1
|
Zellner AA, Wirtz DC, Schildberg FA. In Vitro Efficacy of Phage Therapy Against Common Biofilm-forming Pathogens in Orthopedics and Trauma Surgery. ZEITSCHRIFT FUR ORTHOPADIE UND UNFALLCHIRURGIE 2025. [PMID: 39832775 DOI: 10.1055/a-2436-7394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Formation of biofilms by bacteria is a major challenge in a clinical setting. The importance of these biofilms increases in specialties where foreign bodies and prosthetic material are used. Orthopaedics is such a speciality and phage therapy could offer additional therapeutic options when dealing with biofilm infections.We conducted a systematic literature review using the PubMed database. We searched for phage activity against biofilms of the most common pathogens found in orthopaedics.The results of the systematic review were broken down into different categories and discussed accordingly. We concentrated on the time the biofilms were allowed to mature, and the surface they were grown on. In addition, we checked the efficacy of bacteriophages compared to antibiotics and when applied simultaneously with antibiotics. We also investigated the source of the phages, how they were tested for sensibility against the biofilms, as well the conditions (pH, temperature) under which they remained active and stable.The data suggests that the in vitro efficacy of phages does not change under a wide spectrum of temperature and pH. To further explore the use of bacteriophages in orthopaedics, we need further studies that test biofilms which matured for several weeks on surfaces that are common in arthroplasty and traumatology.
Collapse
Affiliation(s)
- Alberto Alfieri Zellner
- Klinik und Poliklinik für Orthopädie und Unfallchirurgie, Universitätsklinikum Bonn, Bonn, Deutschland
| | - Dieter Christian Wirtz
- Klinik und Poliklinik für Orthopädie und Unfallchirurgie, Universitätsklinikum Bonn, Bonn, Deutschland
| | | |
Collapse
|
2
|
Zulk JJ, Patras KA, Maresso AW. The rise, fall, and resurgence of phage therapy for urinary tract infection. EcoSal Plus 2024; 12:eesp00292023. [PMID: 39665540 PMCID: PMC11636367 DOI: 10.1128/ecosalplus.esp-0029-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/20/2023] [Indexed: 12/13/2024]
Abstract
In the face of rising antimicrobial resistance, bacteriophage therapy, also known as phage therapy, is seeing a resurgence as a potential treatment for bacterial infections including urinary tract infection (UTI). Primarily caused by uropathogenic Escherichia coli, the 400 million UTI cases annually are major global healthcare burdens and a primary cause of antibiotic prescriptions in the outpatient setting. Phage therapy has several potential advantages over antibiotics including the ability to disrupt bacterial biofilms and synergize with antimicrobial treatments with minimal side effects or impacts on the microbiota. Phage therapy for UTI treatment has shown generally favorable results in recent animal models and human case reports. Ongoing clinical trials seek to understand the efficacy of phage therapy in individuals with asymptomatic bacteriuria and uncomplicated cystitis. A possible challenge for phage therapy is the development of phage resistance in bacteria during treatment. While resistance frequently develops in vitro and in vivo, resistance can come with negative consequences for the bacteria, leaving them susceptible to antibiotics and other environmental conditions and reducing their overall virulence. "Steering" bacteria toward phage resistance outcomes that leave them less fit or virulent is especially useful in the context of UTI where poorly adherent or slow-growing bacteria are likely to be flushed from the system. In this article, we describe the history of phage therapy in treating UTI and its current resurgence, the state of its clinical use, and an outlook on how well-designed phage therapy could be used to "steer" bacteria toward less virulent and antimicrobial-susceptible states.
Collapse
Affiliation(s)
- Jacob J. Zulk
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Kathryn A. Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
3
|
Tellez-Carrasquilla S, Salazar-Ospina L, Jiménez JN. High activity and specificity of bacteriophage cocktails against carbapenem-resistant Klebsiella pneumoniae belonging to the high-risk clones CG258 and ST307. Front Microbiol 2024; 15:1502593. [PMID: 39717270 PMCID: PMC11663894 DOI: 10.3389/fmicb.2024.1502593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction The widespread clinical and environmental dissemination of successful clones of carbapenem-resistant Klebsiella pneumoniae (CRKP) represents a serious global public health threat. In this context, lytic bacteriophages have emerged as a promising alternative for controlling these pathogens. This study describes the biological, structural, and genomic characteristics of lytic bacteriophages against the high-risk CRKP clones CG258 and ST307 and describes their performance in combination. Methods An experimental study was carried out. Bacteriophages were isolated from hospital wastewater and from wastewater treatment plants (WWTP). Bacteriophages were isolated using the double layer agar technique and their characterization included host range (individual and cocktail), plating efficiency (EOP), infection or bacterial killing curve, one-step curve, bacteriophage stability at pH and temperature conditions, transmission electron microscopy (TEM) and whole genome sequencing. Results After purification, five active bacteriophages against CRKP were obtained, three bacteriophages (FKP3, FKP4 and FKP14) had targeted activities against CG258 CRKP and two (FKP10 and FKP12) against ST307 isolates. Seven cocktails were prepared, of which Cocktail 2, made up of the bacteriophages FKP3, FKP10, and FKP14, showed the best activity against 85.7% (n = 36/42) of CRKP isolates belonging to both clones, CG258 (80.8%; n = 21/26) and ST307 (93.8%, n = 15/16). The efficiency of the plating (EOP), infection curve, and one-step growth curve showed that the cocktail phages efficiently infected other CRKP isolates (EOP ≥ 0.5), controlled bacterial growth up to 73.5%, and had short latency periods, respectively, (5-10 min). In addition, they were stable at temperatures between 4°C and 50°C and pH between 4 and 10. All bacteriophages belonged to the Caudoviricetes class, and no genes associated with virulence factors or antibiotic resistance were detected. Conclusion These findings showed bacteriophages and phage cocktails with high specificity against CRKP belonging to the successful clones CG258 and ST307 with promising characteristics, making them an alternative for controlling these clones in different environmental or health settings, biocontrol agents, or disinfectants in industry and in the field of diagnosis.
Collapse
Affiliation(s)
| | | | - J. Natalia Jiménez
- Grupo de Investigación en Microbiología Básica y Aplicada (MICROBA), Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
4
|
Shleeva MO, Demina GR, Savitsky AP. A systematic overview of strategies for photosensitizer and light delivery in antibacterial photodynamic therapy for lung infections. Adv Drug Deliv Rev 2024; 215:115472. [PMID: 39549920 DOI: 10.1016/j.addr.2024.115472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Antimicrobial photodynamic therapy (aPDT) emerges as a viable treatment strategy for infections resistant to conventional antibiotics. A complex interplay of factors, including intracellular photosensitizer (PS) accumulation, photochemical reaction type, and oxygen levels, determines the efficacy of aPDT. Recent progress includes the development of modified PSs with enhanced lipophilicity and target-specific strategies to improve bacterial cell wall penetration and targeting. Nanotechnology-based approaches, such as using nanomaterials for targeted PS delivery, have shown promise in enhancing aPDT efficacy. Advancements in light delivery methods for aPDT, such as transillumination of large lesions and local light delivery using fiber optic techniques, are also being explored to optimize treatment efficacy in clinical settings. The limited number of animal models and clinical trials specifically designed to assess the efficacy of aPDT for lung infections highlights the need for further research in this critical area. The potential prospects of aPDT for lung tissue infections originating from antibiotic-resistant bacterial infections are also discussed in this review.
Collapse
Affiliation(s)
- Margarita O Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia.
| | - Galina R Demina
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander P Savitsky
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Nissanka MC, Dilhari A, Wijesinghe GK, Weerasekera MM. Advances in experimental bladder models: bridging the gap between in vitro and in vivo approaches for investigating urinary tract infections. BMC Urol 2024; 24:206. [PMID: 39313789 PMCID: PMC11418205 DOI: 10.1186/s12894-024-01590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Urinary tract infections (UTIs) pose a substantial burden on global healthcare systems. When unraveling the complex pathophysiology of UTIs, bladder models are used to understand complex and multifaceted interactions between different components within the system. This review aimed to bridge the gap between in vitro and in vivo experimental bladder models towards UTI research. We reviewed clinical, animal, and analytical studies and patents from 1959 to the end of 2023. Both in vivo and in vitro models offer unique benefits and drawbacks in understanding UTIs. In vitro models provide controlled environments for studying specific aspects of UTI biology and testing potential treatments, while in vivo models offer insights into how UTIs manifest and progress within living organisms. Thus, both types of models are leading to the development of more effective diagnostic tools and therapeutic interventions against UTIs. Moreover, advanced methodologies involving three-dimensional bladder organoids have also been used to study bladder biology, model bladder-related disorders, and explore new treatments for bladder cancers, UTIs, and urinary incontinence. Narrowing the distance between fundamental scientific research and practical medical applications, these pioneering models hold the key to unlocking new avenues for the development of personalized diagnostics, precision medicine, and ultimately, the alleviation of UTI-related morbidity worldwide.
Collapse
Affiliation(s)
| | - Ayomi Dilhari
- Department of Basic Sciences, Faculty of Allied Health Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| | | | - Manjula Manoji Weerasekera
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
6
|
So B, Kim J, Jo JK, So H. Recent developments in preventing catheter-related infections based on biofilms: A comprehensive review. BIOMICROFLUIDICS 2024; 18:051506. [PMID: 39397894 PMCID: PMC11470810 DOI: 10.1063/5.0195165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Abstract
Urinary and vascular catheters are among the most commonly used medical devices. However, infections caused by biofilm formation on the surface of catheters are a major cause of healthcare-associated infections. Traditional methods, such as using antimicrobials to prevent such infections, generally have short-term effects, and treatment is challenging owing to the emergence of antimicrobial-resistant bacteria. This review aims to evaluate the limitations of conventional catheter-related infection prevention efficacy, such as currently used antimicrobials, and analyze the efficacy and limitations of potential alternatives to prevent catheter-related infections that have not yet been commercialized, classified by the transition stages of biofilm formation. We intend to provide profound insights into the ideal technologies for preventing catheter-associated tract infections and present perspectives on future directions in this field.
Collapse
Affiliation(s)
- Byeongchan So
- Department of Medical and Digital Engineering, Hanyang University, Seoul 04763, South Korea
| | - Jongwon Kim
- Department of Medical and Digital Engineering, Hanyang University, Seoul 04763, South Korea
| | - Jung Ki Jo
- Department of Urology, College of Medicine, Hanyang University, Seoul 04763, South Korea
| | - Hongyun So
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
7
|
Gao M, Wang Y, Zhuang H, Zhu Y, Chen N, Teng T. Insights into the Preparation of and Evaluation of the Bactericidal Effects of Phage-Based Hydrogels. Int J Mol Sci 2024; 25:9472. [PMID: 39273419 PMCID: PMC11394800 DOI: 10.3390/ijms25179472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The rise of antibiotic-resistant strains demands new alternatives in antibacterial treatment. Bacteriophages, with their precise host specificity and ability to target and eliminate bacteria safely, present a valuable option. Meanwhile, hydrogels, known for their excellent biodegradability and biocompatibility, serve as ideal carriers for bacteriophages. The combination of bacteriophages and hydrogels ensures heightened phage activity, concentration, controlled release, and strong antibacterial properties, making it a promising avenue for antibacterial treatment. This article provides a comprehensive review of different crosslinking methods for phage hydrogels, focusing on their application in treating infections caused by various drug-resistant bacteria and highlighting their effective antibacterial properties and controlled release capabilities.
