1
|
Zhang Y, Han S, Li Y, Zhou Y, Sun M, Hu M, Zhou C, Lin L, Lan J, Lu X, Zhang Q, Liu L, Jin J. Manganese inhibits HBV transcription and promotes HBsAg degradation at non-toxic levels. Int J Biol Macromol 2024; 280:135764. [PMID: 39299429 DOI: 10.1016/j.ijbiomac.2024.135764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/24/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Chronic hepatitis B virus (HBV) infection continues to pose a significant global health challenge. However, therapeutic measures for a cure are lacking in clinical practice. Manganese, an essential trace element, has garnered attention due to its potential to activate innate immune pathways and its significant role in antiviral and antitumor immunity. Yet, the specific impact of manganese on chronic hepatitis B has been largely unexplored. Our research reveals that manganese substantially inhibits HBV replication in hepatocellular carcinoma cells at non-toxic levels. This suppression occurs independently of well-known anti-HBV innate immune pathways, such as the cGAS-STING pathway. Mechanistically, manganese decreases HBV transcription by diminishing the levels of liver-specific transcription factors. Furthermore, it activates the mTOR pathway, enhancing HBsAg ubiquitination through the upregulation of the ubiquitin ligase β-TrCP and increasing proteasome activity via the augmentation of its subunits, leading to a ubiquitin-dependent degradation of HBsAg. Significantly, our study also uncovers a notable clinical correlation between manganese levels and chronic hepatitis B infection. These findings position manganese as a critical element in diminishing HBV replication, offering a new direction in the management of chronic hepatitis B.
Collapse
Affiliation(s)
- Yong Zhang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China.
| | - Shaowei Han
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Yuanyuan Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Yuting Zhou
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; School of Pharmacy, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Mengdan Sun
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Mingna Hu
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; School of Pharmacy, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Chengcai Zhou
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Lu Lin
- Clinical Medical College, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Jianfeng Lan
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Xing Lu
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Qinqin Zhang
- Department of Thyroid and Breast Surgery, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin 541002, Guangxi, China
| | - Lingyun Liu
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Department of Hepatobiliary and Pancreatic Surgery, Laboratory of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Junfei Jin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China.
| |
Collapse
|
2
|
Zhang X, Yang Z, Fu C, Yao R, Li H, Peng F, Li N. Emerging roles of liquid-liquid phase separation in liver innate immunity. Cell Commun Signal 2024; 22:430. [PMID: 39227829 PMCID: PMC11373118 DOI: 10.1186/s12964-024-01787-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/11/2024] [Indexed: 09/05/2024] Open
Abstract
Biomolecular condensates formed by liquid-liquid phase separation (LLPS) have become an extensive mechanism of macromolecular metabolism and biochemical reactions in cells. Large molecules like proteins and nucleic acids will spontaneously aggregate and assemble into droplet-like structures driven by LLPS when the physical and chemical properties of cells are altered. LLPS provides a mature molecular platform for innate immune response, which tightly regulates key signaling in liver immune response spatially and physically, including DNA and RNA sensing pathways, inflammasome activation, and autophagy. Take this, LLPS plays a promoting or protecting role in a range of liver diseases, such as viral hepatitis, non-alcoholic fatty liver disease, liver fibrosis, hepatic ischemia-reperfusion injury, autoimmune liver disease, and liver cancer. This review systematically describes the whole landscape of LLPS in liver innate immunity. It will help us to guide a better-personalized approach to LLPS-targeted immunotherapy for liver diseases.
Collapse
Affiliation(s)
- Xinying Zhang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Hunan Province, China
| | - Ziyue Yang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Chunmeng Fu
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Run Yao
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Huan Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Fang Peng
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
3
|
Shrestha B, Yang S, Griffith L, Ma J, Wang F, Liu H, Zhao Q, Du Y, Zhang J, Chang J, Guo JT. Discovery of hepatitis B virus subviral particle biogenesis inhibitors from a bioactive compound library. Antiviral Res 2024; 228:105955. [PMID: 38964614 DOI: 10.1016/j.antiviral.2024.105955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
High levels of hepatitis B virus (HBV) surface antigen (HBsAg) in the blood of chronic HBV carriers are considered to drive the exhaustion of antigen-specific T and B lymphocytes and thus responsible for the persistence of infection. Accordingly, therapeutic elimination of HBsAg may facilitate the activation of adaptive antiviral immune responses against HBV and achieve a functional cure of chronic hepatitis B. We discovered recently that an amphipathic alpha helix spanning W156 to R169 of HBV small envelope (S) protein plays an essential role in the morphogenesis of subviral particles (SVPs) and metabolism of S protein. We thus hypothesized that pharmacological disruption of SVP morphogenesis may induce intracellular degradation of S protein and reduce HBsAg secretion. To identify inhibitors of SVP biogenesis, we screened 4417 bioactive compounds with a HepG2-derived cell line expressing HBV S protein and efficiently secreting small spherical SVPs. The screen identified 24 compounds that reduced intracellular SVPs and secreted HBsAg in a concentration-dependent manner. However, 18 of those compounds inhibited the secretion of HBsAg and HBeAg in HBV replicon transfected HepG2 cells at similar efficiency, suggesting each of those compounds may disrupt a common cellular function required for the synthesis and/or secretion of these viral proteins. Interestingly, lycorine more efficiently inhibited the secretion of HBsAg in HepG2 cells transfected with HBV replicons, HepG2.2.15 cells and HBV infected - HepG2 cells expressing sodium taurocholate cotransporting polypeptide (NTCP). The structure activity relationship and antiviral mechanism of lycorine against HBV have been determined.
Collapse
Affiliation(s)
| | - Sisi Yang
- Baruch S. Blumberg Institute, Doylestown, PA, USA; Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Julia Ma
- Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Fuxuan Wang
- Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Hui Liu
- Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Qiong Zhao
- Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Yanming Du
- Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, PA, USA.
| |
Collapse
|
4
|
Martínez-López MF, Muslin C, Kyriakidis NC. STINGing Defenses: Unmasking the Mechanisms of DNA Oncovirus-Mediated Immune Escape. Viruses 2024; 16:574. [PMID: 38675916 PMCID: PMC11054469 DOI: 10.3390/v16040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
DNA oncoviruses represent an intriguing subject due to their involvement in oncogenesis. These viruses have evolved mechanisms to manipulate the host immune response, facilitating their persistence and actively contributing to carcinogenic processes. This paper describes the complex interactions between DNA oncoviruses and the innate immune system, with a particular emphasis on the cGAS-STING pathway. Exploring these interactions highlights that DNA oncoviruses strategically target and subvert this pathway, exploiting its vulnerabilities for their own survival and proliferation within the host. Understanding these interactions lays the foundation for identifying potential therapeutic interventions. Herein, we sought to contribute to the ongoing efforts in advancing our understanding of the innate immune system in oncoviral pathogenesis.
Collapse
Affiliation(s)
- Mayra F Martínez-López
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de las Américas, Quito 170503, Ecuador;
| | - Claire Muslin
- One Health Research Group, Faculty of Health Sciences, Universidad de las Américas, Quito 170503, Ecuador;
| | - Nikolaos C. Kyriakidis
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de las Américas, Quito 170503, Ecuador;
| |
Collapse
|
5
|
Liu Y, Pu F. Updated roles of cGAS-STING signaling in autoimmune diseases. Front Immunol 2023; 14:1254915. [PMID: 37781360 PMCID: PMC10538533 DOI: 10.3389/fimmu.2023.1254915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Natural immunity, the first line for the body to defense against the invasion of pathogen, serves as the body's perception of the presence of pathogens depends on nucleic acid recognition mechanisms. The cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) signaling pathway is considered an essential pattern recognition and effector pathway in the natural immune system and is mainly responsible for recognizing DNA molecules present in the cytoplasm and activating downstream signaling pathways to generate type I interferons and some other inflammatory factors. STING, a crucial junction protein in the innate immune system, exerts an essential role in host resistance to external pathogen invasion. Also, STING, with the same character of inflammatory molecules, is inseparable from the body's inflammatory response. In particular, when the expression of STING is upregulated or its related signaling pathways are overactivated, the body may develop serious infectious disorders due to the generation of excessive inflammatory responses, non-infectious diseases, and autoimmune diseases. In recent years, accumulating studies indicated that the abnormal activation of the natural immune cGAS-STING signaling pathway modulated by the nucleic acid receptor cGAS closely associated with the development and occurrence of autoimmune diseases (AID). Thereof, to explore an in-depth role of STING and its related signaling pathways in the diseases associated with inflammation may be helpful to provide new avenues for the treatment of these diseases in the clinic. This article reviews the activation process of the cGAS-STING signaling pathways and its related important roles, and therapeutic drugs in AID, aiming to improve our understanding of AID and achieve better diagnosis and treatment of AID.
Collapse
Affiliation(s)
- Ya Liu
- Department of Rheumatology and Immunology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Skin Infection and Immunity, Wuhan No.1 Hospital, Wuhan, Hubei, China
| | - Feifei Pu
- Hubei Key Laboratory of Skin Infection and Immunity, Wuhan No.1 Hospital, Wuhan, Hubei, China
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Laupèze B, Vassilev V, Badur S. A role for immune modulation in achieving functional cure for chronic hepatitis B among current changes in the landscape of new treatments. Expert Rev Gastroenterol Hepatol 2023; 17:1135-1147. [PMID: 37847193 DOI: 10.1080/17474124.2023.2268503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Chronic hepatitis B (CHB) is rarely cured using available treatments. Barriers to cure are: 1) persistence of reservoirs of hepatitis B virus (HBV) replication and antigen production (HBV DNA); 2) high burden of viral antigens that promote T cell exhaustion with T cell dysfunction; 3) CHB-induced impairment of immune responses. AREAS COVERED We discuss options for new therapies that could address one or more of the barriers to functional cure, with particular emphasis on the potential role of immunotherapy. EXPERT OPINION/COMMENTARY Ideally, a sterilizing cure for CHB would translate into finite therapies that result in loss of HBV surface antigen and eradication of HBV DNA. Restoration of a functional adaptive immune response, a key facet of successful CHB treatment, remains elusive. Numerous strategies targeting the high viral DNA and antigen burden and aiming to restore the host immune responses will enter clinical development in coming years. Most patients are likely to require combinations of several drugs, personalized according to virologic and disease characteristics, patient preference, accessibility, and affordability. The management of CHB is a global health priority. Expedited drug development requires collaborations between regulatory agencies, scientists, clinicians, and within the industry to facilitate testing of the best drug combinations.
