1
|
Delma FZ, Melchers WJG, Verweij PE, Buil JB. Wild-type MIC distributions and epidemiological cutoff values for 5-flucytosine and Candida species as determined by EUCAST broth microdilution. JAC Antimicrob Resist 2024; 6:dlae153. [PMID: 39372819 PMCID: PMC11450473 DOI: 10.1093/jacamr/dlae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024] Open
Abstract
Objectives EUCAST has established clinical breakpoints and epidemiological cutoff values (ECOFFs) for Candida spp. However, limited data are available for 5-flucytosine (5-FC). We assessed the in vitro susceptibility of 5-FC against a large collection of clinical Candida species using EUCAST methodology and determined the associated ECOFFs. Methods A total of 5622 Candida isolates were collected from patients across the Netherlands between 2008 and 2024. 5-FC MICs were determined using the EUCAST microbroth dilution reference method. Furthermore, MICs were extracted from the EUCAST website. The MICs from this study and those extracted were used to determine ECOFFs and local ECOFFs (L-ECOFFs). Results 5-FC exhibited potent in vitro activity against C. albicans, N. glabratus and C. parapsilosis, while decreased susceptibility was observed for C. tropicalis, Pichia species, K. marxianus, Y. lipolytica, and C. auris. The ECOFFs (mg/L) and the percentages of WT isolates for 5-FC were: C. albicans: 0.5 (97.2%), N. glabratus: 0.5 (96.6%), C. parapsilosis: 0.5 (99.5%) and P. kudriavzevii: 8 (99.4%). The L-ECOFF (mg/L) and the percentages of WT isolates for 5-FC were: C. dubliniensis: 0.25 (96.8%), C. tropicalis: 0.25 (67.2%), K. marxianus: 0.25 (48.0%), C. lusitaniae: 0.25 (86.5%), M. guillermondii: 0.125 (95.9%) and P. norvegiensis: 8 (94.2%). Conclusions 5-FC remains a valuable drug to manage difficult-to-treat invasive Candida infections. In vitro susceptibility cannot be predicted based on species identification for most Candida species, but requires MIC-testing. ECOFFs will help to interpret the MICs to support treatment decisions.
Collapse
Affiliation(s)
- Fatima Zohra Delma
- Radboudumc-CWZ Center of Expertise for Mycology, Radboudumc Community for Infectious Diseases, Radboudumc, Nijmegen, the Netherlands
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
| | - Willem J G Melchers
- Radboudumc-CWZ Center of Expertise for Mycology, Radboudumc Community for Infectious Diseases, Radboudumc, Nijmegen, the Netherlands
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
| | - Paul E Verweij
- Radboudumc-CWZ Center of Expertise for Mycology, Radboudumc Community for Infectious Diseases, Radboudumc, Nijmegen, the Netherlands
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
| | - Jochem B Buil
- Radboudumc-CWZ Center of Expertise for Mycology, Radboudumc Community for Infectious Diseases, Radboudumc, Nijmegen, the Netherlands
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
2
|
Santana de Carvalho D, Bastos RW, Rossato L, Teixeira de Aguiar Peres N, Assis Santos D. ResFungi: A Novel Protein Database of Antifungal Drug Resistance Genes Using a Hidden Markov Model Profile. ACS OMEGA 2024; 9:30559-30570. [PMID: 39035910 PMCID: PMC11256324 DOI: 10.1021/acsomega.4c02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Fungal infections vary from superficial to invasive and can be life-threatening in immunocompromised and healthy individuals. Antifungal resistance is one of the main reasons for an increasing concern about fungal infections as they become more complex and harder to treat. The fungal "omics" databases help us find drug resistance genes, which is of great importance and extremely necessary. With that in mind, we built a new platform for drug resistance genes. We added seven drug classes of resistance genes to our database: azoles (without specifying which drug), fluconazole, voriconazole, itraconazole, flucytosine, micafungin, and caspofungin. Species with known resistance genes were used to validate the results from our database. This study describes a list of 261 candidate genes related to antifungal resistance, with several genes displaying transport functions involved in azole resistance. Over 65% of the candidate genes found were related to at least one type of azole. Overall, the candidate genes found have functional annotations consistent with genes or enzymes that have been linked to antifungal resistance in previous studies. Also, candidate antifungal resistance genes found exhibit functional annotations consistent with previously described resistance mechanisms. The existence of an HMM profile focusing on antifungal resistance genes allows in silico searches for candidate genes, helping future wet lab experiments, and hence, reducing costs when studying candidate antifungal genes without prior knowledge of the species or genes. Finally, ResFungi has proven to be a powerful tool to narrow down candidate antifungal-related genes and unravel mechanisms related to resistance to help in the design of experiments focusing on the genetic basis of antifungal resistance.
Collapse
Affiliation(s)
- Daniel Santana de Carvalho
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Wesley Bastos
- Bioscience Center, Federal University of Rio Grande do Norte, 59064-741 Natal, Brazil
| | - Luana Rossato
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, 79825-070 Dourados, Brazil
| | - Nalu Teixeira de Aguiar Peres
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Assis Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
3
|
Alsalman J, Althaqafi A, Alsaeed A, Subhi A, Mady AF, AlHejazi A, Francis B, Alturkistani HH, Ayas M, Bilbisi M, Alsharidah S. Middle Eastern Expert Opinion: Strategies for Successful Antifungal Stewardship Program Implementation in Invasive Fungal Infections. Cureus 2024; 16:e61127. [PMID: 38919246 PMCID: PMC11198984 DOI: 10.7759/cureus.61127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
In recent years, global public health efforts have increasingly emphasized the critical role of antimicrobial stewardship (AMS) in improving outcomes, reducing costs, and combating the growing threat of antimicrobial resistance. However, antifungal stewardship (AFS) has remained relatively overlooked despite the staggering impact of invasive fungal infections (IFIs). This burden is particularly pronounced in hospitals worldwide, with the Middle East facing significant unmet needs. The rising population of immunocompromised individuals vulnerable to IFI has prompted an increased reliance on antifungal agents for both prevention and treatment. Given the considerable mortality associated with IFIs and the emergence of antifungal resistance, implementing AFS programs in hospital settings is becoming increasingly urgent. In this article, we offer expert insights into the strategies that can be used for successful antifungal stewardship program implementation in IFI. Drawing upon the extensive clinical experience of a multinational and multidisciplinary panel, we present recommendations for optimizing AFS practices. We delve into the challenges and practical considerations of tailoring local AFS initiatives to the evolving landscape of fungal infections. Additionally, we provide actionable recommendations and position statements for the effective implementation of AFS programs, informed by the collective clinical experiences of panel members across their respective countries of practice.
Collapse
Affiliation(s)
| | - Abdulhakeem Althaqafi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Infectious Diseases, King Abdullah International Medical Research Center, Jeddah, SAU
- Department of Medicine/Infectious Diseases, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, SAU
| | - Ahmad Alsaeed
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Adult Hematology and Stem Cell Transplantation, Princess Noorah Oncology Center, King Abdulaziz Medical City, Ministry of the National Guard Health Affairs, Jeddah, SAU
| | - Ahmad Subhi
- Adult Infectious Diseases, Department of Medicine, Al-Qassimi Hospital, Emirates Health Services, Sharjah, ARE
| | - Ahmed F Mady
- Critical Care Medicine, King Saud Medical City, Riyadh, SAU
| | - Ayman AlHejazi
- Department of Oncology, King Abdulaziz Medical City Riyadh, Riyadh, SAU
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, SAU
| | - Bassam Francis
- Hematology, Hematology and Bone Marrow Transplant Center, Baghdad, IRQ
| | | | - Mouhab Ayas
- Department of Pediatric Hematology/Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, SAU
| | - Montaser Bilbisi
- Department of Infectious Diseases, Abdali Medical Center, Amman, JOR
| | - Sondus Alsharidah
- Pediatric Stem Cell Transplant Unit, Department of Pediatric Hematology/Oncology, National Bank of Kuwait (NBK) Children's Specialized Hospital, Sabah Central Health Region, KWT
| |
Collapse
|
4
|
Ahmady L, Gothwal M, Mukkoli MM, Bari VK. Antifungal drug resistance in Candida: a special emphasis on amphotericin B. APMIS 2024; 132:291-316. [PMID: 38465406 DOI: 10.1111/apm.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024]
Abstract
Invasive fungal infections in humans caused by several Candida species, increased considerably in immunocompromised or critically ill patients, resulting in substantial morbidity and mortality. Candida albicans is the most prevalent species, although the frequency of these organisms varies greatly according to geographic region. Infections with C. albicans and non-albicans Candida species have become more common, especially in the past 20 years, as a result of aging, immunosuppressive medication use, endocrine disorders, malnourishment, extended use of medical equipment, and an increase in immunogenic diseases. Despite C. albicans being the species most frequently associated with human infections, C. glabrata, C. parapsilosis, C. tropicalis, and C. krusei also have been identified. Several antifungal drugs with different modes of action are approved for use in clinical settings to treat fungal infections. However, due to the common eukaryotic structure of humans and fungi, only a limited number of antifungal drugs are available for therapeutic use. Furthermore, drug resistance in Candida species has emerged as a result of the growing use of currently available antifungal drugs against fungal infections. Amphotericin B (AmB), a polyene class of antifungal drugs, is mainly used for the treatment of serious systemic fungal infections. AmB interacts with fungal plasma membrane ergosterol, triggering cellular ion leakage via pore formation, or extracting the ergosterol from the plasma membrane inducing cellular death. AmB resistance is primarily caused by changes in the content or structure of ergosterol. This review summarizes the antifungal drug resistance exhibited by Candida species, with a special focus on AmB.
Collapse
Affiliation(s)
- Lailema Ahmady
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Manisha Gothwal
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | | | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
5
|
Hang S, Lu H, Jiang Y. Marine-Derived Metabolites Act as Promising Antifungal Agents. Mar Drugs 2024; 22:180. [PMID: 38667797 PMCID: PMC11051449 DOI: 10.3390/md22040180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
The incidence of invasive fungal diseases (IFDs) is on the rise globally, particularly among immunocompromised patients, leading to significant morbidity and mortality. Current clinical antifungal agents, such as polyenes, azoles, and echinocandins, face increasing resistance from pathogenic fungi. Therefore, there is a pressing need for the development of novel antifungal drugs. Marine-derived secondary metabolites represent valuable resources that are characterized by varied chemical structures and pharmacological activities. While numerous compounds exhibiting promising antifungal activity have been identified, a comprehensive review elucidating their specific underlying mechanisms remains lacking. In this review, we have compiled a summary of antifungal compounds derived from marine organisms, highlighting their diverse mechanisms of action targeting various fungal cellular components, including the cell wall, cell membrane, mitochondria, chromosomes, drug efflux pumps, and several biological processes, including vesicular trafficking and the growth of hyphae and biofilms. This review is helpful for the subsequent development of antifungal drugs due to its summary of the antifungal mechanisms of secondary metabolites from marine organisms.
