10.2217/fmb-2023-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Sulbactam-durlobactam is a pathogen-targeted β-lactam/β-lactamase inhibitor combination that has been approved by the US FDA for the treatment of hospital-acquired and ventilator-associated bacterial pneumonia caused by susceptible isolates of Acinetobacter baumannii-calcoaceticus complex (ABC) in patients 18 years of age and older. Sulbactam is a penicillin derivative with antibacterial activity against Acinetobacter but is prone to hydrolysis by β-lactamases encoded by contemporary isolates. Durlobactam is a diazabicyclooctane β-lactamase inhibitor with activity against Ambler classes A, C and D serine β-lactamases that restores sulbactam activity both in vitro and in vivo against multidrug-resistant ABC. Sulbactam-durlobactam is a promising alternative therapy for the treatment of serious Acinetobacter infections, which can have high rates of mortality.
Collapse
Affiliation(s)
- Sarah M McLeod
- Innoviva Specialty Therapeutics, Inc., an affiliate of Entasis Therapeutics Inc., 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - John P O'Donnell
- Innoviva Specialty Therapeutics, Inc., an affiliate of Entasis Therapeutics Inc., 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Navaneeth Narayanan
- Rutgers University Ernest Mario School of Pharmacy, Department of Pharmacy Practice & Administration, Piscataway, NJ 08901, USA
| | - John P Mills
- Division of Allergy, Immunology & Infectious Diseases, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Keith S Kaye
- Division of Allergy, Immunology & Infectious Diseases, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
10
|
Belk MG, Ku PM, George DL, Hobbs ALV. Rhabdomyolysis Suspected to be Caused by Eravacycline Therapy: A Case Report. J Pharm Pract 2024; 37:239-242. [PMID: 36656727 DOI: 10.1177/08971900221117872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Eravacycline is approved by the U.S. Food and Drug Administration (FDA) for the treatment of complicated intra-abdominal infections. It is a novel, fully synthetic fluorocycline antibiotic belonging to the tetracycline class with a broad-spectrum of activity and an appealing side effect profile. This report describes a 74-year-old female who presented to the hospital with non-ST-elevation myocardial infarction (NSTEMI) requiring coronary artery bypass graft surgery. After surgery, she developed a sternal wound infection that grew multidrug resistant organisms, leading to a much longer than anticipated hospital stay. Eravacycline was eventually added to the antimicrobial regimen for the persistent infection. Shortly after therapy with eravacycline began, the patient started experiencing muscle pain and the creatine phosphokinase (CPK) level was noted to be elevated. Other causes, such as concomitant administration of an HMG-CoA reductase inhibitor, were explored in this case but not thought to be the cause of rhabdomyolysis. The patient's CPK dropped considerably upon discontinuation of the novel antibiotic, and symptoms resolved. The adverse drug event was reported to the drug manufacturer; however, there are no reports up until this time that address a possible relationship between eravacycline administration and the development of rhabdomyolysis.
Collapse
Affiliation(s)
- Madeline G Belk
- Department of Pharmacy, Huntsville Hospital, Huntsville, AL, USA
| | - Pam M Ku
- Department of Pharmacy, Augusta University Medical Center, Augusta, GA, USA
| | | | | |
Collapse
|
11
|
Upmanyu K, Rizwanul Haq QM, Singh R. Antibacterial and Antibiofilm Properties of the Alexidine Dihydrochloride (MMV396785) against Acinetobacter baumannii. Antibiotics (Basel) 2023; 12:1155. [PMID: 37508252 PMCID: PMC10375957 DOI: 10.3390/antibiotics12071155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 07/30/2023] Open
Abstract
Antibiotic-resistant Acinetobacter baumannii infections among patients in hospital settings are rising at an alarming rate. The World Health Organization has designated carbapenem-resistant A. baumannii as a priority pathogen for drug discovery. Based on the open drug discovery approach, we screened 400 compounds provided as a Pandemic Response Box by MMV and DNDi to identify compounds with antibacterial and antibiofilm activity against two A. baumannii reference strains using a highly robust resazurin assay. In vitro screening identified thirty compounds with MIC ≤ 50μM having growth inhibitory properties against the planktonic state. Five compounds, with MMV IDs MMV396785, MMV1578568, MMV1578574, MMV1578564, and MMV1579850, were able to reduce metabolically active cells in the biofilm state. Of these five compounds, MMV396785 showed potential antibacterial and antibiofilm activity with MIC, MBIC, and MBEC of 3.125 μM, 12.5, and 25-100 µM against tested A. baumannii strains, respectively, showing biofilm formation inhibition by 93% and eradication of pre-formed biofilms by 60-77.4%. In addition, MMV396785 showed a drastic reduction in the surface area and thickness of biofilms. Further investigations at the molecular level by qRT-PCR revealed the downregulation of biofilm-associated genes when exposed to 50 µM MMV396785 in all tested strains. This study identified the novel compound MMV396785 as showing potential in vitro antibacterial and antibiofilm efficacy against A. baumannii.
Collapse
Affiliation(s)
- Kirti Upmanyu
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India
- Department of Biosciences, Jamia Millia Islamia, A Central University, New Delhi 110025, India
| | - Qazi Mohd Rizwanul Haq
- Department of Biosciences, Jamia Millia Islamia, A Central University, New Delhi 110025, India
| | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India
| |
Collapse
|
12
|
Brauncajs M, Bielec F, Macieja A, Pastuszak-Lewandoska D. In Vitro Activity of Eravacycline against Carbapenemase-Producing Gram-Negative Bacilli Clinical Isolates in Central Poland. Biomedicines 2023; 11:1784. [PMID: 37509424 PMCID: PMC10376096 DOI: 10.3390/biomedicines11071784] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Eravacycline is a novel antibiotic of the tetracycline class with activity against a broad spectrum of clinically significant bacteria, including multi-drug-resistant organisms. For this reason, it may be an alternative to treating critical infections of this etiology. We aimed to assess the in vitro effectiveness of eravacycline to carbapenemase-producing Gram-negative bacilli clinical isolates identified in hospitals in Łódź, Poland. We analyzed 102 strains producing KPC, MBL, OXA-48, GES, and other carbapenemases. Eravacycline susceptibility was determined following the EUCAST guidelines. The highest susceptibility was found in KPC (73%) and MBL (59%) strains. Our results confirmed in vitro the efficacy of this drug against carbapenem-resistant strains. However, eravacycline has been indicated only for treating complicated intra-abdominal infections, significantly limiting its use. This aspect should be further explored to expand the indications for using eravacycline supported by evidence-based medicine. Eravacycline is one of the drugs that could play a role in reducing the spread of multidrug-resistant microorganisms.
Collapse
Affiliation(s)
- Małgorzata Brauncajs
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 90-151 Lodz, Poland
- Medical Microbiology Laboratory, Central Teaching Hospital of Medical University of Lodz, 92-213 Lodz, Poland
| | - Filip Bielec
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 90-151 Lodz, Poland
- Medical Microbiology Laboratory, Central Teaching Hospital of Medical University of Lodz, 92-213 Lodz, Poland
| | - Anna Macieja
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 90-151 Lodz, Poland
| | - Dorota Pastuszak-Lewandoska
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 90-151 Lodz, Poland
| |
Collapse
|
13
|
Shields RK, Paterson DL, Tamma PD. Navigating Available Treatment Options for Carbapenem-Resistant Acinetobacter baumannii-calcoaceticus Complex Infections. Clin Infect Dis 2023; 76:S179-S193. [PMID: 37125467 PMCID: PMC10150276 DOI: 10.1093/cid/ciad094] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii-calcoaceticus complex (CRAB) is one of the top-priority pathogens for new antibiotic development. Unlike other antibiotic-resistant threats, none of the available therapies have been shown to consistently reduce mortality or improve patient outcomes in clinical trials. Antibiotic combination therapy is routinely used in clinical practice; however, the preferred combination has not been defined. This narrative review focuses on evidence-based solutions for the treatment of invasive CRAB infections. We dissect the promise and perils of traditional agents used in combination, such as colistin, sulbactam, and the tetracyclines, and offer clinical pearls based on our interpretation of the available data. Next, we investigate the merits of newly developed β-lactam agents like cefiderocol and sulbactam-durlobactam, which have demonstrated contrasting results in recent randomized clinical trials. The review concludes with the authors' perspective on the evolving treatment landscape for CRAB infections, which is complicated by limited clinical data, imperfect treatment options, and a need for future clinical trials. We propose that effective treatment for CRAB infections requires a personalized approach that incorporates host factors, the site of infection, pharmacokinetic-pharmacodynamic principles, local molecular epidemiology of CRAB isolates, and careful interpretation of antibiotic susceptibility testing results. In most clinical scenarios, a dose-optimized, sulbactam-based regimen is recommended with the addition of at least one other in vitro active agent. Should sulbactam-durlobactam receive regulatory approval, recommendations will need to be re-evaluated with the most recent evidence.
Collapse
Affiliation(s)
- Ryan K Shields
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David L Paterson
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Pranita D Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Karvouniaris M, Almyroudi MP, Abdul-Aziz MH, Blot S, Paramythiotou E, Tsigou E, Koulenti D. Novel Antimicrobial Agents for Gram-Negative Pathogens. Antibiotics (Basel) 2023; 12:761. [PMID: 37107124 PMCID: PMC10135111 DOI: 10.3390/antibiotics12040761] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Gram-negative bacterial resistance to antimicrobials has had an exponential increase at a global level during the last decades and represent an everyday challenge, especially for the hospital practice of our era. Concerted efforts from the researchers and the industry have recently provided several novel promising antimicrobials, resilient to various bacterial resistance mechanisms. There are new antimicrobials that became commercially available during the last five years, namely, cefiderocol, imipenem-cilastatin-relebactam, eravacycline, omadacycline, and plazomicin. Furthermore, other agents are in advanced development, having reached phase 3 clinical trials, namely, aztreonam-avibactam, cefepime-enmetazobactam, cefepime-taniborbactam, cefepime-zidebactam, sulopenem, tebipenem, and benapenem. In this present review, we critically discuss the characteristics of the above-mentioned antimicrobials, their pharmacokinetic/pharmacodynamic properties and the current clinical data.
Collapse
Affiliation(s)
- Marios Karvouniaris
- Intensive Care Unit, AHEPA University Hospital, 546 36 Thessaloniki, Greece;
| | | | - Mohd Hafiz Abdul-Aziz
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QL 4029, Australia; (M.H.A.-A.); (S.B.)
| | - Stijn Blot
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QL 4029, Australia; (M.H.A.-A.); (S.B.)