Collapse
|
7
|
Heat Shock Protein Family A Member 1 Promotes Intracellular Amplification of Hepatitis B Virus Covalently Closed Circular DNA. J Virol 2023; 97:e0126122. [PMID: 36519896 PMCID: PMC9888207 DOI: 10.1128/jvi.01261-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hepatitis B virus (HBV) contains a partially double-stranded relaxed circular DNA (rcDNA) genome that is converted into a covalently closed circular DNA (cccDNA) in the nucleus of the infected hepatocyte by cellular DNA repair machinery. cccDNA associates with nucleosomes to form a minichromosome that transcribes RNA to support the expression of viral proteins and reverse transcriptional replication of viral DNA. In addition to the de novo synthesis from incoming virion rcDNA, cccDNA can also be synthesized from rcDNA in the progeny nucleocapsids within the cytoplasm of infected hepatocytes via the intracellular amplification pathway. In our efforts to identify cellular DNA repair proteins required for cccDNA synthesis using a chemogenetic screen, we found that B02, a small-molecule inhibitor of DNA homologous recombination repair protein RAD51, significantly enhanced the synthesis of cccDNA via the intracellular amplification pathway in human hepatoma cells. Ironically, neither small interfering RNA (siRNA) knockdown of RAD51 expression nor treatment with another structurally distinct RAD51 inhibitor or activator altered cccDNA amplification. Instead, it was found that B02 treatment significantly elevated the levels of multiple heat shock protein mRNA, and siRNA knockdown of HSPA1 expression or treatment with HSPA1 inhibitors significantly attenuated B02 enhancement of cccDNA amplification. Moreover, B02-enhanced cccDNA amplification was efficiently inhibited by compounds that selectively inhibit DNA polymerase α or topoisomerase II, the enzymes required for cccDNA intracellular amplification. Our results thus indicate that B02 treatment induces a heat shock protein-mediated cellular response that positively regulates the conversion of rcDNA into cccDNA via the authentic intracellular amplification pathway. IMPORTANCE Elimination or functional inactivation of cccDNA minichromosomes in HBV-infected hepatocytes is essential for the cure of chronic hepatitis B virus (HBV) infection. However, lack of knowledge of the molecular mechanisms of cccDNA metabolism and regulation hampers the development of antiviral drugs to achieve this therapeutic goal. Our findings reported here imply that enhanced cccDNA amplification may occur under selected pathobiological conditions, such as cellular stress, to subvert the dilution or elimination of cccDNA and maintain the persistence of HBV infection. Therapeutic inhibition of HSPA1-enhanced cccDNA amplification under these pathobiological conditions should facilitate the elimination of cccDNA and cure of chronic hepatitis B.
Collapse
|
8
|
Pan J, Fei CJ, Hu Y, Wu XY, Nie L, Chen J. Current understanding of the cGAS-STING signaling pathway: Structure, regulatory mechanisms, and related diseases. Zool Res 2023; 44:183-218. [PMID: 36579404 PMCID: PMC9841179 DOI: 10.24272/j.issn.2095-8137.2022.464] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The innate immune system protects the host from external pathogens and internal damage in various ways. The cGAS-STING signaling pathway, comprised of cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), and downstream signaling adaptors, plays an essential role in protective immune defense against microbial DNA and internal damaged-associated DNA and is responsible for various immune-related diseases. After binding with DNA, cytosolic cGAS undergoes conformational change and DNA-linked liquid-liquid phase separation to produce 2'3'-cGAMP for the activation of endoplasmic reticulum (ER)-localized STING. However, further studies revealed that cGAS is predominantly expressed in the nucleus and strictly tethered to chromatin to prevent binding with nuclear DNA, and functions differently from cytosolic-localized cGAS. Detailed delineation of this pathway, including its structure, signaling, and regulatory mechanisms, is of great significance to fully understand the diversity of cGAS-STING activation and signaling and will be of benefit for the treatment of inflammatory diseases and cancer. Here, we review recent progress on the above-mentioned perspectives of the cGAS-STING signaling pathway and discuss new avenues for further study.
Collapse
Affiliation(s)
- Jing Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Chen-Jie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Yang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Xiang-Yu Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| |
Collapse
|
9
|
Zeng PH, Yin WJ. The cGAS/STING signaling pathway: a cross-talk of infection, senescence and tumors. Cell Cycle 2023; 22:38-56. [PMID: 35946607 PMCID: PMC9769453 DOI: 10.1080/15384101.2022.2109899] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/28/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
The cGAS/STING signaling pathway is an important part of the cytoplasmic DNA sensor, which can trigger a type I interferon response to microbial infection when pathogenic DNA is detected. However, continuous inhibition of cGAS/STING signaling by viral infection may be an important cause of tumorigenesis. At the same time, recent studies have shown that although the cGAS/STING signaling pathway also plays a core role in anti-tumor immunity and cell senescence, the inflammatory response induced by cGAS/STING signaling will also promote tumorigenesis in different backgrounds. Here, we discuss the role of cGAS/STING in the context of infection, senescence, and tumors, especially with respect to progression, to facilitate a better understanding of the mechanism of the cGAS/STING pathway.
Collapse
Affiliation(s)
- Peng-Hui Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wen-Jun Yin
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
10
|
Pregenomic RNA Launch Hepatitis B Virus Replication System Facilitates the Mechanistic Study of Antiviral Agents and Drug-Resistant Variants on Covalently Closed Circular DNA Synthesis. J Virol 2022; 96:e0115022. [PMID: 36448800 PMCID: PMC9769369 DOI: 10.1128/jvi.01150-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Hepatitis B virus (HBV) replicates its genomic DNA by reverse transcription of an RNA intermediate, termed pregenomic RNA (pgRNA), within nucleocapsid. It had been shown that transfection of in vitro-transcribed pgRNA initiated viral replication in human hepatoma cells. We demonstrated here that viral capsids, single-stranded DNA, relaxed circular DNA (rcDNA) and covalently closed circular DNA (cccDNA) became detectable sequentially at 3, 6, 12, and 24 h post-pgRNA transfection into Huh7.5 cells. The levels of viral DNA replication intermediates and cccDNA peaked at 24 and 48 h post-pgRNA transfection, respectively. HBV surface antigen (HBsAg) became detectable in culture medium at day 4 posttransfection. Interestingly, the early robust viral DNA replication and cccDNA synthesis did not depend on the expression of HBV X protein (HBx), whereas HBsAg production was strictly dependent on viral DNA replication and expression of HBx, consistent with the essential role of HBx in the transcriptional activation of cccDNA minichromosomes. While the robust and synchronized HBV replication within 48 h post-pgRNA transfection is particularly suitable for the precise mapping of the HBV replication steps, from capsid assembly to cccDNA formation, targeted by distinct antiviral agents, the treatment of cells starting at 48 h post-pgRNA transfection allows the assessment of antiviral agents on mature nucleocapsid uncoating, cccDNA synthesis, and transcription, as well as viral RNA stability. Moreover, the pgRNA launch system could be used to readily assess the impacts of drug-resistant variants on cccDNA formation and other replication steps in the viral life cycle. IMPORTANCE Hepadnaviral pgRNA not only serves as a template for reverse transcriptional replication of viral DNA but also expresses core protein and DNA polymerase to support viral genome replication and cccDNA synthesis. Not surprisingly, cytoplasmic expression of duck hepatitis B virus pgRNA initiated viral replication leading to infectious virion secretion. However, HBV replication and antiviral mechanism were studied primarily in human hepatoma cells transiently or stably transfected with plasmid-based HBV replicons. The presence of large amounts of transfected HBV DNA or transgenes in cellular chromosomes hampered the robust analyses of HBV replication and cccDNA function. As demonstrated here, the pgRNA launch HBV replication system permits the accurate mapping of antiviral target and investigation of cccDNA biosynthesis and transcription using secreted HBsAg as a convenient quantitative marker. The effect of drug-resistant variants on viral capsid assembly, genome replication, and cccDNA biosynthesis and function can also be assessed using this system.
Collapse
|
11
|
Li Q, Sun B, Zhuo Y, Jiang Z, Li R, Lin C, Jin Y, Gao Y, Wang D. Interferon and interferon-stimulated genes in HBV treatment. Front Immunol 2022; 13:1034968. [PMID: 36531993 PMCID: PMC9751411 DOI: 10.3389/fimmu.2022.1034968] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022] Open
Abstract
Human hepatitis B virus (HBV) is a small enveloped DNA virus with a complex life cycle. It is the causative agent of acute and chronic hepatitis. HBV can resist immune system responses and often causes persistent chronic infections. HBV is the leading cause of liver cancer and cirrhosis. Interferons (IFNs) are cytokines with antiviral, immunomodulatory, and antitumor properties. IFNs are glycoproteins with a strong antiviral activity that plays an important role in adaptive and innate immune responses. They are classified into three categories (type I, II, and III) based on the structure of their cell-surface receptors. As an effective drug for controlling chronic viral infections, Type I IFNs are approved to be clinically used for the treatment of HBV infection. The therapeutic effect of interferon will be enhanced when combined with other drugs. IFNs play a biological function by inducing the expression of hundreds of IFN-stimulated genes (ISGs) in the host cells, which are responsible for the inhibiting of HBV replication, transcription, and other important processes. Animal models of HBV, such as chimpanzees, are also important tools for studying IFN treatment and ISG regulation. In the present review, we summarized the recent progress in IFN-HBV treatment and focused on its mechanism through the interaction between HBV and ISGs.
Collapse
Affiliation(s)
- Qirong Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China,Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Baozhen Sun
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Zhuo
- School of Acupuncture-Moxi bustion and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Rong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Yongjian Gao, ; Dongxu Wang,
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China,*Correspondence: Yongjian Gao, ; Dongxu Wang,
| |
Collapse
|
12
|
Dejmek M, Šála M, Brazdova A, Vanekova L, Smola M, Klíma M, Břehová P, Buděšínský M, Dračínský M, Procházková E, Zavřel M, Šimák O, Páv O, Boura E, Birkuš G, Nencka R. Discovery of isonucleotidic CDNs as potent STING agonists with immunomodulatory potential. Structure 2022; 30:1146-1156.e11. [PMID: 35690061 DOI: 10.1016/j.str.2022.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/19/2022] [Accepted: 05/17/2022] [Indexed: 01/07/2023]
Abstract
Stimulator of interferon genes (STING) is an adaptor protein of the cGAS-STING signaling pathway involved in the sensing of cytosolic DNA. It functions as a receptor for cyclic dinucleotides (CDNs) and, upon their binding, mediates cytokine expression and host immunity. Besides naturally occurring CDNs, various synthetic CDNs, such as ADU-S100, have been reported to effectively activate STING and are being evaluated in clinical trials for the treatment of cancer. Here, we describe the preparation of a unique new class of STING agonists: isonucleotidic cyclic dinucleotides and the synthesis of their prodrugs. The presented CDNs stimulate STING with comparable efficiency to ADU-S100, whereas their prodrugs demonstrate activity up to four orders of magnitude better due to the improved cellular uptake. The compounds are very potent inducers of inflammatory cytokines by peripheral blood mononuclear cells (PBMCs). We also report the X-ray crystal structure of the lead inhibitor bound to the wild-type (WT) STING.
Collapse
Affiliation(s)
- Milan Dejmek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Michal Šála
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Andrea Brazdova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Lenka Vanekova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Miroslav Smola
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Martin Klíma
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Petra Břehová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Eliška Procházková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Martin Zavřel
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Ondřej Šimák
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Ondřej Páv
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Gabriel Birkuš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic.
| |
Collapse
|
13
|
Nagra N, Kozarek RA, Burman BE. Therapeutic Advances in Viral Hepatitis A-E. Adv Ther 2022; 39:1524-1552. [PMID: 35220557 DOI: 10.1007/s12325-022-02070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/31/2022] [Indexed: 11/25/2022]
Abstract
Viral hepatitis remains a significant global health problem. All forms of viral hepatitis A through E (A-E) can lead to acute symptomatic infection, while hepatitis B and C can lead to chronic infection associated with significant morbidity and mortality related to progression to cirrhosis, end-stage-liver disease, and liver cancer. Viral hepatitis occurs worldwide, though certain regions are disproportionately affected. We now, remarkably, have highly effective curative regimens for hepatitis C, and safe and tolerable medications to suppress hepatitis B activity, and to prevent liver damage and slow disease progression. We have effective vaccines for hepatitis A and B which provide long-lasting immunity, while improved sanitation and awareness can curb outbreaks of hepatitis A and E. However, more effective and available preventive and curative strategies are needed to achieve global eradication of viral hepatitis. This review provides an overview of the epidemiology, transmission, diagnosis, and clinical features of each viral hepatitis with a primary focus on current and future therapeutic and curative options.