Collapse
Affiliation(s)
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, 200092 Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, 200092 Shanghai, China
| |
Collapse
|
6
|
Czajka KM, Venkataraman K, Brabant-Kirwan D, Santi SA, Verschoor C, Appanna VD, Singh R, Saunders DP, Tharmalingam S. Molecular Mechanisms Associated with Antifungal Resistance in Pathogenic Candida Species. Cells 2023; 12:2655. [PMID: 37998390 PMCID: PMC10670235 DOI: 10.3390/cells12222655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
Candidiasis is a highly pervasive infection posing major health risks, especially for immunocompromised populations. Pathogenic Candida species have evolved intrinsic and acquired resistance to a variety of antifungal medications. The primary goal of this literature review is to summarize the molecular mechanisms associated with antifungal resistance in Candida species. Resistance can be conferred via gain-of-function mutations in target pathway genes or their transcriptional regulators. Therefore, an overview of the known gene mutations is presented for the following antifungals: azoles (fluconazole, voriconazole, posaconazole and itraconazole), echinocandins (caspofungin, anidulafungin and micafungin), polyenes (amphotericin B and nystatin) and 5-fluorocytosine (5-FC). The following mutation hot spots were identified: (1) ergosterol biosynthesis pathway mutations (ERG11 and UPC2), resulting in azole resistance; (2) overexpression of the efflux pumps, promoting azole resistance (transcription factor genes: tac1 and mrr1; transporter genes: CDR1, CDR2, MDR1, PDR16 and SNQ2); (3) cell wall biosynthesis mutations (FKS1, FKS2 and PDR1), conferring resistance to echinocandins; (4) mutations of nucleic acid synthesis/repair genes (FCY1, FCY2 and FUR1), resulting in 5-FC resistance; and (5) biofilm production, promoting general antifungal resistance. This review also provides a summary of standardized inhibitory breakpoints obtained from international guidelines for prominent Candida species. Notably, N. glabrata, P. kudriavzevii and C. auris demonstrate fluconazole resistance.
Collapse
Affiliation(s)
- Karolina M. Czajka
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
| | - Krishnan Venkataraman
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | | | - Stacey A. Santi
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Chris Verschoor
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Vasu D. Appanna
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | - Ravi Singh
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Deborah P. Saunders
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Sujeenthar Tharmalingam
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| |
Collapse
|
7
|
Boyce KJ. The Microevolution of Antifungal Drug Resistance in Pathogenic Fungi. Microorganisms 2023; 11:2757. [PMID: 38004768 PMCID: PMC10673521 DOI: 10.3390/microorganisms11112757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The mortality rates of invasive fungal infections remain high because of the limited number of antifungal drugs available and antifungal drug resistance, which can rapidly evolve during treatment. Mutations in key resistance genes such as ERG11 were postulated to be the predominant cause of antifungal drug resistance in the clinic. However, recent advances in whole genome sequencing have revealed that there are multiple mechanisms leading to the microevolution of resistance. In many fungal species, resistance can emerge through ERG11-independent mechanisms and through the accumulation of mutations in many genes to generate a polygenic resistance phenotype. In addition, genome sequencing has revealed that full or partial aneuploidy commonly occurs in clinical or microevolved in vitro isolates to confer antifungal resistance. This review will provide an overview of the mutations known to be selected during the adaptive microevolution of antifungal drug resistance and focus on how recent advances in genome sequencing technology have enhanced our understanding of this process.
Collapse
Affiliation(s)
- Kylie J Boyce
- School of Science, RMIT University, Melbourne, VIC 3085, Australia
| |
Collapse
|
8
|
Deng R, Wang X, Li R. Dermatophyte infection: from fungal pathogenicity to host immune responses. Front Immunol 2023; 14:1285887. [PMID: 38022599 PMCID: PMC10652793 DOI: 10.3389/fimmu.2023.1285887] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Dermatophytosis is a common superficial infection caused by dermatophytes, a group of pathogenic keratinophilic fungi. Apart from invasion against skin barrier, host immune responses to dermatophytes could also lead to pathologic inflammation and tissue damage to some extent. Therefore, it is of great help to understand the pathogenesis of dermatophytes, including fungal virulence factors and anti-pathogen immune responses. This review aims to summarize the recent advances in host-fungal interactions, focusing on the mechanisms of anti-fungal immunity and the relationship between immune deficiency and chronic dermatophytosis, in order to facilitate novel diagnostic and therapeutic approaches to improve the outcomes of these patients.
Collapse
Affiliation(s)
- Ruixin Deng
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Xiaowen Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| |
Collapse
|
9
|
Durand R, Jalbert-Ross J, Fijarczyk A, Dubé AK, Landry CR. Cross-feeding affects the target of resistance evolution to an antifungal drug. PLoS Genet 2023; 19:e1011002. [PMID: 37856537 PMCID: PMC10617708 DOI: 10.1371/journal.pgen.1011002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/31/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
Pathogenic fungi are a cause of growing concern. Developing an efficient and safe antifungal is challenging because of the similar biological properties of fungal and host cells. Consequently, there is an urgent need to better understand the mechanisms underlying antifungal resistance to prolong the efficacy of current molecules. A major step in this direction would be to be able to predict or even prevent the acquisition of resistance. We leverage the power of experimental evolution to quantify the diversity of paths to resistance to the antifungal 5-fluorocytosine (5-FC), commercially known as flucytosine. We generated hundreds of independent 5-FC resistant mutants derived from two genetic backgrounds from wild isolates of Saccharomyces cerevisiae. Through automated pin-spotting, whole-genome and amplicon sequencing, we identified the most likely causes of resistance for most strains. Approximately a third of all resistant mutants evolved resistance through a pleiotropic drug response, a potentially novel mechanism in response to 5-FC, marked by cross-resistance to fluconazole. These cross-resistant mutants are characterized by a loss of respiration and a strong tradeoff in drug-free media. For the majority of the remaining two thirds, resistance was acquired through loss-of-function mutations in FUR1, which encodes an important enzyme in the metabolism of 5-FC. We describe conditions in which mutations affecting this particular step of the metabolic pathway are favored over known resistance mutations affecting a step upstream, such as the well-known target cytosine deaminase encoded by FCY1. This observation suggests that ecological interactions may dictate the identity of resistance hotspots.
Collapse
Affiliation(s)
- Romain Durand
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| | - Jordan Jalbert-Ross
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Canada
| | - Anna Fijarczyk
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| | - Alexandre K. Dubé
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| | - Christian R. Landry
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| |
Collapse
|
10
|
Chen L, Zhang L, Xie Y, Wang Y, Tian X, Fang W, Xue X, Wang L. Confronting antifungal resistance, tolerance, and persistence: Advances in drug target discovery and delivery systems. Adv Drug Deliv Rev 2023; 200:115007. [PMID: 37437715 DOI: 10.1016/j.addr.2023.115007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Human pathogenic fungi pose a serious threat to human health and safety. Unfortunately, the limited number of antifungal options is exacerbated by the continuous emergence of drug-resistant variants, leading to frequent drug treatment failures. Recent studies have also highlighted the clinical importance of other modes of fungal survival of antifungal treatment, including drug tolerance and persistence, pointing to the complexity of the fungal response to antifungal drugs. A lack of understanding of the fungal drug response has hampered the identification of new targets, the development of alternative antifungal strategies and the design of appropriate delivery systems. In this review we summarize recent advances in the study of antifungal resistance, tolerance and persistence, with an emphasis on promising drug targets and drug delivery systems that may yield important insights into the development of new or improved antifungal therapies against fungal infections.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lanyue Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuyan Xie
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yiting Wang
- College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Xiuyun Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenxia Fang
- Institute of Biological Science and Technology, Guangxi Academy of Sciences, Nanning, 530007, Guangxi, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University; Peking University Ninth School of Clinical Medicine, Beijing 100038, China; Department of Respiratory and Critical Care, Weifang Medical College, 261053, Weifang, Shandong, China.
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Umarje SC, Banerjee SK. Non-traditional approaches for control of antibiotic resistance. Expert Opin Biol Ther 2023; 23:1113-1135. [PMID: 38007617 DOI: 10.1080/14712598.2023.2279644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/01/2023] [Indexed: 11/27/2023]
Abstract
INTRODUCTION The drying up of antibiotic pipeline has necessitated the development of alternative therapeutic strategies to control the problem of antimicrobial resistance (AMR) that is expected to kill 10-million people annually by 2050. Newer therapeutic approaches address the shortcomings of traditional small-molecule antibiotics - the lack of specificity, evolvability, and susceptibility to mutation-based resistance. These 'non-traditional' molecules are biologicals having a complex structure and mode(s) of action that makes them resilient to resistance. AREAS COVERED This review aims to provide information about the non-traditional drug development approaches to tackle the problem of antimicrobial resistance, from the pre-antibiotic era to the latest developments. We have covered the molecules under development in the clinic with literature sourced from reviewed scholarly articles, official company websites involved in innovation of concerned therapeutics, press releases from the regulatory bodies, and clinical trial databases. EXPERT OPINION Formal introduction of non-traditional therapies in general practice can be quick and feasible only if supported with companion diagnostics and used in conjunction with established therapies. Owing to relatively higher development costs, non-traditional therapeutics require more funding as well as well as clarity in regulatory and clinical path. We are hopeful these issues are adequately addressed before AMR develops into a pandemic.
Collapse
Affiliation(s)
- Siddharth C Umarje
- Department of Proteomics, AbGenics Life Sciences Pvt. Ltd., Pune, India
- AbGenics Life Sciences Pvt. Ltd., Pune, India
| | | |
Collapse
|
12
|
Osset-Trénor P, Pascual-Ahuir A, Proft M. Fungal Drug Response and Antimicrobial Resistance. J Fungi (Basel) 2023; 9:jof9050565. [PMID: 37233275 DOI: 10.3390/jof9050565] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Antifungal resistance is a growing concern as it poses a significant threat to public health. Fungal infections are a significant cause of morbidity and mortality, especially in immunocompromised individuals. The limited number of antifungal agents and the emergence of resistance have led to a critical need to understand the mechanisms of antifungal drug resistance. This review provides an overview of the importance of antifungal resistance, the classes of antifungal agents, and their mode of action. It highlights the molecular mechanisms of antifungal drug resistance, including alterations in drug modification, activation, and availability. In addition, the review discusses the response to drugs via the regulation of multidrug efflux systems and antifungal drug-target interactions. We emphasize the importance of understanding the molecular mechanisms of antifungal drug resistance to develop effective strategies to combat the emergence of resistance and highlight the need for continued research to identify new targets for antifungal drug development and explore alternative therapeutic options to overcome resistance. Overall, an understanding of antifungal drug resistance and its mechanisms will be indispensable for the field of antifungal drug development and clinical management of fungal infections.