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | | | - Evdoxia Tsigou
- Intensive Care Department, ‘Aghioi Anargyroi’ Hospital of Kifissia, 145 64 Athens, Greece;
| | - Despoina Koulenti
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QL 4029, Australia; (M.H.A.-A.); (S.B.)
- Second Critical Care Department, Attikon University Hospital, 124 62 Athens, Greece;
| |
Collapse
|
15
|
Rolston K, Gerges B, Nesher L, Shelburne SA, Prince R, Raad I. In vitro activity of eravacycline and comparator agents against bacterial pathogens isolated from patients with cancer. JAC Antimicrob Resist 2023; 5:dlad020. [PMID: 36875177 PMCID: PMC9981869 DOI: 10.1093/jacamr/dlad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Background Bacterial infections are common in patients with cancer, and many bacteria have developed resistance to currently used antibiotics. Objectives We evaluated the in vitro activity of eravacycline (a recently developed fluorocycline) and comparators against bacterial pathogens isolated from patients with cancer. Methods Antimicrobial susceptibility testing was performed using CLSI-approved methodology and interpretive criteria for 255 Gram-positive and 310 Gram-negative bacteria. MIC and susceptibility percentage were calculated according to CLSI and FDA breakpoints when available. Results Eravacycline had potent activity against most Gram-positive bacteria, including MRSA. Of 80 Gram-positive isolates with available breakpoints, 74 (92.5%) were susceptible to eravacycline. Eravacycline had potent activity against most Enterobacterales, including ESBL-producing organisms. Of 230 Gram-negative isolates with available breakpoints, 201 (87.4%) were susceptible to eravacycline. Eravacycline had the best activity among comparators against carbapenem-resistant Enterobacterales, with 83% susceptibility. Eravacycline was also active against many non-fermenting Gram-negative bacteria, with the lowest MIC90 value among comparators. Conclusions Eravacycline was active against many clinically significant bacteria isolated from patients with cancer, including MRSA, carbapenem-resistant Enterobacterales, and non-fermenting Gram-negative bacilli. Eravacycline might play an important role in the treatment of bacterial infections in patients with cancer, and additional clinical evaluation is warranted.
Collapse
Affiliation(s)
- Kenneth Rolston
- Department of Infectious Diseases, Infection Control and Employee Health Research, The University of Texas MD Anderson Cancer Center, 1515 Holcomb Blvd, Houston, TX 77030, USA
| | - Bahgat Gerges
- Department of Infectious Diseases, Infection Control and Employee Health Research, The University of Texas MD Anderson Cancer Center, 1515 Holcomb Blvd, Houston, TX 77030, USA
| | - Lior Nesher
- Infectious Disease Institute, Soroka Medical Center, Ben-Gurion University of the Negev, Beer Sheba, Israel
| | - Samuel A Shelburne
- Department of Infectious Diseases, Infection Control and Employee Health Research, The University of Texas MD Anderson Cancer Center, 1515 Holcomb Blvd, Houston, TX 77030, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcomb Blvd, Houston, TX 77030, USA
| | - Randall Prince
- Department of Infectious Diseases, Infection Control and Employee Health Research, The University of Texas MD Anderson Cancer Center, 1515 Holcomb Blvd, Houston, TX 77030, USA
| | - Issam Raad
- Department of Infectious Diseases, Infection Control and Employee Health Research, The University of Texas MD Anderson Cancer Center, 1515 Holcomb Blvd, Houston, TX 77030, USA
| |
Collapse
|
16
|
Huang CF, Wang JT, Chuang YC, Sheng WH, Chen YC. In vitro susceptibility of common Enterobacterales to eravacycline in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:358-366. [PMID: 36243669 DOI: 10.1016/j.jmii.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND New tetracycline derivatives exhibit broad-spectrum antimicrobial activities. This study aimed to assess the in vitro activity of eravacycline against common Enterobacterales. METHODS Clinical Enterobacterales isolates were collected between 2017 and 2021. The minimum inhibitory concentration (MIC) was determined using a broth microdilution test. RESULTS We identified Klebsiella pneumoniae (n = 300), Escherichia coli (n = 300), Klebsiella oxytoca (n = 100), Enterobacter cloacae complex (n = 100), Citrobacter freundii (n = 100), and Proteus mirabilis (n = 100). All P. mirabilis strains were resistant to eravacycline. Excluding P. mirabilis, the susceptibility rates to eravacycline, omadacycline, and tigecycline were 75.2%, 66.9%, and 73%, respectively. The MIC50 and MIC90 (mg/L) of eravacycline were 0.5 and 4 for K. pneumoniae, 0.5 and 1 for E. coli, 0.5 and 1 for K. oxytoca, 0.5 and 2 for E. cloacae complex, and 0.25 and 1 for C. freundii. In cefotaxime non-susceptible and meropenem susceptible Enterobacterales, excluding P. mirabilis, the susceptibility rates of eravacycline, omadacycline, and tigecycline were 69.7%, 57.1%, and 66.2%. We found decreased susceptibility rates of three new tetracycline derivatives against meropenem non-susceptible Enterobacterales (eravacycline: 47.1%, omadacycline: 39.4%, and tigecycline: 39.4%). Eravacycline showed a high susceptibility rate against cefotaxime non-susceptible and meropenem susceptible K. oxytoca (100%), C. freundii (93.2%), E. coli (85.9%), and meropenem non-susceptible E. coli (100%). CONCLUSION This study provides the MIC and susceptibility rate of eravacycline for common Enterobacterales. Eravacycline could be a therapeutic choice for cefotaxime non-susceptible or meropenem non-susceptible Enterobacterales, especially K. oxytoca, C. freundii, and E. coli.
Collapse
Affiliation(s)
- Chun-Fu Huang
- Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin County, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Yu-Chung Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan.
| | - Wang-Huei Sheng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| |
Collapse
|
17
|
Carbapenem-Resistant Klebsiella pneumoniae: Virulence Factors, Molecular Epidemiology and Latest Updates in Treatment Options. Antibiotics (Basel) 2023; 12:antibiotics12020234. [PMID: 36830145 PMCID: PMC9952820 DOI: 10.3390/antibiotics12020234] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Klebsiella pneumoniae is a Gram-negative opportunistic pathogen responsible for a variety of community and hospital infections. Infections caused by carbapenem-resistant K. pneumoniae (CRKP) constitute a major threat for public health and are strongly associated with high rates of mortality, especially in immunocompromised and critically ill patients. Adhesive fimbriae, capsule, lipopolysaccharide (LPS), and siderophores or iron carriers constitute the main virulence factors which contribute to the pathogenicity of K. pneumoniae. Colistin and tigecycline constitute some of the last resorts for the treatment of CRKP infections. Carbapenemase production, especially K. pneumoniae carbapenemase (KPC) and metallo-β-lactamase (MBL), constitutes the basic molecular mechanism of CRKP emergence. Knowledge of the mechanism of CRKP appearance is crucial, as it can determine the selection of the most suitable antimicrobial agent among those most recently launched. Plazomicin, eravacycline, cefiderocol, temocillin, ceftolozane-tazobactam, imipenem-cilastatin/relebactam, meropenem-vaborbactam, ceftazidime-avibactam and aztreonam-avibactam constitute potent alternatives for treating CRKP infections. The aim of the current review is to highlight the virulence factors and molecular pathogenesis of CRKP and provide recent updates on the molecular epidemiology and antimicrobial treatment options.
Collapse
|
18
|
Russo A, Fusco P, Morrone HL, Trecarichi EM, Torti C. New advances in management and treatment of multidrug-resistant Klebsiella pneumoniae. Expert Rev Anti Infect Ther 2023; 21:41-55. [PMID: 36416713 DOI: 10.1080/14787210.2023.2151435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The management of multidrug-resistant (MDR) Klebsiella pneumoniae (KP) represents a major challenge in the field of infectious diseases. It is associated with a high rate of nosocomial infections with a mortality rate that reaches approximately 50%, even when using an effective antimicrobial therapy. Therefore, combined actions addressing infection control and antibiotic stewardship are required to delay the emergence of resistance. Since new antimicrobial agents targeting MDR-GNB bacteria have been produced during the last years and are now available for physicians to treat MDR, it is fundamental to choose appropriate antimicrobial therapy for K. pneumoniae infection. AREAS COVERED The PubMed database was searched to review the most significant recent literature on the topic, including data from articles coming from endemic areas and from the current European and American Guidelines. EXPERT OPINION We explore the most effective strategies for prevention of MDR-KP spread and the currently available treatment options, focusing on comparing old strategies and new compounds. We reviewed data concerning newly developed drugs that could play an important role in the future; we also propose a treatment algorithm that could be useful for physicians in daily clinical practice.
Collapse
Affiliation(s)
- Alessandro Russo
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Paolo Fusco
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Helen Linda Morrone
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Enrico Maria Trecarichi
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Carlo Torti
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
19
|
Carbapenem-Resistant Gram-Negative Fermenting and Non-Fermenting Rods Isolated from Hospital Patients in Poland-What Are They Susceptible to? Biomedicines 2022; 10:biomedicines10123049. [PMID: 36551805 PMCID: PMC9775024 DOI: 10.3390/biomedicines10123049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/12/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Gram-negative fermenting and non-fermenting bacteria are important etiological factors of nosocomial and community infections, especially those that produce carbapenemases. Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa are the most frequently-detected carbapenemase-producing microorganisms. The predominant type of resistance is metallo-β-lactamase (MBL). These bacteria are predominantly isolated from bronchial alveolar lavage, urine, and blood. Carbapenemase-producing Enterobacterales (CPE) strains are always multi-drug-resistant. This significantly limits the treatment options for this type of infection, extends the time of patient hospitalization, and increases the risk of a more severe and complicated disease course. Preventing the transmission of these microorganisms should be a major public health initiative. New antibiotics and treatment regimens offer hope against these infections.