Collapse
Affiliation(s)
- Mengyuan Gao
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yuhan Wang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Hanyue Zhuang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yanxia Zhu
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Na Chen
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Tieshan Teng
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
8
|
Martinho I, Braz M, Duarte J, Brás A, Oliveira V, Gomes NCM, Pereira C, Almeida A. The Potential of Phage Treatment to Inactivate Planktonic and Biofilm-Forming Pseudomonas aeruginosa. Microorganisms 2024; 12:1795. [PMID: 39338470 PMCID: PMC11433742 DOI: 10.3390/microorganisms12091795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Pseudomonas aeruginosa is a common cause of hospital-acquired infections and exhibits a strong resistance to antibiotics. An alternative treatment option for bacterial infections is the use of bacteriophages (or phages). In this study, two distinct phages, VB_PaD_phPA-G (phPA-G) and VB_PaN_phPA-Intesti (phPA-Intesti), were used as single suspensions or in a phage cocktail to inactivate the planktonic cells and biofilms of P. aeruginosa. Preliminary experiments in culture medium showed that phage phPA-Intesti (reductions of 4.5-4.9 log CFU/mL) outperformed phPA-G (reductions of 0.6-2.6 log CFU/mL) and the phage cocktail (reduction of 4.2 log CFU/mL). Phage phPA-Intesti caused a maximum reduction of 5.5 log CFU/cm2 in the P. aeruginosa biofilm in urine after 4 h of incubation. The combination of phage phPA-Intesti and ciprofloxacin did not improve the efficacy of bacterial inactivation nor reduce the development of resistant mutants. However, the development of resistant bacteria was lower in the combined treatment with the phage and the antibiotic compared to treatment with the antibiotic alone. This phage lacks known toxins, virulence, antibiotic resistance, and integrase genes. Overall, the results suggest that the use of phage phPA-Intesti could be a potential approach to control urinary tract infections (UTIs), namely those caused by biofilm-producing and multidrug-resistant strains of P. aeruginosa.
Collapse
Affiliation(s)
- Inês Martinho
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Márcia Braz
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João Duarte
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Brás
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Vanessa Oliveira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Newton C M Gomes
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carla Pereira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Wang WM, Lu TH, Chen CY, Liao CM. Assessing microplastics-antibiotics coexistence induced ciprofloxacin-resistant Pseudomonas aeruginosa at a water region scale. WATER RESEARCH 2024; 257:121721. [PMID: 38728782 DOI: 10.1016/j.watres.2024.121721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Microplastics (MPs) waste is widespread globally in water systems. The opportunistic human pathogen Pseudomonas aeruginosa can cause serious acute and chronic infections that are notoriously difficult to treat. Ciprofloxacin (CIP) is broadly applied as an anti-P. aeruginosa drug. A growing evidence reveals that antibiotic-resistance genes-carrying Pseudomonas aeruginosa were detected on MPs forming plastisphere due to their adsorbability along with high occurrence of CIP in water environments. The MPs-niched CIP-resistant P. aeruginosa has been likely to emerge as an unignorable public health issue. Here, we offered a novel approach to assess the development of CIP-resistant P. aeruginosa under MPs-antibiotic coexistence at a water region scale. By combing the adsorption isotherm models used to estimate CIP condensation around MPs and a pharmacokinetic/pharmacodynamic-based microbial population dynamic model, we predicted the P. aeruginosa development on CIP-adsorbed MPs in waters. Our assessment revealed a high antibiotic resistance in the P. aeruginosa populations (∼50 %) with a wider range of waterborne total cell counts (∼10-2-104 cfu mL-1) among water regions in that the resistance proportion was primarily determined by CIP pollution level and relative abundance of various polymer type of MPs. We implicate that water region-specific MPs were highly likely to provide media for P. aeruginosa propagation. Our results highlight the importance of antibiotic-resistant pathogen colonization-emerging environmental medium interactions when addressing global threat from MPs pollution, in the context of MPs-antibiotics co-contamination assessment and for the continued provision of water system management.
Collapse
Affiliation(s)
- Wei-Min Wang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan 106319, China
| | - Tien-Hsuan Lu
- Department of Science Education and Application, National Taichung University of Education, Taichung 403514, China
| | - Chi-Yun Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, United States; Center for Environmental and Human Toxicology, University of Florida, FL 32608, United States
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan 106319, China.
| |
Collapse
|
10
|
Jhandai P, Mittal D, Gupta R, Kumar M, Khurana R. Therapeutics and prophylactic efficacy of novel lytic Escherichia phage vB_EcoS_PJ16 against multidrug-resistant avian pathogenic E. coli using in vivo study. Int Microbiol 2024; 27:673-687. [PMID: 37632591 DOI: 10.1007/s10123-023-00420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Avian pathogenic Escherichia coli (APEC) is the causative agent of avian colibacillosis, which causes significant economic losses to the poultry industry. The growing resistance of bacteria to antibiotics is a major global public health concern. However, there is limited data on the efficacy of phage therapy in effectively controlling and treating APEC infections. In this study, a novel lytic Escherichia phage, vB_EcoS_PJ16, was isolated from poultry farm wastewater and characterized in both in vitro and in vivo conditions. Transmission electron microscopy analysis revealed the presence of an icosahedral head and a long non-contractile tail, classifying the phage under the Caudoviricetes class. Host range determination showed that Escherichia phage vB_EcoS_PJ16 exhibited lytic activity against multiple strains of pathogenic E. coli, while no significant signs of lysis for Klebsiella pneumoniae, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus. Biophysical characterization revealed that the isolated phage was sturdy, as it remained viable for up to 300 days at temperatures of 30 °C, 37 °C, and 42 °C and for up to 24 h at pH 5 to 11, with only minor changes in titer. Kinetic analysis at multiplicity of infection (MOI) 0.1 showed a latency period of about 20 min and a burst size of 26.5 phage particles per infected cell for phage vB_EcoS_PJ16. Whole genome sequencing unveiled that the phage vB_EcoS_PJ16 genome consists of a double-stranded linear DNA molecule with 57,756 bp and a GC content of 43.58%. The Escherichia phage vB_EcoS_PJ16 genome consisted of 98 predicted putative ORFs, with no transfer RNA identified in the genome. Among these 98 genes, 34 genes were predicted to have known functions. A significant reduction in APEC viability was observed at MOI 100 during in vitro bacterial challenge tests conducted at different MOIs (0.01, 1, and 100). In vivo oral evaluation of the isolated phage to limit E. coli infections in day-old chicks indicated a decrease in mortality within both the therapeutic (20%) and prophylactic (30%) groups, when compared to the control group. The findings of this study contribute to our current knowledge of Escherichia phages and suggest a potentially effective role of phages in the therapeutic and prophylactic control of antibiotic-resistant APEC strains.
Collapse
Affiliation(s)
- Punit Jhandai
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| | - Dinesh Mittal
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India.
| | - Renu Gupta
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| | - Manesh Kumar
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| | - Rajesh Khurana
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| |
Collapse
|
11
|
Bolsan AC, Sampaio GV, Rodrigues HC, Silva De Souza S, Edwiges T, Celant De Prá M, Gabiatti NC. Phage formulations and delivery strategies: Unleashing the potential against antibiotic-resistant bacteria. Microbiol Res 2024; 282:127662. [PMID: 38447457 DOI: 10.1016/j.micres.2024.127662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/14/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
Bacterial control promoted by bacteriophages (phages) is an attractive tool in the face of the antibiotic crisis triggered by the exacerbated use of these drugs. Despite the growing interest in using these viruses, some gaps still need answers, such as the protection and delivery of phages. Some limitation points involve the degradation of phage proteins by enzymes or inactivation in low-pH environments. In this review, a literature search using keywords related to the field of virus delivery formulations was done to understand the current scenario of using delivery techniques and phage formulations. A total of 2096 raw results were obtained, which resulted in 140 publications after refinement. These studies were analyzed for main application techniques and areas, keywords, and countries. Of the total, 57% of the publications occurred in the last five years, and the encapsulation technique was the most used among the articles analyzed. As excipient agents, lactose, trehalose, mannitol, PEG, and Leucine stand out. The development of phage formulations, protection approaches, their delivery routes, and the knowledge about the best application strategy enables the use of these organisms in several sectors. It can act as a powerful tool against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Alice Chiapetti Bolsan
- Programa de Pós Graduação em Sustentabilidade Ambiental Urbana (PPGSAU) - Universidade Tecnológica Federal do Paraná, Curitiba, PR 81280-340, Brazil
| | - Gabrielli Vaz Sampaio
- Laboratório de Genética, Instituto Butantan - Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
| | - Heloisa Campeão Rodrigues
- Programa de Pós Graduação em Biotecnologia (PPGBIOTEC) - Universidade Tecnológica Federal do Paraná, Dois Vizinhos, PR 85660-000, Brazil
| | - Samara Silva De Souza
- Programa de Pós Graduação em Biotecnologia (PPGBIOTEC) - Universidade Tecnológica Federal do Paraná, Dois Vizinhos, PR 85660-000, Brazil
| | - Thiago Edwiges
- Programa de Pós Graduação em Sustentabilidade Ambiental Urbana (PPGSAU) - Universidade Tecnológica Federal do Paraná, Curitiba, PR 81280-340, Brazil
| | - Marina Celant De Prá
- Programa de Pós Graduação em Biotecnologia (PPGBIOTEC) - Universidade Tecnológica Federal do Paraná, Dois Vizinhos, PR 85660-000, Brazil
| | - Naiana Cristine Gabiatti
- Programa de Pós Graduação em Biotecnologia (PPGBIOTEC) - Universidade Tecnológica Federal do Paraná, Dois Vizinhos, PR 85660-000, Brazil.
| |
Collapse
|
12
|
Elfadadny A, Ragab RF, AlHarbi M, Badshah F, Ibáñez-Arancibia E, Farag A, Hendawy AO, De los Ríos-Escalante PR, Aboubakr M, Zakai SA, Nageeb WM. Antimicrobial resistance of Pseudomonas aeruginosa: navigating clinical impacts, current resistance trends, and innovations in breaking therapies. Front Microbiol 2024; 15:1374466. [PMID: 38646632 PMCID: PMC11026690 DOI: 10.3389/fmicb.2024.1374466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/05/2024] [Indexed: 04/23/2024] Open
Abstract
Pseudomonas aeruginosa, a Gram-negative bacterium, is recognized for its adaptability and opportunistic nature. It poses a substantial challenge in clinical settings due to its complicated antibiotic resistance mechanisms, biofilm formation, and capacity for persistent infections in both animal and human hosts. Recent studies revealed a potential zoonotic transmission of P. aeruginosa between animals, the environment, and human populations which highlights awareness of this microbe. Implementation of the One Health approach, which underscores the connection between human, animal, and environmental health, we aim to offer a comprehensive perspective on the current landscape of P. aeruginosa management. This review presents innovative strategies designed to counteract P. aeruginosa infections. Traditional antibiotics, while effective in many cases, are increasingly compromised by the development of multidrug-resistant strains. Non-antibiotic avenues, such as quorum sensing inhibition, phage therapy, and nanoparticle-based treatments, are emerging as promising alternatives. However, their clinical application encounters obstacles like cost, side effects, and safety concerns. Effectively addressing P. aeruginosa infections necessitates persistent research efforts, advancements in clinical development, and a comprehension of host-pathogen interactions to deal with this resilient pathogen.