Collapse
Affiliation(s)
- Paloma Osset-Trénor
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas IBMCP, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Amparo Pascual-Ahuir
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas IBMCP, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Markus Proft
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Consejo Superior de Investigaciones Científicas CSIC, 46010 Valencia, Spain
| |
Collapse
|
13
|
Rabaan AA, Sulaiman T, Al-Ahmed SH, Buhaliqah ZA, Buhaliqah AA, AlYuosof B, Alfaresi M, Al Fares MA, Alwarthan S, Alkathlan MS, Almaghrabi RS, Abuzaid AA, Altowaileb JA, Al Ibrahim M, AlSalman EM, Alsalman F, Alghounaim M, Bueid AS, Al-Omari A, Mohapatra RK. Potential Strategies to Control the Risk of Antifungal Resistance in Humans: A Comprehensive Review. Antibiotics (Basel) 2023; 12:antibiotics12030608. [PMID: 36978475 PMCID: PMC10045400 DOI: 10.3390/antibiotics12030608] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/30/2023] Open
Abstract
Fungal infections are becoming one of the main causes of morbidity and mortality in people with weakened immune systems. Mycoses are becoming more common, despite greater knowledge and better treatment methods, due to the regular emergence of resistance to the antifungal medications used in clinical settings. Antifungal therapy is the mainstay of patient management for acute and chronic mycoses. However, the limited availability of antifungal drug classes limits the range of available treatments. Additionally, several drawbacks to treating mycoses include unfavourable side effects, a limited activity spectrum, a paucity of targets, and fungal resistance, all of which continue to be significant issues in developing antifungal drugs. The emergence of antifungal drug resistance has eliminated accessible drug classes as treatment choices, which significantly compromises the clinical management of fungal illnesses. In some situations, the emergence of strains resistant to many antifungal medications is a major concern. Although new medications have been developed to address this issue, antifungal drug resistance has grown more pronounced, particularly in patients who need long-term care or are undergoing antifungal prophylaxis. Moreover, the mechanisms that cause resistance must be well understood, including modifications in drug target affinities and abundances, along with biofilms and efflux pumps that diminish intracellular drug levels, to find novel antifungal drugs and drug targets. In this review, different classes of antifungal agents, and their resistance mechanisms, have been discussed. The latter part of the review focuses on the strategies by which we can overcome this serious issue of antifungal resistance in humans.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Shamsah H Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Zainab A Buhaliqah
- Department of Family Medicine, Primary Healthcare Center, Dammam 32433, Saudi Arabia
| | - Ali A Buhaliqah
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Buthina AlYuosof
- Directorate of Public Health, Dammam Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Mubarak Alfaresi
- Department of Pathology and Laboratory Medicine, Zayed Military Hospital, Abu Dhabi 3740, United Arab Emirates
- Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Mona A Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mohammed S Alkathlan
- Infectious Diseases Department, King Fahad Specialist Hospital, Buraydah 52382, Saudi Arabia
| | - Reem S Almaghrabi
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Abdulmonem A Abuzaid
- Medical Microbiology Department, Security Forces Hospital Programme, Dammam 32314, Saudi Arabia
| | - Jaffar A Altowaileb
- Microbiology Laboratory, Laboratory Department, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Maha Al Ibrahim
- Microbiology Laboratory, Laboratory Department, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Eman M AlSalman
- Department of Family Medicine, Primary Health Care Centers, Qatif Health Network, Qatif 31911, Saudi Arabia
| | - Fatimah Alsalman
- Department of Emergency Medicine, Oyun City Hospital, Al-Ahsa 36312, Saudi Arabia
| | | | - Ahmed S Bueid
- Microbiology Laboratory, King Faisal General Hospital, Al-Ahsa 31982, Saudi Arabia
| | - Awad Al-Omari
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Research Center, Dr. Sulaiman Al Habib Medical Group, Riyadh 11372, Saudi Arabia
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, India
| |
Collapse
|
14
|
Fisher MC, Alastruey-Izquierdo A, Berman J, Bicanic T, Bignell EM, Bowyer P, Bromley M, Brüggemann R, Garber G, Cornely OA, Gurr SJ, Harrison TS, Kuijper E, Rhodes J, Sheppard DC, Warris A, White PL, Xu J, Zwaan B, Verweij PE. Tackling the emerging threat of antifungal resistance to human health. Nat Rev Microbiol 2022; 20:557-571. [PMID: 35352028 PMCID: PMC8962932 DOI: 10.1038/s41579-022-00720-1] [Citation(s) in RCA: 373] [Impact Index Per Article: 186.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
Abstract
Invasive fungal infections pose an important threat to public health and are an under-recognized component of antimicrobial resistance, an emerging crisis worldwide. Across a period of profound global environmental change and expanding at-risk populations, human-infecting pathogenic fungi are evolving resistance to all licensed systemic antifungal drugs. In this Review, we highlight the main mechanisms of antifungal resistance and explore the similarities and differences between bacterial and fungal resistance to antimicrobial control. We discuss the research and innovation topics that are needed for risk reduction strategies aimed at minimizing the emergence of resistance in pathogenic fungi. These topics include links between the environment and One Health, surveillance, diagnostics, routes of transmission, novel therapeutics and methods to mitigate hotspots for fungal adaptation. We emphasize the global efforts required to steward our existing antifungal armamentarium, and to direct the research and development of future therapies and interventions.
Collapse
Affiliation(s)
- Matthew C Fisher
- MRC Centre for Global Infectious Disease Outbreak Analysis, Imperial College London, London, UK.
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Tihana Bicanic
- Institute of Infection and Immunity, St George's University London, London, UK
| | - Elaine M Bignell
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Paul Bowyer
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Michael Bromley
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Roger Brüggemann
- Department of Pharmacy, Radboudumc Institute for Health Sciences and Radboudumc - CWZ Centre of Expertise for Mycology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Gary Garber
- Department of Medicine and the School of Public Health and Epidemiology, University of Ottawa, Ottawa, Ontario, Canada
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
| | | | - Thomas S Harrison
- Institute of Infection and Immunity, St George's University London, London, UK
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Ed Kuijper
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Johanna Rhodes
- MRC Centre for Global Infectious Disease Outbreak Analysis, Imperial College London, London, UK
| | - Donald C Sheppard
- Infectious Disease in Global Health Program and McGill Interdisciplinary Initiative in Infection and Immunity, McGill University Health Centre, Montreal, Québec, Canada
| | - Adilia Warris
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - P Lewis White
- Public Health Wales Mycology Reference Laboratory, University Hospital of Wales, Cardiff, UK
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Bas Zwaan
- Department of Plant Science, Laboratory of Genetics, Wageningen University & Research, Wageningen, Netherlands
| | - Paul E Verweij
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands.
- Department of Medical Microbiology and Radboudumc - CWZ Centre of Expertise for Mycology, Radboud University Medical Centre, Nijmegen, Netherlands.
| |
Collapse
|
15
|
Kang J, Li J, Guo Z, Zhou S, Su S, Xiao W, Wu Y, Yuan Y. Enhancement and mapping of tolerance to salt stress and 5-fluorocytosine in synthetic yeast strains via SCRaMbLE. Synth Syst Biotechnol 2022; 7:869-877. [PMID: 35601823 PMCID: PMC9096473 DOI: 10.1016/j.synbio.2022.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Varied environmental stress can affect cell growth and activity of the cellular catalyst. Traditional path of adaptive evolution generally takes a long time to achieve a tolerance phenotype, meanwhile, it is a challenge to dissect the underlying genetic mechanism. Here, using SCRaMbLE, a genome scale tool to generate random structural variations, a total of 222 evolved yeast strains with enhanced environmental tolerances were obtained in haploid or diploid yeasts containing six synthetic chromosomes. Whole genome sequencing of the evolved strains revealed that these strains generated different structural variants. Notably, by phenotypic-genotypic analysis of the SCRaMbLEd strains, we find that a deletion of gene YFR009W (GCN20) can improve salt tolerance of Saccharomyces cerevisiae, and a deletion of gene YER056C can improve 5-flucytosine tolerance of Saccharomyces cerevisiae. This study shows applications of SCRaMbLE to accelerate phenotypic evolution for varied environmental stress and to explore relationships between structural variations and evolved phenotypes.
Collapse
Affiliation(s)
- Jianping Kang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jieyi Li
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhou Guo
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Sijie Zhou
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Shuxin Su
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yi Wu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
16
|
Candida auris Pan-Drug-Resistant to Four Classes of Antifungal Agents. Antimicrob Agents Chemother 2022; 66:e0005322. [PMID: 35770999 PMCID: PMC9295560 DOI: 10.1128/aac.00053-22] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Candida auris is an urgent antimicrobial resistance threat due to its global emergence, high mortality, and persistent transmissions. Nearly half of C. auris clinical and surveillance cases in the United States are from the New York and New Jersey Metropolitan area. We performed genome, and drug-resistance analysis of C. auris isolates from a patient who underwent multi-visceral transplantation. Whole-genome comparisons of 19 isolates, collected over 72 days, revealed closed similarity (Average Nucleotide Identity > 0.9996; Aligned Percentage > 0.9764) and a distinct subcluster of NY C. auris South Asia Clade I. All isolates had azole-linked resistance in ERG11(K143R) and CDR1(V704L). Echinocandin resistance first appeared with FKS1(S639Y) mutation and then a unique FKS1(F635C) mutation. Flucytosine-resistant isolates had mutations in FCY1, FUR1, and ADE17. Two pan-drug-resistant C. auris isolates had uracil phosphoribosyltransferase deletion (FUR1[1Δ33]) and the elimination of FUR1 expression, confirmed by a qPCR test developed in this study. Besides ERG11 mutations, four amphotericin B-resistant isolates showed no distinct nonsynonymous variants suggesting unknown genetic elements driving the resistance. Pan-drug-resistant C. auris isolates were not susceptible to two-drug antifungal combinations tested by checkerboard, Etest, and time-kill methods. The fungal population pattern, discerned from SNP phylogenetic analysis, was consistent with in-hospital or inpatient evolution of C. auris isolates circulating locally and not indicative of a recent introduction from elsewhere. The emergence of pan-drug-resistance to four major classes of antifungals in C. auris is alarming. Patients at high risk for drug-resistant C. auris might require novel therapeutic strategies and targeted pre-and/or posttransplant surveillance.
Collapse
|
17
|
Ribeiro GF, Denes E, Heaney H, Childers DS. What 'Omics Can Tell Us About Antifungal Adaptation. FEMS Yeast Res 2021; 21:6484793. [PMID: 34958354 PMCID: PMC8755904 DOI: 10.1093/femsyr/foab070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/22/2021] [Indexed: 12/01/2022] Open
Abstract
Invasive candidiasis, the most frequent healthcare-associated invasive fungal infection, is commonly caused by Candida albicans. However, in recent years other antifungal-resistant Candida species—namely Candida glabrata and Candidaauris—have emerged as a serious matter of concern. Much of our understanding of the mechanisms regulating antifungal resistance and tolerance relies on studies utilizing C. albicans, C. glabrataand the model yeast Saccharomyces cerevisiae. ‘Omics studies have been used to describe alterations in metabolic, genomic and transcriptomic expression profiles upon antifungal treatment of fungal cells. The physiological changes identified by these approaches could significantly affect fungal fitness in the host and survival during antifungal challenge, as well as provide further understanding of clinical resistance. Thus, this review aims to comparatively address ‘omics data for C. albicans, C. glabrata andS. cerevisiae published from 2000 to 2021 to identify what these technologies can tell us regarding cellular responses to antifungal therapy. We will also highlight possible effects on pathogen survival and identify future avenues for antifungal research.