Collapse
Affiliation(s)
- Navroop Nagra
- Department of Gastroenterology, University of Louisville, Louisville, KY, 40202, USA
| | - Richard A Kozarek
- Center for Digestive Health, Virginia Mason Franciscan Health, 1100 9th Ave., Seattle, WA, 98101, USA
| | - Blaire E Burman
- Center for Digestive Health, Virginia Mason Franciscan Health, 1100 9th Ave., Seattle, WA, 98101, USA.
| |
Collapse
|
14
|
Chen H, Jiang L, Chen S, Hu Q, Huang Y, Wu Y, Chen W. HBx inhibits DNA sensing signaling pathway via ubiquitination and autophagy of cGAS. Virol J 2022; 19:55. [PMID: 35346247 PMCID: PMC8962493 DOI: 10.1186/s12985-022-01785-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyclic GMP-AMP synthase (cGAS) is a crucial DNA sensor and plays an important role in host antiviral innate immune responses. During hepatitis B virus (HBV) infection, the cGAS signaling pathway can suppress HBV replication. As an important regulatory protein of HBV, hepatitis B virus X protein (HBx) may serve as an antagonistic character to the cGAS/STING signaling pathway. In this study, we aim to investigate the functional role of HBx in the cGAS/STING signaling pathway. METHODS The effects of HBx on IFN-β promoter activity were measured by Dual-luciferase reporter assays. Ubiquitination and autophagy were analyzed by Western-blot and Co-immunoprecipitation assays. RESULTS Our results show that HBx down-regulates IFN-I production by directly promoting ubiquitination and autophagy degradation of cGAS. CONCLUSIONS HBV can antagonize host cGAS DNA sensing to promote HBV replication and provide novel insights to develop novel approaches against HBV infection.
Collapse
Affiliation(s)
- Hong Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjing Road, Yuzhong District, Chongqing, 400010, China
| | - Linshan Jiang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjing Road, Yuzhong District, Chongqing, 400010, China
| | - Shu Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjing Road, Yuzhong District, Chongqing, 400010, China
| | - Qin Hu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjing Road, Yuzhong District, Chongqing, 400010, China
| | - Ying Huang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Wu
- Clinical Medicine Research Centre, Liuzhou People's Hospital, Guangxi Medical University, Liuzhou, China.
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjing Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
15
|
Wang D, Zhao H, Shen Y, Chen Q. A Variety of Nucleic Acid Species Are Sensed by cGAS, Implications for Its Diverse Functions. Front Immunol 2022; 13:826880. [PMID: 35185917 PMCID: PMC8854490 DOI: 10.3389/fimmu.2022.826880] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/20/2022] [Indexed: 12/20/2022] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) recognizes double-stranded DNA (dsDNA) derived from invading pathogens and induces an interferon response via activation of the key downstream adaptor protein stimulator of interferon genes (STING). This is the most classic biological function of the cGAS-STING signaling pathway and is critical for preventing pathogenic microorganism invasion. In addition, cGAS can interact with various types of nucleic acids, including cDNA, DNA : RNA hybrids, and circular RNA, to contribute to a diverse set of biological functions. An increasing number of studies have revealed an important relationship between the cGAS-STING signaling pathway and autophagy, cellular senescence, antitumor immunity, inflammation, and autoimmune diseases. This review details the mechanism of action of cGAS as it interacts with different types of nucleic acids, its rich biological functions, and the potential for targeting this pathway to treat various diseases.
Collapse
Affiliation(s)
| | | | - Yangkun Shen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| |
Collapse
|
16
|
STING signaling activation inhibits HBV replication and attenuates the severity of liver injury and HBV-induced fibrosis. Cell Mol Immunol 2022; 19:92-107. [PMID: 34811496 PMCID: PMC8752589 DOI: 10.1038/s41423-021-00801-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023] Open
Abstract
The covalently closed circular DNA (cccDNA) of HBV plays a crucial role in viral persistence and is also a risk factor for developing HBV-induced diseases, including liver fibrosis. Stimulator of interferon genes (STING), a master regulator of DNA-mediated innate immune activation, is a potential therapeutic target for viral infection and virus-related diseases. In this study, agonist-induced STING signaling activation in macrophages was revealed to inhibit cccDNA-mediated transcription and HBV replication via epigenetic modification in hepatocytes. Notably, STING activation could efficiently attenuate the severity of liver injury and fibrosis in a chronic recombinant cccDNA (rcccDNA) mouse model, which is a proven suitable research platform for HBV-induced fibrosis. Mechanistically, STING-activated autophagic flux could suppress macrophage inflammasome activation, leading to the amelioration of liver injury and HBV-induced fibrosis. Overall, the activation of STING signaling could inhibit HBV replication through epigenetic suppression of cccDNA and alleviate HBV-induced liver fibrosis through the suppression of macrophage inflammasome activation by activating autophagic flux in a chronic HBV mouse model. This study suggests that targeting the STING signaling pathway may be an important therapeutic strategy to protect against persistent HBV replication and HBV-induced fibrosis.
Collapse
|
17
|
Bao T, Liu J, Leng J, Cai L. The cGAS-STING pathway: more than fighting against viruses and cancer. Cell Biosci 2021; 11:209. [PMID: 34906241 PMCID: PMC8670263 DOI: 10.1186/s13578-021-00724-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/02/2021] [Indexed: 01/07/2023] Open
Abstract
In the classic Cyclic guanosine monophosphate–adenosine monophosphate (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway, downstream signals can control the production of type I interferon and nuclear factor kappa-light-chain-enhancer of activated B cells to promote the activation of pro-inflammatory molecules, which are mainly induced during antiviral responses. However, with progress in this area of research, studies focused on autoimmune diseases and chronic inflammatory conditions that may be relevant to cGAS–STING pathways have been conducted. This review mainly highlights the functions of the cGAS–STING pathway in chronic inflammatory diseases. Importantly, the cGAS–STING pathway has a major impact on lipid metabolism. Different research groups have confirmed that the cGAS–STING pathway plays an important role in the chronic inflammatory status in various organs. However, this pathway has not been studied in depth in diabetes and diabetes-related complications. Current research on the cGAS–STING pathway has shown that the targeted therapy of diseases that may be caused by inflammation via the cGAS–STING pathway has promising outcomes.
Collapse
Affiliation(s)
- Terigen Bao
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, China.,Department of Pediatrics, The Pediatric Research Institute, The University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Jia Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jiyan Leng
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Lu Cai
- Department of Pediatrics, The Pediatric Research Institute, The University of Louisville School of Medicine, Louisville, KY, 40292, USA.,Departments of Pharmacology and Toxicology, The University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
18
|
Liu H, Cheng J, Viswanathan U, Chang J, Lu F, Guo JT. Amino acid residues at core protein dimer-dimer interface modulate multiple steps of hepatitis B virus replication and HBeAg biogenesis. PLoS Pathog 2021; 17:e1010057. [PMID: 34752483 PMCID: PMC8604296 DOI: 10.1371/journal.ppat.1010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/19/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022] Open
Abstract
The core protein (Cp) of hepatitis B virus (HBV) assembles pregenomic RNA (pgRNA) and viral DNA polymerase to form nucleocapsids where the reverse transcriptional viral DNA replication takes place. Core protein allosteric modulators (CpAMs) inhibit HBV replication by binding to a hydrophobic "HAP" pocket at Cp dimer-dimer interfaces to misdirect the assembly of Cp dimers into aberrant or morphologically "normal" capsids devoid of pgRNA. We report herein that a panel of CpAM-resistant Cp with single amino acid substitution of residues at the dimer-dimer interface not only disrupted pgRNA packaging, but also compromised nucleocapsid envelopment, virion infectivity and covalently closed circular (ccc) DNA biosynthesis. Interestingly, these mutations also significantly reduced the secretion of HBeAg. Biochemical analysis revealed that the CpAM-resistant mutations in the context of precore protein (p25) did not affect the levels of p22 produced by signal peptidase removal of N-terminal 19 amino acid residues, but significantly reduced p17, which is produced by furin cleavage of C-terminal arginine-rich domain of p22 and secreted as HBeAg. Interestingly, p22 existed as both unphosphorylated and phosphorylated forms. While the unphosphorylated p22 is in the membranous secretary organelles and the precursor of HBeAg, p22 in the cytosol and nuclei is hyperphosphorylated at the C-terminal arginine-rich domain and interacts with Cp to disrupt capsid assembly and viral DNA replication. The results thus indicate that in addition to nucleocapsid assembly, interaction of Cp at dimer-dimer interface also plays important roles in the production and infectivity of progeny virions through modulation of nucleocapsid envelopment and uncoating. Similar interaction at reduced p17 dimer-dimer interface appears to be important for its metabolic stability and sensitivity to CpAM suppression of HBeAg secretion.
Collapse
Affiliation(s)
- Hui Liu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Junjun Cheng
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Usha Viswanathan
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- * E-mail: (FL); (J-TG)
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
- * E-mail: (FL); (J-TG)
| |
Collapse
|
19
|
Abstract
Chronic hepatitis B virus (HBV) infection is the leading cause of liver cirrhosis and hepatocellular carcinoma, estimated to be globally responsible for ∼800,000 deaths annually. Although effective vaccines are available to prevent new HBV infection, treatment of existing chronic hepatitis B (CHB) is limited, as the current standard-of-care antiviral drugs can only suppress viral replication without achieving cure. In 2016, the World Health Organization called for the elimination of viral hepatitis as a global public health threat by 2030. The United States and other nations are working to meet this ambitious goal by developing strategies to cure CHB, as well as prevent HBV transmission. This review considers recent research progress in understanding HBV pathobiology and development of therapeutics for the cure of CHB, which is necessary for elimination of hepatitis B by 2030.
Collapse
Affiliation(s)
- Timothy M Block
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania 18902, USA;
| | - Kyong-Mi Chang
- The Corporal Michael J. Crescenz VA Medical Center and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania 18902, USA;
| |
Collapse
|
20
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Toll-Like Receptor Response to Hepatitis B Virus Infection and Potential of TLR Agonists as Immunomodulators for Treating Chronic Hepatitis B: An Overview. Int J Mol Sci 2021; 22:10462. [PMID: 34638802 PMCID: PMC8508807 DOI: 10.3390/ijms221910462] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a major global health problem. The immunopathology of the disease, especially the interplay between HBV and host innate immunity, is poorly understood. Moreover, inconsistent literature on HBV and host innate immunity has led to controversies. However, recently, there has been an increase in the number of studies that have highlighted the link between innate immune responses, including Toll-like receptors (TLRs), and chronic HBV infection. TLRs are the key sensing molecules that detect pathogen-associated molecular patterns and regulate the induction of pro- and anti-inflammatory cytokines, thereby shaping the adaptive immunity. The suppression of TLR response has been reported in patients with chronic hepatitis B (CHB), as well as in other models, including tree shrews, suggesting an association of TLR response in HBV chronicity. Additionally, TLR agonists have been reported to improve the host innate immune response against HBV infection, highlighting the potential of these agonists as immunomodulators for enhancing CHB treatment. In this study, we discuss the current understanding of host innate immune responses during HBV infection, particularly focusing on the TLR response and TLR agonists as immunomodulators.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
| |
Collapse
|
21
|
Ye G, Zhang J, Zhang C. Stimulator of interferon response cGAMP interactor overcomes ERBB2-mediated apatinib resistance in head and neck squamous cell carcinoma. Aging (Albany NY) 2021; 13:20793-20807. [PMID: 34459788 PMCID: PMC8436913 DOI: 10.18632/aging.203475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Apatinib resistance is the main obstacle to the effective treatment of advanced head and neck squamous cell carcinoma (HNSCC). This study aimed to evaluate the function of Erb-B2 receptor tyrosine kinase 2 (ERBB2) and stimulator of interferon response cGAMP interactor (STING) in apatinib resistance in HNSCC. METHOD The Cancer Genome Atlas database of HNSCC was used to analyze the relationship between vascular endothelial growth factor receptor 2 (VEGFR2) expression and prognosis. An apatinib resistant (AR) HNSCC cell line was constructed based on the CAL27 cell line. RNA sequencing was performed to explore the differentially expressed mRNAs. Quantitative real-time reverse transcription PCR (qRT-PCR) and western blotting were used to evaluate the expression and phosphorylation level VEGFR2, ERBB2, STING, and related proteins. Apatinib resistance was evaluated by colony formation and cell viability assays. A mouse subcutaneous tumor formation model was established to evaluate the efficiency of combination treatment and vascularization was evaluated by assessing CD31 immunofluorescence. RESULT The expression of VEGFR2 was high in tumor of patients with HNSCC. Western blotting and qRT-PCR revealed that in AR cells, ERBB2 expression was high, whereas the expression of STING was low. Targeted treatment of ERBB2 using lapatinib could attenuate apatinib resistance. Further research confirmed that overexpressing STING could decrease ERBB2 expression. CONCLUSION STING could sensitize AR cells to apatinib by decreasing ERBB2 expression. The combination of lapatinib or a STING agonist with apatinib ameliorated acquired apatinib resistance in a synergistic manner.