Collapse
Affiliation(s)
- Ahmed Elfadadny
- Laboratory of Internal Medicine, Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Internal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Rokaia F. Ragab
- Laboratory of Internal Medicine, Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Maha AlHarbi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Farhad Badshah
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Eliana Ibáñez-Arancibia
- PhD Program in Sciences Mentioning Applied Molecular and Cell Biology, La Frontera University, Temuco, Chile
- Laboratory of Engineering, Biotechnology and Applied Biochemistry – LIBBA, Department of Chemical Engineering, Faculty of Engineering and Science, La Frontera University, Temuco, Chile
- Department of Biological and Chemical Sciences, Faculty of Natural Resources, Catholic University of Temuco, Temuco, Chile
| | - Ahmed Farag
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amin Omar Hendawy
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Patricio R. De los Ríos-Escalante
- Department of Biological and Chemical Sciences, Faculty of Natural Resources, Catholic University of Temuco, Temuco, Chile
- Nucleus of Environmental Sciences, Faculty of Natural Resources, Catholic University of Temuco, Temuco, Chile
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qaliobiya, Egypt
| | - Shadi A. Zakai
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wedad M. Nageeb
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
13
|
Lu H, Ni SQ. Review on sterilization techniques, and the application potential of phage lyase and lyase immobilization in fighting drug-resistant bacteria. J Mater Chem B 2024; 12:3317-3335. [PMID: 38380677 DOI: 10.1039/d3tb02366d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Many human health problems and property losses caused by pathogenic contamination cannot be underestimated. Bactericidal techniques have been extensively studied to address this issue of public health and economy. Bacterial resistance develops as a result of the extensive use of single or multiple but persistent usage of sterilizing drugs, and the emergence of super-resistant bacteria brings new challenges. Therefore, it is crucial to control pathogen contamination by applying innovative and effective sterilization techniques. As organisms that exist in nature and can specifically kill bacteria, phages have become the focus as an alternative to antibacterial agents. Furthermore, phage-encoded lyases are proteins that play important roles in phage sterilization. The in vitro sterilization of phage lyase has been developed as a novel biosterilization technique to reduce bacterial resistance and is more environmentally friendly than conventional sterilization treatments. For the shortcomings of enzyme applications, this review discusses the enzyme immobilization methods and the application potential of immobilized lyases for sterilization. Although some techniques provide effective solutions, immobilized lyase sterilization technology has been proven to be a more effective innovation for efficient pathogen killing and reducing bacterial resistance. We hope that this review can provide new insights for the development of sterilization techniques.
Collapse
Affiliation(s)
- Han Lu
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
14
|
Chen Z, Yang Y, Li G, Huang Y, Luo Y, Le S. Effective elimination of bacteria on hard surfaces by the combined use of bacteriophages and chemical disinfectants. Microbiol Spectr 2024; 12:e0379723. [PMID: 38483478 PMCID: PMC10986474 DOI: 10.1128/spectrum.03797-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/27/2024] [Indexed: 04/06/2024] Open
Abstract
Hospital-acquired infections (HAIs) represent one of the significant causes of morbidity and mortality worldwide, and controlling pathogens in the hospital environment is of great importance. Currently, the standard disinfection method in the hospital environment is chemical disinfection. However, disinfectants are usually not used strictly according to the label, making them less effective in disinfection. Therefore, there is an emergent need to find a better approach that can be used in hospitals to control pathogenic bacteria in the clinical environment. Bacteriophages (phages) are effective in killing bacteria and have been applied in the treatment of bacterial infections but have not received enough attention regarding the control of contamination in the clinical environment. In this study, we found that various phages remain active in the presence of chemical disinfectants. Moreover, the combined use of specific phages and chemical disinfectants is more effective in removing bacterial biofilms and eliminating bacteria on hard surfaces. Thus, this proof-of-concept study indicates that adding phages directly to chemical disinfectants might be an effective and economical approach to enhance clinical environment disinfection. IMPORTANCE In this study, we investigated whether the combination of bacteriophages and chemical disinfectants can enhance the efficacy of reducing bacterial contamination on hard surfaces in the clinical setting. We found that specific phages are active in chemical disinfectants and that the combined use of phages and chemical disinfectants was highly effective in reducing bacterial presence on hard surfaces. As a proof-of-concept, we demonstrated that adding specific phages directly to chemical disinfectants is an effective and cost-efficient strategy for clinical environment disinfection.
Collapse
Affiliation(s)
- Zongyue Chen
- School of Nursing, Army Medical University, Chongqing, China
| | - Yuhui Yang
- School of Nursing, Army Medical University, Chongqing, China
| | - Gaoming Li
- Disease Surveillance Division, Center for Disease Control and Prevention of Central Theater Command, Shijingshan, Beijing, China
| | - Youying Huang
- Biomedical Analysis Center, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yu Luo
- School of Nursing, Army Medical University, Chongqing, China
| | - Shuai Le
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| |
Collapse
|
15
|
Chadha J, Thakur N, Chhibber S, Harjai K. A comprehensive status update on modification of foley catheter to combat catheter-associated urinary tract infections and microbial biofilms. Crit Rev Microbiol 2024; 50:168-195. [PMID: 36651058 DOI: 10.1080/1040841x.2023.2167593] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/01/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
Present-day healthcare employs several types of invasive devices, including urinary catheters, to improve medical wellness, the clinical outcome of disease, and the quality of patient life. Among urinary catheters, the Foley catheter is most commonly used in patients for bladder drainage and collection of urine. Although such devices are very useful for patients who cannot empty their bladder for various reasons, they also expose patients to catheter-associated urinary tract infections (CAUTIs). Catheter provides an ideal surface for bacterial colonization and biofilm formation, resulting in persistent bacterial infection and severe complications. Hence, rigorous efforts have been made to develop catheters that harbour antimicrobial and anti-fouling properties to resist colonization by bacterial pathogens. In this regard, catheter modification by surface functionalization, impregnation, blending, or coating with antibiotics, bioactive compounds, and nanoformulations have proved to be effective in controlling biofilm formation. This review attempts to illustrate the complications associated with indwelling Foley catheters, primarily focussing on challenges in fighting CAUTI, catheter colonization, and biofilm formation. In this review, we also collate scientific literature on catheter modification using antibiotics, plant bioactive components, bacteriophages, nanoparticles, and studies demonstrating their efficacy through in vitro and in vivo testing.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Navdisha Thakur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
16
|
Kameswaran S, Gujjala S, Zhang S, Kondeti S, Mahalingam S, Bangeppagari M, Bellemkonda R. Quenching and quorum sensing in bacterial bio-films. Res Microbiol 2024; 175:104085. [PMID: 37268165 DOI: 10.1016/j.resmic.2023.104085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
Quorum sensing (QS) is the ability of bacteria to monitor their population density and adjust gene expression accordingly. QS-regulated processes include host-microbe interactions, horizontal gene transfer, and multicellular behaviours (such as the growth and development of biofilm). The creation, transfer, and perception of bacterial chemicals known as autoinducers or QS signals are necessary for QS signalling (e.g. N-acylhomoserine lactones). Quorum quenching (QQ), another name for the disruption of QS signalling, comprises a wide range of events and mechanisms that are described and analysed in this study. In order to better comprehend the targets of the QQ phenomena that organisms have naturally developed and are currently being actively researched from practical perspectives, we first surveyed the diversity of QS-signals and QS-associated responses. Next, the mechanisms, molecular players, and targets related to QS interference are discussed, with a focus on natural QQ enzymes and compounds that function as QS inhibitors. To illustrate the processes and biological functions of QS inhibition in microbe-microbe and host-microbe interactions, a few QQ paradigms are described in detail. Finally, certain QQ techniques are offered as potential instruments in a variety of industries, including agriculture, medical, aquaculture, crop production, and anti-biofouling areas.
Collapse
Affiliation(s)
- Srinivasan Kameswaran
- Department of Botany, Vikrama Simhapuri University College, Kavali, Andhra Pradesh, India
| | - Sudhakara Gujjala
- Department of Biochemistry, Sri Krishnadevaray a University, Ananthapuram, Andhra Pradesh, India
| | - Shaoqing Zhang
- School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, 512005, PR China
| | - Suresh Kondeti
- Multi-Disciplinary Research Unit, Nizam's Institute of Medical Sciences, Hyderabad, 500082, India
| | - Sundararajan Mahalingam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Manjunatha Bangeppagari
- Department of Cell Biology & Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to Be University), Tamaka, Kolar, 563103, Karnataka, India
| | - Ramesh Bellemkonda
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
17
|
Erol HB, Kaskatepe B, Yildiz S, Altanlar N, Bayrakdar F. Characterization of two bacteriophages specific to Acinetobacter baumannii and their effects on catheters biofilm. Cell Biochem Funct 2024; 42:e3966. [PMID: 38444208 DOI: 10.1002/cbf.3966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/07/2024]
Abstract
Multidrug-resistant strains of Acinetobacter baumannii cause major nosocomial infections. Bacteriophages that are specific to the bacterial species and destroy bacteria can be effectively used for treatment. In this study, we characterized lytic bacteriophages specific to A. baumannii strains. We isolated lytic bacteriophages from environmental water samples and then investigated their morphology, host range, growth characteristics, stability, genome analysis, and biofilm destruction on the catheter surface. Our results showed that the efficacy of the phages varied between 32% and 78%, tested on 78 isolates of A. baumannii; 80 phages were isolated, and two lytic bacteriophages, vB_AbaP_HB01 (henceforth called C2 phage) and vB_AbaM_HB02 (henceforth called K3 phage), were selected for characterization. Electron microscopy scans revealed that the C2 and K3 phages were members of the Podoviridae and Myoviridae families, respectively. Whole-genome sequencing revealed that the sequence of the C2 phage is available in the NCBI database (accession number: OP917929.1), and it was found sequence identity with Acinetobacter phage AB1 18%, the K3 phage DNA sequence is closely related to Acinetobacter phage vB_AbaM_phiAbaA1 (94% similarity). The cocktail of C2 and K3 phages demonstrated a promising decrease in the bacterial cell counts of the biofilm after 4 h. Under a scanning electron microscope, the cocktail treatment destructed the biofilm on the catheter. We propose that the phage cocktail could be a strong alternative to antibiotics to control the A. baumannii biofilm in catheter infections.
Collapse
Affiliation(s)
- Hilal Basak Erol
- Department of Pharmaceutical Microbiology, Ankara University Faculty of Pharmacy, Ankara, Turkey
- Ankara University Graduate School of Health Science, Ankara, Turkey
| | - Banu Kaskatepe
- Department of Pharmaceutical Microbiology, Ankara University Faculty of Pharmacy, Ankara, Turkey
| | - Sulhiye Yildiz
- Department of Pharmaceutical Microbiology, Lokman Hekim University Faculty of Pharmacy, Ankara, Turkey
| | - Nurten Altanlar
- Department of Pharmaceutical Microbiology, Ankara University Faculty of Pharmacy, Ankara, Turkey
| | - Fatma Bayrakdar
- Ministry of Health, General Directorate of Public Health, Microbiology References Laboratory, Ankara, Turkey
| |
Collapse
|
18
|
Kifelew LG, Warner MS, Morales S, Gordon DL, Thomas N, Mitchell JG, Speck PG. Lytic activity of phages against bacterial pathogens infecting diabetic foot ulcers. Sci Rep 2024; 14:3515. [PMID: 38347019 PMCID: PMC10861545 DOI: 10.1038/s41598-024-53317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
Complications of diabetes, such as diabetic foot ulcers (DFUs), are common, multifactorial in origin, and costly to treat. DFUs are the cause of nearly 90% of limb amputations among persons with diabetes. In most chronic infections such as DFU, biofilms are involved. Bacteria in biofilms are 100-1000 times more resistant to antibiotics than their planktonic counterparts. Multidrug-resistant (MDR) Staphylococcus aureus and Pseudomonas aeruginosa infections in DFUs may require alternative therapeutic agents such as bacteriophages ("phages"). This study describes the lytic activity of phage cocktails AB-SA01 (3-phage cocktail) and AB-PA01 (4-phage cocktail), which target S. aureus and P. aeruginosa, respectively. The host range and lytic effect of AB-SA01 and AB-PA01 on a planktonic culture, single-species biofilm, and mixed-species biofilm were evaluated. In vitro testing showed that 88.7% of S. aureus and 92.7% of P. aeruginosa isolates were susceptible to AB-SA01 and AB-PA01, respectively, in the planktonic state. The component phages of AB-SA01 and AB-PA01 infected 66% to 94.3% of the bacterial isolates tested. Furthermore, AB-SA01 and AB-PA01 treatment significantly (p < 0.05) reduced the biofilm biomass of their hosts, regardless of the antibiotic-resistant characteristics of the isolates and the presence of a non-susceptible host. In conclusion, the strong lytic activity, broad host range, and significant biofilm biomass reduction of AB-SA01 and AB-PA01 suggest the considerable potential of phages in treating antibiotic-resistant S. aureus and P. aeruginosa infections alone or as coinfections in DFUs.
Collapse
Affiliation(s)
- Legesse Garedew Kifelew
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia.