Collapse
Affiliation(s)
- Gabriela Fior Ribeiro
- University of Aberdeen, Institute of Medical Sciences, Aberdeen Fungal Group, Aberdeen, UK, AB25 2ZD
| | - Eszter Denes
- University of Aberdeen, Institute of Medical Sciences, Aberdeen Fungal Group, Aberdeen, UK, AB25 2ZD
| | - Helen Heaney
- University of Aberdeen, Institute of Medical Sciences, Aberdeen Fungal Group, Aberdeen, UK, AB25 2ZD
| | - Delma S Childers
- University of Aberdeen, Institute of Medical Sciences, Aberdeen Fungal Group, Aberdeen, UK, AB25 2ZD
| |
Collapse
|
18
|
Delma FZ, Al-Hatmi AMS, Brüggemann RJM, Melchers WJG, de Hoog S, Verweij PE, Buil JB. Molecular Mechanisms of 5-Fluorocytosine Resistance in Yeasts and Filamentous Fungi. J Fungi (Basel) 2021; 7:jof7110909. [PMID: 34829198 PMCID: PMC8623157 DOI: 10.3390/jof7110909] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 12/30/2022] Open
Abstract
Effective management and treatment of fungal diseases is hampered by poor diagnosis, limited options for antifungal therapy, and the emergence of antifungal drug resistance. An understanding of molecular mechanisms contributing to resistance is essential to optimize the efficacy of currently available antifungals. In this perspective, one of the oldest antifungals, 5-fluorocytosine (5-FC), has been the focus of recent studies applying advanced genomic and transcriptomic techniques to decipher the order of events at the molecular level that lead to resistance. These studies have highlighted the complexity of resistance and provided new insights that are reviewed in the present paper.
Collapse
Affiliation(s)
- Fatima Zohra Delma
- Department of Medical Microbiology, Radboud University Medical Centre, 6252 AG Nijmegen, The Netherlands; (F.Z.D.); (W.J.G.M.); (P.E.V.)
| | - Abdullah M. S. Al-Hatmi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman;
- Centre of Expertise in Mycology Radboudumc/CWZ, Radboudumc Center for Infectious Diseases (RCI), 6252 AG Nijmegen, The Netherlands; (R.J.M.B.); (S.d.H.)
- Foundation Atlas of Clinical Fungi, 1214 GP Hilversum, The Netherlands
| | - Roger J. M. Brüggemann
- Centre of Expertise in Mycology Radboudumc/CWZ, Radboudumc Center for Infectious Diseases (RCI), 6252 AG Nijmegen, The Netherlands; (R.J.M.B.); (S.d.H.)
- Department of Pharmacy, Radboud University Medical Center, 6252 AG Nijmegen, The Netherlands
| | - Willem J. G. Melchers
- Department of Medical Microbiology, Radboud University Medical Centre, 6252 AG Nijmegen, The Netherlands; (F.Z.D.); (W.J.G.M.); (P.E.V.)
- Centre of Expertise in Mycology Radboudumc/CWZ, Radboudumc Center for Infectious Diseases (RCI), 6252 AG Nijmegen, The Netherlands; (R.J.M.B.); (S.d.H.)
| | - Sybren de Hoog
- Centre of Expertise in Mycology Radboudumc/CWZ, Radboudumc Center for Infectious Diseases (RCI), 6252 AG Nijmegen, The Netherlands; (R.J.M.B.); (S.d.H.)
- Foundation Atlas of Clinical Fungi, 1214 GP Hilversum, The Netherlands
| | - Paul E. Verweij
- Department of Medical Microbiology, Radboud University Medical Centre, 6252 AG Nijmegen, The Netherlands; (F.Z.D.); (W.J.G.M.); (P.E.V.)
- Centre of Expertise in Mycology Radboudumc/CWZ, Radboudumc Center for Infectious Diseases (RCI), 6252 AG Nijmegen, The Netherlands; (R.J.M.B.); (S.d.H.)
| | - Jochem B. Buil
- Department of Medical Microbiology, Radboud University Medical Centre, 6252 AG Nijmegen, The Netherlands; (F.Z.D.); (W.J.G.M.); (P.E.V.)
- Centre of Expertise in Mycology Radboudumc/CWZ, Radboudumc Center for Infectious Diseases (RCI), 6252 AG Nijmegen, The Netherlands; (R.J.M.B.); (S.d.H.)
- Correspondence: ; Tel.: +31-24-361-4356
| |
Collapse
|
19
|
Moderate levels of 5-fluorocytosine cause the emergence of high frequency resistance in cryptococci. Nat Commun 2021; 12:3418. [PMID: 34103502 PMCID: PMC8187385 DOI: 10.1038/s41467-021-23745-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/14/2021] [Indexed: 12/01/2022] Open
Abstract
The antifungal agent 5-fluorocytosine (5-FC) is used for the treatment of several mycoses, but is unsuitable for monotherapy due to the rapid development of resistance. Here, we show that cryptococci develop resistance to 5-FC at a high frequency when exposed to concentrations several fold above the minimal inhibitory concentration. The genomes of resistant clones contain alterations in genes relevant as well as irrelevant for 5-FC resistance, suggesting that 5-FC may be mutagenic at moderate concentrations. Mutations in FCY2 (encoding a known permease for 5-FC uptake), FCY1, FUR1, UXS1 (encoding an enzyme that converts UDP-glucuronic acid to UDP-xylose) and URA6 contribute to 5-FC resistance. The uxs1 mutants accumulate UDP-glucuronic acid, which appears to down-regulate expression of permease FCY2 and reduce cellular uptake of the drug. Additional mutations in genes known to be required for UDP-glucuronic acid synthesis (UGD1) or a transcriptional factor NRG1 suppress UDP-glucuronic acid accumulation and 5-FC resistance in the uxs1 mutants. Pathogenic fungi rapidly develop resistance to the antifungal agent 5-fluorocytosine (5-FC). Here, Chang et al. explore the mechanisms by which Cryptococcus develops 5-FC resistance at a high frequency, including mutations in several genes and altered levels of key metabolites.
Collapse
|
20
|
Lotfali E, Fattahi A, Sayyahfar S, Ghasemi R, Rabiei MM, Fathi M, Vakili K, Deravi N, Soheili A, Toreyhi H, Shirvani F. A Review on Molecular Mechanisms of Antifungal Resistance in Candida glabrata: Update and Recent Advances. Microb Drug Resist 2021; 27:1371-1388. [PMID: 33956513 DOI: 10.1089/mdr.2020.0235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Candida glabrata is the second frequent etiologic agent of mucosal and invasive candidiasis. Based on the recent developments in molecular methods, C. glabrata has been introduced as a complex composed of C. glabrata, Candida nivariensis, and Candida bracarensis. The four main classes of antifungal drugs effective against C. glabrata are pyrimidine analogs (flucytosine), azoles, echinocandins, and polyenes. Although the use of antifungal drugs is related to the predictable development of drug resistance, it is not clear why C. glabrata is able to rapidly resist against multiple antifungals in clinics. The enhanced incidence and antifungal resistance of C. glabrata and the high mortality and morbidity need more investigation regarding the resistance mechanisms and virulence associated with C. glabrata; additional progress concerning the drug resistance of C. glabrata has to be further prevented. The present review highlights the mechanism of resistance to antifungal drugs in C. glabrata.
Collapse
Affiliation(s)
- Ensieh Lotfali
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Fattahi
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Sayyahfar
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Ghasemi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Rabiei
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirali Soheili
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Toreyhi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Shirvani
- Pediatric Infections Research Center, Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Complete Genome Sequence of Candida theae from Hickman Line Infection in an Immunocompromised Child. Mycopathologia 2020; 185:727-729. [PMID: 32705414 DOI: 10.1007/s11046-020-00476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/06/2020] [Indexed: 10/20/2022]
Abstract
We present the first whole-genome-sequencing data of a rare fungal species, Candida theae isolated in the context of a Hickman line infection in a patient with juvenile myelomonocytic leukaemia. To our knowledge, this is the first instance of publicly available genomic data for this species. Loci associated with antifungal resistance were referenced against its closely related members of the Candida parapsilosis complex.
Collapse
|
22
|
Oe C, Hayashi H, Hirata K, Kawaji K, Hashima F, Sasano M, Furuichi M, Usui E, Katsumi M, Suzuki Y, Nakajima C, Kaku M, Kodama EN. Pyrimidine Analogues as a New Class of Gram-Positive Antibiotics, Mainly Targeting Thymineless-Death Related Proteins. ACS Infect Dis 2020; 6:1490-1500. [PMID: 31540548 DOI: 10.1021/acsinfecdis.9b00305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multidrug-resistant (MDR) bacteria are widespread throughout the world and pose an increasingly serious threat to human and animal health. Besides implementing strict measures to prevent improper antibiotic use, it remains essential that novel antibiotics must be developed. These antibiotics need to exert their activity via mechanisms different from those employed by currently approved antibiotics. In this study, we used several 5-fluorouracil (5-FU) analogues as chemical probes and investigated the potential of these pyrimidine analogues as antibacterial agents. Several 5-FU derivatives exerted potent activity against strains of Gram-positive cocci (GPC) that are susceptible or resistant toward approved antibiotics, without showing cross-resistance. Furthermore, we have provided evidence that the pyrimidine analogues exerted anti-GPC activity via thymineless death by inhibition of thymidylate synthetase (ThyA) and/or inhibition of RNA synthesis. Interestingly, whole genome resequencing of in vitro-selected, pyrimidine analogue-resistant Staphylococcus aureus mutants indicated that S. aureus strains with pyrimidine-analogue resistance induced an amino acid (AA) substitution, deletion, and/or insertion into thymineless-death related proteins except for ThyA, or enhanced the ThyA transcription level. Thus, S. aureus may avoid altering the ThyA function by introducing an AA substitution, suggesting that the pyrimidine analogues, which directly bind to ThyA without phosphorylation, may be more effective and show a higher genetic barrier than the pyrimidines that depend on phosphorylation for activity. The findings of this study may assist in the future development of a novel class of antibiotics for combating MDR GPC, including methicillin-resistant S. aureus and vancomycin-resistant Enterococci.
Collapse
Affiliation(s)
- Chihiro Oe
- Department of Infection Control and Laboratory Diagnostics, Internal Medicine, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Hironori Hayashi
- Department of Clinical Laboratory Medicine, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kazushige Hirata
- Department of Clinical Laboratory Medicine, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Kumi Kawaji
- Department of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Fusako Hashima
- Department of Clinical Laboratory Medicine, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Mina Sasano
- Department of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Maaya Furuichi
- Department of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Emiko Usui
- Department of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Makoto Katsumi
- Department of Clinical Laboratory Medicine, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Centre for Zoonosis Control, North 20, West 10 Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Centre for Zoonosis Control, North 20, West 10 Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Mitsuo Kaku
- Department of Infection Control and Laboratory Diagnostics, Internal Medicine, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Department of Clinical Laboratory Medicine, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Eiichi N. Kodama
- Department of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Department of Infectious Diseases, Graduate School of Medicine and Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
23
|
Anticandidal agent for multiple targets: the next paradigm in the discovery of proficient therapeutics/overcoming drug resistance. Future Med Chem 2019; 11:2955-2974. [DOI: 10.4155/fmc-2018-0479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Candida albicans is a prominent human fungal pathogen. Current treatments are suffering a massive gap due to emerging resistance against available antifungals. Therefore, there is an ardent need for novel antifungal candidates that essentially have more than one target, as most antifungal repertoires are single-target drugs. Exploration of multiple-drug targeting in antifungal therapeutics is still pending. An extensive literature survey was performed to categorize and comprehend relevant studies and the current therapeutic scenario that led researchers to preferentially consider multitarget drug-based Candida infection therapy. With this article, we identified and compiled a few potent antifungal compounds that are directed toward multiple virulent targets in C. albicans. Such compound(s) provide an optimistic platform of multiple targeting and could leave a substantial impact on the development of effective antifungals.