Collapse
|
20
|
Jantarathaneewat K, Camins B, Apisarnthanarak A. What are the considerations for the treatment of multidrug resistant Acinetobacter baumannii infections? Expert Opin Pharmacother 2022; 23:1667-1672. [PMID: 36210527 DOI: 10.1080/14656566.2022.2134778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Kittiya Jantarathaneewat
- Center of Excellence in Pharmacy Practice and Management Research, Faculty of Pharmacy, Thammasat University, Pathum Thani, Thailand.,Research Group in Infectious Diseases Epidemiology and Prevention, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Bernard Camins
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anucha Apisarnthanarak
- Research Group in Infectious Diseases Epidemiology and Prevention, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand.,Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
21
|
Deolankar MS, Carr RA, Fliorent R, Roh S, Fraimow H, Carabetta VJ. Evaluating the Efficacy of Eravacycline and Omadacycline against Extensively Drug-Resistant Acinetobacter baumannii Patient Isolates. Antibiotics (Basel) 2022; 11:antibiotics11101298. [PMID: 36289956 PMCID: PMC9598263 DOI: 10.3390/antibiotics11101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
For decades, the spread of multidrug-resistant (MDR) Acinetobacter baumannii has been rampant in critically ill, hospitalized patients. Traditional antibiotic therapies against this pathogen have been failing, leading to rising concerns over management options for patients. Two new antibiotics, eravacycline and omadacycline, were introduced to the market and have shown promising results in the treatment of Gram-negative infections. Since these drugs are newly available, there is limited in vitro data about their effectiveness against MDR A. baumannii or even susceptible strains. Here, we examined the effectiveness of 22 standard-of-care antibiotics, eravacycline, and omadacycline against susceptible and extensively drug-resistant (XDR) A. baumannii patient isolates from Cooper University Hospital. Furthermore, we examined selected combinations of eravacycline or omadacycline with other antibiotics against an XDR strain. We demonstrated that this collection of strains is largely resistant to monotherapies of carbapenems, fluoroquinolones, folate pathway antagonists, cephalosporins, and most tetracyclines. While clinical breakpoint data are not available for eravacycline or omadacycline, based on minimum inhibitory concentrations, eravacycline was highly effective against these strains. The aminoglycoside amikacin alone and in combination with eravacycline or omadacycline yielded the most promising results. Our comprehensive characterization offers direction in the treatment of this deadly infection in hospitalized patients.
Collapse
Affiliation(s)
- Manas S. Deolankar
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Rachel A. Carr
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | | | - Sean Roh
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Henry Fraimow
- Department of Medicine, Division of Infectious Diseases, Cooper University Hospital, Camden, NJ 08103, USA
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
- Correspondence: ; Tel.: +1-856-956-2736
| |
Collapse
|
22
|
Dolma KG, Khati R, Paul AK, Rahmatullah M, de Lourdes Pereira M, Wilairatana P, Khandelwal B, Gupta C, Gautam D, Gupta M, Goyal RK, Wiart C, Nissapatorn V. Virulence Characteristics and Emerging Therapies for Biofilm-Forming Acinetobacter baumannii: A Review. BIOLOGY 2022; 11:biology11091343. [PMID: 36138822 PMCID: PMC9495682 DOI: 10.3390/biology11091343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary Acinetobacter baumannii (A. baumannii) is one of the ESKAPE organisms and has the competency to build biofilms. These biofilms account for the most nosocomial infections all over the world. This review reflects on the various physicochemical and environmental factors such as adhesion, pili expression, growth surfaces, drug-resistant genes, and virulence factors that profoundly affect its resistant forte. Emerging drug-resistant issues and limitations to newer drugs are other factors affecting the hospital environment. Here, we discuss newer and alternative methods that can significantly enhance the susceptibility to Acinetobacter spp. Many new antibiotics are under trials, such as GSK-3342830, The Cefiderocol (S-649266), Fimsbactin, and similar. On the other hand, we can also see the impact of traditional medicine and the secondary metabolites of these natural products’ application in searching for new treatments. The field of nanoparticles has demonstrated effective antimicrobial actions and has exhibited encouraging results in the field of nanomedicine. The use of various phages such as vWUPSU and phage ISTD as an alternative treatment for its specificity and effectiveness is being investigated. Cathelicidins obtained synthetically or from natural sources can effectively produce antimicrobial activity in the micromolar range. Radioimmunotherapy and photodynamic therapy have boundless prospects if explored as a therapeutic antimicrobial strategy. Abstract Acinetobacter species is one of the most prevailing nosocomial pathogens with a potent ability to develop antimicrobial resistance. It commonly causes infections where there is a prolonged utilization of medical devices such as CSF shunts, catheters, endotracheal tubes, and similar. There are several strains of Acinetobacter (A) species (spp), among which the majority are pathogenic to humans, but A. baumannii are entirely resistant to several clinically available antibiotics. The crucial mechanism that renders them a multidrug-resistant strain is their potent ability to synthesize biofilms. Biofilms provide ample opportunity for the microorganisms to withstand the harsh environment and further cause chronic infections. Several studies have enumerated multiple physiological and virulence factors responsible for the production and maintenance of biofilms. To further enhance our understanding of this pathogen, in this review, we discuss its taxonomy, pathogenesis, current treatment options, global resistance rates, mechanisms of its resistance against various groups of antimicrobials, and future therapeutics.
Collapse
Affiliation(s)
- Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Rachana Khati
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (P.W.); (V.N.)
| | - Bidita Khandelwal
- Department of Medicine, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Chamma Gupta
- Department of Biotechnology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Deepan Gautam
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Ramesh K. Goyal
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand
- Correspondence: (P.W.); (V.N.)
| |
Collapse
|
23
|
Wen Z, Liu F, Zhang P, Wei Y, Shi Y, Zheng J, Li G, Yu Z, Xu Z, Deng Q, Chen Z. In vitro activity and adaptation strategies of eravacycline in clinical Enterococcus faecium isolates from China. J Antibiot (Tokyo) 2022; 75:498-508. [PMID: 35896611 DOI: 10.1038/s41429-022-00546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 11/09/2022]
Abstract
Eravacycline (Erava) is a synthetic fluorocycline with potent antimicrobial activity against a wide range of Gram-positive bacteria. This study aimed to investigate the in vitro antimicrobial activity and resistance mechanism of Erava in clinical E. faecium isolates from China. Erava minimum inhibitory concentrations (MICs) against clinical E. faecium isolates-including those resistant to linezolid (LZD) or harboring the tetracycline (Tet) resistance genes was ≤0.25 mg l-1. Moreover, our data indicated that clinical isolates of E. faecium with Erava MIC 0.25 mg l-1 were predominantly shown to belong to Sequence-type 78 (ST78) and ST80. The prevalence of Erava heteroresistance in clinical E. faecium strain was 2.46% (3/122). The increased Erava MIC values of heteroresistance-derived E. faecium clones could be significantly reduced by efflux pump inhibitors (EPIs). Furthermore, comparative proteomics results showed that efflux pumps lmrA, mdlA, and mdlB contributed significantly to the acquisition of Erava resistance in E. faecium. In addition, a genetic mutation in 16 S rRNA (G190A) were detected in resistant E. faecium isolates induced by Erava. In summary, Erava exhibits potent in vitro antimicrobial activity against E. faecium, but mutation of Tet target sites and elevated expression of efflux pumps under Erava selection results in Erava resistance.
Collapse
Affiliation(s)
- Zewen Wen
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Fangfang Liu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Peixing Zhang
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Ying Wei
- Heilongjiang Medical Service Management Evaluation Center, Harbin, Heilongjiang, 150031, China
| | - Yiyi Shi
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Guiqiu Li
- Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.,The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Zhicao Xu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China. .,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China. .,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Zhong Chen
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China. .,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| |
Collapse
|
24
|
Sy CL, Chen PY, Cheng CW, Huang LJ, Wang CH, Chang TH, Chang YC, Chang CJ, Hii IM, Hsu YL, Hu YL, Hung PL, Kuo CY, Lin PC, Liu PY, Lo CL, Lo SH, Ting PJ, Tseng CF, Wang HW, Yang CH, Lee SSJ, Chen YS, Liu YC, Wang FD. Recommendations and guidelines for the treatment of infections due to multidrug resistant organisms. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:359-386. [PMID: 35370082 DOI: 10.1016/j.jmii.2022.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 01/12/2023]
Abstract
Antimicrobial drug resistance is one of the major threats to global health. It has made common infections increasingly difficult or impossible to treat, and leads to higher medical costs, prolonged hospital stays and increased mortality. Infection rates due to multidrug-resistant organisms (MDRO) are increasing globally. Active agents against MDRO are limited despite an increased in the availability of novel antibiotics in recent years. This guideline aims to assist clinicians in the management of infections due to MDRO. The 2019 Guidelines Recommendations for Evidence-based Antimicrobial agents use in Taiwan (GREAT) working group, comprising of infectious disease specialists from 14 medical centers in Taiwan, reviewed current evidences and drafted recommendations for the treatment of infections due to MDRO. A nationwide expert panel reviewed the recommendations during a consensus meeting in Aug 2020, and the guideline was endorsed by the Infectious Diseases Society of Taiwan (IDST). This guideline includes recommendations for selecting antimicrobial therapy for infections caused by carbapenem-resistant Acinetobacter baumannii, carbapenem-resistant Pseudomonas aeruginosa, carbapenem-resistant Enterobacterales, and vancomycin-resistant Enterococcus. The guideline takes into consideration the local epidemiology, and includes antimicrobial agents that may not yet be available in Taiwan. It is intended to serve as a clinical guide and not to supersede the clinical judgment of physicians in the management of individual patients.