- St Paul's Hospital Millennium Medical College, 1271, Addis Ababa, Ethiopia.
| | - Morgyn S Warner
- Infectious Diseases Unit, Queen Elizabeth Hospital, Woodville, SA, 5011, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sandra Morales
- AmpliPhi Australia Pty Ltd., Brookvale, NSW, 2100, Australia
- Phage Consulting, Sydney, NSW, 2100, Australia
| | - David L Gordon
- Department of Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Nicky Thomas
- Basil Hetzel Institute for Translational Health Research, Woodville South, SA, 5011, Australia
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - James G Mitchell
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Peter G Speck
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
19
|
Gordon M, Ramirez P. Efficacy and Experience of Bacteriophages in Biofilm-Related Infections. Antibiotics (Basel) 2024; 13:125. [PMID: 38391511 PMCID: PMC10886175 DOI: 10.3390/antibiotics13020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Bacterial infection has always accompanied human beings, causing suffering and death while also contributing to the advancement of medical science. However, the treatment of infections has become more complex in recent times. The increasing resistance of bacterial strains to antibiotics has diminished the effectiveness of the therapeutic arsenal, making it less likely to find the appropriate empiric antibiotic option. Additionally, the development and persistence of bacterial biofilms have become more prevalent, attributed to the greater use of invasive devices that facilitate biofilm formation and the enhanced survival of chronic infection models where biofilm plays a crucial role. Bacteria within biofilms are less susceptible to antibiotics due to physical, chemical, and genetic factors. Bacteriophages, as biological weapons, can overcome both antimicrobial resistance and biofilm protection. In this review, we will analyze the scientific progress achieved in vitro to justify their clinical application. In the absence of scientific evidence, we will compile publications of clinical cases where phages have been used to treat infections related to biofilm. The scientific basis obtained in vitro and the success rate and safety observed in clinical practice should motivate the medical community to conduct clinical trials establishing a protocol for the proper use of bacteriophages.
Collapse
Affiliation(s)
- Monica Gordon
- Critical Care Department, Hospital Universitario y Politécnico la Fe, Av. Vicente Abril Martorell 106, 46026 Valencia, Spain
| | - Paula Ramirez
- Critical Care Department, Hospital Universitario y Politécnico la Fe, Av. Vicente Abril Martorell 106, 46026 Valencia, Spain
| |
Collapse
|
20
|
Samson R, Dharne M, Khairnar K. Bacteriophages: Status quo and emerging trends toward one health approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168461. [PMID: 37967634 DOI: 10.1016/j.scitotenv.2023.168461] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
The alarming rise in antimicrobial resistance (AMR) among the drug-resistant pathogens has been attributed to the ESKAPEE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, Enterobacter sp., and Escherichia coli). Recently, these AMR microbes have become difficult to treat, as they have rendered the existing therapeutics ineffective. Thus, there is an urgent need for effective alternatives to lessen or eliminate the current infections and limit the spread of emerging diseases under the "One Health" framework. Bacteriophages (phages) are naturally occurring biological resources with extraordinary potential for biomedical, agriculture/food safety, environmental protection, and energy production. Specific unique properties of phages, such as their bactericidal activity, host specificity, potency, and biocompatibility, make them desirable candidates in therapeutics. The recent biotechnological advancement has broadened the repertoire of phage applications in nanoscience, material science, physical chemistry, and soft-matter research. Herein, we present a comprehensive review, coupling the substantial aspects of phages with their applicability status and emerging opportunities in several interdependent areas under one health concept. Consolidating the recent state-of-the-art studies that integrate human, animal, plant, and environment health, the following points have been highlighted: (i) The biomedical and pharmacological advantages of phages and their antimicrobial derivatives with particular emphasis on in-vivo and clinical studies. (ii) The remarkable potential of phages to be altered, improved, and applied for drug delivery, biosensors, biomedical imaging, tissue engineering, energy, and catalysis. (iii) Resurgence of phages in biocontrol of plant, food, and animal-borne pathogens. (iv) Commercialization of phage-based products, current challenges, and perspectives.
Collapse
Affiliation(s)
- Rachel Samson
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mahesh Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Krishna Khairnar
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Environmental Virology Cell (EVC), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India.
| |
Collapse
|
21
|
Mukhopadhyay S, To KKW, Liu Y, Bai C, Leung SSY. A thermosensitive hydrogel formulation of phage and colistin combination for the management of multidrug-resistant Acinetobacter baumannii wound infections. Biomater Sci 2023; 12:151-163. [PMID: 37937608 DOI: 10.1039/d3bm01383a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Chronic skin wounds are often associated with multidrug-resistant bacteria, impeding the healing process. Bacteriophage (phage) therapy has been revitalized as a promising strategy to counter the growing concerns of antibiotic resistance. However, phage monotherapy also faces several application drawbacks, such as a narrow host spectrum, the advent of resistant phenotypes and poor stability of phage preparations. Phage-antibiotic synergistic (PAS) combination therapy has recently been suggested as a possible approach to overcome these shortcomings. In the present study, we employed a model PAS combination containing a vB_AbaM-IME-AB2 phage and colistin to develop stable wound dressings of PAS to mitigate infections associated with Acinetobacter baumannii. A set of thermosensitive hydrogels were synthesized with varying amounts of Pluronic® F-127 (PF-127 at 15, 17.5 and 20 w/w%) modified with/without 3 w/w% hydroxypropyl methylcellulose (HPMC). Most hydrogel formulations had a gelation temperature around skin temperature, suitable for topical application. The solidified gels were capable of releasing the encapsulated phage and colistin in a sustained manner to kill bacteria. The highest bactericidal effect was achieved with the formulation containing 17.5% PF-127 and 3% HPMC (F5), which effectively killed bacteria in both planktonic (by 5.66 log) and biofilm (by 3 log) states and inhibited bacterial regrowth. Good storage stability of F5 was also noted with negligible activity loss after 9 months of storage at 4 °C. The ex vivo antibacterial efficacy of the F5 hydrogel formulation was also investigated in a pork skin wound infection model, where it significantly reduced the bacterial burden by 4.65 log. These positive outcomes warrant its further development as a topical PAS-wound dressing.
Collapse
Affiliation(s)
- Subhankar Mukhopadhyay
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Yannan Liu
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Changqing Bai
- Department of Respiratory Medicine, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Guangdong, 518055, China
| | - Sharon S Y Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
22
|
Aguilera M, Tobar-Calfucoy E, Rojas-Martínez V, Norambuena R, Serrano MJ, Cifuentes O, Zamudio MS, San Martín D, Lara P, Sabag A, Zabner M, Tichy D, Camejo P, León L, Pino M, Ulloa S, Rojas F, Pieringer C, Muster C, Castillo D, Ferreira N, Avendaño C, Canaval M, Pieringer H, Cifuentes P, Cifuentes Muñoz N. Development and characterization of a bacteriophage cocktail with high lytic efficacy against field-isolated Salmonella enterica. Poult Sci 2023; 102:103125. [PMID: 37879168 PMCID: PMC10618821 DOI: 10.1016/j.psj.2023.103125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 10/27/2023] Open
Abstract
Salmonella spp. is a prevalent pathogen that causes great public health concern worldwide. Bacteriophage-based cocktails have arisen as an alternative to antibiotics to inhibit the growth of Salmonella. However, the bactericidal effect of bacteriophage cocktails in vivo largely differs from their observed effect in vitro. This is partly because in vitro developments of cocktails do not always consider the bacterial diversity nor the environmental conditions where bacteriophages will have to replicate. Here, we isolated and sequenced 47 bacteriophages that showed variable degrees of lytic activity against 258 Salmonella isolates from a commercial broiler company in Brazil. Three of these bacteriophages were characterized and selected to assemble a cocktail. In vitro quantitative assays determined the cocktail to be highly effective against multiple serovars of Salmonella, including Minnesota and Heidelberg. Remarkably, the in vitro lytic activity of the cocktail was retained or improved in conditions that more closely resembled the chicken gut, such as anaerobiosis, 42°C, and Salmonella mono-strain biofilms. Analysis of bacterial cross-resistance between the 3 bacteriophages composing the cocktail revealed limited or no generation of cross-resistance. Our results highlight the relevance of an optimized flux of work to develop bacteriophage cocktails against Salmonella with high lytic efficacy and strong potential to be applied in vivo in commercial broiler farms.
Collapse
Affiliation(s)
- Matías Aguilera
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Eduardo Tobar-Calfucoy
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Victoria Rojas-Martínez
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Rodrigo Norambuena
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - María Jesús Serrano
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Onix Cifuentes
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - María Sofía Zamudio
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Daniel San Martín
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Pabla Lara
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Andrea Sabag
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Marcela Zabner
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Daniel Tichy
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Pamela Camejo
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Luis León
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Michael Pino
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Soledad Ulloa
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Felipe Rojas
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Christian Pieringer
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Cecilia Muster
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Daniel Castillo
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Nicolás Ferreira
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Camilo Avendaño
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Mauro Canaval
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Hans Pieringer
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Pablo Cifuentes
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile
| | - Nicolás Cifuentes Muñoz
- PhageLab Chile SpA, Vicuña Mackenna 4860, Centro de Innovación Anacleto Angelini 5th floor, Santiago, Chile..
| |
Collapse
|
23
|
Holger DJ, El Ghali A, Bhutani N, Lev KL, Stamper K, Kebriaei R, Kunz Coyne AJ, Morrisette T, Shah R, Alexander J, Lehman SM, Rojas LJ, Marshall SH, Bonomo RA, Rybak MJ. Phage-antibiotic combinations against multidrug-resistant Pseudomonas aeruginosa in in vitro static and dynamic biofilm models. Antimicrob Agents Chemother 2023; 67:e0057823. [PMID: 37855639 PMCID: PMC10648846 DOI: 10.1128/aac.00578-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/18/2023] [Indexed: 10/20/2023] Open
Abstract
Biofilm-producing Pseudomonas aeruginosa infections pose a severe threat to public health and are responsible for high morbidity and mortality. Phage-antibiotic combinations (PACs) are a promising strategy for combatting multidrug-resistant (MDR), extensively drug-resistant (XDR), and difficult-to-treat P. aeruginosa infections. Ten MDR/XDR P. aeruginosa strains and five P. aeruginosa-specific phages were genetically characterized and evaluated based upon their antibiotic susceptibilities and phage sensitivities. Two selected strains, AR351 (XDR) and I0003-1 (MDR), were treated singly and in combination with either a broad-spectrum or narrow-spectrum phage, phage EM-T3762627-2_AH (EM), or 14207, respectively, and bactericidal antibiotics of five classes in biofilm time-kill analyses. Synergy and/or bactericidal activity was demonstrated with all PACs against one or both drug-resistant P. aeruginosa strains (average reduction: -Δ3.32 log10 CFU/cm2). Slightly improved ciprofloxacin susceptibility was observed in both strains after exposure to phages (EM and 14207) in combination with ciprofloxacin and colistin. Based on phage cocktail optimization with four phages (EM, 14207, E20050-C (EC), and 109), we identified several effective phage-antibiotic cocktails for further analysis in a 4-day pharmacokinetic/pharmacodynamic in vitro biofilm model. Three-phage cocktail, EM + EC + 109, in combination with ciprofloxacin demonstrated the greatest biofilm reduction against AR351 (-Δ4.70 log10 CFU/cm2 from baseline). Of remarkable interest, the addition of phage 109 prevented phage resistance development to EM and EC in the biofilm model. PACs can demonstrate synergy and offer enhanced eradication of biofilm against drug-resistant P. aeruginosa while preventing the emergence of resistance.