Collapse
Affiliation(s)
- Guo Ye
- Department of Head and Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Junbin Zhang
- Department of Head and Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Chengyao Zhang
- Department of Head and Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
22
|
Pietrobon AJ, Yoshikawa FSY, Oliveira LM, Pereira NZ, Matozo T, de Alencar BC, Duarte AJS, Sato MN. Antiviral Response Induced by TLR7/TLR8 Activation Inhibits HIV-1 Infection in Cord Blood Macrophages. J Infect Dis 2021; 225:510-519. [PMID: 34355765 DOI: 10.1093/infdis/jiab389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/26/2021] [Indexed: 02/01/2023] Open
Abstract
Vertical transmission is the main mechanism of HIV-1 infection in infants, who may develop high viremia and rapidly progress to AIDS. Innate immunity agonists can control HIV-1 replication in vitro, but the protective effect in the neonatal period remains unknown. Herein, we evaluated the immunomodulatory and antiviral effects of IFN-I adjuvants on cord blood monocyte-derived macrophages upon HIV-1 infection. Despite the phenotypic and transcriptional similarities between cord blood and adult macrophages, cord blood cells were prone to viral replication when infected with HIV-1. However, treatment with CL097 efficiently promoted the antiviral and inflammatory responses and inhibited HIV-1 replication in cord blood cells in an NF-κB and autophagy activation-independent manner. Our data suggest that cord blood macrophages are able to establish antiviral responses induced by IFN-I adjuvants similar to those of their adult counterparts, revealing a potential adjuvant candidate to enhance the neonatal immune response.
Collapse
Affiliation(s)
- Anna J Pietrobon
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil.,Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Fábio S Y Yoshikawa
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil
| | - Luana M Oliveira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil
| | - Natalli Z Pereira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil
| | - Tais Matozo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Bruna C de Alencar
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Alberto J S Duarte
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil
| | - Maria N Sato
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, Brazil
| |
Collapse
|
23
|
Wang Z, Chen N, Li Z, Xu G, Zhan X, Tang J, Xiao X, Bai Z. The Cytosolic DNA-Sensing cGAS-STING Pathway in Liver Diseases. Front Cell Dev Biol 2021; 9:717610. [PMID: 34386500 PMCID: PMC8353273 DOI: 10.3389/fcell.2021.717610] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
Inflammation is regulated by the host and is a protective response activated by the evolutionarily conserved immune system in response to harmful stimuli, such as dead cells or pathogens. cGAS-STING pathway is a vital natural sensor of host immunity that can defend various tissues and organs against pathogenic infection, metabolic syndrome, cellular stress and cancer metastasis. The potential impact of cGAS-STING pathway in hepatic ischemia reperfusion (I/R) injury, alcoholic/non-alcoholic steatohepatitis (ASH), hepatic B virus infection, and other liver diseases has recently attracted widespread attention. In this review, the relationship between cGAS-STING pathway and the pathophysiological mechanisms and progression of liver diseases is summarized. Additionally, we discuss various pharmacological agonists and antagonists of cGAS-STING signaling as novel therapeutics for the treatment of liver diseases. A detailed understanding of mechanisms and biology of this pathway will lay a foundation for the development and clinical application of therapies for related liver diseases.
Collapse
Affiliation(s)
- Zhilei Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Liver Diseases, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nian Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhiyong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guang Xu
- Department of Liver Diseases, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Zhan
- Department of Liver Diseases, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohe Xiao
- Department of Liver Diseases, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhaofang Bai
- Department of Liver Diseases, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
24
|
Chen R, Du J, Zhu H, Ling Q. The role of cGAS-STING signalling in liver diseases. JHEP Rep 2021; 3:100324. [PMID: 34381984 PMCID: PMC8340306 DOI: 10.1016/j.jhepr.2021.100324] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/20/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
The recently identified novel cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) activates the downstream adaptor protein stimulator of interferon genes (STING) by catalysing the synthesis of cyclic GMP-AMP. This in turn initiates an innate immune response through the release of various cytokines, including type I interferon. Foreign DNA (microbial infection) or endogenous DNA (nuclear or mitochondrial leakage) can serve as cGAS ligands and lead to the activation of cGAS-STING signalling. Therefore, the cGAS-STING pathway plays essential roles in infectious diseases, sterile inflammation, tumours, and autoimmune diseases. In addition, cGAS-STING signalling affects the progression of liver inflammation through other mechanisms, such as autophagy and metabolism. In this review, we summarise recent advances in our understanding of the role of cGAS-STING signalling in the innate immune modulation of different liver diseases. Furthermore, we discuss the therapeutic potential of targeting the cGAS-STING pathway in the treatment of liver diseases.
Collapse
Key Words
- AIM2, absent in melanoma 2
- ALD, alcohol-related liver disease
- APCs, antigen-presenting cells
- CDNs, cyclic dinucleotides
- DAMPs, damage-associated molecular patterns
- DCs, dendritic cells
- ER, endoplasmic reticulum
- GVHD, graft-versus-host disease
- HCC, hepatocellular carcinoma
- HSCs, hepatic stellate cells
- IFN-I, type I interferon
- IL, interleukin
- IRF3, interferon regulatory factor 3
- IRI, ischaemia refusion injury
- KCs, Kupffer cells
- LSECs, liver sinusoidal endothelial cells
- MHC, major histocompatibility complex
- NAFLD, non-alcoholic fatty liver disease
- NK cells, natural killer cells
- NPCs, non-parenchymal cells
- PAMPs, pathogen-associated molecular patterns
- PD-1, programmed cell death protein-1
- PD-L1, programmed cell death protein ligand-1
- PPRs, pattern recognition receptors
- SAVI, STING-associated vasculopathy with onset in infancy
- STING, stimulator of interferon genes
- TBK1, TANK-binding kinase 1
- TGF-β1, transforming growth factor-β1
- TLR, Toll-like receptor
- TNF, tumour necrosis factor
- XRCC, X-ray repair cross complementing
- aHSCT, allogeneic haematopoietic stem cell transplantation
- cGAMP, cyclic guanosine monophosphate-adenosine monophosphate
- cGAS, cyclic guanosine monophosphate-adenosine monophosphate synthase
- cGAS-STING signalling
- dsDNA, double-strand DNA
- hepatocellular carcinoma
- innate immune response
- liver injury
- mTOR, mammalian target of rapamycin
- mtDNA, mitochondrial DNA
- nonalcoholic fatty liver disease
- siRNA, small interfering RNA
- ssRNA, single-stranded RNA
- viral hepatitis
Collapse
Affiliation(s)
- Ruihan Chen
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiamin Du
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qi Ling
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
25
|
Golsaz-Shirazi F, Shokri F. Cross talk between hepatitis B virus and innate immunity of hepatocytes. Rev Med Virol 2021; 32:e2256. [PMID: 34021666 DOI: 10.1002/rmv.2256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022]
Abstract
Innate immunity plays a major role in controlling viral infections. Recent exploration of sodium taurocholate co-transporting polypeptide receptor as specific hepatitis B virus (HBV) receptor in human hepatocytes has provided appropriate cell culture tools to study the innate immunity of hepatocytes and its cross talk with HBV. In this review, we give a brief update on interaction between HBV and innate immunity using the currently available in vitro cellular models that support the complete life cycle of HBV. We will discuss how HBV can act as a 'stealth' virus to counteract the innate immune responses mediated by the pathogen recognition receptors of hepatocytes and escape the first line of surveillance of the host immune system. We give an overview of the cellular components of innate immunity that present in these in vitro models and discuss how activating these innate immunity components may contribute to the eradication of HBV infection.
Collapse
Affiliation(s)
- Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Hu J, Tang L, Cheng J, Zhou T, Li Y, Chang J, Zhao Q, Guo JT. Hepatitis B virus nucleocapsid uncoating: biological consequences and regulation by cellular nucleases. Emerg Microbes Infect 2021; 10:852-864. [PMID: 33870849 PMCID: PMC8812769 DOI: 10.1080/22221751.2021.1919034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Upon infection of hepatocyte, Hepatitis B virus (HBV) genomic DNA in nucleocapsid is transported into the nucleus and converted into a covalently closed circular (ccc) DNA to serve as the template for transcription of viral RNAs. Viral DNA in the cytoplasmic progeny nucleocapsid is another resource to fuel cccDNA amplification. Apparently, nucleocapsid disassembly, or viral genomic DNA uncoating, is an essential step for cccDNA synthesis from both de novo infection and intracellular amplification pathways, and has a potential to activate DNA sensors and induce an innate immune response in infected hepatocytes. However, where and how the nucleocapsid disassembly occurs is not well understood. The work reported herein showed that the enhanced disassembly of progeny mature nucleocapsids in the cytoplasm supported cccDNA intracellular amplification, but failed to activate the cGAS-STING-mediated innate immune response in hepatocytes. Interestingly, while expression of a cytoplasmic exonuclease TREX1 in human hepatoma cells supporting HBV replication significantly reduced the amounts of cccDNA as well as its precursor, deproteinized relaxed circular (rc) DNA, expression of TREX1 in sodium taurocholate cotransporting polypeptide-expressing human hepatoma cells did not inhibit cccDNA synthesis from de novo HBV infection. The results from this cytoplasmic nuclease protection assay imply that the disassembly of progeny mature nucleocapsids and removal of viral DNA polymerase covalently linked to the 5′ end of minus strand of rcDNA take place in the cytoplasm. On the contrary, the disassembly of virion-derived nucleocapsids during de novo infection may occur at a different subcellular compartment and possibly via distinct mechanisms.