Collapse
Affiliation(s)
- Cheng Len Sy
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Pao-Yu Chen
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Wen Cheng
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ling-Ju Huang
- Division of General Medicine, Infectious Diseases, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taiwan
| | - Ching-Hsun Wang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tu-Hsuan Chang
- Department of Pediatrics, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yi-Chin Chang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chia-Jung Chang
- Department of Pediatrics, MacKay Children's Hospital and MacKay Memorial Hospital, Taipei, Taiwan
| | - Ing-Moi Hii
- Division of Infectious Diseases, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Lung Hsu
- Division of Pediatric Infectious Diseases, China Medical University Children's Hospital, China Medical University, Taichung, Taiwan
| | - Ya-Li Hu
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan
| | - Pi-Lien Hung
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chen-Yen Kuo
- Department of Pediatrics, Chang Gung Children's Hospital, College of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Pei-Chin Lin
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Pharmacy, School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Yen Liu
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ching-Lung Lo
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Hao Lo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Pei-Ju Ting
- Division of Infectious Diseases, Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chien-Fang Tseng
- Department of Pediatrics, MacKay Children's Hospital and MacKay Memorial Hospital, Taipei, Taiwan
| | - Hsiao-Wei Wang
- Division of Infectious Diseases, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ching-Hsiang Yang
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Susan Shin-Jung Lee
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yao-Shen Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yung-Ching Liu
- Division of Infectious Diseases, Taipei Medical University Shuang Ho Hospital, Taipei, Taiwan
| | - Fu-Der Wang
- Division of Infectious Diseases, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
25
|
Scott CJ, Zhu E, Jayakumar RA, Shan G, Viswesh V. Efficacy of Eravacycline Versus Best Previously Available Therapy for Adults With Pneumonia Due to Difficult-to-Treat Resistant (DTR) Acinetobacter baumannii. Ann Pharmacother 2022; 56:1299-1307. [PMID: 35511209 DOI: 10.1177/10600280221085551] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Multidrug-resistant Acinetobacter baumannii remains challenging to treat. Although eravacycline has in vitro activity against this pathogen, there are no studies evaluating outcomes. OBJECTIVE To assess the efficacy of eravacycline compared with best previously available therapy in adults with difficult-to-treat resistant (DTR) A. baumannii pneumonia. METHODS This was a retrospective study of adults hospitalized for pneumonia with DTR A. baumannii. Patients receiving eravacycline were compared with those receiving best previously available therapy. The primary outcome was 30-day in-hospital mortality. Secondary outcomes included clinical cure at Day 14, hospital and intensive care unit (ICU) length of stay, microbiologic cure, and readmission within 90 days with a positive A. baumannii respiratory culture. RESULTS Ninety-three patients were included, with 27 receiving eravacycline. Eravacycline was associated with higher 30-day mortality (33% vs 15%; P = 0.048), lower microbiologic cure (17% vs 59%; P = 0.004), and longer durations of mechanical ventilation (10.5 vs 6.5 days; P = 0.016). At baseline, eravacycline patients had more A. baumannii bacteremia and coinfection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Among bacteremic patients, all 4 receiving eravacycline died by Day 30 and both patients receiving best previously available therapy survived. Upon exclusion of patients with bacteremia and SARS-CoV-2, there were no differences between the groups across any outcomes. CONCLUSIONS Eravacycline-based combination therapy had similar outcomes to best previously available combination therapy for adults with DTR A. baumannii pneumonia. However, eravacycline should be used with caution in the setting of bacteremia as outcomes were poor in this population.
Collapse
Affiliation(s)
- Courtney J Scott
- Department of Pharmacy, Valley Hospital Medical Center, Las Vegas, NV, USA
| | - Elizabeth Zhu
- Department of Pharmacy, Henderson Hospital, Henderson, NV, USA
| | | | - Guogen Shan
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Velliyur Viswesh
- College of Pharmacy, Roseman University of Health Sciences, Henderson, NV, USA
| |
Collapse
|
26
|
Yang JL, Yang CJ, Chuang YC, Sheng WH, Chen YC, Chang SC. Minocycline Susceptibility and tetB Gene in Carbapenem-Resistant Acinetobacter baumannii in Taiwan. Infect Drug Resist 2022; 15:2401-2408. [PMID: 35528186 PMCID: PMC9075780 DOI: 10.2147/idr.s357344] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose In this study, we evaluated the minocycline susceptibility rate in carbapenem-resistant Acinetobacter baumannii (CRAB) clinical strains, and the association between tetB carriage and minocycline susceptibility in CRAB. Patients and Methods A total of 100 genetically unrelated CRAB clinical strains from bloodstream infection were randomly collected from a medical center in Taiwan. An argument for a new minocycline susceptibility breakpoint of 1 mg/L was suggested based on pharmacokinetic (PK) and pharmacodynamic (PD) studies. Strains with minocycline minimum inhibitory concentrations (MICs) of >1 mg/L were classified as PK-PD non-susceptible. TetB carriage was detected by polymerase chain reaction (PCR). Results Fifty-five (55%) CRAB strains were susceptible to minocycline according to the Clinical and Laboratory Standards Institute (CLSI) criteria, among which 98.2% (54/55) were PK-PD non-susceptible. The minocycline MIC50/90 was 4/16 mg/L. Ninety-seven (97%) strains carried tetB. All of the tetB-positive strains and 66.7% (2/3) of the tetB-negative strains were PK-PD non-susceptible. By statistical analysis, tetB carriage was significantly correlated with PK-PD non-susceptibility (P = 0.03) and a higher minocycline MIC (P = 0.02). The sensitivity and specificity of the tetB PCR for predicting PK-PD non-susceptibility were 98% and 100%, respectively. Conclusion At our institute, most CRAB strains were PK-PD non-susceptible and most carried tetB gene. Recognizing the minocycline MIC and tetB status may be essential when using minocycline to treat CRAB-related infections.
Collapse
Affiliation(s)
- Jia-Ling Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Chia-Jui Yang
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chung Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
- Correspondence: Yu-Chung Chuang, Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Zhongzheng Dist, Taipei, 100225, Taiwan, Republic of China, Tel +886 2 2312 3456 ext 65054, Fax +886 2 2397 1412, Email
| | - Wang-Huei Sheng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Shan-Chwen Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| |
Collapse
|
27
|
Holger DJ, Kunz Coyne AJ, Zhao JJ, Sandhu A, Salimnia H, Rybak MJ. Novel Combination Therapy for Extensively Drug-Resistant Acinetobacter baumannii Necrotizing Pneumonia Complicated by Empyema: A Case Report. Open Forum Infect Dis 2022; 9:ofac092. [PMID: 35350174 PMCID: PMC8946682 DOI: 10.1093/ofid/ofac092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
We report our clinical and laboratory experience treating a 50-year-old patient who was critically ill with extensively drug-resistant Acinetobacter baumannii necrotizing pneumonia complicated by empyema in Detroit, Michigan. A precision medicine approach using whole-genome sequencing, susceptibility testing, and synergy analysis guided the selection of rational combination antimicrobial therapy.
Collapse
Affiliation(s)
- Dana J Holger
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Ashlan J Kunz Coyne
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Jing J Zhao
- Detroit Medical Center, Detroit, Michigan, USA
| | - Avnish Sandhu
- Detroit Medical Center, Detroit, Michigan, USA
- Division of Infectious Diseases, Department of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Hossein Salimnia
- Detroit Medical Center Laboratories-Microbiology, Detroit, Michigan, USA
| | - Michael J Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Division of Infectious Diseases, Department of Medicine, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
28
|
Lynch JP, Clark NM, Zhanel GG. Infections Due to Acinetobacter baumannii-calcoaceticus Complex: Escalation of Antimicrobial Resistance and Evolving Treatment Options. Semin Respir Crit Care Med 2022; 43:97-124. [PMID: 35172361 DOI: 10.1055/s-0041-1741019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Bacteria within the genus Acinetobacter (principally A. baumannii-calcoaceticus complex [ABC]) are gram-negative coccobacilli that most often cause infections in nosocomial settings. Community-acquired infections are rare, but may occur in patients with comorbidities, advanced age, diabetes mellitus, chronic lung or renal disease, malignancy, or impaired immunity. Most common sites of infections include blood stream, skin/soft-tissue/surgical wounds, ventilator-associated pneumonia, orthopaedic or neurosurgical procedures, and urinary tract. Acinetobacter species are intrinsically resistant to multiple antimicrobials, and have a remarkable ability to acquire new resistance determinants via plasmids, transposons, integrons, and resistance islands. Since the 1990s, antimicrobial resistance (AMR) has escalated dramatically among ABC. Global spread of multidrug-resistant (MDR)-ABC strains reflects dissemination of a few clones between hospitals, geographic regions, and continents; excessive antibiotic use amplifies this spread. Many isolates are resistant to all antimicrobials except colistimethate sodium and tetracyclines (minocycline or tigecycline); some infections are untreatable with existing antimicrobial agents. AMR poses a serious threat to effectively treat or prevent ABC infections. Strategies to curtail environmental colonization with MDR-ABC require aggressive infection-control efforts and cohorting of infected patients. Thoughtful antibiotic strategies are essential to limit the spread of MDR-ABC. Optimal therapy will likely require combination antimicrobial therapy with existing antibiotics as well as development of novel antibiotic classes.
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology; Department of Medicine; The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Nina M Clark
- Division of Infectious Diseases, Department of Medicine, Loyola University Medical Center, Maywood, Illinois
| | - George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| |
Collapse
|
29
|
Cusack R, Garduno A, Elkholy K, Martín-Loeches I. Novel investigational treatments for ventilator-associated pneumonia and critically ill patients in the intensive care unit. Expert Opin Investig Drugs 2022; 31:173-192. [PMID: 35040388 DOI: 10.1080/13543784.2022.2030312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Ventilator-associated pneumonia (VAP) is common; its prevalence has been highlighted by the Covid-19 pandemic. Even young patients can suffer severe nosocomial infection and prolonged mechanical ventilation. Multidrug-resistant bacteria can spread alarmingly fast around the globe and new antimicrobials are struggling to keep pace; hence physicians must stay abreast of new developments in the treatment of nosocomial pneumonia and VAP. AREAS COVERED This narrative review examines novel antimicrobial investigational drugs and their implementation in the ICU setting for VAP. The paper highlights novel approaches such as monoclonal antibody treatments for P. aeruginosa and S. aureus, and phage antibiotic synthesis. The paper also examines mechanisms of resistance in gram-negative bacteria, virulence factors and inhaled antibiotics and questions what may be on the horizon in terms of emerging treatment strategies. EXPERT OPINION The post-antibiotic era is rapidly approaching and the need for personalised medicine, point-of-care microbial sensitivity testing and development of biomarkers for severe infections is clear. Results from emerging and new antibiotics are encouraging, but infection control measures and de-escalation protocols must be employed to prolong their usefulness in critical illness.