Collapse
Affiliation(s)
- Dana J. Holger
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Amer El Ghali
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Natasha Bhutani
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Katherine L. Lev
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Kyle Stamper
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Razieh Kebriaei
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Ashlan J. Kunz Coyne
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Taylor Morrisette
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Rahi Shah
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Jose Alexander
- Department of Microbiology, Virology, and Immunology, AdventHealth Central Florida, Orlando, Florida, USA
| | - Susan M. Lehman
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Laura J. Rojas
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Antimicrobial Resistance and Epidemiology, Veterans Affairs Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Steven H. Marshall
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Robert A. Bonomo
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Antimicrobial Resistance and Epidemiology, Veterans Affairs Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michael J. Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy Services, Detroit Receiving Hospital, Detroit Medical Center, Detroit, Michigan, USA
- Department of Medicine, Division of Infectious Diseases, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
24
|
El Ghali A, Stamper K, Kunz Coyne AJ, Holger D, Kebriaei R, Alexander J, Lehman SM, Rybak MJ. Ciprofloxacin in combination with bacteriophage cocktails against multi-drug resistant Pseudomonas aeruginosa in ex vivo simulated endocardial vegetation models. Antimicrob Agents Chemother 2023; 67:e0072823. [PMID: 37877697 PMCID: PMC10649104 DOI: 10.1128/aac.00728-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/18/2023] [Indexed: 10/26/2023] Open
Abstract
Pseudomonas aeruginosa-associated infective endocarditis represents difficult-to-treat, deep-seated infections. Phage-antibiotic combinations have shown to eradicate multi-drug resistant (MDR) P. aeruginosa, limit the development of phage resistance, and restore antibiotic sensitivity. The objective of this study was to evaluate the activity of phage-ciprofloxacin (CIP) combinations in 4-day ex vivo simulated endocardial vegetation (SEV) models against drug-resistant P. aeruginosa isolates. Two P. aeruginosa isolates, extensively drug-resistant AR351 and MDR I0003-1, were selected for their drug resistance and sensitivity to phage. Three phages [LL-5504721-AH (LL), E2005-C (EC), and 109] and CIP were evaluated alone and in combination for their activity and influence on drug and phage resistance using 24-h time-kill analysis. The three-phage cocktail (q24h) in combination with CIP (400 mg q12h) was then tested in dynamic 4-day ex vivo SEV models, with reduction of log10 CFU/mL compared using ANOVA with Bonferroni analysis. Compared to other combinations, CIP-LL-EC-109 demonstrated synergistic and bactericidal activity from starting CFU/g against AR351 and I0003-1 (-Δ5.65 and 6.60 log10 CFU/g, respectively; P < 0.001). Additionally, CIP-LL-EC-109 mitigated phage resistance, while all other therapies had a high degree of resistance to >1 phages, and all phage-containing regimens prevented CIP mean inhibitory concentration increases compared to CIP alone for both AR351 and I0003-1 at 96 h.
Collapse
Affiliation(s)
- Amer El Ghali
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
| | - Kyle Stamper
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
| | - Ashlan J. Kunz Coyne
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
| | - Dana Holger
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
| | - Razieh Kebriaei
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
| | - Jose Alexander
- Department of Microbiology, Virology and Immunology, AdventHealth Central Florida, Orlando, Florida, USA
| | - Susan M. Lehman
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Michael J. Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA
- Department of Medicine, Division of Infectious Diseases, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
25
|
Zurabov F, Glazunov E, Kochetova T, Uskevich V, Popova V. Bacteriophages with depolymerase activity in the control of antibiotic resistant Klebsiella pneumoniae biofilms. Sci Rep 2023; 13:15188. [PMID: 37704798 PMCID: PMC10499987 DOI: 10.1038/s41598-023-42505-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023] Open
Abstract
Klebsiella pneumoniae is associated with a variety of infections, such as pneumonia, urogenital infection, liver abscess, and bloodstream infection. It is especially dangerous for patients in medical facilities, where it can cause ventilator-associated pneumonia or intensive care unit-acquired pneumonia. The emergence of multidrug-resistant and hypervirulent strains as well as the ability to form biofilms on various medical devices complicates the treatment of such infections and makes the use of antibiotics ineffective. The application of bacteriophages is a promising alternative for combating Klebsiella pneumoniae biofilms. In the present study a cocktail of 3 bacteriophages with depolymerase activity was used to control antibiotic resistant Klebsiella pneumoniae biofilms in vitro. Biofilms were examined using optical and scanning electron microscopy. The obtained results demonstrate that the studied bacteriophage cocktail can effectively disrupt Klebsiella pneumoniae biofilms.
Collapse
Affiliation(s)
- Fedor Zurabov
- Research and Production Center "MicroMir", LLC, Moscow, Russia.
- Department of Virology, Lomonosov Moscow State University, Moscow, Russia.
| | - Egor Glazunov
- Research and Production Center "MicroMir", LLC, Moscow, Russia
| | | | | | | |
Collapse
|
26
|
Alves D, Grainha T, Pereira MO, Lopes SP. Antimicrobial materials for endotracheal tubes: A review on the last two decades of technological progress. Acta Biomater 2023; 158:32-55. [PMID: 36632877 DOI: 10.1016/j.actbio.2023.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Ventilator-associated pneumonia (VAP) is an unresolved problem in nosocomial settings, remaining consistently associated with a lack of treatment, high mortality, and prolonged hospital stay. The endotracheal tube (ETT) is the major culprit for VAP development owing to its early surface microbial colonization and biofilm formation by multiple pathogens, both critical events for VAP pathogenesis and relapses. To combat this matter, gradual research on antimicrobial ETT surface coating/modification approaches has been made. This review provides an overview of the relevance and implications of the ETT bioburden for VAP pathogenesis and how technological research on antimicrobial materials for ETTs has evolved. Firstly, certain main VAP attributes (definition/categorization; outcomes; economic impact) were outlined, highlighting the issues in defining/diagnosing VAP that often difficult VAP early- and late-onset differentiation, and that generate misinterpretations in VAP surveillance and discrepant outcomes. The central role of the ETT microbial colonization and subsequent biofilm formation as fundamental contributors to VAP pathogenesis was then underscored, in parallel with the uncovering of the polymicrobial ecosystem of VAP-related infections. Secondly, the latest technological developments (reported since 2002) on materials able to endow the ETT surface with active antimicrobial and/or passive antifouling properties were annotated, being further subject to critical scrutiny concerning their potentialities and/or constraints in reducing ETT bioburden and the risk of VAP while retaining/improving the safety of use. Taking those gaps/challenges into consideration, we discussed potential avenues that may assist upcoming advances in the field to tackle VAP rampant rates and improve patient care. STATEMENT OF SIGNIFICANCE: The use of the endotracheal tube (ETT) in patients requiring mechanical ventilation is associated with the development of ventilator-associated pneumonia (VAP). Its rapid surface colonization and biofilm formation are critical events for VAP pathogenesis and relapses. This review provides a comprehensive overview on the relevance/implications of the ETT biofilm in VAP, and on how research on antimicrobial ETT surface coating/modification technology has evolved over the last two decades. Despite significant technological advances, the limited number of gathered reports (46), highlights difficulty in overcoming certain hurdles associated with VAP (e.g., persistent colonization/biofilm formation; mechanical ventilation duration; hospital length of stay; VAP occurrence), which makes this an evolving, complex, and challenging matter. Challenges and opportunities in the field are discussed.
Collapse
Affiliation(s)
- Diana Alves
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Tânia Grainha
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Maria Olívia Pereira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Susana Patrícia Lopes
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
27
|
Abdelsattar AS, Yakoup AY, Khaled Y, Safwat A, El-Shibiny A. The synergistic effect of using bacteriophages and chitosan nanoparticles against pathogenic bacteria as a novel therapeutic approach. Int J Biol Macromol 2023; 228:374-384. [PMID: 36581028 DOI: 10.1016/j.ijbiomac.2022.12.246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Public health and environmental security are seriously at risk due to the growing contamination of pathogenic microorganisms. Therefore, effective antimicrobials are urgently needed. In our study, the antimicrobial effects of three types of nanoparticles were investigated with phage. The biosynthesis of nanoparticles was confirmed based on the color change and shapes, which tended to be mono-dispersed with a spherical shape with a size range of 20-35 nm for Ag-CS-NPs; 15-30 nm for Phage-CS-NPs (Ph-CS-NPs); and 5-35 nm for Propolis-CS-NPs (Pro-CS-NPs). Nanoparticles displayed peaks between 380-420 nm, 335-380 nm, and below 335 nm for Ag-CS-NPs, Pro-CS-NPs, and Ph-CS NPs, respectively. Throughout the three synthesized nanoparticles, AgCs NPs represented a higher antibacterial effect in combination with phages. It showed MIC against S. sciuri, S. Typhimurium, and P. aeruginosa between 31.2 and 62.2 μg/mL and MBC at 500, 62.5, and 31.2 μg/mL, respectively, while in combination with phages showed MIC at 62.2, 31.2, and 15.6 μg/mL, respectively and MBC at 125, 62.2, and 15.6 μg/mL, respectively. Furthermore, a significant killing efficiency was observed with 16.5-30.1 μg/mL of Ag-CS NPs combined with phages. In conclusion, Ag-CS-NPs with phages present potential bactericidal and inhibitory effects against Gram-positive and Gram-negative bacteria, as well as against the production of biofilms.
Collapse
Affiliation(s)
- Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt.
| | - Aghapy Yermans Yakoup
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt.
| | - Yousef Khaled
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt.
| | - Anan Safwat
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt; Faculty of Environmental Agricultural Sciences, Arish University, Arish 45511, Egypt.
| |
Collapse
|
28
|
Yao Q, Wu C, Yu X, Chen X, Pan G, Chen B. Current material engineering strategies to prevent catheter encrustation in urinary tracts. Mater Today Bio 2022; 16:100413. [PMID: 36118951 PMCID: PMC9474921 DOI: 10.1016/j.mtbio.2022.100413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
Catheters and ureteric stents have played a vital role in relieving urinary obstruction in many urological conditions. With the increasing use of urinary catheters/stents, catheter/stent-related complications such as infection and encrustation are also increasing because of their design defects. Long-term use of antibiotics and frequent replacement of catheters not only increase the economic burden on patients but also bring the pain of catheter replacement. This is unfavorable for patients with long indwelling catheters or stents but inconvenient to replace. In recent years, some promising technologies and mechanisms have been used to prevent infection and encrustation, mainly drug loading coatings, functional coatings, biodegradable polymers and metallic materials for urinary devices. Obvious effects in anti-encrustation and anti-infection experiments of the above strategies in vivo or in vitro have been conducted, which is very helpful for further clinical trials. This review mainly introduces catheter/stent technology and mechanisms in the past ten years to address the potential impact of anti-encrustation coating of catheter/stent materials for the prevention of encrustation and to analyze the progress made in this field.
Collapse
Affiliation(s)
- Qin Yao
- Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, Jiangsu, 212001, PR China
| | - Chengshuai Wu
- Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, Jiangsu, 212001, PR China
| | - Xiaoyu Yu
- Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, Jiangsu, 212001, PR China
| | - Xu Chen
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 304 Xuefu Road, Zhenjiang, Jiangsu, 212013, PR China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 304 Xuefu Road, Zhenjiang, Jiangsu, 212013, PR China
| | - Binghai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, Jiangsu, 212001, PR China
| |
Collapse
|
29
|
Ramadhan F, Alfiko Y, Purwantomo S, Mubarok AF, Budinarta W, Suwanto A, Budiarti S. A New Approach for Controlling Agrobacterium tumefaciens Post Transformation Using Lytic Bacteriophage. PLANTS (BASEL, SWITZERLAND) 2022; 11:3124. [PMID: 36432853 PMCID: PMC9698577 DOI: 10.3390/plants11223124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Overgrowth of Agrobacterium tumefaciens has frequently been found in Agrobacterium-mediated plant transformation. This overgrowth can reduce transformation efficiency and even lead to explant death. Therefore, this research investigates an alternative way to mitigate or eliminate Agrobacterium after transformation using a bacteriophage. To develop this alternative method, we conducted effectiveness studies of two lytic bacteriophages (ΦK2 and ΦK4) and performed an application test to control Agrobacterium growth after transformation. According to plaque morphological characterization and molecular analysis, the two bacteriophages used in this experiment were distinct. Moreover, some stability physicochemical and growth kinetics, such as adsorption time and susceptibility test, also showed that both bacteriophages differed. On the other hand, the optimum temperature and pH of both phages were the same at 28-30 °C and pH 7. Further investigation showed that both ΦK2 and ΦK4 were able to reduce the overgrowth of A. tumefaciens post transformation. Moreover, applying the cocktail (mixture of ΦK2 and ΦK4) with antibiotic application eradicated A. tumefaciens (0% overgrowth percentage). This result indicates that the application of bacteriophage could be used as an alternative way to eradicate the overgrowth of A. tumefaciens subsequent to transformation.