Collapse
|
24
|
Moreno A, Banerjee A, Prasad R, Falson P. PDR-like ABC systems in pathogenic fungi. Res Microbiol 2019; 170:417-425. [PMID: 31562919 DOI: 10.1016/j.resmic.2019.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 01/23/2023]
Abstract
ABC transporters of the Pleiotropic Drug Resistance (PDR) family are the main actors of antifungal resistance in pathogenic fungi. While their involvement in clinical resistant strains has been proven, their transport mechanism remains unclear. Notably, one hallmark of PDR transporters is their asymmetry, with one canonical nucleotide-binding site capable of ATP hydrolysis while the other site is not. Recent publications reviewed here show that the so-called "deviant" site is of crucial importance for drug transport and is a step towards alleviating the mystery around the existence of non-catalytic binding sites.
Collapse
Affiliation(s)
- Alexis Moreno
- Drug Resistance & Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-Lyon 1 University Research Lab n° 5086, Institut de Biologie et Chimie des Protéines, Lyon, France.
| | - Atanu Banerjee
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, India.
| | - Rajendra Prasad
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, India.
| | - Pierre Falson
- Drug Resistance & Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-Lyon 1 University Research Lab n° 5086, Institut de Biologie et Chimie des Protéines, Lyon, France.
| |
Collapse
|
25
|
Facilitators of adaptation and antifungal resistance mechanisms in clinically relevant fungi. Fungal Genet Biol 2019; 132:103254. [PMID: 31326470 DOI: 10.1016/j.fgb.2019.103254] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022]
Abstract
Opportunistic fungal pathogens can cause a diverse range of diseases in humans. The increasing rate of fungal infections caused by strains that are resistant to commonly used antifungals results in difficulty to treat diseases, with accompanying high mortality rates. Existing and newly emerging molecular resistance mechanisms rapidly spread in fungal populations and need to be monitored. Fungi exhibit a diversity of mechanisms to maintain physiological resilience and create genetic variation; processes which eventually lead to the selection and spread of resistant fungal pathogens. To prevent and anticipate this dispersion, the role of evolutionary factors that drive fungal adaptation should be investigated. In this review, we provide an overview of resistance mechanisms against commonly used antifungal compounds in the clinic and for which fungal resistance has been reported. Furthermore, we aim to summarize and elucidate potent generators of genetic variability across the fungal kingdom that aid adaptation to stressful environments. This knowledge can lead to recognizing potential niches that facilitate fast resistance development and can provide leads for new management strategies to battle the emerging resistant populations in the clinic and the environment.
Collapse
|
26
|
Di Mambro T, Guerriero I, Aurisicchio L, Magnani M, Marra E. The Yin and Yang of Current Antifungal Therapeutic Strategies: How Can We Harness Our Natural Defenses? Front Pharmacol 2019; 10:80. [PMID: 30804788 PMCID: PMC6370704 DOI: 10.3389/fphar.2019.00080] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
Fungal infections have aroused much interest over the last years because of their involvement in several human diseases. Immunocompromission due to transplant-related therapies and malignant cancer treatments are risk factors for invasive fungal infections, but also aggressive surgery, broad-spectrum antibiotics and prosthetic devices are frequently associated with infectious diseases. Current therapy is based on the administration of antifungal drugs, but the occurrence of resistant strains to the most common molecules has become a serious health-care problem. New antifungal agents are urgently needed and it is essential to identify fungal molecular targets that could offer alternatives for development of treatments. The fungal cell wall and plasma membrane are the most important structures that offer putative new targets which can be modulated in order to fight microbial infections. The development of monoclonal antibodies against new targets is a valid therapeutic strategy, both to solve resistance problems and to support the immune response, especially in immunocompromised hosts. In this review, we summarize currently used antifungal agents and propose novel therapeutic approaches, including new fungal molecular targets to be considered for drug development.
Collapse
Affiliation(s)
- Tomas Di Mambro
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.,Diatheva s.r.l., Cartoceto, Italy
| | - Ilaria Guerriero
- Takis s.r.l., Rome, Italy.,Veterinary Immunotherapy and Translational Research, Rome, Italy
| | - Luigi Aurisicchio
- Takis s.r.l., Rome, Italy.,Veterinary Immunotherapy and Translational Research, Rome, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.,Diatheva s.r.l., Cartoceto, Italy
| | - Emanuele Marra
- Takis s.r.l., Rome, Italy.,Veterinary Immunotherapy and Translational Research, Rome, Italy
| |
Collapse
|
27
|
Dysfunction of Prohibitin 2 Results in Reduced Susceptibility to Multiple Antifungal Drugs via Activation of the Oxidative Stress-Responsive Transcription Factor Pap1 in Fission Yeast. Antimicrob Agents Chemother 2018; 62:AAC.00860-18. [PMID: 30181366 DOI: 10.1128/aac.00860-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/25/2018] [Indexed: 12/22/2022] Open
Abstract
The fight against resistance to antifungal drugs requires a better understanding of the underlying cellular mechanisms. In order to gain insight into the mechanisms leading to antifungal drug resistance, we performed a genetic screen on a model organism, Schizosaccharomyces pombe, to identify genes whose overexpression caused resistance to antifungal drugs, including clotrimazole and terbinafine. We identified the phb2 + gene, encoding a highly conserved mitochondrial protein, prohibitin (Phb2), as a novel determinant of reduced susceptibility to multiple antifungal drugs. Unexpectedly, deletion of the phb2 + gene also exhibited antifungal drug resistance. Overexpression of the phb2 + gene failed to cause drug resistance when the pap1 + gene, encoding an oxidative stress-responsive transcription factor, was deleted. Furthermore, pap1+ mRNA expression was significantly increased when the phb2 + gene was overexpressed or deleted. Importantly, either overexpression or deletion of the phb2 + gene stimulated the synthesis of NO and reactive oxygen species (ROS), as measured by the cell-permeant fluorescent NO probe DAF-FM DA (4-amino-5-methylamino-2',7'-difluorofluorescein diacetate) and the ROS probe DCFH-DA (2',7'-dichlorodihydrofluorescein diacetate), respectively. Taken together, these results suggest that Phb2 dysfunction results in reduced susceptibility to multiple antifungal drugs by increasing NO and ROS synthesis due to dysfunctional mitochondria, thereby activating the transcription factor Pap1 in fission yeast.
Collapse
|
28
|
Vu K, Thompson GR, Roe CC, Sykes JE, Dreibe EM, Lockhart SR, Meyer W, Engelthaler DM, Gelli A. Flucytosine resistance in Cryptococcus gattii is indirectly mediated by the FCY2-FCY1-FUR1 pathway. Med Mycol 2018; 56:857-867. [PMID: 29554336 PMCID: PMC10905989 DOI: 10.1093/mmy/myx135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/12/2017] [Indexed: 11/14/2022] Open
Abstract
Cryptococcosis is an opportunistic fungal infection caused by members of the two sibling species complexes: Cryptococcus neoformans and Cryptococcus gattii. Flucytosine (5FC) is one of the most widely used antifungals against Cryptococcus spp., yet very few studies have looked at the molecular mechanisms responsible for 5FC resistance in this pathogen. In this study, we examined 11 C. gattii clinical isolates of the major molecular type VGIII based on differential 5FC susceptibility and asked whether there were genomic changes in the key genes involved in flucytosine metabolism. Susceptibility assays and sequencing analysis revealed an association between a point mutation in the cytosine deaminase gene (FCY1) and 5FC resistance in two of the studied 5FC resistant C. gattii VGIII clinical isolates, B9322 and JS5. This mutation results in the replacement of arginine for histidine at position 29 and occurs within a variable stretch of amino acids. Heterologous expression of FCY1 and spot sensitivity assays, however, demonstrated that this point mutation did not have any effect on FCY1 activities and was not responsible for 5FC resistance. Comparative sequence analysis further showed that no changes in the amino acid sequence and no genomic alterations were observed within 1 kb of the upstream and downstream sequences of either cytosine permeases (FCY2-4) or uracil phosphoribosyltransferase (FUR1) genes in 5FC resistant and 5FC susceptible C. gattii VGIII isolates. The herein obtained results suggest that the observed 5FC resistance in the isolates B9322 and JS5 is due to changes in unknown protein(s) or pathway(s) that regulate flucytosine metabolism.
Collapse
Affiliation(s)
- Kiem Vu
- Department of Pharmacology, University of California, Davis, California, USA
| | - George R Thompson
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Davis, California, USA
| | - Chandler C Roe
- Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Jane E Sykes
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | | | - Shawn R Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia USA
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Center for Infectious Diseases and Microbiology, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Clinical School, Sydney Medical School, Westmead Hospital, The University of Sydney, Westmead Institute for Medical Research, Sydney, Australia
| | | | - Angie Gelli
- Department of Pharmacology, University of California, Davis, California, USA
| |
Collapse
|
29
|
Rezzoagli C, Wilson D, Weigert M, Wyder S, Kümmerli R. Probing the evolutionary robustness of two repurposed drugs targeting iron uptake in Pseudomonas aeruginosa. Evol Med Public Health 2018; 2018:246-259. [PMID: 30455950 PMCID: PMC6234326 DOI: 10.1093/emph/eoy026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
LAY SUMMARY We probed the evolutionary robustness of two antivirulence drugs, gallium and flucytosine, targeting the iron-scavenging pyoverdine in the opportunistic pathogen Pseudomonas aeruginosa. Using an experimental evolution approach in human serum, we showed that antivirulence treatments are not evolutionarily robust per se, but vary in their propensity to select for resistance. BACKGROUND AND OBJECTIVES Treatments that inhibit the expression or functioning of bacterial virulence factors hold great promise to be both effective and exert weaker selection for resistance than conventional antibiotics. However, the evolutionary robustness argument, based on the idea that antivirulence treatments disarm rather than kill pathogens, is controversial. Here, we probe the evolutionary robustness of two repurposed drugs, gallium and flucytosine, targeting the iron-scavenging pyoverdine of the opportunistic human pathogen Pseudomonas aeruginosa. METHODOLOGY We subjected replicated cultures of bacteria to two concentrations of each drug for 20 consecutive days in human serum as an ex vivo infection model. We screened evolved populations and clones for resistance phenotypes, including the restoration of growth and pyoverdine production, and the evolution of iron uptake by-passing mechanisms. We whole-genome sequenced evolved clones to identify the genetic basis of resistance. RESULTS We found that mutants resistant against antivirulence treatments readily arose, but their selective spreading varied between treatments. Flucytosine resistance quickly spread in all populations due to disruptive mutations in upp, a gene encoding an enzyme required for flucytosine activation. Conversely, resistance against gallium arose only sporadically, and was based on mutations in transcriptional regulators, upregulating pyocyanin production, a redox-active molecule promoting siderophore-independent iron acquisition. The spread of gallium resistance was presumably hampered because pyocyanin-mediated iron delivery benefits resistant and susceptible cells alike. CONCLUSIONS AND IMPLICATIONS Our work highlights that antivirulence treatments are not evolutionarily robust per se. Instead, evolutionary robustness is a relative measure, with specific treatments occupying different positions on a continuous scale.