Collapse
Affiliation(s)
- Rachael Cusack
- Department of Clinical Medicine, Trinity College Dublin.,Department of Intensive Care Medicine, St. James's Hospital, Dublin, (Ireland)
| | - Alexis Garduno
- Department of Clinical Medicine, Trinity College Dublin.,Intensive Care Translational Research, Trinity College Dublin
| | - Khalid Elkholy
- Department of Intensive Care Medicine, St. James's Hospital, Dublin, (Ireland)
| | - Ignacio Martín-Loeches
- Department of Clinical Medicine, Trinity College Dublin.,Department of Intensive Care Medicine, St. James's Hospital, Dublin, (Ireland).,Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, Dublin, (Ireland)
| |
Collapse
|
30
|
Carbapenemase-producing Enterobacterales infections: Recent advances in diagnosis and treatment. Int J Antimicrob Agents 2022; 59:106528. [DOI: 10.1016/j.ijantimicag.2022.106528] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/19/2022]
|
31
|
Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clin Infect Dis 2021; 74:2089-2114. [PMID: 34864936 DOI: 10.1093/cid/ciab1013] [Citation(s) in RCA: 270] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The Infectious Diseases Society of America (IDSA) is committed to providing up-to-date guidance on the treatment of antimicrobial-resistant infections. A previous guidance document focused on infections caused by extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Here, guidance is provided for treating AmpC β-lactamase-producing Enterobacterales (AmpC-E), carbapenem-resistant Acinetobacter baumannii (CRAB), and Stenotrophomonas maltophilia infections. METHODS A panel of six infectious diseases specialists with expertise in managing antimicrobial-resistant infections formulated questions about the treatment of AmpC-E, CRAB, and S. maltophilia infections. Answers are presented as suggestions and corresponding rationales. In contrast to guidance in the previous document, published data on optimal treatment of AmpC-E, CRAB, and S. maltophilia infections are limited. As such, guidance in this document is provided as "suggested approaches" based on clinical experience, expert opinion, and a review of the available literature. Because of differences in the epidemiology of resistance and availability of specific anti-infectives internationally, this document focuses on the treatment of infections in the United States. RESULTS Preferred and alternative treatment suggestions are provided, assuming the causative organism has been identified and antibiotic susceptibility results are known. Approaches to empiric treatment, duration of therapy, and other management considerations are also discussed briefly. Suggestions apply for both adult and pediatric populations. CONCLUSIONS The field of antimicrobial resistance is highly dynamic. Consultation with an infectious diseases specialist is recommended for the treatment of antimicrobial-resistant infections. This document is current as of September 17, 2021 and will be updated annually. The most current versions of IDSA documents, including dates of publication, are available at www.idsociety.org/practice-guideline/amr-guidance-2.0/.
Collapse
Affiliation(s)
- Pranita D Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Samuel L Aitken
- Department of Pharmacy, University of Michigan Health, Ann Arbor, Michigan, USA
| | - Robert A Bonomo
- Medical Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, University Hospitals Cleveland Medical Center and Departments of Medicine, Pharmacology, Molecular Biology, and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amy J Mathers
- Departments of Medicine and Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - David van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Cornelius J Clancy
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
32
|
Epidemiology and in vitro activity of ceftazidime-avibactam, meropenem-vaborbactam, imipenem-relebactam, eravacycline, plazomicin, and comparators against Greek carbapenemase-producing Klebsiella pneumoniae isolates. Infection 2021; 50:467-474. [PMID: 34854060 DOI: 10.1007/s15010-021-01735-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/20/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The increase in carbapenem-resistant Klebsiella pneumoniae (CRKP) infections is of great concern because of limited treatment options. New antimicrobials were recently approved for clinical therapy. This study evaluated the epidemiology of carbapenemase-producing K. pneumoniae isolates collected at a Greek university hospital during 2017-2020, and their susceptibilities to ceftazidime-avibactam (CAZ/AVI), meropenem-vaborbactam (M/V), imipenem-relebactam (I/R), eravacycline, plazomicin, and comparators. METHODS Minimum inhibitory concentrations (MICs) were evaluated by Etest. Only colistin MICs were determined by the broth microdilution method. Carbapenemase genes were detected by PCR. Selected isolates were typed by multilocus sequence typing (MLST). RESULTS A total of 266 carbapenemase-producing K. pneumoniae strains were isolated during the 4-year study period. Among them, KPC was the most prevalent (75.6%), followed by NDM (11.7%), VIM (5.6%), and OXA-48 (4.1%). KPC-producing isolates belonged mainly to ST258 and NDM producers belonged to ST11, whereas OXA-48- and VIM producers were polyclonal. Susceptibility to tigecycline, fosfomycin, and colistin was 80.5%, 83.8%, and 65.8%, respectively. Of the novel agents tested, plazomicin was the most active inhibiting 94% of the isolates at ≤ 1.5 μg/ml. CAZ/AVI and M/V inhibited all KPC producers and I/R 98.5% of them. All OXA-48 producers were susceptible to CAZ/AVI and plazomicin. The novel β-lactam/β-lactamase inhibitors (BLBLIs) tested were inactive against MBL-positive isolates, while eravacycline inhibited 61.3% and 66.7% of the NDM and VIM producers, respectively. CONCLUSIONS KPC remains the predominant carbapenemase among K. pneumoniae, followed by NDM. Novel BLBLIs, eravacycline, and plazomicin are promising agents for combating infections by carbapenemase-producing K. pneumoniae. However, the emergence of resistance to these agents highlights the need for continuous surveillance and application of enhanced antimicrobial stewardship.
Collapse
|
33
|
Wang H, Nguyen N, Cruz C. Eravacycline for the treatment of complicated intra‐abdominal infections. ADVANCES IN DIGESTIVE MEDICINE 2021. [DOI: 10.1002/aid2.13216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hongmei Wang
- Department of Pharmacy Practice Texas Southern University Houston TX USA
| | - Namphi Nguyen
- Department of Pharmacy Practice Texas Southern University Houston TX USA
| | - Christopher Cruz
- Department of Pharmacy Practice Texas Southern University Houston TX USA
| |
Collapse
|
34
|
Abdul-Mutakabbir JC, Griffith NC, Shields RK, Tverdek FP, Escobar ZK. Contemporary Perspective on the Treatment of Acinetobacter baumannii Infections: Insights from the Society of Infectious Diseases Pharmacists. Infect Dis Ther 2021; 10:2177-2202. [PMID: 34648177 PMCID: PMC8514811 DOI: 10.1007/s40121-021-00541-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/23/2021] [Indexed: 01/10/2023] Open
Abstract
The purpose of this narrative review is to bring together the most recent epidemiologic, preclinical, and clinical findings to offer our perspective on best practices for managing patients with A. baumannii infections with an emphasis on carbapenem-resistant A. baumannii (CRAB). To date, the preferred treatment for CRAB infections has not been defined. Traditional agents with retained in vitro activity (aminoglycosides, polymyxins, and tetracyclines) are limited by suboptimal pharmacokinetic characteristics, emergence of resistance, and/or toxicity. Recently developed and US Food and Drug Administration (FDA)-approved β-lactam/β-lactamase inhibitor agents do not provide enhanced activity against CRAB. On balance, cefiderocol and eravacycline demonstrate potent in vitro activity and are well tolerated, but clinical data for patients with CRAB infections do not yet support widespread use. Given that CRAB has the capacity to infect vulnerable patients and preferred regimens have not been identified, we advocate for combination therapy. Our preferred regimen for critically ill patients infected, or considered to be at high risk for CRAB, includes meropenem, polymyxin B, and ampicillin/sulbactam. Importantly, site of infection, severity of illness, and local epidemiology are essential factors to be considered in selecting combination therapies. Molecular mechanisms of resistance may unveil preferred combinations at individual centers; however, such data are often unavailable to treating clinicians and have not been linked to improved clinical outcomes. Combination strategies may also pose an increased risk for antibiotic toxicity and Clostridioides difficile infection, and should therefore be balanced by understanding patient goals of care and underlying health conditions. Promising therapies that are in clinical development and/or under investigation include durlobactam-sulbactam, cefiderocol combination regimens, and bacteriophage therapy, which may over time eliminate the need for the continued use of polymyxins. Future goals for CRAB management include pathogen-focused treatment paradigms that are based on molecular mechanisms of resistance, local susceptibility rates, and the availability of well-tolerated, effective treatment options.
Collapse
Affiliation(s)
- Jacinda C Abdul-Mutakabbir
- Department of Pharmacy Practice, Loma Linda University School of Pharmacy, Loma Linda, CA, USA.
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Nicole C Griffith
- University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Ryan K Shields
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Frank P Tverdek
- University of Washington, Seattle Cancer Care Alliance, Seattle, WA, USA
| | - Zahra Kassamali Escobar
- University of Washington Medicine, Valley Medical Center, University of Washington School of Pharmacy, Renton, WA, USA
| |
Collapse
|
35
|
Yang L, Dong N, Xu C, Ye L, Chen S. Emergence of ST63 Pandrug-Resistant Acinetobacter pittii Isolated From an AECOPD Patient in China. Front Cell Infect Microbiol 2021; 11:739211. [PMID: 34722334 PMCID: PMC8552005 DOI: 10.3389/fcimb.2021.739211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Acinetobacter sp. is among the ESKAPE organisms which represent the major nosocomial pathogens that exhibited a high resistance rate. A. pittii, frequently associated with antimicrobial resistance particularly to carbapenems, is one of the most common Acinetobacter species causing invasive infection. Pandrug resistant A. pittii has rarely been reported. Here, we report the case of a patient with acute exacerbations of chronic obstructive pulmonary disease three years after double lung transplantation and developed severe pneumonia associated with pandrug resistant A. pittii infection. Phenotypic and genomic characteristics of this pandrug resistant isolate (17-84) was identified, and the mechanisms underlying its resistance phenotypes were analyzed. Isolate 17-84 belonged to ST63, carried a non-typable and non-transferable plasmid encoding multiple acquired resistance genes including carbapenemase gene bla OXA-58. Point mutations and acquired resistance genes were identified which were associated with different drug resistance phenotypes. To our knowledge, this is the first detailed phenotypic and genomic characterization of PDR A. pittii causing severe infections in clinical settings. Findings from us and others indicate that A. pittii could serve as a reservoir for carbapenem determinants. The emergence of such a superbug could pose a serious threat to public health. Further surveillance of PDR A. pittii strains and implementation of stricter control measures are needed to prevent this emerging pathogen from further disseminating in hospital settings and the community.