Collapse
Affiliation(s)
- Jin Hu
- Department of Experimental Medicine, Baruch S. Blumberg Institute, Doylestown, PA, USA.,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Liudi Tang
- Department of Experimental Medicine, Baruch S. Blumberg Institute, Doylestown, PA, USA.,Microbiology and Immunology Graduate Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Junjun Cheng
- Department of Experimental Medicine, Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Tianlun Zhou
- Department of Experimental Medicine, Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Yuhuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jinhong Chang
- Department of Experimental Medicine, Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Qiong Zhao
- Department of Experimental Medicine, Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Ju-Tao Guo
- Department of Experimental Medicine, Baruch S. Blumberg Institute, Doylestown, PA, USA
| |
Collapse
|
27
|
Xu D, Tian Y, Xia Q, Ke B. The cGAS-STING Pathway: Novel Perspectives in Liver Diseases. Front Immunol 2021; 12:682736. [PMID: 33995425 PMCID: PMC8117096 DOI: 10.3389/fimmu.2021.682736] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
Liver diseases represent a major global health burden accounting for approximately 2 million deaths per year worldwide. The liver functions as a primary immune organ that is largely enriched with various innate immune cells, including macrophages, dendritic cells, neutrophils, NK cells, and NKT cells. Activation of these cells orchestrates the innate immune response and initiates liver inflammation in response to the danger signal from pathogens or injured cells and tissues. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is a crucial signaling cascade of the innate immune system activated by cytosol DNA. Recognizing DNA as an immune-stimulatory molecule is an evolutionarily preserved mechanism in initiating rapid innate immune responses against microbial pathogens. The cGAS is a cytosolic DNA sensor eliciting robust immunity via the production of cyclic GMP-AMPs that bind and activate STING. Although the cGAS-STING pathway has been previously considered to have essential roles in innate immunity and host defense, recent advances have extended the role of the cGAS-STING pathway to liver diseases. Emerging evidence indicates that overactivation of cGAS-STING may contribute to the development of liver disorders, implying that the cGAS-STING pathway is a promising therapeutic target. Here, we review and discuss the role of the cGAS-STING DNA-sensing signaling pathway in a variety of liver diseases, including viral hepatitis, nonalcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), primary hepatocellular cancer (HCC), and hepatic ischemia-reperfusion injury (IRI), with highlights on currently available therapeutic options.
Collapse
Affiliation(s)
- Dongwei Xu
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yizhu Tian
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bibo Ke
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
28
|
Xiang L, Chen LM, Zhai YJ, Sun WJ, Yang JR, Fan YC, Wang K. Hypermethylation of secreted frizzled related protein 2 gene promoter serves as a noninvasive biomarker for HBV-associated hepatocellular carcinoma. Life Sci 2021; 270:119061. [PMID: 33454364 DOI: 10.1016/j.lfs.2021.119061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
For patients with hepatocellular carcinoma (HCC), early detection is critical to improve survival. Secreted frizzled-related protein 2 (SFRP2) is a candidate tumor suppressor as Wnt antagonist and SFRP2 promoter has been found hypermethylated in various malignancies. This study aimed to investigate the methylation status of SFRP2 promoter in hepatitis B virus (HBV) associated HCC and estimate its diagnostic value as a non-invasive biomarker. A total of 293 patients, including 132 patients with HBV-associated HCC, 121 with chronic hepatitis B (CHB) and 40 healthy controls (HCs) were enrolled. SFRP2 methylation level in peripheral mononuclear cells (PBMCs) was quantitatively detected by MethyLight. SFRP2 methylation level was significantly higher in patients with HBV-associated HCC than in those with CHB (p < 0.001) and HCs (p < 0.001) while mRNA level of SFRP2 was significantly lower in HCC group than the other two groups (p < 0.05). In HCC subgroup, SFRP2 methylation level markedly increased in patients >50 years old, female, with negative HBeAg, negative HBV-DNA and poor differentiation compared with the remaining groups (P < 0.05). Furthermore, SFRP2 methylation level showed a significantly better diagnostic value than alpha-fetoprotein (AFP) and the combination of AFP and methylation levels of SFRP2 markedly improved the area under the receiver operating characteristic curve (p < 0.05). In conclusion, hypermethylation of SFRP2 promoter exists in HBV-associated HCC. The combination of SFRP2 methylation level in PBMCs and AFP could significantly improve the diagnostic ability of AFP in discriminating HBV-associated HCC from CHB and SFRP2 methylation level had the potential to serve as a non-invasive biomarker for HCC diagnosis.
Collapse
Affiliation(s)
- Lin Xiang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - La-Mei Chen
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu-Jia Zhai
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Wei-Juan Sun
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie-Ru Yang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China; Institute of Hepatology, Shandong University, Jinan, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China; Institute of Hepatology, Shandong University, Jinan, China.
| |
Collapse
|
29
|
Abstract
STING (stimulator of interferon genes) also known as transmembrane protein 173 (TMEM173) is a cytoplasmic DNA sensor which can be activated by the upstream cyclic dinucleotides (CDNs). This activation produces cytokines such as interferons and pro-inflammatory factors via the downstream IRF3 and NF-κB pathways, triggering an innate immune response and adaptive immunity to maintain homeostasis. STING is mainly expressed and activated in non-parenchymal cells, thus exerting a corresponding effect to maintain the homeostasis of the liver. In viral hepatitis, interferons and pro-inflammatory factors produced after STING activation initiate the immune response to inhibit virus replication and assembly. In the case of metabolic diseases of the liver, the activation of STING in kupffer cells and hepatic stellate cells leads to inflammation, the proliferation of connective tissue, and metabolic disorders in the hepatocytes, promoting the occurrence and development of the disease. In hepatocellular carcinoma, STING has two contradictory roles. When STING is activated in dendritic cells and macrophages, a large number of cytokines can be produced to initiate innate immune effects directly and to exert adaptive immunity through the recruitment and activation of T cells; however, aberrant activation of the STING pathway leads to a weakening of immune function and promotes oncogenesis and metastasis. Here, we summarize the interactions between STING and liver disease that have currently been identified and how to achieve therapeutic goals by modulating the activity of the STING pathway.
Collapse
|
30
|
Liu Y, Lu X, Qin N, Qiao Y, Xing S, Liu W, Feng F, Liu Z, Sun H. STING, a promising target for small molecular immune modulator: A review. Eur J Med Chem 2020; 211:113113. [PMID: 33360799 DOI: 10.1016/j.ejmech.2020.113113] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
Stimulator of interferon genes (STING) plays a crucial role in human innate immune system, which is gradually concerned following the emerging immunotherapy. Activated STING induces the production of type I interferons (IFNs) and proinflammatory cytokines through STING-TBK1-IRF3/NF-κB pathway, which could be applied into the treatment of infection, inflammation, and tumorigenesis. Here, we provided a detailed summary of STING from its structure, function and regulation. Especially, we illustrated the canonical or noncanonical cyclic dinucleotides (CDNs) and synthetic small molecules for STING activation or inhibition and their efficacy in related diseases. Importantly, we particularly emphasized the discovery, development and modification of STING agonist or antagonist, attempting to enlighten reader's mind for enriching small molecular modulator of STING. In addition, we summarized biological evaluation methods for the assessment of small molecules activity.
Collapse
Affiliation(s)
- Yijun Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Xin Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Nan Qin
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yuting Qiao
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China; Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, 223005, People's Republic of China
| | - Zongliang Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China.
| |
Collapse
|
31
|
Rodriguez-Garcia E, Zabaleta N, Gil-Farina I, Gonzalez-Aparicio M, Echeverz M, Bähre H, Solano C, Lasa I, Gonzalez-Aseguinolaza G, Hommel M. AdrA as a Potential Immunomodulatory Candidate for STING-Mediated Antiviral Therapy That Required Both Type I IFN and TNF-α Production. THE JOURNAL OF IMMUNOLOGY 2020; 206:376-385. [PMID: 33298616 DOI: 10.4049/jimmunol.2000953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/09/2020] [Indexed: 01/12/2023]
Abstract
Several dinucleotide cyclases, including cyclic GMP-AMP synthase, and their involvement in STING-mediated immunity have been extensively studied. In this study, we tested five bacterial diguanylate cyclases from the Gram-negative bacterium Salmonella Enteritidis, identifying AdrA as the most potent inducer of a STING-mediated IFN response. AdrA wild-type (wt) or its inactive version AdrA mutant (mut) were delivered by an adenovirus (Ad) vector. Dendritic cells obtained from wt mice and infected in vitro with Ad vector containing AdrA wt, but not mut, had increased activation markers and produced large amounts of several immunostimulatory cytokines. For dendritic cells derived from STING-deficient mice, no activation was detected. The potential antiviral activity of AdrA was addressed in hepatitis B virus (HBV)-transgenic and adenovirus-associated virus (AAV)-HBV mouse models. Viremia in serum of Ad AdrA wt-treated mice was reduced significantly compared with that in Ad AdrA mut-injected mice. The viral load in the liver at sacrifice was in line with this finding. To further elucidate the molecular mechanism(s) by which AdrA confers its antiviral function, the response in mice deficient in STING or its downstream effector molecules was analyzed. wt and IFN-αR (IFNAR)-/- animals were additionally treated with anti-TNF-α (Enbrel). Interestingly, albeit less pronounced than in wt mice, in IFNAR-/- and Enbrel-treated wt mice, a reduction of serum viremia was achieved-an observation that was lost in anti-TNF-α-treated IFNAR-/- animals. No effect of AdrA wt was seen in STING-deficient animals. Thus, although STING is indispensable for the antiviral activity of AdrA, type I IFN and TNF-α are both required and act synergistically.
Collapse
Affiliation(s)
- Estefania Rodriguez-Garcia
- Terapia Génica y Regulación de la Expresión Génica, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Nerea Zabaleta
- Terapia Génica y Regulación de la Expresión Génica, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008 Pamplona, Spain
| | - Irene Gil-Farina
- Terapia Génica y Regulación de la Expresión Génica, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008 Pamplona, Spain
| | - Manuela Gonzalez-Aparicio
- Terapia Génica y Regulación de la Expresión Génica, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Maite Echeverz
- Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain.,Laboratorio Patogénesis Microbiana, Complejo Hospitalario de Navarra-Universidad Pública de Navarra, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; and
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, 30625 Hannover, Germany
| | - Cristina Solano
- Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain.,Laboratorio Patogénesis Microbiana, Complejo Hospitalario de Navarra-Universidad Pública de Navarra, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; and
| | - Iñigo Lasa
- Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain.,Laboratorio Patogénesis Microbiana, Complejo Hospitalario de Navarra-Universidad Pública de Navarra, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; and
| | - Gloria Gonzalez-Aseguinolaza
- Terapia Génica y Regulación de la Expresión Génica, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008 Pamplona, Spain; .,Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain.,Laboratorio Patogénesis Microbiana, Complejo Hospitalario de Navarra-Universidad Pública de Navarra, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; and
| | - Mirja Hommel
- Terapia Génica y Regulación de la Expresión Génica, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008 Pamplona, Spain; .,Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain.,Laboratorio Patogénesis Microbiana, Complejo Hospitalario de Navarra-Universidad Pública de Navarra, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; and
| |
Collapse
|
32
|
Crosse KM, Monson EA, Dumbrepatil AB, Smith M, Tseng YY, Van der Hoek KH, Revill PA, Saker S, Tscharke DC, G Marsh EN, Beard MR, Helbig KJ. Viperin binds STING and enhances the type-I interferon response following dsDNA detection. Immunol Cell Biol 2020; 99:373-391. [PMID: 33131099 DOI: 10.1111/imcb.12420] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 01/01/2023]
Abstract
Viperin is an interferon-inducible protein that is pivotal for eliciting an effective immune response against an array of diverse viral pathogens. Here we describe a mechanism of viperin's broad antiviral activity by demonstrating the protein's ability to synergistically enhance the innate immune dsDNA signaling pathway to limit viral infection. Viperin co-localized with the key signaling molecules of the innate immune dsDNA sensing pathway, STING and TBK1; binding directly to STING and inducing enhanced K63-linked polyubiquitination of TBK1. Subsequent analysis identified viperin's necessity to bind the cytosolic iron-sulfur assembly component 2A, to prolong its enhancement of the type-I interferon response to aberrant dsDNA. Here we show that viperin facilitates the formation of a signaling enhanceosome, to coordinate efficient signal transduction following activation of the dsDNA signaling pathway, which results in an enhanced antiviral state. We also provide evidence for viperin's radical SAM enzymatic activity to self-limit its immunomodulatory functions. These data further define viperin's role as a positive regulator of innate immune signaling, offering a mechanism of viperin's broad antiviral capacity.