Collapse
Affiliation(s)
- Fiqih Ramadhan
- Graduate School of Biotechnology, IPB University, Bogor 16680, Indonesia
| | - Yuzer Alfiko
- Biotech Laboratory, Wilmar Benih Indonesia, Bekasi 17530, Indonesia
| | - Sigit Purwantomo
- Biotech Laboratory, Wilmar Benih Indonesia, Bekasi 17530, Indonesia
| | | | - Widyah Budinarta
- Biotech Laboratory, Wilmar Benih Indonesia, Bekasi 17530, Indonesia
| | - Antonius Suwanto
- Graduate School of Biotechnology, IPB University, Bogor 16680, Indonesia
- Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| | - Sri Budiarti
- Graduate School of Biotechnology, IPB University, Bogor 16680, Indonesia
- Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
30
|
Shahriar A, Rob Siddiquee MF, Ahmed H, Mahmud AR, Ahmed T, Mahmud MR, Acharjee M. Catheter-associated urinary tract infections: Etiological analysis, biofilm formation, antibiotic resistance, and a novel therapeutic era of phage. INTERNATIONAL JOURNAL OF ONE HEALTH 2022. [DOI: 10.14202/ijoh.2022.86-100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Urinary tract infection (UTI) caused by uropathogens has put global public health at its utmost risk, especially in developing countries where people are unaware of personal hygiene and proper medication. In general, the infection frequently occurs in the urethra, bladder, and kidney, as reported by the physician. Moreover, many UTI patients whose acquired disorder from the hospital or health-care center has been addressed previously have been referred to as catheter-associated UTI (CAUTI). Meanwhile, the bacterial biofilm triggering UTI is another critical issue, mostly by catheter insertion. In most cases, the biofilm inhibits the action of antibiotics against the UTI-causing bacteria. Therefore, new therapeutic tools should be implemented to eliminate the widespread multidrug resistance (MDR) UTI-causing bacteria. Based on the facts, the present review emphasized the current status of CAUTI, its causative agent, clinical manifestation, and treatment complications. This review also delineated a model of phage therapy as a new therapeutic means against bacterial biofilm-originated UTI. The model illustrated the entire mechanism of destroying the extracellular plyometric substances of UTI-causing bacteria with several enzymatic actions produced by phage particles. This review will provide a complete outline of CAUTI for the general reader and create a positive vibe for the researchers to sort out alternative remedies against the CAUTI-causing MDR microbial agents.
Collapse
Affiliation(s)
- Asif Shahriar
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| | | | - Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka 1208, Bangladesh
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
| | - Tasnia Ahmed
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| | - Md. Rayhan Mahmud
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| | - Mrityunjoy Acharjee
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
31
|
Brigmon MM, Brigmon RL. Infectious Diseases Impact on Biomedical Devices and Materials. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2022; 1:1-8. [PMID: 38625309 PMCID: PMC9616421 DOI: 10.1007/s44174-022-00035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022]
Abstract
Infectious diseases and nosocomial infections may play a significant role in healthcare issues associated with biomedical materials and devices. Many current polymer materials employed are inadequate for resisting microbial growth. The increase in microbial antibiotic resistance is also a factor in problematic biomedical implants. In this work, the difficulty in diagnosing biomedical device-related infections is reviewed and how this leads to an increase in microbial antibiotic resistance. A conceptualization of device-related infection pathogenesis and current and future treatments is made. Within this conceptualization, we focus specifically on biofilm formation and the role of host immune and antimicrobial therapies. Using this framework, we describe how current and developing preventative strategies target infectious disease. In light of the significant increase in antimicrobial resistance, we also emphasize the need for parallel development of improved treatment strategies. We also review potential production methods for manufacturing specific nanostructured materials with antimicrobial functionality for implantable devices. Specific examples of both preventative and novel treatments and how they align with the improved care with biomedical devices are described.
Collapse
Affiliation(s)
- Matthew M. Brigmon
- Department of Infectious Diseases and Pulmonary Critical Care, Long School of Medicine, UT Health San Antonio, San Antonio, USA
| | - Robin L. Brigmon
- Savannah River National Laboratory, Bldg 999W, Aiken, SC 29808 USA
| |
Collapse
|
32
|
Mirzaei A, Wagemans J, Nasr Esfahani B, Lavigne R, Moghim S. A Phage Cocktail To Control Surface Colonization by Proteus mirabilis in Catheter-Associated Urinary Tract Infections. Microbiol Spectr 2022; 10:e0209222. [PMID: 36194151 PMCID: PMC9602741 DOI: 10.1128/spectrum.02092-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/02/2022] [Indexed: 12/31/2022] Open
Abstract
Proteus mirabilis is a biofilm-forming bacterium and one of the most common causes of catheter-associated urinary tract infections (CAUTIs). The rapid spread of multidrug-resistant P. mirabilis represents a severe threat to management of nosocomial infections. This study aimed to isolate a potent phage cocktail and assess its potential to control urinary tract infections caused by biofilm-forming P. mirabilis. Two lytic phages, Isf-Pm1 and Isf-Pm2, were isolated and characterized by proteome analysis, transmission electron microscopy, and whole-genome sequencing. The host range and effect of the phage cocktail to reduce the biofilm formation were assessed by a cell adhesion assay in Vero cells and a phantom bladder model. The samples treated with the phage cocktail showed a significant reduction (65%) in the biofilm mass. Anti-quorum sensing and quantitative real-time PCR assays were also used to assess the amounts of transcription of genes involved in quorum sensing and biofilm formation. Furthermore, the phage-treated samples showed a downregulation of genes involved in the biofilm formation. In conclusion, these results highlight the efficacy of two isolated phages to control the biofilms produced by P. mirabilis CAUTIs. IMPORTANCE The rapid spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) bacterial strains and biofilm formation of bacteria have severely restricted the use of antibiotics and become a challenging issue in hospitals. Therefore, there is a necessity for alternative or complementary treatment measures, such as the use of virulent bacteriophages (phages), as effective therapeutic strategies.
Collapse
Affiliation(s)
- Arezoo Mirzaei
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Bahram Nasr Esfahani
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Sharareh Moghim
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
33
|
El-Atrees DM, El-Kased RF, Abbas AM, Yassien MA. Characterization and anti-biofilm activity of bacteriophages against urinary tract Enterococcus faecalis isolates. Sci Rep 2022; 12:13048. [PMID: 35906280 PMCID: PMC9336127 DOI: 10.1038/s41598-022-17275-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/22/2022] [Indexed: 11/21/2022] Open
Abstract
Strong biofilm-forming Enterococcus feacalis urinary tract pathogens (n = 35) were used to determine the lytic spectrum of six bacteriophages isolated from sewage samples. Only 17 Enterococcus feacalis isolates gave lytic zones with the tested bacteriophages from which five isolates were susceptible to all of them. The isolated enterococcal phages are characterized by wide range of thermal (30–90 °C) and pH (3–10) stability. They belong to order Caudovirales, from which four bacteriophages (EPA, EPB, EPD, EPF) belong to family Myoviridae and two (EPC, EPE) belong to family Siphoviridae. In addition, they have promising antibiofilm activity against the tested strong-forming biofilm E. faecalis isolates. The enterococcal phages reduced the formed and preformed biofilms to a range of 38.02–45.7% and 71.0–80.0%, respectively, as compared to the control. The same promising activities were obtained on studying the anti-adherent effect of the tested bacteriophages on the adherence of bacterial cells to the surface of urinary catheter segments. They reduced the number of adherent cells to a range of 30.8–43.8% and eradicated the pre-adherent cells to a range of 48.2–71.1%, as compared to the control. Overall, the obtained promising antibiofilm activity makes these phages good candidates for application in preventing and treating biofilm associated Enterococcus faecalis infections.
Collapse
Affiliation(s)
- Doaa M El-Atrees
- Department of Microbiology, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, 11837, Cairo, Egypt
| | - Reham F El-Kased
- Department of Microbiology, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, 11837, Cairo, Egypt
| | - Ahmad M Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbasia, Cairo, 11566, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, King Salman International University, Sinai, Egypt
| | - Mahmoud A Yassien
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbasia, Cairo, 11566, Egypt.
| |
Collapse
|
34
|
Tian L, Jackson K, Zhang A, Wan Z, Saif A, Hosseinidoust Z. Bacteriophage‐Built Gels as Platforms for Biomedical Applications. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lei Tian
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| | - Kyle Jackson
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| | - Amy Zhang
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| | - Zeqi Wan
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| | - Ahmed Saif
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| | - Zeinab Hosseinidoust
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
- School of Biomedical Engineering McMaster University Hamilton Ontario Canada
- Michael DeGroote Institute for Infectious Disease Research McMaster University Hamilton Ontario Canada
| |
Collapse
|
35
|
Nordstrom HR, Evans DR, Finney AG, Westbrook KJ, Zamora PF, Hofstaedter CE, Yassin MH, Pradhan A, Iovleva A, Ernst RK, Bomberger JM, Shields RK, Doi Y, Van Tyne D. Genomic characterization of lytic bacteriophages targeting genetically diverse Pseudomonas aeruginosa clinical isolates. iScience 2022; 25:104372. [PMID: 35620437 PMCID: PMC9127202 DOI: 10.1016/j.isci.2022.104372] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/11/2022] [Accepted: 05/04/2022] [Indexed: 01/21/2023] Open
Abstract
Pseudomonas aeruginosa infections can be difficult to treat and new therapeutics are needed. Bacteriophage therapy is a promising alternative to traditional antibiotics, but large numbers of isolated and characterized phages are lacking. We collected 23 diverse P. aeruginosa isolates from people with cystic fibrosis (CF) and clinical infections, and used them to screen and isolate over a dozen P. aeruginosa-targeting phages from hospital wastewater. Phages were characterized with genome sequencing, comparative genomics, and lytic activity screening against all 23 bacterial host isolates. We evolved bacterial mutants that were resistant to phage infection for four different phages, and used genome sequencing and functional analysis to study them further. We also tested phages for their ability to kill P. aeruginosa grown in biofilms in vitro and ex vivo on CF airway epithelial cells. Overall, this study demonstrates how systematic genomic and phenotypic characterization can be deployed to develop bacteriophages as precision antibiotics.
Collapse
Affiliation(s)
- Hayley R. Nordstrom
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Daniel R. Evans
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Amanda G. Finney
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Kevin J. Westbrook
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Paula F. Zamora
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Casey E. Hofstaedter
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland 21201, USA
| | - Mohamed H. Yassin
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Akansha Pradhan
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Alina Iovleva
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland 21201, USA
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Ryan K. Shields
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
- Corresponding author
| |
Collapse
|
36
|
Sanchez BC, Heckmann ER, Green SI, Clark JR, Kaplan HB, Ramig RF, Muldrew KL, Hines-Munson C, Skelton F, Trautner BW, Maresso AW. Development of Phage Cocktails to Treat E. coli Catheter-Associated Urinary Tract Infection and Associated Biofilms. Front Microbiol 2022; 13:796132. [PMID: 35620093 PMCID: PMC9127763 DOI: 10.3389/fmicb.2022.796132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
High rates of antimicrobial resistance and formation of biofilms makes treatment of Escherichia coli catheter-associated urinary tract infections (CAUTI) particularly challenging. CAUTI affect 1 million patients per year in the United States and are associated with morbidity and mortality, particularly as an etiology for sepsis. Phage have been proposed as a potential therapeutic option. Here, we report the development of phage cocktails that lyse contemporary E. coli strains isolated from the urine of patients with spinal cord injury (SCI) and display strong biofilm-forming properties. We characterized E. coli phage against biofilms in two in vitro CAUTI models. Biofilm viability was measured by an MTT assay that determines cell metabolic activity and by quantification of colony forming units. Nine phage decreased cell viability by >80% when added individually to biofilms of two E. coli strains in human urine. A phage cocktail comprising six phage lyses 82% of the strains in our E. coli library and is highly effective against young and old biofilms and against biofilms on silicon catheter materials. Using antibiotics together with our phage cocktail prevented or decreased emergence of E. coli resistant to phage in human urine. We created an anti-biofilm phage cocktail with broad host range against E. coli strains isolated from urine. These phage cocktails may have therapeutic potential against CAUTI.