Collapse
Affiliation(s)
- Ling Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ning Dong
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong, SAR, China
| | - Chen Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong, SAR, China.,State Key Lab of Chemical Science and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong, SAR, China
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong, SAR, China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
36
|
Jorda A, Zeitlinger M. Preclinical Pharmacokinetic/Pharmacodynamic Studies and Clinical Trials in the Drug Development Process of EMA-Approved Antibacterial Agents: A Review. Clin Pharmacokinet 2021; 59:1071-1084. [PMID: 32356105 PMCID: PMC7467913 DOI: 10.1007/s40262-020-00892-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Development of new antibacterial agents is necessary as drug-resistant bacteria are a threat to global health. In Europe, the European Medicines Agency has been guiding this development process for more than two decades. We investigated preclinical and clinical pre-approval studies to illuminate the current authorization process with emphasis on pharmacokinetic/pharmacodynamic approaches and clinical phases. All centrally authorized systemic antibacterial and antimycobacterial drugs within the European Union were included without any time restriction. Additionally, US Food and Drug Administration-approved antibiotics of the previous 3 years, which were not yet approved by the European Medicines Agency, were included. We focused on preclinical pharmacokinetic/pharmacodynamic studies and phase II and phase III clinical trials. Furthermore, we looked at the recommended dosing regimens and approved indications. In this review, we designed tree diagrams as a new means of illustrating the development process of antibiotics to relate pharmacokinetic/pharmacodynamic phase II and III studies to approved indications. We included 23 (European Medicines Agency, 18; US Food and Drug Administration, 5) antimicrobial agents. Tetracyclines, carbapenems, and cephalosporins were the leading classes. The recommended dosing intervals were significantly shorter in time- vs exposure-dependent drugs (median 8 vs 12, p = 0.006). The majority of approved indications (i.e., acute bacterial skin and soft-tissue infection, community-acquired pneumonia, complicated intra-abdominal infection, complicated urinary tract infection, and complicated skin and soft-tissue infection) used non-inferiority trials. Phase II and III clinical trials investigating community-acquired pneumonia involved the fewest patients. Some promising drugs were marketed in recent years; the individual steps to their authorizations are illuminated. We confirmed the relevance of preclinical pharmacokinetic/pharmacodynamic studies in dosing optimization and decision making in antimicrobial drug development. Non-inferiority clinical trials predominated.
Collapse
Affiliation(s)
- Anselm Jorda
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
37
|
Mc Gann P, Geringer MR, Hall LR, Lebreton F, Markelz E, Kwak YI, Johnson S, Ong AC, Powell A, Tekle T, Bergman Y, Simner PJ, Bennett JW, Cybulski RJ, White BK. Pan-drug resistant Providencia rettgeri contributing to a fatal case of COVID-19. J Med Microbiol 2021; 70. [PMID: 34448689 PMCID: PMC8513626 DOI: 10.1099/jmm.0.001406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Following prolonged hospitalization that included broad-spectrum antibiotic exposure, a strain of Providencia rettgeri was cultured from the blood of a patient undergoing extracorporeal membrane oxygenation treatment for hypoxic respiratory failure due to COVID-19. The strain was resistant to all antimicrobials tested including the novel siderophore cephalosporin, cefiderocol. Whole genome sequencing detected ten antimicrobial resistance genes, including the metallo-β-lactamase bla NDM-1, the extended-spectrum β-lactamase bla PER-1, and the rare 16S methyltransferase rmtB2.
Collapse
Affiliation(s)
- Patrick Mc Gann
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Matthew R Geringer
- Infectious Disease Service, Brooke Army Medical Center, San Antonio, Texas, USA
| | - Lindsey R Hall
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Francois Lebreton
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Elizabeth Markelz
- Infectious Disease Service, Brooke Army Medical Center, San Antonio, Texas, USA
| | - Yoon I Kwak
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Sheila Johnson
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Ana C Ong
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Aubrey Powell
- Department of Pathology and Area Laboratory Services, Brooke Army Medical Center, San Antonio, Texas, USA
| | - Tsigereda Tekle
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yehudit Bergman
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Patricia J Simner
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jason W Bennett
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Robert J Cybulski
- Department of Pathology and Area Laboratory Services, Brooke Army Medical Center, San Antonio, Texas, USA
| | - Brian K White
- Infectious Disease Service, Brooke Army Medical Center, San Antonio, Texas, USA
| |
Collapse
|
38
|
Jurić I, Bošnjak Z, Ćorić M, Lešin J, Mareković I. In vitro susceptibility of carbapenem-resistant Enterobacterales to eravacycline - the first report from Croatia. J Chemother 2021; 34:67-70. [PMID: 34402411 DOI: 10.1080/1120009x.2021.1965335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The main obstacle in treatment of infections caused by carbapenem-resistant Enterobacterales (CRE) are limited treatment options. The novel antimicrobial agents other than β-lactams with activity not being dependent on β-lactamase class are especially important. Eravacycline (ERV) is the first fully synthetic fluorocycline indicated for the treatment of complicated intra-abdominal infections in adults. Eighty CRE isolates at the University Hospital Centre Zagreb, Croatia were examined for susceptibility to ERV by disc diffusion method and minimal inhibitory concentration (MIC). Total of 54 (54/80; 67.5%) isolates were susceptible to ERV with MIC50 of ≤0.5 μg/mL and MIC90 of 4 μg/mL. Susceptibility of OXA-48 positive isolates was not significantly higher in comparison with NDM positive (P = 0.539) and VIM positive (P = 0.7805) isolates. ERV is possible alternative to novel β-lactamase inhibitor combinations for treatment of CRE infections with antimicrobial susceptibility testing of CRE isolate to ERV in particular patient as condicio sine qua non before administration.
Collapse
Affiliation(s)
- Ivana Jurić
- Department of Clinical and Molecular Microbiology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Zrinka Bošnjak
- Department of Clinical and Molecular Microbiology, University Hospital Centre Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Ćorić
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Gynaecology and Obstetrics, University Hospital Centre Zagre, Zagreb, Croatia
| | - Joško Lešin
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Gynaecology and Obstetrics, University Hospital Centre Zagre, Zagreb, Croatia
| | - Ivana Mareković
- Department of Clinical and Molecular Microbiology, University Hospital Centre Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
39
|
Abstract
In this Viewpoint, I argue that our view of antibacterial discovery, development, and commercial potential requires a balance between innovation and clinical utility. I suggest that important new clinical utility may be more important to value than whether the compound in question belongs to a novel chemical class or attacks a novel antibacterial target. Novelty in this regard may increase the risk of scientific or clinical failure. So-called nontraditional approaches to antibacterial therapy are often innovative. The attendant challenges depend on whether the compound can be a stand-alone therapy, part of a fixed-dose combination, or whether it is adjunctive to standard therapy. Suitability for pharmacokinetic-pharmacodynamic studies and antimicrobial susceptibility testing is also an important consideration.
Collapse
Affiliation(s)
- David M. Shlaes
- Anti-infectives Consulting, Stonington, Connecticut 06378, United States
| |
Collapse
|
40
|
Tompkins K, van Duin D. Treatment for carbapenem-resistant Enterobacterales infections: recent advances and future directions. Eur J Clin Microbiol Infect Dis 2021; 40:2053-2068. [PMID: 34169446 DOI: 10.1007/s10096-021-04296-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022]
Abstract
Carbapenem-resistant Enterobacterales (CRE) are a growing threat to human health worldwide. CRE often carry multiple resistance genes that limit treatment options and require longer durations of therapy, are more costly to treat, and necessitate therapies with increased toxicities when compared with carbapenem-susceptible strains. Here, we provide an overview of the mechanisms of resistance in CRE, the epidemiology of CRE infections worldwide, and available treatment options for CRE. We review recentlyapproved agents for the treatment of CRE, including ceftazidime-avibactam, meropenem-vaborbactam, imipenem-relebactam, cefiderocol, and novel aminoglycosides and tetracyclines. We also discuss recent advances in phage therapy and antibiotics that are currently in development targeted to CRE. The potential for the development of resistance to these therapies remains high, and enhanced antimicrobial stewardship is imperative both to reduce the spread of CRE worldwide and to ensure continued access to efficacious treatment options.
Collapse
Affiliation(s)
- Kathleen Tompkins
- Division of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA.
| | - David van Duin
- Division of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
41
|
Lee YL, Ko WC, Lee WS, Lu PL, Chen YH, Cheng SH, Lu MC, Lin CY, Wu TS, Yen MY, Wang LS, Liu CP, Shao PL, Shi ZY, Chen YS, Wang FD, Tseng SH, Lin CN, Chen YH, Sheng WH, Lee CM, Tang HJ, Hsueh PR. In-vitro activity of cefiderocol, cefepime/zidebactam, cefepime/enmetazobactam, omadacycline, eravacycline and other comparative agents against carbapenem-nonsusceptible Enterobacterales: results from the Surveillance of Multicenter Antimicrobial Resistance in Taiwan (SMART) in 2017-2020. Int J Antimicrob Agents 2021; 58:106377. [PMID: 34166777 DOI: 10.1016/j.ijantimicag.2021.106377] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/27/2021] [Accepted: 06/05/2021] [Indexed: 11/30/2022]
Abstract
This study examined the susceptibility of carbapenem-nonsusceptible Enterobacterales (CNSE) to cefiderocol, cefepime/zidebactam, cefepime/enmetazobactam, omadacycline, eravacycline and other comparative agents. Non-duplicate Enterobacterales isolates from 16 Taiwanese hospitals were evaluated. Minimum inhibitory concentrations (MICs) were determined using the broth microdilution method, and susceptibility results were interpreted based on relevant guidelines. In total, 201 CNSE isolates were investigated, including 26 Escherichia coli isolates and 175 Klebsiella pneumoniae isolates. Carbapenemase genes were detected in 15.4% (n=4) of E. coli isolates and 47.4% (n=83) of K. pneumoniae isolates, with the most common being blaKPC (79.3%, 69/87), followed by blaOXA-48-like (13.8%, 12/87). Cefiderocol was the most active agent against CNSE; only 3.8% (n=1) of E. coli isolates and 4.6% (n=8) of K. pneumoniae isolates were not susceptible to cefiderocol. Among the carbapenem-resistant E. coli and K. pneumoniae isolates, 88.5% (n=23) and 93.7% (n=164), respectively, were susceptible to ceftazidime/avibactam. For cefepime/zidebactam, 23 (88.5%) E. coli isolates and 155 (88.6%) K. pneumoniae isolates had MICs ≤2/2 mg/L. For cefepime/enmetazobactam, 22 (84.6%) E. coli isolates and 85 (48.6%) K. pneumoniae isolates had MICs ≤2/8 mg/L. The higher MICs of K. pneumoniae against cefepime/enmetazobactam were due to only one (1.5%) of the 67 blaKPC-carrying isolates being susceptible. MICs of omadacycline were significantly higher than those of eravacycline and tigecycline. In summary, cefiderocol, ceftazidime/avibactam and cefepime/zidebactam were more effective against carbapenem-nonsusceptible E. coli and K. pneumoniae than other drugs, highlighting their potential as valuable therapeutics.