Collapse
Affiliation(s)
- Chiara Rezzoagli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - David Wilson
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Michael Weigert
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Stefan Wyder
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Mechanistic Basis of pH-Dependent 5-Flucytosine Resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 2018; 62:AAC.02593-17. [PMID: 29610197 DOI: 10.1128/aac.02593-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/16/2018] [Indexed: 12/21/2022] Open
Abstract
The antifungal drug 5-flucytosine (5FC), a derivative of the nucleobase cytosine, is licensed for the treatment of fungal diseases; however, it is rarely used as a monotherapeutic to treat Aspergillus infection. Despite being potent against other fungal pathogens, 5FC has limited activity against Aspergillus fumigatus when standard in vitro assays are used to determine susceptibility. However, in modified in vitro assays where the pH is set to pH 5, the activity of 5FC increases significantly. Here we provide evidence that fcyB, a gene that encodes a purine-cytosine permease orthologous to known 5FC importers, is downregulated at pH 7 and is the primary factor responsible for the low efficacy of 5FC at pH 7. We also uncover two transcriptional regulators that are responsible for the repression of fcyB and, consequently, mediators of 5FC resistance, the CCAAT binding complex (CBC) and the pH regulatory protein PacC. We propose that the activity of 5FC might be enhanced by the perturbation of factors that repress fcyB expression, such as PacC or other components of the pH-sensing machinery.
Collapse
|
31
|
Geddes-McAlister J, Shapiro RS. New pathogens, new tricks: emerging, drug-resistant fungal pathogens and future prospects for antifungal therapeutics. Ann N Y Acad Sci 2018; 1435:57-78. [DOI: 10.1111/nyas.13739] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/19/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Jennifer Geddes-McAlister
- Department of Molecular and Cellular Biology; University of Guelph; Guelph Ontario Canada
- Department of Proteomics and Signal Transduction; Max Planck Institute of Biochemistry; Munich Germany
| | - Rebecca S. Shapiro
- Department of Molecular and Cellular Biology; University of Guelph; Guelph Ontario Canada
| |
Collapse
|
32
|
Helminth eggs as parasitic indicators of fecal contamination in agricultural irrigation water, biosolids, soils and pastures. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2018; 38:42-53. [PMID: 29668133 DOI: 10.7705/biomedica.v38i0.3352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 03/29/2017] [Indexed: 12/31/2022]
Abstract
INTRODUCTION A very common practice in agriculture is the disposal of wastewater and biosolids from water treatment systems due to their high nutrient content, which substantially improves crop yields. However, the presence of pathogens of fecal origin creates a sanitary risk to farmers and consumers. OBJECTIVE To determine the presence and concentration of helminth eggs in irrigation waters, biosolids, agricultural soils, and pastures. MATERIALS AND METHODS Water, biosolids, soil, and pasture samples were collected and analyzed for helminth egg detection, total eggs and viable eggs counts. The behavior of helminth eggs was evaluated in irrigation waters and dairy cattle grassland, where biosolids had been used as an organic amendment. RESULTS Concentrations between 0.1-3 total helminth eggs/L, and 0.1-1 viable helminth eggs/L were found in water. In biosolids and soil, we found 3-22 total helminth eggs/4 g of dry weight, and 2-12 viable helminth eggs/4 g of dry weight, and in grass, we found <2-9 total helminth eggs/g of fresh weight, and <1-3 viable helminth eggs/g of fresh weight. The presence of helminth eggs in each matrix varied from days to months, which may represent a sanitary risk to farmers as well as to consumers. CONCLUSIONS The presence of helminth eggs in the assessed matrixes confirms the sanitary risk of such practices. Therefore, it is important to control and incorporate regulations related to the use of wastewater and biosolids in agriculture.
Collapse
|
33
|
Fang XF, Li D, Tangadanchu VKR, Gopala L, Gao WW, Zhou CH. Novel potentially antifungal hybrids of 5-flucytosine and fluconazole: Design, synthesis and bioactive evaluation. Bioorg Med Chem Lett 2017; 27:4964-4969. [PMID: 29050784 DOI: 10.1016/j.bmcl.2017.10.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 10/18/2022]
Abstract
A series of novel potentially antifungal hybrids of 5-flucytosine and fluconazole were designed, synthesized and characterized by 1H NMR, 13C NMR, IR and HRMS spectra. Bioactive assay manifested that some prepared compounds showed moderate to good antifungal activities in comparison with fluconazole and 5-flucytosine. Remarkably, the 3,4-dichlorobenzyl hybrid 7h could inhibit the growth of C. albicans ATCC 90023 and clinical resistant strain C. albicans with MIC values of 0.008 and 0.02 mM, respectively. The active molecule 7h could not only rapidly kill C. albicans but also efficiently permeate membrane of C. albicans. Molecular docking study revealed that compound 7h could interact with the active site of CACYP51 through hydrogen bond. Quantum chemical studies were also performed to explain the high antifungal activity. Further preliminary mechanism research suggested that molecule 7h could intercalate into calf thymus DNA to form a steady supramolecular complex, which might block DNA replication to exert the powerful bioactivities.
Collapse
Affiliation(s)
- Xian-Fu Fang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Di Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Vijai Kumar Reddy Tangadanchu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Lavanya Gopala
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wei-Wei Gao
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
34
|
Abstract
Invasive fungal infections continue to appear in record numbers as the immunocompromised population of the world increases, owing partially to the increased number of individuals who are infected with HIV and partially to the successful treatment of serious underlying diseases. The effectiveness of current antifungal therapies - polyenes, flucytosine, azoles and echinocandins (as monotherapies or in combinations for prophylaxis, or as empiric, pre-emptive or specific therapies) - in the management of these infections has plateaued. Although these drugs are clinically useful, they have several limitations, such as off-target toxicity, and drug-resistant fungi are now emerging. New antifungals are therefore needed. In this Review, I discuss the robust and dynamic antifungal pipeline, including results from preclinical academic efforts through to pharmaceutical industry products, and describe the targets, strategies, compounds and potential outcomes.
Collapse
Affiliation(s)
- John R Perfect
- Duke University Medical Center, 200 Trent Drive, Durham, North Carolina 27710, USA
| |
Collapse
|
35
|
Pais P, Pires C, Costa C, Okamoto M, Chibana H, Teixeira MC. Membrane Proteomics Analysis of the Candida glabrata Response to 5-Flucytosine: Unveiling the Role and Regulation of the Drug Efflux Transporters CgFlr1 and CgFlr2. Front Microbiol 2016; 7:2045. [PMID: 28066366 PMCID: PMC5174090 DOI: 10.3389/fmicb.2016.02045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/06/2016] [Indexed: 11/19/2022] Open
Abstract
Resistance to 5-flucytosine (5-FC), used as an antifungal drug in combination therapy, compromises its therapeutic action. In this work, the response of the human pathogen Candida glabrata to 5-FC was evaluated at the membrane proteome level, using an iTRAQ-based approach. A total of 32 proteins were found to display significant expression changes in the membrane fraction of cells upon exposure to 5-FC, 50% of which under the control of CgPdr1, the major regulator of azole drug resistance. These proteins cluster into functional groups associated to cell wall assembly, lipid metabolism, amino acid/nucleotide metabolism, ribosome components and translation machinery, mitochondrial function, glucose metabolism, and multidrug resistance transport. Given the obtained indications, the function of the drug:H+ antiporters CgFlr1 (ORF CAGL0H06017g) and CgFlr2 (ORF CAGL0H06039g) was evaluated. The expression of both proteins, localized to the plasma membrane, was found to confer flucytosine resistance. CgFlr2 further confers azole drug resistance. The deletion of CgFLR1 or CgFLR2 was seen to increase the intracellular accumulation of 5-FC, or 5-FC and clotrimazole, suggesting that these transporters play direct roles in drug extrusion. The expression of CgFLR1 and CgFLR2 was found to be controlled by the transcription factors CgPdr1 and CgYap1, major regulator of oxidative stress resistance.
Collapse
Affiliation(s)
- Pedro Pais
- Department of Bioengineering, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal; Biological Sciences Research Group, Institute for Bioengineering and Biosciences, Instituto Superior TécnicoLisboa, Portugal
| | - Carla Pires
- Department of Bioengineering, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal; Biological Sciences Research Group, Institute for Bioengineering and Biosciences, Instituto Superior TécnicoLisboa, Portugal
| | - Catarina Costa
- Department of Bioengineering, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal; Biological Sciences Research Group, Institute for Bioengineering and Biosciences, Instituto Superior TécnicoLisboa, Portugal
| | - Michiyo Okamoto
- Medical Mycology Research Center, Chiba University Chiba, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University Chiba, Japan
| | - Miguel C Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal; Biological Sciences Research Group, Institute for Bioengineering and Biosciences, Instituto Superior TécnicoLisboa, Portugal
| |
Collapse
|
36
|
Hu L, Yao F, Ma Y, Liu Q, Chen S, Hayafuji T, Kuno T, Fang Y. Genetic evidence for involvement of membrane trafficking in the action of 5-fluorouracil. Fungal Genet Biol 2016; 93:17-24. [PMID: 27255861 DOI: 10.1016/j.fgb.2016.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/24/2016] [Accepted: 05/29/2016] [Indexed: 10/21/2022]
Abstract
To identify novel genes that mediate cellular sensitivity and resistance to 5-fluorouracil (5-FU), we performed a genome-wide genetic screening to identify altered susceptibility to 5-FU by Schizosaccharomyces pombe haploid nonessential gene deletion library containing 3004 deletion mutants. We identified 50 hypersensitive and 12 resistant mutants to this drug. Mutants sensitive or resistant to 5-FU were classified into various categories based on their putative functions. The largest group of the genes whose disruption renders cells altered susceptibility to 5-FU is involved in nucleic acid metabolism, but to our surprise, the second largest group is involved in membrane trafficking. In addition, several other membrane traffic mutants examined including gdi1-i11, ypt3-i5, Δryh1, Δric1, and Δaps1 exhibited hypersensitivity to 5-FU. Furthermore, we found that 5-FU in low concentration that generally do not affect cell growth altered the localization of Syb1, a secretory vesicle SNARE synaptobrevin which is cycled between the plasma membrane and the endocytic pathway. Notably, 5-FU at such low concentration also significantly inhibited the secretion of acid phosphatase. Altogether, our findings revealed the first evidence that 5-FU influences membrane trafficking as the potential underlying mechanism of the drug action.