Collapse
Affiliation(s)
- Keaton M Crosse
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Ebony A Monson
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Arti B Dumbrepatil
- Department of Chemistry and Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Monique Smith
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Yeu-Yang Tseng
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Kylie H Van der Hoek
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Peter A Revill
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Subir Saker
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - David C Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - E Neil G Marsh
- Department of Chemistry and Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Michael R Beard
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Karla J Helbig
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
33
|
Abstract
Abstract
Purpose of Review
Chronic Hepatitis B Virus (HBV) Infection is a major global health burden. Currently, a curative therapy does not exist; thus, there is an urgent need for new therapeutical options. Viral elimination in the natural course of infection results from a robust and multispecific T and B cell response that, however, is dysfunctional in chronically infected patients. Therefore, immunomodulatory therapies that strengthen the immune responses are an obvious approach trying to control HBV infection. In this review, we summarize the rationale and current options of immunological cure of chronic HBV infection.
Recent Findings
Recently, among others, drugs that stimulate the innate immune system or overcome CD8+ T cell exhaustion by checkpoint blockade, and transfer of HBV-specific engineered CD8+ T cells emerged as promising approaches.
Summary
HBV-specific immunity is responsible for viral control, but also for immunopathogenesis. Thus, the development of immunomodulatory therapies is a difficult process on a thin line between viral control and excessive immunopathology. Some promising agents are under investigation. Nevertheless, further research is indispensable in order to optimally orchestrate immunostimulation.
Collapse
|
34
|
Interferon Alpha Induces Multiple Cellular Proteins That Coordinately Suppress Hepadnaviral Covalently Closed Circular DNA Transcription. J Virol 2020; 94:JVI.00442-20. [PMID: 32581092 DOI: 10.1128/jvi.00442-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Covalently closed circular DNA (cccDNA) of hepadnaviruses exists as an episomal minichromosome in the nucleus of an infected hepatocyte and serves as the template for the transcription of viral mRNAs. It had been demonstrated by others and us that interferon alpha (IFN-α) treatment of hepatocytes induced a prolonged suppression of human and duck hepatitis B virus cccDNA transcription, which is associated with the reduction of cccDNA-associated histone modifications specifying active transcription (H3K9ac or H3K27ac), but not the histone modifications marking constitutive (H3K9me3) or facultative (H3K27me3) heterochromatin formation. In our efforts to identify IFN-induced cellular proteins that mediate the suppression of cccDNA transcription by the cytokine, we found that downregulating the expression of signal transducer and activator of transcription 1 (STAT1), structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1), or promyelocytic leukemia (PML) protein increased basal level of cccDNA transcription activity and partially attenuated IFN-α suppression of cccDNA transcription. In contrast, ectopic expression of STAT1, SMCHD1, or PML significantly reduced cccDNA transcription activity. SMCHD1 is a noncanonical SMC family protein and implicated in epigenetic silencing of gene expression. PML is a component of nuclear domain 10 (ND10) and is involved in suppressing the replication of many DNA viruses. Mechanistic analyses demonstrated that STAT1, SMCHD1, and PML were recruited to cccDNA minichromosomes and phenocopied the IFN-α-induced posttranslational modifications of cccDNA-associated histones. We thus conclude that STAT1, SMCHD1, and PML may partly mediate the suppressive effect of IFN-α on hepadnaviral cccDNA transcription.IMPORTANCE Pegylated IFN-α is the only therapeutic regimen that can induce a functional cure of chronic hepatitis B in a small, but significant, fraction of treated patients. Understanding the mechanisms underlying the antiviral functions of IFN-α in hepadnaviral infection may reveal molecular targets for development of novel antiviral agents to improve the therapeutic efficacy of IFN-α. By a loss-of-function genetic screening of individual IFN-stimulated genes (ISGs) on hepadnaviral mRNAs transcribed from cccDNA, we found that downregulating the expression of STAT1, SMCHD1, or PML significantly increased the level of viral RNAs without altering the level of cccDNA. Mechanistic analyses indicated that those cellular proteins are recruited to cccDNA minichromosomes and induce the posttranslational modifications of cccDNA-associated histones similar to those induced by IFN-α treatment. We have thus identified three IFN-α-induced cellular proteins that suppress cccDNA transcription and may partly mediate IFN-α silencing of hepadnaviral cccDNA transcription.
Collapse
|
35
|
Hepatitis B Virus DNA is a Substrate for the cGAS/STING Pathway but is not Sensed in Infected Hepatocytes. Viruses 2020; 12:v12060592. [PMID: 32485908 PMCID: PMC7354540 DOI: 10.3390/v12060592] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus (HBV) chronic infection is a critical risk factor for hepatocellular carcinoma. The innate immune response to HBV infection is a matter of debate. In particular, viral escape mechanisms are poorly understood. Our study reveals that HBV RNAs are not immunostimulatory in immunocompetent myeloid cells. In contrast, HBV DNA from viral particles and DNA replication intermediates are immunostimulatory and sensed by cyclic GMP-AMP Synthase (cGAS) and Stimulator of Interferon Genes (STING). We show that primary human hepatocytes express DNA sensors to reduced levels compared to myeloid cells. Nevertheless, hepatocytes can respond to HBV relaxed-circular DNA (rcDNA), when transfected in sufficient amounts, but not to HBV infection. Finally, our data suggest that HBV infection does not actively inhibit the DNA-sensing pathway. In conclusion, in infected hepatocytes, HBV passively evades recognition by cellular sensors of nucleic acids by (i) producing non-immunostimulatory RNAs, (ii) avoiding sensing of its DNAs by cGAS/STING without active inhibition of the pathway.
Collapse
|
36
|
Megahed FAK, Zhou X, Sun P. The Interactions between HBV and the Innate Immunity of Hepatocytes. Viruses 2020; 12:v12030285. [PMID: 32151000 PMCID: PMC7150781 DOI: 10.3390/v12030285] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection affects ~350 million people and poses a major public health problem worldwide. HBV is a major cause of cirrhosis and hepatocellular carcinoma. Fewer than 5% of HBV-infected adults (but up to 90% of HBV-infected infants and children) develop chronic HBV infection as indicated by continued, detectable expression of hepatitis B surface antigen (HBsAg) for at least 6 months after the initial infection. Increasing evidence indicates that HBV interacts with innate immunity signaling pathways of hepatocytes to suppress innate immunity. However, it is still not clear how HBV avoids monitoring by the innate immunity of hepatocytes and whether the innate immunity of hepatocytes can be effective against HBV if re-triggered. Moreover, a deep understanding of virus-host interactions is important in developing new therapeutic strategies for the treatment of HBV infection. In this review, we summarize the current knowledge regarding how HBV represses innate immune recognition, as well as recent progress with respect to in vitro models for studying HBV infection and innate immunity.
Collapse
Affiliation(s)
- Fayed Attia Koutb Megahed
- Stem Cell Research Center, Research Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China;
- Department of Nucleic Acid Researches, Genetic Engineering and Biotechnology Research Institute, General Autority-City of Scientific Researches and Technological Applications, Alexandria 21934, Egypt
| | - Xiaoling Zhou
- Stem Cell Research Center, Research Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China;
- Correspondence: (X.Z.); (P.S.)
| | - Pingnan Sun
- Stem Cell Research Center, Research Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China;
- Correspondence: (X.Z.); (P.S.)
| |
Collapse
|
37
|
Abstract
Currently, despite the use of a preventive vaccine for several decades as well as the use of effective and well-tolerated viral suppressive medications since 1998, approximately 250 million people remain infected with the virus that causes hepatitis B worldwide. Hepatitis C virus (HCV) and hepatitis B virus (HBV) are the leading causes of liver cancer and overall mortality globally, surpassing malaria and tuberculosis. Linkage to care is estimated to be very poor both in developing countries and in high-income countries, such as the United States, countries in Western Europe, and Japan. In the United States, by CDC estimates, only one-third of HBV-infected patients or less are aware of their infection. Some reasons for these low rates of surveillance, diagnosis, and treatment include the asymptomatic nature of chronic hepatitis B until the very late stages, a lack of curative therapy with a finite treatment duration, a complex natural history, and a lack of knowledge about the disease by both care providers and patients. In the last 5 years, more attention has been focused on the important topics of HBV screening, diagnosis of HBV infection, and appropriate linkage to care. There have also been rapid clinical developments toward a functional cure of HBV infection, with novel compounds currently being in various phases of progress. Despite this knowledge, many of the professional organizations provide guidelines focused only on specific questions related to the treatment of HBV infection. This focus leaves a gap for care providers on the other HBV-related issues, which include HBV's epidemiological profile, its natural history, how it interacts with other viral hepatitis diseases, treatments, and the areas that still need to be addressed in order to achieve HBV elimination by 2030. Thus, to fill these gaps and provide a more comprehensive and relevant document to regions worldwide, we have taken a global approach by using the findings of global experts on HBV as well as citing major guidelines and their various approaches to addressing HBV and its disease burden.
Collapse
|
38
|
Meng Z, Chen Y, Lu M. Advances in Targeting the Innate and Adaptive Immune Systems to Cure Chronic Hepatitis B Virus Infection. Front Immunol 2020; 10:3127. [PMID: 32117201 PMCID: PMC7018702 DOI: 10.3389/fimmu.2019.03127] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
“Functional cure” is being pursued as the ultimate endpoint of antiviral treatment in chronic hepatitis B (CHB), which is characterized by loss of HBsAg whether or not anti-HBs antibodies are present. “Functional cure” can be achieved in <10% of CHB patients with currently available therapeutic agents. The dysfunction of specific immune responses to hepatitis B virus (HBV) is considered the major cause of persistent HBV infection. Thus, modulating the host immune system to strengthen specific cellular immune reactions might help eliminate HBV. Strategies are needed to restore/enhance innate immunity and induce HBV-specific adaptive immune responses in a coordinated way. Immune and resident cells express pattern recognition receptors like TLRs and RIG I/MDA5, which play important roles in the induction of innate immunity through sensing of pathogen-associated molecular patterns (PAMPs) and bridging to adaptive immunity for pathogen-specific immune control. TLR/RIG I agonists activate innate immune responses and suppress HBV replication in vitro and in vivo, and are being investigated in clinical trials. On the other hand, HBV-specific immune responses could be induced by therapeutic vaccines, including protein (HBsAg/preS and HBcAg), DNA, and viral vector-based vaccines. More than 50 clinical trials have been performed to assess therapeutic vaccines in CHB treatment, some of which display potential effects. Most recently, using genetic editing technology to generate CAR-T or TCR-T, HBV-specific T cells have been produced to efficiently clear HBV. This review summarizes the progress in basic and clinical research investigating immunomodulatory strategies for curing chronic HBV infection, and critically discusses the rather disappointing results of current clinical trials and future strategies.
Collapse
Affiliation(s)
- Zhongji Meng
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yuanyuan Chen
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, Essen, Germany
| |
Collapse
|
39
|
Ahn J, Barber GN. STING signaling and host defense against microbial infection. Exp Mol Med 2019; 51:1-10. [PMID: 31827069 PMCID: PMC6906460 DOI: 10.1038/s12276-019-0333-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
The first line of host defense against infectious agents involves activation of innate immune signaling pathways that recognize specific pathogen-associated molecular patterns (PAMPs). Key triggers of innate immune signaling are now known to include microbial-specific nucleic acid, which is rapidly detected in the cytosol of the cell. For example, RIG-I-like receptors (RLRs) have evolved to detect viral RNA species and to activate the production of host defense molecules and cytokines that stimulate adaptive immune responses. In addition, host defense countermeasures, including the production of type I interferons (IFNs), can also be triggered by microbial DNA from bacteria, viruses and perhaps parasites and are regulated by the cytosolic sensor, stimulator of interferon genes (STING). STING-dependent signaling is initiated by cyclic dinucleotides (CDNs) generated by intracellular bacteria following infection. CDNs can also be synthesized by a cellular synthase, cGAS, following interaction with invasive cytosolic self-DNA or microbial DNA species. The importance of STING signaling in host defense is evident since numerous pathogens have developed strategies to prevent STING function. Here, we review the relevance of STING-controlled innate immune signaling in host defense against pathogen invasion, including microbial endeavors to subvert this critical process.