Collapse
Affiliation(s)
- Yu-Lin Lee
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan, and Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Chien Ko
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Sen Lee
- Division of Infectious Diseases, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, and Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Liang Lu
- Department of Internal Medicine, Kaohsiung Medical University Hospital, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Hsu Chen
- Department of Internal Medicine, Kaohsiung Medical University Hospital, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Hsing Cheng
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan, and School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Min-Chi Lu
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chi-Ying Lin
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Ting-Shu Wu
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Muh-Yong Yen
- Division of Infectious Diseases, Taipei City Hospital, and National Yang-Ming University, School of Medicine, Taipei, Taiwan
| | - Lih-Shinn Wang
- Division of Infectious Diseases, Department of Internal Medicine, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan
| | - Chang-Pan Liu
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan, and MacKay Medical College, New Taipei City, Taiwan
| | - Pei-Lan Shao
- Department of Paediatrics, Hsin-Chu Branch, National Taiwan University Hospital, Hsin-Chu, Taiwan
| | - Zhi-Yuan Shi
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yao-Shen Chen
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, and School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Fu-Der Wang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, and School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Hui Tseng
- Centre for Disease Control and Prevention, Ministry of Health and Welfare, Taiwan
| | - Chao-Nan Lin
- Department of Veterinary Medicine, and Animal Disease Diagnostic Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yu-Hui Chen
- Infection Control Centre, Chi Mei Hospital, Liouying, Taiwan
| | - Wang-Huei Sheng
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Ming Lee
- Department of Internal Medicine, St Joseph's Hospital, Yunlin County, Taiwan, and MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Hung-Jen Tang
- Department of Medicine, Chi Mei Medical Centre, Tainan, Taiwan
| | - Po-Ren Hsueh
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
42
|
Karaiskos I, Galani I, Papoutsaki V, Galani L, Giamarellou H. Carbapenemase producing Klebsiella pneumoniae: implication on future therapeutic strategies. Expert Rev Anti Infect Ther 2021; 20:53-69. [PMID: 34033499 DOI: 10.1080/14787210.2021.1935237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The emergence of carbapenemase resistant Gram-negative is designated as an 'urgent' priority of public health. Carbapenemase producing Klebsiella pneumoniae (CPKP) is linked with significant mortality. Conventionally used antibiotics (polymyxins, tigecycline, aminoglycosides, etc.) are associated with poor efficacy and toxicity profiles are quite worrisome.Areas covered: This article reviews mechanism of resistance and evidence regarding novel treatments of infections caused by CPKP, focusing mainly on currently approved new therapies and implications on future therapeutic strategies. A review of novel β-lactam/β-lactamase inhibitors (BLI) recently approved and in clinical development as well as cefiderocol, eravacycline and apramycin are discussed.Expert opinion: Newly approved and forthcoming antimicrobial agents are promising to combat infections caused by CPKP. Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-cilastatin-relebactam are novel agents with favorable outcome and associated with improved mortality in KPC-producing K. pneumoniae infections. However, are inactive against metallo-β-lactamases (MBL). Novel BLI in later stage of development, i.e. aztreonam-avibactam, cefepime-zidebactam, cefepime-taniborbactam, and meropenem-nacubactam as well as cefiderocol are active in vitro against both KPC and MBL. Potential expectations of future therapeutic strategies are improved potency against CPKP, more tolerable safety profile, and capability of overcoming current resistance mechanism of multidrug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Ilias Karaiskos
- 1st Department of Internal Medicine - Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Irene Galani
- 4th Department of Internal Medicine, University General Hospital ATTIKON, National and Kapodistrian University of Athens, Faculty of Medicine, Infectious Diseases Laboratory, Athens, Greece
| | | | - Lamprini Galani
- 1 Department of Internal Medicine - Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Helen Giamarellou
- 1 Department of Internal Medicine - Infectious Diseases, Hygeia General Hospital, Athens, Greece
| |
Collapse
|
43
|
Yusuf E, Bax HI, Verkaik NJ, van Westreenen M. An Update on Eight "New" Antibiotics against Multidrug-Resistant Gram-Negative Bacteria. J Clin Med 2021; 10:jcm10051068. [PMID: 33806604 PMCID: PMC7962006 DOI: 10.3390/jcm10051068] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Infections in the ICU are often caused by Gram-negative bacteria. When these microorganisms are resistant to third-generation cephalosporines (due to extended-spectrum (ESBL) or AmpC beta-lactamases) or to carbapenems (for example carbapenem producing Enterobacteriales (CPE)), the treatment options become limited. In the last six years, fortunately, there have been new antibiotics approved by the U.S. Food and Drug Administration (FDA) with predominant activities against Gram-negative bacteria. We aimed to review these antibiotics: plazomicin, eravacycline, temocillin, cefiderocol, ceftazidime/avibactam, ceftolozane/tazobactam, meropenem/vaborbactam, and imipenem/relebactam. Temocillin is an antibiotic that was only approved in Belgium and the UK several decades ago. We reviewed the in vitro activities of these new antibiotics, especially against ESBL and CPE microorganisms, potential side effects, and clinical studies in complicated urinary tract infections (cUTI), intra-abdominal infections (cIAI), and hospital-acquired pneumonia/ventilator-associatedpneumonia (HAP/VAP). All of these new antibiotics are active against ESBL, and almost all of them are active against CPE caused by KPC beta-lactamase, but only some of them are active against CPE due to MBL or OXA beta-lactamases. At present, all of these new antibiotics are approved by the U.S. Food and Drug Administration for cUTI (except eravacycline) and most of them for cIAI (eravacycline, ceftazidime/avibactam, ceftolozane/tazobactam, and imipenem/relebactam) and for HAP or VAP (cefiderocol, ceftazidime/avibactam, ceftolozane/tazobactam, and imipenem/relebactam).
Collapse
|
44
|
Eljaaly K, Ortwine JK, Shaikhomer M, Almangour TA, Bassetti M. Efficacy and safety of eravacycline: A meta-analysis. J Glob Antimicrob Resist 2021; 24:424-428. [PMID: 33621690 DOI: 10.1016/j.jgar.2021.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/26/2021] [Accepted: 02/09/2021] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES This study was conducted to evaluate the efficacy and safety of eravacycline, a recently approved fluorocycline for treatment of complicated intra-abdominal infections (cIAIs). METHODS PubMed, EMBASE and three trial registries were searched for randomised controlled trials (RCTs) comparing the efficacy and safety of eravacycline versus comparators. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated using random-effects models. The study outcomes included clinical response, all-cause mortality and adverse events (AEs). RESULTS Three RCTs (1128 patients) with cIAIs were included. There were no significant differences in clinical response in the modified intention-to-treat (ITT) (OR, 0.91, 95% CI 0.62-1.35; I2 = 0%), microbiological ITT (OR, 0.93, 95% CI 0.61-1.41; I2 = 0%) and clinically evaluable (OR, 0.98, 95% CI 0.55-1.75; I2 = 0%) populations or in all-cause mortality (OR, 1.18, 95% CI 0.16-8.94; I2 = 0%). Eravacycline was associated with significantly greater odds of total AEs (OR, 1.55, 95% CI 1.20-1.99; I2 = 0%) and nausea (OR, 5.29, 95% CI 1.77-15.78; I2 = 1.70%) but the increase in vomiting was non-significant (OR, 1.44, 95% CI 0.73-2.86; I2 = 1.70%). There were no significant differences in serious AEs or discontinuation due to AEs. CONCLUSION This meta-analysis of RCTs found similar clinical efficacy and mortality for eravacycline compared with carbapenems for treatment of cIAIs. However, the odds of total AEs and specifically nausea was higher with eravacycline, while no significant differences were observed in vomiting (although numerically higher), serious AEs or discontinuation due to AEs.
Collapse
Affiliation(s)
- Khalid Eljaaly
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Pharmacy Practice and Science Department, College of Pharmacy, University of Arizona, Tucson, AZ, USA.
| | - Jessica K Ortwine
- Department of Pharmacy Services, Parkland Health & Hospital System, Dallas, TX, USA; University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Mohammed Shaikhomer
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamer A Almangour
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Matteo Bassetti
- Infectious Diseases Clinic, Department of Health Science, University of Genoa and Hospital Policlinico San Martino - IRCCS, Genoa, Italy
| |
Collapse
|
45
|
Tan X, Kim HS, Baugh K, Huang Y, Kadiyala N, Wences M, Singh N, Wenzler E, Bulman ZP. Therapeutic Options for Metallo-β-Lactamase-Producing Enterobacterales. Infect Drug Resist 2021; 14:125-142. [PMID: 33500635 PMCID: PMC7822077 DOI: 10.2147/idr.s246174] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
The spread of metallo-β-lactamase (MBL)-producing Enterobacterales worldwide without the simultaneous increase in active antibiotics makes these organisms an urgent public health threat. This review summarizes recent advancements in diagnostic and treatment strategies for infections caused by MBL-producing Enterobacterales. Adequate treatment of patients infected with MBL-producing Enterobacterales relies on detection of the β-lactamase in the clinic. There are several molecular platforms that are currently available to identify clinically relevant MBLs as well as other important serine-β-lactamases. Once detected, there are several antibiotics that have historically been used for the treatment of MBL-producing Enterobacterales. Antimicrobials such as aminoglycosides, tetracyclines, fosfomycin, and polymyxins often show promising in vitro activity though clinical data are currently lacking to support their widespread use. Ceftazidime-avibactam combined with aztreonam is promising for treatment of infections caused by MBL-producing Enterobacterales and currently has the most clinical data of any available antibiotic to support its use. While cefiderocol has displayed promising activity against MBL-producing Enterobacterales in vitro and in preliminary clinical studies, further clinical studies will better shed light on its place in treatment. Lastly, there are several promising MBL inhibitors in the pipeline, which may further improve the treatment of MBL-producing Enterobacterales.