Collapse
Affiliation(s)
- Lingling Hu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110112, China; Division of Pharmacology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Fan Yao
- Department of Breast Surgery and Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Yan Ma
- Division of Pharmacology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Qiannan Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110112, China
| | - Si Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110112, China
| | - Tsutomu Hayafuji
- Division of Pharmacology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Takayoshi Kuno
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110112, China; Division of Pharmacology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110112, China.
| |
Collapse
|
37
|
Sanglard D. Emerging Threats in Antifungal-Resistant Fungal Pathogens. Front Med (Lausanne) 2016; 3:11. [PMID: 27014694 PMCID: PMC4791369 DOI: 10.3389/fmed.2016.00011] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/03/2016] [Indexed: 12/15/2022] Open
Abstract
The use of antifungal drugs in the therapy of fungal diseases can lead to the development of antifungal resistance. Resistance has been described for virtually all antifungal agents in diverse pathogens, including Candida and Aspergillus species. The majority of resistance mechanisms have also been elucidated at the molecular level in these pathogens. Drug resistance genes and genome mutations have been identified. Therapeutic choices are limited for the control of fungal diseases, and it is tempting to combine several drugs to achieve better therapeutic efficacy. In the recent years, several novel resistance patterns have been observed, including antifungal resistance originating from environmental sources in Aspergillus fumigatus and the emergence of simultaneous resistance to different antifungal classes (multidrug resistance) in different Candida species. This review will summarize these current trends.
Collapse
Affiliation(s)
- Dominique Sanglard
- Institute of Microbiology, University Hospital Center, University of Lausanne , Lausanne , Switzerland
| |
Collapse
|
38
|
Acquired Flucytosine Resistance during Combination Therapy with Caspofungin and Flucytosine for Candida glabrata Cystitis. Antimicrob Agents Chemother 2015; 60:662-5. [PMID: 26525799 DOI: 10.1128/aac.02265-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/27/2015] [Indexed: 12/17/2022] Open
Abstract
Treatment of Candida glabrata cystitis remains a therapeutic challenge, and an antifungal combination using flucytosine is one option. We describe two patients with refractory C. glabrata cystitis who failed flucytosine combined with caspofungin with early-acquired high-level resistance to flucytosine due to nonsense mutations in the FUR1 gene. Rapidly acquired flucytosine resistance with microbiological failure should discourage combination of caspofungin and flucytosine during urinary candidiasis.
Collapse
|
39
|
Costa C, Ponte A, Pais P, Santos R, Cavalheiro M, Yaguchi T, Chibana H, Teixeira MC. New Mechanisms of Flucytosine Resistance in C. glabrata Unveiled by a Chemogenomics Analysis in S. cerevisiae. PLoS One 2015; 10:e0135110. [PMID: 26267134 PMCID: PMC4534419 DOI: 10.1371/journal.pone.0135110] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 07/18/2015] [Indexed: 11/19/2022] Open
Abstract
5-Flucytosine is currently used as an antifungal drug in combination therapy, but fungal pathogens are rapidly able to develop resistance against this drug, compromising its therapeutic action. The understanding of the underlying resistance mechanisms is crucial to deal with this problem. In this work, the S. cerevisiae deletion mutant collection was screened for increased resistance to flucytosine. Through this chemogenomics analysis, 183 genes were found to confer resistance to this antifungal agent. Consistent with its known effect in DNA, RNA and protein synthesis, the most significant Gene Ontology terms over-represented in the list of 5-flucytosine resistance determinants are related to DNA repair, RNA and protein metabolism. Additional functional classes include carbohydrate and nitrogen-particularly arginine-metabolism, lipid metabolism and cell wall remodeling. Based on the results obtained for S. cerevisiae as a model system, further studies were conducted in the pathogenic yeast Candida glabrata. Arginine supplementation was found to relieve the inhibitory effect exerted by 5-flucytosine in C. glabrata. Lyticase susceptibility was found to increase within the first 30min of 5-flucytosine exposure, suggesting this antifungal drug to act as a cell wall damaging agent. Upon exponential growth resumption in the presence of 5-flucytosine, the cell wall exhibited higher resistance to lyticase, suggesting that cell wall remodeling occurs in response to 5-flucytosine. Additionally, the aquaglyceroporin encoding genes CgFPS1 and CgFPS2, from C. glabrata, were identified as determinants of 5-flucytosine resistance. CgFPS1 and CgFPS2 were found to mediate 5-flucytosine resistance, by decreasing 5-flucytosine accumulation in C. glabrata cells.
Collapse
Affiliation(s)
- Catarina Costa
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB—Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
| | - Andreia Ponte
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB—Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
| | - Pedro Pais
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB—Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
| | - Rui Santos
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB—Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
| | - Mafalda Cavalheiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB—Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
| | - Takashi Yaguchi
- Medical Mycology Research Center (MMRC), Chiba University, Chiba, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center (MMRC), Chiba University, Chiba, Japan
| | - Miguel Cacho Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB—Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
40
|
Vale-Silva LA, Sanglard D. Tipping the balance both ways: drug resistance and virulence in Candida glabrata. FEMS Yeast Res 2015; 15:fov025. [PMID: 25979690 DOI: 10.1093/femsyr/fov025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2015] [Indexed: 01/20/2023] Open
Abstract
Among existing fungal pathogens, Candida glabrata is outstanding in its capacity to rapidly develop resistance to currently used antifungal agents. Resistance to the class of azoles, which are still widely used agents, varies in proportion (from 5 to 20%) depending on geographical area. Moreover, resistance to the class of echinocandins, which was introduced in the late 1990s, is rising in several institutions. The recent emergence of isolates with acquired resistance to both classes of agents is a major concern since alternative therapeutic options are scarce. Although considered less pathogenic than C. albicans, C. glabrata has still evolved specific virulence traits enabling its survival and propagation in colonized and infected hosts. Development of drug resistance is usually associated with fitness costs, and this notion is documented across several microbial species. Interestingly, azole resistance in C. glabrata has revealed the opposite. Experimental models of infection showed enhanced virulence of azole-resistant isolates. Moreover, azole resistance could be associated with specific changes in adherence properties to epithelial cells or innate immunity cells (macrophages), both of which contribute to virulence changes. Here we will summarize the current knowledge on C. glabrata drug resistance and also discuss the consequences of drug resistance acquisition on the balance between C. glabrata and its hosts.
Collapse
Affiliation(s)
- Luis A Vale-Silva
- Institute of Microbiology, University of Lausanne and University Hospital Center, CH-1011 Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital Center, CH-1011 Lausanne, Switzerland
| |
Collapse
|
41
|
Szweda P, Gucwa K, Romanowska E, Dzierz Anowska-Fangrat K, Naumiuk Ł, Brillowska-Da Browska A, Wojciechowska-Koszko I, Milewski S. Mechanisms of azole resistance among clinical isolates of Candida glabrata in Poland. J Med Microbiol 2015; 64:610-619. [PMID: 25818698 DOI: 10.1099/jmm.0.000062] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Candida glabrata is currently ranked as the second most frequently isolated aetiological agent of human fungal infections, next only to Candida albicans. In comparison with C. albicans, C. glabrata shows lower susceptibility to azoles, the most common agents used in treatment of fungal infections. Interestingly, the mechanisms of resistance to azole agents in C. albicans have been much better investigated than those in C. glabrata. The aim of the presented study was to determine the mechanisms of resistance to azoles in 81 C. glabrata clinical isolates from three different hospitals in Poland. The investigation was carried out with a Sensititre Yeast One test and revealed that 18 strains were resistant to fluconazole, and 15 were cross-resistant to all other azoles tested (voriconazole, posaconazole and itraconazole). One isolate resistant to fluconazole was cross-resistant to voriconazole, and resistance to voriconazole only was observed in six other isolates. All strains were found to be susceptible to echinocandins and amphotericin B, and five were classified as resistant to 5-fluorocytosine. The sequence of the ERG11 gene encoding lanosterol 14-α demethylase (the molecular target of azoles) of 41 isolates, including all strains resistant to fluconazole and three resistant only to voriconazole, was determined, and no amino acid substitutions were found. Real-time PCR studies revealed that 13 of 15 azole-resistant strains showed upregulation of the CDR1 gene encoding the efflux pump. No upregulation of expression of the CDR2 or ERG11 gene was observed.
Collapse
Affiliation(s)
- Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdansk, Poland
| | - Katarzyna Gucwa
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdansk, Poland
| | - Ewa Romanowska
- Department of Clinical Microbiology and Immunology, The Children's Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Katarzyna Dzierz Anowska-Fangrat
- Department of Clinical Microbiology and Immunology, The Children's Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Łukasz Naumiuk
- Department of Clinical Microbiology, Hospital of the Medical University of Gdansk, Debinki Str. 7, 80-954 Gdansk, Poland
| | - Anna Brillowska-Da Browska
- Department of Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza Str. 11/12, 80-233 Gdansk, Poland
| | - Iwona Wojciechowska-Koszko
- Department of Microbiology and Immunology, Pomeranian Medical University, Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Sławomir Milewski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
42
|
Szweda P, Gucwa K, Kurzyk E, Romanowska E, Dzierżanowska-Fangrat K, Zielińska Jurek A, Kuś PM, Milewski S. Essential Oils, Silver Nanoparticles and Propolis as Alternative Agents Against Fluconazole Resistant Candida albicans, Candida glabrata and Candida krusei Clinical Isolates. Indian J Microbiol 2014; 55:175-83. [PMID: 25805904 DOI: 10.1007/s12088-014-0508-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/02/2014] [Indexed: 11/24/2022] Open
Abstract
Development of effective and safe therapeutic treatment of fungal infections remains one of the major challenge for modern medicine. The aim of presented investigation was to analyze the in vitro antifungal activity of selected essential oils, ethanolic extracts of propolis and silver nanoparticles dropped on TiO2 against azole-resistant C. albicans (n = 20), C. glabrata (n = 14) and C. krusei (n = 10) clinical isolates. Among tested essential oils, the highest activity has definitely been found in the case of the oil isolated from the bark of Cinnamomum cassia, with MIC and MFC values for all tested strains in the range of 0.0006-0.0097 % (v/v) and 0.0012-0.019 % (v/v), respectively. High activity was also observed for the Lemon, Basil, Thyme, Geranium and Clove (from buds) essential oils. Significant differences in fungicidal activity have been observed in the case of four tested propolis samples. Only one of them revealed high activity, with MFC values in the range from 0.156 to 1.25 % (v/v). Satisfactory fungicidal activity, against C. albicans and C. glabrata isolates, was also observed in the case of silver nanoparticles, however C. krusei isolates were mostly resistant. We also revealed that constituents of most of essential oils and propolis as well as silver nanoparticles are not substrates for drug transporters, which belong to the most important factors affecting resistance of Candida spp. clinical isolates to many of conventional antimycotics. To conclude, the results of our investigation revealed that essential oils, propolis and silver nanoparticles represent high potential for controlling and prevention candidiasis.