Collapse
Affiliation(s)
- Jeonghyun Ahn
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Glen N Barber
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
40
|
Sa-Ngiamsuntorn K, Thongsri P, Pewkliang Y, Wongkajornsilp A, Kongsomboonchoke P, Suthivanich P, Borwornpinyo S, Hongeng S. An Immortalized Hepatocyte-like Cell Line (imHC) Accommodated Complete Viral Lifecycle, Viral Persistence Form, cccDNA and Eventual Spreading of a Clinically-Isolated HBV. Viruses 2019; 11:E952. [PMID: 31623162 PMCID: PMC6832882 DOI: 10.3390/v11100952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
More than 350 million people worldwide have been persistently infected with the hepatitis B virus (HBV). Chronic HBV infection could advance toward liver cirrhosis and hepatocellular carcinoma. The intervention with prophylactic vaccine and conventional treatment could suppress HBV, but could not completely eradicate it. The major obstacle for investigating curative antiviral drugs are the incompetence of hepatocyte models that should have closely imitated natural human infection. Here, we demonstrated that an immortalized hepatocyte-like cell line (imHC) could accommodate for over 30 days the entire life cycle of HBV prepared from either established cultured cells or clinically-derived fresh isolates. Normally, imHCs had intact interferon signaling with anti-viral action. Infected imHCs responded to treatments with direct-acting antiviral drugs (DAAs) and interferons (IFNs) by diminishing HBV DNA, the covalently closed circular DNA (cccDNA) surface antigen of HBV (HBsAg, aka the Australia antigen) and the hepatitis B viral protein (HBeAg). Notably, we could observe and quantify HBV spreading from infected cells to naïve cells using an imHC co-culture model. In summary, this study constructed a convenient HBV culture model that allows the screening for novel anti-HBV agents with versatile targets, either HBV entry, replication or cccDNA formation. Combinations of agents aiming at different targets should achieve a complete HBV eradication.
Collapse
Affiliation(s)
- Khanit Sa-Ngiamsuntorn
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| | - Piyanoot Thongsri
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| | - Yongyut Pewkliang
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Adisak Wongkajornsilp
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | | | - Phichaya Suthivanich
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
41
|
Zhang Z, Wang C, Liu Z, Zou G, Li J, Lu M. Host Genetic Determinants of Hepatitis B Virus Infection. Front Genet 2019; 10:696. [PMID: 31475028 PMCID: PMC6702792 DOI: 10.3389/fgene.2019.00696] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is still a major health problem worldwide. Recently, a great number of genetic studies based on single nucleotide polymorphisms (SNPs) and genome-wide association studies have been performed to search for host determinants of the development of chronic HBV infection, clinical outcomes, therapeutic efficacy, and responses to hepatitis B vaccines, with a focus on human leukocyte antigens (HLA), cytokine genes, and toll-like receptors. In addition to SNPs, gene insertions/deletions and copy number variants are associated with infection. However, conflicting results have been obtained. In the present review, we summarize the current state of research on host genetic factors and chronic HBV infection, its clinical type, therapies, and hepatitis B vaccine responses and classify published results according to their reliability. The potential roles of host genetic determinants of chronic HBV infection identified in these studies and their clinical significance are discussed. In particular, HLAs were relevant for HBV infection and pathogenesis. Finally, we highlight the need for additional studies with large sample sizes, well-matched study designs, appropriate statistical methods, and validation in multiple populations to improve the treatment of HBV infection.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Department of Infectious Diseases, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- College of Pharmacy, Anhui Medical University, Hefei, China
| | - Changtai Wang
- Department of Infectious Diseases, the Affiliated Anqing Hospital of Anhui Medical University, Anqing, China
| | - Zhongping Liu
- Department of Infectious Diseases, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guizhou Zou
- Department of Infectious Diseases, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Li
- College of Pharmacy, Anhui Medical University, Hefei, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Duisburg-Essen, Essen, Germany
| |
Collapse
|
42
|
Zhang X, Liu B, Tang L, Su Q, Hwang N, Sehgal M, Cheng J, Ma J, Zhang X, Tan Y, Zhou Y, Duan Z, DeFilippis VR, Viswanathan U, Kulp J, Du Y, Guo JT, Chang J. Discovery and Mechanistic Study of a Novel Human-Stimulator-of-Interferon-Genes Agonist. ACS Infect Dis 2019; 5:1139-1149. [PMID: 31060350 DOI: 10.1021/acsinfecdis.9b00010] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stimulator of interferon genes (STING) is an integral ER-membrane protein that can be activated by 2'3'-cGAMP synthesized by cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) upon binding of double-stranded DNA. It activates interferon (IFN) and inflammatory cytokine responses to defend against infection by microorganisms. Pharmacologic activation of STING has been demonstrated to induce an antiviral state and boost antitumor immunity. We previously reported a cell-based high-throughput-screening assay that allowed for identification of small-molecule cGAS-STING-pathway agonists. We report herein a compound, 6-bromo-N-(naphthalen-1-yl)benzo[d][1,3]dioxole-5-carboxamide (BNBC), that induces a proinflammatory cytokine response in a human-STING-dependent manner. Specifically, we showed that BNBC induced type I and III IFN dominant cytokine responses in primary human fibroblasts and peripheral-blood mononuclear cells (PBMCs). BNBC also induced cytokine response in PBMC-derived myeloid dendritic cells and promoted their maturation, suggesting that STING-agonist treatment could potentially regulate the activation of CD4+ and CD8+ T lymphocytes. As anticipated, treatment of primary human fibroblast cells with BNBC induced an antiviral state that inhibited the infection of several kinds of flaviviruses. Taken together, our results indicate that BNBC is a human-STING agonist that not only induces innate antiviral immunity against a broad spectrum of viruses but may also stimulate the activation of adaptive immune responses, which is important for the treatment of chronic viral infections and tumors.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, 8 Xitoutiao, Fengtai, Beijing 100069, China
| | - Bowei Liu
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
- Department of Gastroenterology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, 7 Weiwu Road, Jinshui, Zhengzhou, Henan 450016, China
| | - Liudi Tang
- Microbiology and Immunology Graduate Program, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, Pennsylvania 19129, United States
| | - Qing Su
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Nicky Hwang
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Mohit Sehgal
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Junjun Cheng
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Julia Ma
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Xuexiang Zhang
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Yinfei Tan
- Genomics Facilities, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111, United States
| | - Yan Zhou
- Bioinformatics and Biostatistics Facility, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111, United States
| | - Zhongping Duan
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, 8 Xitoutiao, Fengtai, Beijing 100069, China
| | - Victor R. DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, United States
| | - Usha Viswanathan
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - John Kulp
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Yanming Du
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Ju-Tao Guo
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Jinhong Chang
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
43
|
Yang S, Yin Y, Xu W, Zhang X, Gao Y, Liao H, Hu X, Wang J, Wang H. Type I interferon induced by DNA of nontypeable Haemophilus influenza modulates inflammatory cytokine profile to promote susceptibility to this bacterium. Int Immunopharmacol 2019; 74:105710. [PMID: 31255879 DOI: 10.1016/j.intimp.2019.105710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022]
Abstract
Type I interferon (IFN) is indispensable for antiviral immunity, but its role in bacterial infections is controversial and not fully described. Nontypeable Haemophilus influenzae (NTHi) is one of the most common bacterial pathogens in patients with chronic obstructive pulmonary disease (COPD). NTHi-DNA activates type I IFN production in macrophages, but the function of type I IFN in host-pathogen interactions, in the context of NTHi infection, is still unclear. Here, we showed that type I IFN, induced by NTHi-DNA, restrained bacterial killing in vitro and promoted COPD development in vivo in response to NTHi. Mice deficient for type I IFN receptor (IFNAR) exhibited improved resistance to NTHi infection. Moreover, similar to exogenous IFN-β, NTHi-DNA-induced type I IFN increased the production of IL-6, IL-1β, IL-12 and CXCL10 via p38 MAPK activation. Our findings demonstrated that NTHi-DNA-induced type I IFN signaling played a negative role in host defense against NTHi infection and identified potential targets for future therapeutic management of COPD.
Collapse
Affiliation(s)
- Shenghui Yang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenchun Xu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yue Gao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hongyi Liao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuexue Hu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jian Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
44
|
Bai J, Liu F. The cGAS-cGAMP-STING Pathway: A Molecular Link Between Immunity and Metabolism. Diabetes 2019; 68:1099-1108. [PMID: 31109939 PMCID: PMC6610018 DOI: 10.2337/dbi18-0052] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
It has been appreciated for many years that there is a strong association between metabolism and immunity in advanced metazoan organisms. Distinct immune signatures and signaling pathways have been found not only in immune but also in metabolic cells. The newly discovered DNA-sensing cGAS-cGAMP-STING pathway mediates type I interferon inflammatory responses in immune cells to defend against viral and bacterial infections. Recent studies show that this pathway is also activated by host DNA aberrantly localized in the cytosol, contributing to increased sterile inflammation, insulin resistance, and the development of nonalcoholic fatty liver disease (NAFLD). Potential interactions of the cGAS-cGAMP-STING pathway with mTORC1 signaling, autophagy, and apoptosis have been reported, suggesting an important role of the cGAS-cGAMP-STING pathway in the networking and coordination of these important biological processes. However, the regulation, mechanism of action, and tissue-specific role of the cGAS-cGAMP-STING signaling pathway in metabolic disorders remain largely elusive. It is also unclear whether targeting this signaling pathway is effective for the prevention and treatment of obesity-induced metabolic diseases. Answers to these questions would provide new insights for developing effective therapeutic interventions for metabolic diseases such as insulin resistance, NAFLD, and type 2 diabetes.