Collapse
Affiliation(s)
- Belkys C. Sanchez
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Emmaline R. Heckmann
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Sabrina I. Green
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Justin R. Clark
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Heidi B. Kaplan
- Department of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth Houston, Houston, TX, United States
| | - Robert F. Ramig
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Kenneth L. Muldrew
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States,Pathology and Laboratory Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States,Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Casey Hines-Munson
- Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Felicia Skelton
- Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey VA Medical Center, Houston, TX, United States,H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States
| | - Barbara W. Trautner
- Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey VA Medical Center, Houston, TX, United States,Department of Medicine and Surgery, Baylor College of Medicine, Houston, TX, United States,Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Anthony W. Maresso
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States,*Correspondence: Anthony W. Maresso,
| |
Collapse
|
37
|
León-Buitimea A, Balderas-Cisneros FDJ, Garza-Cárdenas CR, Garza-Cervantes JA, Morones-Ramírez JR. Synthetic Biology Tools for Engineering Microbial Cells to Fight Superbugs. Front Bioeng Biotechnol 2022; 10:869206. [PMID: 35600895 PMCID: PMC9114757 DOI: 10.3389/fbioe.2022.869206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022] Open
Abstract
With the increase in clinical cases of bacterial infections with multiple antibiotic resistance, the world has entered a health crisis. Overuse, inappropriate prescribing, and lack of innovation of antibiotics have contributed to the surge of microorganisms that can overcome traditional antimicrobial treatments. In 2017, the World Health Organization published a list of pathogenic bacteria, including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli (ESKAPE). These bacteria can adapt to multiple antibiotics and transfer their resistance to other organisms; therefore, studies to find new therapeutic strategies are needed. One of these strategies is synthetic biology geared toward developing new antimicrobial therapies. Synthetic biology is founded on a solid and well-established theoretical framework that provides tools for conceptualizing, designing, and constructing synthetic biological systems. Recent developments in synthetic biology provide tools for engineering synthetic control systems in microbial cells. Applying protein engineering, DNA synthesis, and in silico design allows building metabolic pathways and biological circuits to control cellular behavior. Thus, synthetic biology advances have permitted the construction of communication systems between microorganisms where exogenous molecules can control specific population behaviors, induce intracellular signaling, and establish co-dependent networks of microorganisms.
Collapse
Affiliation(s)
- Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Francisco de Jesús Balderas-Cisneros
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - César Rodolfo Garza-Cárdenas
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Javier Alberto Garza-Cervantes
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - José Rubén Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
- *Correspondence: José Rubén Morones-Ramírez,
| |
Collapse
|
38
|
Development of Silver-Containing Hydroxyapatite-Coated Antimicrobial Implants for Orthopaedic and Spinal Surgery. Medicina (B Aires) 2022; 58:medicina58040519. [PMID: 35454358 PMCID: PMC9029955 DOI: 10.3390/medicina58040519] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
The prevention of surgical site infections is directly related to the minimization of surgical invasiveness, and is in line with the concept of minimally invasive spine therapy (MIST). In recent years, the incidence of postoperative infections has been increasing due to the increased use of spinal implant surgery in patients at high risk of infection, including the elderly and easily infected hosts, the limitations of poor bone marrow transfer of antibiotics, and the potential for contamination of surgical gloves and instruments. Thus, the development of antimicrobial implants in orthopedic and spinal surgery is becoming more and more popular, and implants with proven antimicrobial, safety, and osteoconductive properties (i.e., silver, iodine, antibiotics) in vitro, in vivo, and in clinical trials have become available for clinical use. We have developed silver-containing hydroxyapatite (Ag-HA)-coated implants to prevent post-operative infection, and increase bone fusion capacity, and have successfully commercialized antibacterial implants for hip prostheses and spinal interbody cages. This narrative review overviews the present status of available surface coating technologies and materials; describes how the antimicrobial, safety, and biocompatibility (osteoconductivity) of Ag-HA-coated implants have been demonstrated for commercialization; and reviews the clinical use of antimicrobial implants in orthopedic and spinal surgery, including Ag-HA-coated implants that we have developed.
Collapse
|
39
|
Wang W, Li Y, Tang K, Lin J, Gao X, Guo Y, Wang X. Filamentous Prophage Capsid Proteins Contribute to Superinfection Exclusion and Phage Defense in Pseudomonas aeruginosa. Environ Microbiol 2022; 24:4285-4298. [PMID: 35384225 DOI: 10.1111/1462-2920.15991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
Abstract
Filamentous prophages in Pseudomonas aeruginosa PAO1 are converted to superinfective phage virions during biofilm development. Superinfection exclusion is necessary for the development of resistance against superinfective phage virions in host cells. However, the molecular mechanisms underlying the exclusion of superinfective Pf phages are unknown. In this study, we found that filamentous prophage-encoded structural proteins allow exclusion of superinfective Pf phages by interfering with type IV pilus (T4P) function. Specifically, the phage minor capsid protein pVII inhibits Pf phage adsorption by interacting with PilC and PilJ of T4P, and overproduction of pVII completely abrogates twitching motility. The minor capsid protein pIII provides partial superinfection exclusion and interacts with the PilJ and TolR/TolA proteins. Furthermore, pVII provides full host protection against infection by pilus-dependent lytic phages, and pIII provides partial protection against infection by pilus-independent lytic phages. Considering that filamentous prophages are common in clinical Pseudomonas isolates and their induction is often activated during biofilm formation, this study suggests the need to rethink the strategy of using lytic phages to treat P. aeruginosa biofilm-related infections. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangmei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianzhong Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyu Gao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
40
|
Singh A, Padmesh S, Dwivedi M, Kostova I. How Good are Bacteriophages as an Alternative Therapy to Mitigate Biofilms of Nosocomial Infections. Infect Drug Resist 2022; 15:503-532. [PMID: 35210792 PMCID: PMC8860455 DOI: 10.2147/idr.s348700] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Bacteria survive on any surface through the generation of biofilms that provide a protective environment to grow as well as making them drug resistant. Extracellular polymeric matrix is a crucial component in biofilm formation. The presence of biofilms consisting of common opportunistic and nosocomial, drug-resistant pathogens has been reported on medical devices like catheters and prosthetics, leading to many complications. Several approaches are under investigation to combat drug-resistant bacteria. Deployment of bacteriophages is one of the promising approaches to invade biofilm that may expose bacteria to the conditions adverse for their growth. Penetration into these biofilms and their destruction by bacteriophages is brought about due to their small size and ability of their progeny to diffuse through the bacterial cell wall. The other mechanisms employed by phages to infect biofilms may include their relocation through water channels to embedded host cells, replication at local sites followed by infection to the neighboring cells and production of depolymerizing enzymes to decompose viscous biofilm matrix, etc. Various research groups are investigating intricacies involved in phage therapy to mitigate the bacterial infection and biofilm formation. Thus, bacteriophages represent a good control over different biofilms and further understanding of phage-biofilm interaction at molecular level may overcome the clinical challenges in phage therapy. The present review summarizes the comprehensive details on dynamic interaction of phages with bacterial biofilms and the role of phage-derived enzymes - endolysin and depolymerases in extenuating biofilms of clinical and medical concern. The methodology employed was an extensive literature search, using several keywords in important scientific databases, such as Scopus, Web of Science, PubMed, ScienceDirect, etc. The keywords were also used with Boolean operator "And". More than 250 relevant and recent articles were selected and reviewed to discuss the evidence-based data on the application of phage therapy with recent updates, and related potential challenges.
Collapse
Affiliation(s)
- Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Sudhakar Padmesh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University, Sofia, 1000, Bulgaria
| |
Collapse
|
41
|
Phenotypic and Molecular Characterization of Nonfermenting Gram-Negative Bacilli Causing Peritonitis in Peritoneal Dialysis Patients. Pathogens 2022; 11:pathogens11020218. [PMID: 35215161 PMCID: PMC8879723 DOI: 10.3390/pathogens11020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/23/2022] Open
Abstract
(1) Background: Peritonitis due to nonfermenting Gram-negative bacilli (NF-GNB) is a dramatic complication of peritoneal dialysis (PD) with bad outcomes. Previous studies of PD-related peritonitis due to Pseudomonas species have shown a low-resolution rate, without a high resistance rate to antipseudomonal antibiotics. This suggests that bacterial virulence factors can act and influence peritonitis evolution. This study aimed to describe the microbiological characteristics of NF-GNB causing PD-related peritonitis and analyze their influence on the outcome. (2) Methods: We analyze the 48 isolates from NF-GNB peritonitis, which were stored in our culture collection regarding bacterial resistance, biofilm, and other virulence factors’ production, and clonal profile. Additionally, we collected data on treatment and outcomes from patients’ clinical registers. (3) Results: The etiologies were species of Pseudomonas (50%), Acinetobacter (36%), and other NF-GNB (14%). There was a high (75%) proportion of biofilm producer lineages. The in vitro susceptibility rate of Pseudomonas spp. to amikacin, ciprofloxacin, and ceftazidime was significantly greater than that of Acinetobacter spp. and other species; however, there was a similar low-resolution rate (<45%) among the episodes attributable to them. Pseudomonas species have a polyclonal profile, while we found a clone of five multiresistant Acinetobacter baumannii over an 8-year interval (2000–2008), which suggest an origin from the healthcare environment. (4) Conclusions: We are not able to identify any predictor of outcome, but it is possible that biofilm and others virulence factors can act in concert and contribute to the bad outcome.
Collapse
|
42
|
Yue H, Li Y, Yang M, Mao C. T7 Phage as an Emerging Nanobiomaterial with Genetically Tunable Target Specificity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103645. [PMID: 34914854 PMCID: PMC8811829 DOI: 10.1002/advs.202103645] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Indexed: 05/05/2023]
Abstract
Bacteriophages, also known as phages, are specific antagonists against bacteria. T7 phage has drawn massive attention in precision medicine owing to its distinctive advantages, such as short replication cycle, ease in displaying peptides and proteins, high stability and cloning efficiency, facile manipulation, and convenient storage. By introducing foreign gene into phage DNA, T7 phage can present foreign peptides or proteins site-specifically on its capsid, enabling it to become a nanoparticle that can be genetically engineered to screen and display a peptide or protein capable of recognizing a specific target with high affinity. This review critically introduces the biomedical use of T7 phage, ranging from the detection of serological biomarkers and bacterial pathogens, recognition of cells or tissues with high affinity, design of gene vectors or vaccines, to targeted therapy of different challenging diseases (e.g., bacterial infection, cancer, neurodegenerative disease, inflammatory disease, and foot-mouth disease). It also discusses perspectives and challenges in exploring T7 phage, including the understanding of its interactions with human body, assembly into scaffolds for tissue regeneration, integration with genome editing, and theranostic use in clinics. As a genetically modifiable biological nanoparticle, T7 phage holds promise as biomedical imaging probes, therapeutic agents, drug and gene carriers, and detection tools.