Collapse
Affiliation(s)
- Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Katarzyna Gucwa
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Ewelina Kurzyk
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Ewa Romanowska
- Department of Clinical Microbiology and Immunology, The Children's Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Katarzyna Dzierżanowska-Fangrat
- Department of Clinical Microbiology and Immunology, The Children's Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Anna Zielińska Jurek
- Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Piotr Marek Kuś
- Department of Pharmacognosy, Wroclaw Medical University, ul. Borowska 211a, 50-556 Wroclaw, Poland
| | - Sławomir Milewski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
43
|
Flucytosine antagonism of azole activity versus Candida glabrata: role of transcription factor Pdr1 and multidrug transporter Cdr1. Antimicrob Agents Chemother 2013; 57:5543-7. [PMID: 23979762 DOI: 10.1128/aac.02394-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Infections with the opportunistic yeast Candida glabrata have increased dramatically in recent years. Antifungal therapy of yeast infections commonly employs azoles, such as fluconazole (FLC), but C. glabrata frequently develops resistance to these inhibitors of ergosterol biosynthesis. The pyrimidine analog flucytosine (5-fluorocytosine [5FC]) is highly active versus C. glabrata but is now rarely used clinically due to similar concerns over resistance and, a related concern, the toxicity associated with high doses used to counter resistance. Azole-5FC combination therapy would potentially address these concerns; however, previous studies suggest that 5FC may antagonize azole activity versus C. glabrata. Here, we report that 5FC at subinhibitory concentrations antagonized the activity of FLC 4- to 16-fold versus 8 of 8 C. glabrata isolates tested. 5FC antagonized the activity of other azoles similarly but had only indifferent effects in combination with unrelated antifungals. Since azole resistance in C. glabrata results from transcription factor Pdr1-dependent upregulation of the multidrug transporter gene CDR1, we reasoned that 5FC antagonism might be similarly mediated. Indeed, 5FC-FLC antagonism was abrogated in pdr1Δ and cdr1Δ strains. In further support of this hypothesis, 5FC exposure induced CDR1 expression 6-fold, and this upregulation was Pdr1 dependent. In contrast to azoles, 5FC is not a Cdr1 substrate and so its activation of Pdr1 was unexpected. We observed, however, that 5FC exposure readily induced petite mutants, which exhibit Pdr1-dependent CDR1 upregulation. Thus, mitochondrial dysfunction resulting in Pdr1 activation is the likely basis for 5FC antagonism of azole activity versus C. glabrata.
Collapse
|
44
|
Repurposing the antimycotic drug flucytosine for suppression of Pseudomonas aeruginosa pathogenicity. Proc Natl Acad Sci U S A 2013; 110:7458-63. [PMID: 23569238 DOI: 10.1073/pnas.1222706110] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Although antibiotic resistance represents a public health emergency, the pipeline of new antibiotics is running dry. Repurposing of old drugs for new clinical applications is an attractive strategy for drug development. We used the bacterial pathogen Pseudomonas aeruginosa as a target for the screening of antivirulence activity among marketed drugs. We found that the antimycotic agent flucytosine inhibits the expression of the iron-starvation σ-factor PvdS, thereby repressing the production of major P. aeruginosa virulence factors, namely pyoverdine, PrpL protease, and exotoxin A. Flucytosine administration at clinically meaningful dosing regimens suppressed P. aeruginosa pathogenicity in a mouse model of lung infection. The in vitro and in vivo activity of flucytosine against P. aeruginosa, combined with its desirable pharmacological properties, paves the way for clinical trials on the anti-P. aeruginosa efficacy of flucytosine in humans.
Collapse
|
45
|
Kabir MA, Ahmad Z. Candida infections and their prevention. ISRN PREVENTIVE MEDICINE 2012; 2013:763628. [PMID: 24977092 PMCID: PMC4062852 DOI: 10.5402/2013/763628] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/04/2012] [Indexed: 12/15/2022]
Abstract
Infections caused by Candida species have been increased dramatically worldwide due to the increase in immunocompromised patients. For the prevention and cure of candidiasis, several strategies have been adopted at clinical level. Candida infected patients are commonly treated with a variety of antifungal drugs such as fluconazole, amphotericin B, nystatin, and flucytosine. Moreover, early detection and speciation of the fungal agents will play a crucial role for administering appropriate drugs for antifungal therapy. Many modern technologies like MALDI-TOF-MS, real-time PCR, and DNA microarray are being applied for accurate and fast detection of the strains. However, during prolonged use of these drugs, many fungal pathogens become resistant and antifungal therapy suffers. In this regard, combination of two or more antifungal drugs is thought to be an alternative to counter the rising drug resistance. Also, many inhibitors of efflux pumps have been designed and tested in different models to effectively treat candidiasis. However, most of the synthetic drugs have side effects and biomedicines like antibodies and polysaccharide-peptide conjugates could be better alternatives and safe options to prevent and cure the diseases. Furthermore, availability of genome sequences of Candida
albicans and other non-albicans strains has made it feasible to analyze the genes for their roles in adherence, penetration, and establishment of diseases. Understanding the biology of Candida species by applying different modern and advanced technology will definitely help us in preventing and curing the diseases caused by fungal pathogens.
Collapse
Affiliation(s)
- M Anaul Kabir
- Molecular Genetics Laboratory, School of Biotechnology, National Institute of Technology Calicut, Calicut 673601, India
| | - Zulfiqar Ahmad
- Department of Biological and Environmental Sciences, Alabama A&M University, Normal, AL 35762, USA
| |
Collapse
|
46
|
Progress in antifungal susceptibility testing of Candida spp. by use of Clinical and Laboratory Standards Institute broth microdilution methods, 2010 to 2012. J Clin Microbiol 2012; 50:2846-56. [PMID: 22740712 DOI: 10.1128/jcm.00937-12] [Citation(s) in RCA: 357] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antifungal susceptibility testing of Candida has been standardized and refined and now may play a useful role in managing Candida infections. Important new developments include validation of 24-h reading times for all antifungal agents and the establishment of species-specific epidemiological cutoff values (ECVs) for the systemically active antifungal agents and both common and uncommon species of Candida. The clinical breakpoints (CBPs) for fluconazole, voriconazole, and the echinocandins have been revised to provide species-specific interpretive criteria for the six most common species. The revised CBPs not only are predictive of clinical outcome but also provide a more sensitive means of identifying those strains with acquired or mutational resistance mechanisms. This brief review serves as an update on the new developments in the antifungal susceptibility testing of Candida spp. using Clinical and Laboratory Standards Institute (CLSI) broth microdilution (BMD) methods.
Collapse
|
47
|
Candida glabrata: Multidrug Resistance and Increased Virulence in a Major Opportunistic Fungal Pathogen. CURRENT FUNGAL INFECTION REPORTS 2012. [DOI: 10.1007/s12281-012-0091-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Pfaller MA, Castanheira M, Jones RN. Advances in Antifungal Susceptibility Testing of Candida, 2010–2012. CURRENT FUNGAL INFECTION REPORTS 2012. [DOI: 10.1007/s12281-012-0092-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
49
|
Wild-type MIC distributions and epidemiological cutoff values for amphotericin B, flucytosine, and itraconazole and Candida spp. as determined by CLSI broth microdilution. J Clin Microbiol 2012; 50:2040-6. [PMID: 22461672 DOI: 10.1128/jcm.00248-12] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clinical breakpoints (CBPs) and epidemiological cutoff values (ECVs) have been established for several Candida spp. and the newer triazoles and echinocandins but are not yet available for older antifungal agents, such as amphotericin B, flucytosine, or itraconazole. We determined species-specific ECVs for amphotericin B (AMB), flucytosine (FC) and itraconazole (ITR) for eight Candida spp. (30,221 strains) using isolates from 16 different laboratories in Brazil, Canada, Europe, and the United States, all tested by the CLSI reference microdilution method. The calculated 24- and 48-h ECVs expressed in μg/ml (and the percentages of isolates that had MICs less than or equal to the ECV) for AMB, FC, and ITR, respectively, were 2 (99.8)/2 (99.2), 0.5 (94.2)/1 (91.4), and 0.12 (95.0)/0.12 (92.9) for C. albicans; 2 (99.6)/2 (98.7), 0.5 (98.0)/0.5 (97.5), and 2 (95.2)/4 (93.5) for C. glabrata; 2 (99.7)/2 (97.3), 0.5 (98.7)/0.5 (97.8), and 05. (99.7)/0.5 (98.5) for C. parapsilosis; 2 (99.8)/2 (99.2), 0.5 (93.0)/1 (90.5), and 0.5 (97.8)/0.5 (93.9) for C. tropicalis; 2 (99.3)/4 (100.0), 32 (99.4)/32 (99.3), and 1 (99.0)/2 (100.0) for C. krusei; 2 (100.0)/4 (100.0), 0.5 (95.3)/1 (92.9), and 0.5 (95.8)/0.5 (98.1) for C. lusitaniae; -/2 (100.0), 0.5 (98.8)/0.5 (97.7), and 0.25 (97.6)/0.25 (96.9) for C. dubliniensis; and 2 (100.0)/2 (100.0), 1 (92.7)/-, and 1 (100.0)/2 (100.0) for C. guilliermondii. In the absence of species-specific CBP values, these wild-type (WT) MIC distributions and ECVs will be useful for monitoring the emergence of reduced susceptibility to these well-established antifungal agents.
Collapse
|
50
|
Jawhara S, Mogensen E, Maggiotto F, Fradin C, Sarazin A, Dubuquoy L, Maes E, Guérardel Y, Janbon G, Poulain D. Murine model of dextran sulfate sodium-induced colitis reveals Candida glabrata virulence and contribution of β-mannosyltransferases. J Biol Chem 2012; 287:11313-24. [PMID: 22291009 DOI: 10.1074/jbc.m111.329300] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Candida glabrata, like Candida albicans, is an opportunistic yeast pathogen that has adapted to colonize all segments of the human gastrointestinal tract and vagina. The C. albicans cell wall expresses β-1,2-linked mannosides (β-Mans), promoting its adherence to host cells and tissues. Because β-Mans are also present in C. glabrata, their role in C. glabrata colonization and virulence was investigated in a murine model of dextran sulfate sodium (DSS)-induced colitis. Five clustered genes of C. glabrata encoding β-mannosyltransferases, BMT2-BMT6, were deleted simultaneously. β-Man expression was studied by Western blotting, flow cytometry, and NMR analysis. Mortality, clinical, histologic, and colonization scores were determined in mice receiving DSS and different C. glabrata strains. The results show that C. glabrata bmt2-6 strains had a significant reduction in β-1,2-Man expression and a disappearance of β-1,2-mannobiose in the acid-stable domain. A single gavage of C. glabrata wild-type strain in mice with DSS-induced colitis caused a loss of body weight, colonic inflammation, and mortality. Mice receiving C. glabrata bmt2-6 mutant strains had normal body weight and reduced colonic inflammation. Lower numbers of colonies of C. glabrata bmt2-6 were recovered from stools and different parts of the gastrointestinal tract. Histopathologic examination revealed that the wild-type strain had a greater ability to colonize tissue and cause tissue damage. These results showed that C. glabrata has a high pathogenic potential in DSS-induced colitis, where β-Mans contribute to colonization and virulence.
Collapse
Affiliation(s)
- Samir Jawhara
- Université Lille Nord de France, 59000 Lille, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|