Collapse
Affiliation(s)
- Juli Bai
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX
| | - Feng Liu
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX
| |
Collapse
|
45
|
Mandato C, Guercio Nuzio S, Vajro P. Hepatitis B virus and the paediatric liver: waiting for news on the horizon. Acta Paediatr 2019; 108:989-991. [PMID: 30868651 DOI: 10.1111/apa.14764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Claudia Mandato
- Department of Pediatrics Children's Hospital Santobono‐Pausilipon Naples Italy
| | - Salvatore Guercio Nuzio
- Pediatrics Section “Scuola Medica Salernitana” University of Salerno ‐ Department of Medicine, Surgery and Dentistry Baronissi (Salerno) Italy
| | - Pietro Vajro
- Pediatrics Section “Scuola Medica Salernitana” University of Salerno ‐ Department of Medicine, Surgery and Dentistry Baronissi (Salerno) Italy
| |
Collapse
|
46
|
Cellular DNA Topoisomerases Are Required for the Synthesis of Hepatitis B Virus Covalently Closed Circular DNA. J Virol 2019; 93:JVI.02230-18. [PMID: 30867306 DOI: 10.1128/jvi.02230-18] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/01/2019] [Indexed: 12/18/2022] Open
Abstract
In order to identify host cellular DNA metabolic enzymes that are involved in the biosynthesis of hepatitis B virus (HBV) covalently closed circular (ccc) DNA, we developed a cell-based assay supporting synchronized and rapid cccDNA synthesis from intracellular progeny nucleocapsid DNA. This was achieved by arresting HBV DNA replication in HepAD38 cells with phosphonoformic acid (PFA), a reversible HBV DNA polymerase inhibitor, at the stage of single-stranded DNA and was followed by removal of PFA to allow the synchronized synthesis of relaxed circular DNA (rcDNA) and subsequent conversion into cccDNA within 12 to 24 h. This cccDNA formation assay allows systematic screening of the effects of small molecular inhibitors of DNA metabolic enzymes on cccDNA synthesis but avoids cytotoxic effects upon long-term treatment. Using this assay, we found that all the tested topoisomerase I and II (TOP1 and TOP2, respectively) poisons as well as topoisomerase II DNA binding and ATPase inhibitors significantly reduced the levels of cccDNA. It was further demonstrated that these inhibitors also disrupted cccDNA synthesis during de novo HBV infection of HepG2 cells expressing sodium taurocholate cotransporting polypeptide (NTCP). Mechanistic analyses indicate that whereas TOP1 inhibitor treatment prevented the production of covalently closed negative-strand rcDNA, TOP2 inhibitors reduced the production of this cccDNA synthesis intermediate to a lesser extent. Moreover, small interfering RNA (siRNA) knockdown of topoisomerase II significantly reduced cccDNA amplification. Taking these observations together, our study demonstrates that topoisomerase I and II may catalyze distinct steps of HBV cccDNA synthesis and that pharmacologic targeting of these cellular enzymes may facilitate the cure of chronic hepatitis B.IMPORTANCE Persistent HBV infection relies on stable maintenance and proper functioning of a nuclear episomal form of the viral genome called cccDNA, the most stable HBV replication intermediate. One of the major reasons for the failure of currently available antiviral therapeutics to cure chronic HBV infection is their inability to eradicate or inactivate cccDNA. We report here a chemical genetics approach to identify host cellular factors essential for the biosynthesis and maintenance of cccDNA and reveal that cellular DNA topoisomerases are required for both de novo synthesis and intracellular amplification of cccDNA. This approach is suitable for systematic screening of compounds targeting cellular DNA metabolic enzymes and chromatin remodelers for their ability to disrupt cccDNA biosynthesis and function. Identification of key host factors required for cccDNA metabolism and function will reveal molecular targets for developing curative therapeutics of chronic HBV infection.
Collapse
|
47
|
Hu J, Cheng J, Tang L, Hu Z, Luo Y, Li Y, Zhou T, Chang J, Guo JT. Virological Basis for the Cure of Chronic Hepatitis B. ACS Infect Dis 2019; 5:659-674. [PMID: 29893548 DOI: 10.1021/acsinfecdis.8b00081] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus (HBV) has infected one-third of world population, and 240 million people are chronic carriers, to whom a curative therapy is still not available. Similar to other viruses, persistent HBV infection relies on the virus to exploit host cell functions to support its replication and efficiently evade host innate and adaptive antiviral immunity. Understanding HBV replication and concomitant host cell interactions is thus instrumental for development of therapeutics to disrupt the virus-host interactions critical for its persistence and cure chronic hepatitis B. Although the currently available cell culture systems of HBV infection are refractory to genome-wide high throughput screening of key host cellular factors essential for and/or regulating HBV replication, classic one-gene (or pathway)-at-a-time studies in the last several decades have already revealed many aspects of HBV-host interactions. An overview of the landscape of HBV-hepatocyte interaction indicates that, in addition to more tightly suppressing viral replication by directly targeting viral proteins, disruption of key viral-host cell interactions to eliminate or inactivate the covalently closed circular (ccc) DNA, the most stable HBV replication intermediate that exists as an episomal minichromosome in the nucleus of infected hepatocyte, is essential to achieve a functional cure of chronic hepatitis B. Moreover, therapeutic targeting of integrated HBV DNA and their transcripts may also be required to induce hepatitis B virus surface antigen (HBsAg) seroclearance and prevent liver carcinogenesis.
Collapse
Affiliation(s)
- Jin Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, 1 Tian-tan Xi-li, Beijing, 100050, China
| | - Junjun Cheng
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Liudi Tang
- Microbiology and Immunology Graduate Program, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, Pennsylvania 19129, United States
| | - Zhanying Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Yue Luo
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
- Institute of Hepatology, Second Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Yuhuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, 1 Tian-tan Xi-li, Beijing, 100050, China
| | - Tianlun Zhou
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Jinhong Chang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
48
|
Zhang X, Cheng J, Ma J, Hu Z, Wu S, Hwang N, Kulp J, Du Y, Guo JT, Chang J. Discovery of Novel Hepatitis B Virus Nucleocapsid Assembly Inhibitors. ACS Infect Dis 2019; 5:759-768. [PMID: 30525438 DOI: 10.1021/acsinfecdis.8b00269] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) core protein is a small protein with 183 amino acid residues and assembles the pregenomic (pg) RNA and viral DNA polymerase to form nucleocapsids. During the last decades, several groups have reported HBV core protein allosteric modulators (CpAMs) with distinct chemical structures. CpAMs bind to the hydrophobic HAP pocket located at the dimer-dimer interface and induce allosteric conformational changes in the core protein subunits. While Type I CpAMs, heteroaryldihydropyrimidine (HAP) derivatives, misdirect core protein dimers to assemble noncapsid polymers, Type II CpAMs, represented by sulfamoylbenzamides, phenylpropenamides, and several other chemotypes, induce the assembly of empty capsids with global structural alterations and faster mobility in native agarose gel electrophoresis. Through high throughput screening of an Asinex small molecule library containing 19 920 compounds, we identified 8 structurally distinct CpAMs. While 7 of those compounds are typical Type II CpAMs, a novel benzamide derivative, designated as BA-53038B, induced the formation of morphologically "normal" empty capsids with slow electrophoresis mobility. Drug resistant profile analyses indicated that BA-53038B most likely bound to the HAP pocket but obviously modulated HBV capsid assembly in a distinct manner. BA-53038B and other CpAMs reported herein provide novel structure scaffolds for the development of core protein-targeted antiviral agents for the treatment of chronic hepatitis B.
Collapse
Affiliation(s)
- Xuexiang Zhang
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - Junjun Cheng
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - Julia Ma
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - Zhanying Hu
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - Shuo Wu
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - Nicky Hwang
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - John Kulp
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - Yanming Du
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - Jinhong Chang
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
49
|
Tang L, Sheraz M, McGrane M, Chang J, Guo JT. DNA Polymerase alpha is essential for intracellular amplification of hepatitis B virus covalently closed circular DNA. PLoS Pathog 2019; 15:e1007742. [PMID: 31026293 PMCID: PMC6505960 DOI: 10.1371/journal.ppat.1007742] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/08/2019] [Accepted: 03/29/2019] [Indexed: 02/07/2023] Open
Abstract
Persistent hepatitis B virus (HBV) infection relies on the establishment and maintenance of covalently closed circular (ccc) DNA, a 3.2 kb episome that serves as a viral transcription template, in the nucleus of an infected hepatocyte. Although evidence suggests that cccDNA is the repair product of nucleocapsid associated relaxed circular (rc) DNA, the cellular DNA polymerases involving in repairing the discontinuity in both strands of rcDNA as well as the underlying mechanism remain to be fully understood. Taking a chemical genetics approach, we found that DNA polymerase alpha (Pol α) is essential for cccDNA intracellular amplification, a genome recycling pathway that maintains a stable cccDNA pool in infected hepatocytes. Specifically, inhibition of Pol α by small molecule inhibitors aphidicolin or CD437 as well as silencing of Pol α expression by siRNA led to suppression of cccDNA amplification in human hepatoma cells. CRISPR-Cas9 knock-in of a CD437-resistant mutation into Pol α genes completely abolished the effect of CD437 on cccDNA formation, indicating that CD437 directly targets Pol α to disrupt cccDNA biosynthesis. Mechanistically, Pol α is recruited to HBV rcDNA and required for the generation of minus strand covalently closed circular rcDNA, suggesting that Pol α is involved in the repair of the minus strand DNA nick in cccDNA synthesis. Our study thus reveals that the distinct host DNA polymerases are hijacked by HBV to support the biosynthesis of cccDNA from intracellular amplification pathway compared to that from de novo viral infection, which requires Pol κ and Pol λ. CCC DNA is the most refractory HBV replication intermediate under long-term antiviral therapies and is responsible for the viral rebound after treatment cessation. Therefore, understanding the biosynthesis and maintenance of cccDNA minichromosome is crucial for the development of novel antiviral therapeutics to cure chronic HBV infection. Although it has been clearly demonstrated that cccDNA biosynthesis relies on host cellular DNA repair machinery, the molecular pathways that convert rcDNA into cccDNA remain to be identified. Here we report that DNA polymerase alpha (Pol α) as well as Pol δ and ɛ are required for converting rcDNA into cccDNA through intracellular cccDNA amplification. This finding adds novel molecular insights on cccDNA biosynthesis. Further understanding the mechanism of cccDNA synthesis should reveal molecular targets for developing therapeutic agents to eradicate cccDNA and cure chronic hepatitis B.
Collapse
Affiliation(s)
- Liudi Tang
- Microbiology and Immunology Graduate Program, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Muhammad Sheraz
- Microbiology and Immunology Graduate Program, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Michael McGrane
- FlowMetric Diagnostics, Doylestown, PA, United States of America
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Doylestown, PA, United States of America
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, PA, United States of America
- * E-mail:
| |
Collapse
|
50
|
Wu CS, Zhao Q, Zhang J, Wang JW, Qian Y, Fan YC, Wang K. Methylation status of the stimulator of interferon genes promoter in patients with chronic hepatitis B. Medicine (Baltimore) 2018; 97:e13904. [PMID: 30593207 PMCID: PMC6314766 DOI: 10.1097/md.0000000000013904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The stimulator of interferon genes (STING) plays a crucial role in the recognition of a viral infection and subsequent stimulation of an immune response. However, it is unclear whether methylation of the STING promoter affects STING transcription and response to antiviral therapy. The present study determined the methylation status of the STING promoter in patients with chronic hepatitis B (CHB).This study included 198 participants, of which 159 participants had CHB and 39 were healthy controls (HCs). Methylation-specific polymerase chain reaction was performed to detect the methylation status of the STING promoter. Reverse transcription-quantitative polymerase chain reaction was performed to determine STING mRNA level in peripheral blood mononuclear cells.The methylation frequency of the STING promoter was significantly higher and STING mRNA level was lower in the patients with CHB than in the HCs. Presence of hepatitis B virus (HBV) DNA was independently correlated with an increased risk of STING promoter methylation. Virological response frequency was higher in the patients with CHB receiving entecavir (ETV) than in those receiving adefovir (ADV). In the ETV group, the virological response frequency was evidently lower in the patients with CHB having methylated STING promoters than in those having unmethylated STING promoters. However, there was no significant difference in the virological response frequency between ADV-treated patients having methylated and unmethylated STING promoters.These results indicate that the hypermethylation of the STING promoter and thus the transcriptional repression of STING weaken the effect of STING in inhibiting HBV replication and decreases the effectiveness of antiviral therapy.
Collapse
Affiliation(s)
- Chen-Si Wu
- Department of Hepatology, Qilu Hospital of Shandong University
| | - Qian Zhao
- Department of Hepatology, Qilu Hospital of Shandong University
| | - Jun Zhang
- Department of Hepatology, Qilu Hospital of Shandong University
| | - Jing-Wen Wang
- Department of Hepatology, Qilu Hospital of Shandong University
| | - Yu Qian
- Department of Hepatology, Qilu Hospital of Shandong University
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University
- Institute of Hepatology, Shandong University, Jinan, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University
- Institute of Hepatology, Shandong University, Jinan, China
| |
Collapse
|