Collapse
Affiliation(s)
- Hui Yue
- School of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Yan Li
- Institute of Applied Bioresource ResearchCollege of Animal ScienceZhejiang UniversityYuhangtang Road 866HangzhouZhejiang310058P. R. China
| | - Mingying Yang
- Institute of Applied Bioresource ResearchCollege of Animal ScienceZhejiang UniversityYuhangtang Road 866HangzhouZhejiang310058P. R. China
| | - Chuanbin Mao
- School of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
- Department of Chemistry and BiochemistryStephenson Life Science Research CenterInstitute for Biomedical Engineering, Science and TechnologyUniversity of Oklahoma101 Stephenson ParkwayNormanOklahoma73019‐5251USA
| |
Collapse
|
43
|
Comparative Assessment of Bacteriophage and Antibiotic Activity against Multidrug-Resistant Staphylococcus aureus Biofilms. Int J Mol Sci 2022; 23:ijms23031274. [PMID: 35163197 PMCID: PMC8836238 DOI: 10.3390/ijms23031274] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Problems connected with biofilm-related infections and antibiotic resistance necessitate the investigation and development of novel treatment strategies. Given their unique characteristics, one of the most promising alternatives to conventional antibiotics are bacteriophages. In the in vitro and in vivo larva model study, we demonstrate that phages vB_SauM-A, vB_SauM-C, and vB_SauM-D are effective antibiofilm agents. The exposure of biofilm to phages vB_SauM-A and vB_SauM-D led to 2-3 log reductions in the colony-forming unit number in most of the multidrug-resistant S. aureus strains. It was found that phage application reduced the formed biofilms independently of the used titer. Moreover, the study demonstrated that bacteriophages are more efficient in biofilm biomass removal and reduction in staphylococci count when compared to the antibiotics used. The scanning electron microscopy analysis results are in line with colony forming unit (CFU) counting but not entirely consistent with crystal violet (CV) staining. Additionally, phages vB_SauM-A, vB_SauM-C, and vB_SauM-D can significantly increase the survival rate and extend the survival time of Galleria mellonella larvae.
Collapse
|
44
|
Khullar L, Harjai K, Chhibber S. Exploring the therapeutic potential of staphylococcal phage formulations: Current challenges and applications in phage therapy. J Appl Microbiol 2022; 132:3515-3532. [DOI: 10.1111/jam.15462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Lavanya Khullar
- Department of Microbiology Panjab University Chandigarh India
| | - Kusum Harjai
- Department of Microbiology Panjab University Chandigarh India
| | - Sanjay Chhibber
- Department of Microbiology Panjab University Chandigarh India
| |
Collapse
|
45
|
Marashi SMA, Nikkhahi F, Hamedi D, Shahbazi G. Isolation, Characterization and in vitro Evaluation of Specific Bacteriophages Targeting Extensive Drug Resistance Strains of Pseudomonas aeruginosa Isolated from Septic Burn Wounds. Infect Chemother 2022; 54:153-164. [PMID: 35384426 PMCID: PMC8987173 DOI: 10.3947/ic.2021.0132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/16/2022] [Indexed: 11/24/2022] Open
Abstract
Background Antibiotic resistant bacteria and various infections caused by them especially extensive drug resistance (XDR) strains and worrying statistics of mortality due to these strains and also the lack of a clear vision for development and production of new effective antibiotics have made the necessity of using alternative therapies more apparent. Materials and Methods In this study, specific phages affecting the Pseudomonas aeruginosa XDR strain were extracted from hospital wastewater and their laboratory characteristics along with lysis effect on 40 XDR strains of P. aeruginosa were investigated. Results The results indicated that three isolated phages (PaB1, PaBa2 and PaBa3) belonged to the Myoviridae and Pododoviridae families and were specific to Pseudomonas aeruginosa strains. More than 98% of phages absorbed their host in less than 10 minutes (Adsorption time <10 min) and completed their lytic cycle after 40 minutes (latent time = 40 min). Burst size of PaBa1, PaBa2 and PaBa3 was 240, 250 and 220 pfu/cell, respectively. PaBa1 lysed 62.5% of the XDR strains with the highest efficiency. The three Phage cocktail was effective against 67.5% of the studied strains. Conclusion The results of this study indicate the significant potential of these phages for therapeutic use and prophylaxis of infections caused by this bacterium.
Collapse
Affiliation(s)
| | - Farhad Nikkhahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Dariush Hamedi
- Department of Molecular Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Gholamhassan Shahbazi
- Department of Microbiology and Immunology, Qazvin University of Medical Sciences, Qazvin, Iran
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
46
|
Kalelkar PP, Riddick M, García AJ. Biomaterial-based delivery of antimicrobial therapies for the treatment of bacterial infections. NATURE REVIEWS. MATERIALS 2022; 7:39-54. [PMID: 35330939 PMCID: PMC8938918 DOI: 10.1038/s41578-021-00362-4] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
UNLABELLED The rise in antibiotic-resistant bacteria, including strains that are resistant to last-resort antibiotics, and the limited ability of antibiotics to eradicate biofilms, have necessitated the development of alternative antibacterial therapeutics. Antibacterial biomaterials, such as polycationic polymers, and biomaterial-assisted delivery of non-antibiotic therapeutics, such as bacteriophages, antimicrobial peptides and antimicrobial enzymes, have improved our ability to treat antibiotic-resistant and recurring infections. Biomaterials not only allow targeted delivery of multiple agents, but also sustained release at the infection site, thereby reducing potential systemic adverse effects. In this Review, we discuss biomaterial-based non-antibiotic antibacterial therapies for the treatment of community- and hospital-acquired infectious diseases, with a focus in in vivo results. We highlight the translational potential of different biomaterial-based strategies, and provide a perspective on the challenges associated with their clinical translation. Finally, we discuss the future scope of biomaterial-assisted antibacterial therapies. WEB SUMMARY The development of antibiotic tolerance and resistance has demanded the search for alternative antibacterial therapies. This Review discusses antibacterial biomaterials and biomaterial-assisted delivery of non-antibiotic therapeutics for the treatment of bacterial infectious diseases, with a focus on clinical translation.
Collapse
Affiliation(s)
- Pranav P. Kalelkar
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Milan Riddick
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Andrés J. García
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- author to whom correspondence should be addressed:
| |
Collapse
|
47
|
Abstract
The Pseudomonas aeruginosa is one of the bacteria that cause serious infections due to resistance to many antibiotics can be fatal in severe cases. Antimicrobial resistance is a global public health concern. To solve this problem, interest in phage therapy has revived; some studies are being developed to try to prove the effectiveness of this therapy. Thus, in this opinion article, several historical aspects are addressed as well some applications of phage therapy against P. aeruginosa.
Collapse
|
48
|
Wang X, Xie Z, Zhao J, Zhu Z, Yang C, Liu Y. Prospects of Inhaled Phage Therapy for Combatting Pulmonary Infections. Front Cell Infect Microbiol 2021; 11:758392. [PMID: 34938668 PMCID: PMC8685529 DOI: 10.3389/fcimb.2021.758392] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
With respiratory infections accounting for significant morbidity and mortality, the issue of antibiotic resistance has added to the gravity of the situation. Treatment of pulmonary infections (bacterial pneumonia, cystic fibrosis-associated bacterial infections, tuberculosis) is more challenging with the involvement of multi-drug resistant bacterial strains, which act as etiological agents. Furthermore, with the dearth of new antibiotics available and old antibiotics losing efficacy, it is prudent to switch to non-antibiotic approaches to fight this battle. Phage therapy represents one such approach that has proven effective against a range of bacterial pathogens including drug resistant strains. Inhaled phage therapy encompasses the use of stable phage preparations given via aerosol delivery. This therapy can be used as an adjunct treatment option in both prophylactic and therapeutic modes. In the present review, we first highlight the role and action of phages against pulmonary pathogens, followed by delineating the different methods of delivery of inhaled phage therapy with evidence of success. The review aims to focus on recent advances and developments in improving the final success and outcome of pulmonary phage therapy. It details the use of electrospray for targeted delivery, advances in nebulization techniques, individualized controlled inhalation with software control, and liposome-encapsulated nebulized phages to take pulmonary phage delivery to the next level. The review expands knowledge on the pulmonary delivery of phages and the advances that have been made for improved outcomes in the treatment of respiratory infections.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Zuozhou Xie
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Jinhong Zhao
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Zhenghua Zhu
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Chen Yang
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Yi Liu
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| |
Collapse
|
49
|
Nair A, Vyawahare R, Khairnar K. Characterization of a novel, biofilm dispersing, lytic bacteriophage against drug-resistant Enterobacter cloacae. J Appl Microbiol 2021; 132:2721-2732. [PMID: 34927785 DOI: 10.1111/jam.15420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/26/2021] [Accepted: 12/16/2021] [Indexed: 11/28/2022]
Abstract
AIM To characterize a novel bacteriophage, En5822, isolated from the environment against Enterobacter cloacae and exploring its application as an alternate antimicrobial. METHODS AND RESULTS Bacteriophage was isolated from sewage sample by membrane-filtration immobilization technique. It was purified and studied for its various physical properties like microscopic structure, thermal and pH stability, latent period and burst time, antimicrobial and anti-biofilm activity as well as molecular aspects by genome sequencing and analysis. En5822 is a myovirus with relative pH and thermal stability. En5822 shows a notable reduction of host bacterial biofilm as well as planktonic cultures. Whole genome sequence analysis revealed that the En5822 genome does not contain undesirable temperate lifestyle genes, antibiotic resistance genes and toxin-encoding genes. CONCLUSIONS En5822 displays high lytic activity, specificity and biofilm reduction capability. It has a short latent period and high burst size that aid faster activity. Its genomic and physical attributes offer possibilities for its as an alternative antimicrobial for the treatment of drug-resistant E. cloacae infections. SIGNIFICANCE AND IMPACT OF STUDY The study describes a novel, naturally virulent bacteriophage from environment capable of lysing multi-drug resistant E. cloacae effectively. The phage could potentially serve as an alternative strategy for treating antibiotic-resistant infections.
Collapse
Affiliation(s)
- Aparna Nair
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Renuka Vyawahare
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Krishna Khairnar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
50
|
Wang A, Weldrick PJ, Madden LA, Paunov VN. Enhanced clearing of Candida biofilms on a 3D urothelial cell in vitro model using lysozyme-functionalized fluconazole-loaded shellac nanoparticles. Biomater Sci 2021; 9:6927-6939. [PMID: 34528638 DOI: 10.1039/d1bm01035b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Candida urinary tract biofilms are increasingly witnessed in nosocomial infections due to reduced immunity of patients and the hospital ecosystem. The indwelling devices utilized to support patients with urethral diseases that connect the unsterilized external environment with the internal environment of the patient are another significant source of urinary tract biofilm infections. Recently, nanoparticle (NP)-associated therapeutics have gained traction in a number of areas, including fighting antibiotic-resistant bacterial biofilm infection. However, most studies on nanotherapeutic delivery have only been carried out in laboratory settings rather than in clinical trials due to the lack of precise in vitro and in vivo models for testing their efficiency. Here we develop a novel biofilm-infected 3D human urothelial cell culture model to test the efficiency of nanoparticle (NP)-based antifungal therapeutics. The NPs were designed based on shellac cores, loaded with fluconazole and coated with the cationic enzyme lysozyme. Our formulation of 0.2 wt% lysozyme-coated 0.02 wt% fluconazole-loaded 0.2 wt% shellac NPs, sterically stabilised by 0.25 wt% poloxamer 407, showed an enhanced efficiency in removing Candida albicans biofilms formed on 3D layer of urothelial cell clusteroids. The NP formulation exhibited low toxicity to urothelial cells. This study provides a reliable in vitro model for Candida urinary tract biofilm infections, which could potentially replace animal models in the testing of such antifungal nanotechnologies. The reproducibility and availability of a well-defined biofilm-infected 3D urothelial cell culture model give valuable insights into the formation and clearing of fungal biofilms and could accelerate the clinical use of antifungal nanotherapeutics.
Collapse
Affiliation(s)
- Anheng Wang
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU67RX, UK
| | - Paul J Weldrick
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU67RX, UK
| | - Leigh A Madden
- Department of Biomedical Sciences, University of Hull, Hull, HU67RX, UK
| | - Vesselin N Paunov
- Department of Chemistry, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| |
Collapse
|