Collapse
Affiliation(s)
- Xing Tan
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Hwan Seung Kim
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | | | - Yanqin Huang
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Neeraja Kadiyala
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Marisol Wences
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Nidhi Singh
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Eric Wenzler
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Zackery P Bulman
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| |
Collapse
|
46
|
Karvouniaris M, Pontikis K, Nitsotolis T, Poulakou G. New perspectives in the antibiotic treatment of mechanically ventilated patients with infections from Gram-negatives. Expert Rev Anti Infect Ther 2020; 19:825-844. [PMID: 33270485 DOI: 10.1080/14787210.2021.1859369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: Ventilator-associated pneumonia (VAP) is a common and potentially fatal complication of mechanical ventilation that is often caused by multidrug-resistant (MDR) Gram-negative bacteria (GNB). Despite the repurposing of older treatments and the novel antimicrobials, many resistance mechanisms cannot be confronted, and novel therapies are needed.Areas covered: We searched the literature for keywords regarding the treatment of GNB infections in mechanically ventilated patients. This narrative review presents new data on antibiotics and non-antibiotic approaches focusing on Phase 3 trials against clinically significant GNB that cause VAP.Expert opinion: Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-relebactam stand out as new options for infections by Klebsiella pneumoniae carbapenemase-producing bacteria, whereas ceftolozane-tazobactam adds therapeutic flexibility in Pseudomonas aeruginosa infections with multiple resistance mechanisms. Ceftazidime-avibactam and ceftolozane-tazobactam have relevant literature. Aztreonam-avibactam holds promise for the treatment of infections by metallo-β-lactamase (MBL)-producing organisms. Recently approved cefiderocol possesses an extended antibacterial spectrum, including KPC- and MBL-producers. However, recently published data have toned down optimism about treating VAP caused by carbapenem-resistant Acinetobacter baumannii. For the latter, eravacycline may provide additional hope, pending pertinent data. Non-antibiotic treatments currently being considered as adjunct therapeutic approaches are welcome. Nevertheless, they will hopefully substitute current antimicrobials in the future.
Collapse
Affiliation(s)
- Marios Karvouniaris
- Third Department of Internal Medicine, School of Medicine, National and Kapodistrian University, Sotiria General Hospital, Athens, Greece
| | - Konstantinos Pontikis
- ICU First Department of Respiratory Medicine, School of Medicine, National and Kapodistrian University, Sotiria General Hospital, Athens, Greece
| | - Thomas Nitsotolis
- Third Department of Internal Medicine, School of Medicine, National and Kapodistrian University, Sotiria General Hospital, Athens, Greece
| | - Garyphallia Poulakou
- Third Department of Internal Medicine, School of Medicine, National and Kapodistrian University, Sotiria General Hospital, Athens, Greece
| |
Collapse
|
47
|
Felice VGD, Efimova E, Izmailyan S, Napolitano LM, Chopra T. Efficacy and Tolerability of Eravacycline in Bacteremic Patients with Complicated Intra-Abdominal Infection: A Pooled Analysis from the IGNITE1 and IGNITE4 Studies. Surg Infect (Larchmt) 2020; 22:556-561. [PMID: 33201771 DOI: 10.1089/sur.2020.241] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Eravacycline is a novel, fully synthetic fluorocycline antibiotic that was evaluated for the treatment of complicated intra-abdominal infections (cIAI) in two phase 3 clinical trials. The objective of this analysis was to evaluate the clinical cure and microbiologic response at the test-of-cure (TOC) visit and the safety of eravacycline in patients with cIAI and baseline bacteremia who received eravacycline versus comparators. Patients and Methods: Pooled data of patients with bacteremia from the Investigating Gram-Negative Infections Treated with Eravacycline (IGNITE) 1 and IGNITE4 studies were analyzed. All patients were randomly assigned in a one-to-one ratio to receive eravacycline 1 mg/kg intravenously every 12 hours, ertapenem 1 g intravensouly every 24 hours (IGNITE1), or meropenem 1 g intravenously every eight hours (IGNITE4) for four to 14 days. Blood and intra-abdominal samples were collected from all patients at baseline. Clinical outcome and microbiologic eradiation at the TOC visit (28 days after randomization) and safety in the microbiologic-intent-to-treat population (micro-ITT) were assessed. Results: Of 415 patients treated with eravacycline and 431 treated with carbapenem comparators, concurrent bacteremia was identified in 32 (7.7%) and 31 (7.2%) patients, respectively. Demographic and baseline characteristics were similar among treatment groups. In the micro-ITT population, the pooled clinical response at the TOC visit for eravacycline was 28 of 32 (87.5%) and was 24 of 31 (77.0%) for comparators among the subgroup with baseline bacteremia (treatment difference 5.9; 95% confidence interval [CI], -6.5 to 17.4). At TOC, microbiologic eradication of pathogens isolated from blood specimens occurred for 34 of 35 (97.1%) pathogens with eravacycline and 35 of 36 (97.2%) pathogens with comparators. The incidence of adverse events was comparable between treated groups and similar to that observed in the non-bacteremic population. Conclusion: Eravacycline demonstrated a similar clinical outcome and microbiologic eradication rate as comparator carbapenems in patients with cIAI and associated secondary bacteremia. Future clinical trials of cIAI should report outcomes of this important clinical cohort (cIAI with concurrent bacteremia) given their high risk for adverse outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Teena Chopra
- Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
48
|
Asempa TE, Izmailyan S, Lawrence K, Nicolau DP. Efficacy and Safety of Eravacycline in Obese Patients: A Post Hoc Analysis of Pooled Data From the IGNITE1 and IGNITE4 Clinical Trials. Open Forum Infect Dis 2020; 7:ofaa548. [PMID: 33365356 PMCID: PMC7747372 DOI: 10.1093/ofid/ofaa548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background The increasing prevalence of obesity worldwide merits an examination of the efficacy and safety profiles of agents dosed by weight. Methods Data for patients (n = 1037) were obtained from the pooled IGNITE1 and IGNITE4 randomized double-blind trials in which patients with complicated intra-abdominal infections received eravacycline 1 mg/kg (actual body weight [ABW]) every 12 hours or comparator (ertapenem 1 g every 24 hours or meropenem 1 g every 8 hours) intravenously. This post hoc analysis evaluated clinical cure rates, adverse events, and drug discontinuation rates stratified by body mass index (BMI) categories of BMI >40 kg/m2 (Obese, Class III), BMI 35–39.9 kg/m2 (Obese, Class II), BMI 30–34.9 kg/m2 (Obese, Class I), BMI 25–29.9 kg/m2 (Overweight), BMI 18.5–24.9 kg/m2 (Healthy weight), and BMI <18.5 kg/m2 (Underweight). Results Clinical cure rates were high across BMI categories and ranged from 82% to 94% in the eravacycline group and 88.5%–100% in the comparator group. Similar cure rates were observed among eravacycline-treated healthy weight (126/134; 94%), overweight (127/146; 87%), and obese (BMI ≥30 kg/m2; 110/129; 85.3%) patients. In the comparator group, a similar proportion of patients demonstrated clinical response (healthy weight [132/145; 91%], overweight [130/144; 90.3%], and obese [115/129; 89.1%]). Of the treatment-emergent adverse events that occurred in eravacycline-treated obese patients, a larger proportion were gastrointestinal-related (ie, nausea and vomiting); however, discontinuation rates were low and similar between eravacycline and carbapenems. Conclusions This post hoc analysis demonstrates the therapeutic utility and acceptable safety profile of eravacycline dosed by ABW in obese patients (BMI ≥30 kg/m2).
Collapse
Affiliation(s)
- Tomefa E Asempa
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | | | | | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA.,Division of Infectious Diseases, Hartford Hospital, Hartford, Connecticut, USA
| |
Collapse
|
49
|
Lee YT, Chen HY, Yang YS, Chou YC, Chang TY, Hsu WJ, Lin IC, Sun JR. AdeABC Efflux Pump Controlled by AdeRS Two Component System Conferring Resistance to Tigecycline, Omadacycline and Eravacycline in Clinical Carbapenem Resistant Acinetobacter nosocomialis. Front Microbiol 2020; 11:584789. [PMID: 33224122 PMCID: PMC7667285 DOI: 10.3389/fmicb.2020.584789] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/06/2020] [Indexed: 02/03/2023] Open
Abstract
Carbapenem-resistant Acinetobacter nosocomialis (CRAn) is a significant public health concern. Tigecycline non-susceptible CRAn (Tn-CRAn) isolates have emerged worldwide. Tigecycline resistance is mainly related to the overexpression of AdeABC efflux pump controlled by AdeRS two-component system (TCS). Two novel tetracycline derivatives, omadacycline and eravacycline, may present a treatment option for CRAn. This study investigated the in vitro antimicrobial activity of tigecycline, omadacycline and eravacycline against clinical CRAn isolates and the contribution of efflux pumps in their resistance. Eighty-nine clinical CRAn isolates, including 57 Tn-CRAn isolates were evaluated for minimum inhibitory concentrations (MICs) by the broth microdilution. The relationship between the antimicrobial resistance and efflux pump expression was assessed by their responses to the efflux pump inhibitor 1-(1-naphthylmethyl)-piperazine (NMP). The contribution of the AdeABC efflux pump in their resistance was determined by the complementation of the AdeRS two-component system in wild-type, adeRS operon and adeB gene knockout strains. Among the 89 isolates, omadacycline and eravacycline MICs were correlated closely with those of tigecycline. They demonstrated improved potency, based on MIC90 values, by showing a 4 to 8-fold greater potency than tigecycline. The synergetic effects of tigecycline, omadacycline and eravacycline with NMP were observed in 57 (100%), 13 (22.8%), and 51 (89.5%) of Tn-CRAn isolates, respectively. Further analysis showed that the laboratory strain carrying the Type 1 adeRS operon increased the tigecycline, omadacycline and eravacycline MICs by 4-8-folds, respectively. Eravacycline demonstrated improved potency over tigecycline against populations of CRAn, including Tn-CRAn isolates. The over-expression of AdeABC efflux pumps was directly activated by the AdeRS two-component system and simultaneously reduced the susceptibilities of tigecycline, eravacycline, and omadacycline. Omadacycline and eravacycline MICs were correlated closely with those of eravacycline.
Collapse
Affiliation(s)
- Yi-Tzu Lee
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsing-Yu Chen
- Department of Medical Techniques, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan
| | - Ya-Sung Yang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Tein-Yao Chang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Jane Hsu
- Department of Medical Techniques, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan
| | - I-Chieh Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | | | - Jun-Ren Sun
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
50
|
Unresolved issues in the identification and treatment of carbapenem-resistant Gram-negative organisms. Curr Opin Infect Dis 2020; 33:482-494. [PMID: 33009141 DOI: 10.1097/qco.0000000000000682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Carbapenem-resistant organisms (CROs), including Pseudomonas aeruginosa, Acinetobacter baumannii and Enterobacterales, are a threat worldwide. This review will cover mechanisms of resistance within CROs and challenges with identification and treatment of these organisms while pointing out unresolved issues and ongoing challenges. RECENT FINDINGS The treatment of CROs has expanded through newer therapeutic options. Guided utilization through genotypic and phenotypic testing is necessary in order for these drugs to target the appropriate mechanisms of resistance and select optimal antibiotic therapy. SUMMARY Identification methods and treatment options need to be precisely understood in order to limit the spread and maximize outcomes of CRO infections.
Collapse
|