1
|
Attiq A. Early-life antibiotic exposures: Paving the pathway for dysbiosis-induced disorders. Eur J Pharmacol 2025; 991:177298. [PMID: 39864578 DOI: 10.1016/j.ejphar.2025.177298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/06/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Microbiota encompasses a diverse array of microorganisms inhabiting specific ecological niches. Gut microbiota significantly influences physiological processes, including gastrointestinal motor function, neuroendocrine signalling, and immune regulation. They play a crucial role in modulating the central nervous system and bolstering body defence mechanisms by influencing the proliferation and differentiation of innate and adaptive immune cells. Given the potential consequences of antibiotic therapy on gut microbiota equilibrium, there is a need for prudent antibiotic use to mitigate associated risks. Observational studies have linked increased antibiotic usage to various pathogenic conditions, including obesity, inflammatory bowel disease, anxiety-like effects, asthma, and pulmonary carcinogenesis. Addressing dysbiosis incidence requires proactive measures, including prophylactic use of β-lactamase drugs (SYN-004, SYN-006, and SYN-007), hydrolysing the β-lactam in the proximal GIT for maintaining intestinal flora homeostasis. Prebiotic and probiotic supplementations are crucial in restoring intestinal flora equilibrium by competing with pathogenic bacteria for nutritional resources and adhesion sites, reducing luminal pH, neutralising toxins, and producing antimicrobial agents. Faecal microbiota transplantation (FMT) shows promise in restoring gut microbiota composition. Rational antibiotic use is essential to preserve microflora and improve patient compliance with antibiotic regimens by mitigating associated side effects. Given the significant implications on gut microbiota composition, concerted intervention strategies must be pursued to rectify and reverse the occurrence of antibiotic-induced dysbiosis. Here, antibiotics-induced microbiota dysbiosis mechanisms and their systemic implications are reviewed. Moreover, proposed interventions to mitigate the impact on gut microflora are also discussed herein.
Collapse
Affiliation(s)
- Ali Attiq
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia.
| |
Collapse
|
2
|
Matzaras R, Nikopoulou A, Protonotariou E, Christaki E. Gut Microbiota Modulation and Prevention of Dysbiosis as an Alternative Approach to Antimicrobial Resistance: A Narrative Review. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:479-494. [PMID: 36568836 PMCID: PMC9765331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: The importance of gut microbiota in human health is being increasingly studied. Imbalances in gut microbiota have been associated with infection, inflammation, and obesity. Antibiotic use is the most common and significant cause of major alterations in the composition and function of the gut microbiota and can result in colonization with multidrug-resistant bacteria. Methods: The purpose of this review is to present existing evidence on how microbiota modulation and prevention of gut dysbiosis can serve as tools to combat antimicrobial resistance. Results: While the spread of antibiotic-resistant pathogens requires antibiotics with novel mechanisms of action, the number of newly discovered antimicrobial classes remains very low. For this reason, the application of alternative modalities to combat antimicrobial resistance is necessary. Diet, probiotics/prebiotics, selective oropharyngeal or digestive decontamination, and especially fecal microbiota transplantation (FMT) are under investigation with FMT being the most studied. But, as prevention is better than cure, the implementation of antimicrobial stewardship programs and strict infection control measures along with newly developed chelating agents could also play a crucial role in decreasing colonization with multidrug resistant organisms. Conclusion: New alternative tools to fight antimicrobial resistance via gut microbiota modulation, seem to be effective and should remain the focus of further research and development.
Collapse
Affiliation(s)
- Rafail Matzaras
- Infectious Diseases Unit, Department of Medicine,
University General Hospital of Ioannina, University of Ioannina, Ioannina,
Greece
| | - Anna Nikopoulou
- Department of Internal Medicine, G. Papanikolaou
General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Efthimia Protonotariou
- Department of Microbiology, AHEPA University Hospital,
Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eirini Christaki
- Infectious Diseases Unit, Department of Medicine,
University General Hospital of Ioannina, University of Ioannina, Ioannina,
Greece,To whom all correspondence should be addressed:
Eirini Christaki, University General Hospital of Ioannina, St. Niarchou,
Ioannina, Greece; ; ORCID:
https://www.orcid.org/0000-0002-8152-6367
| |
Collapse
|
3
|
Morley VJ, Sim DG, Penkevich A, Woods RJ, Read AF. An orally administered drug prevents selection for antibiotic-resistant bacteria in the gut during daptomycin therapy. Evol Med Public Health 2022; 10:439-446. [PMID: 36118914 PMCID: PMC9472784 DOI: 10.1093/emph/eoac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/16/2022] [Indexed: 12/15/2022] Open
Abstract
Background and objectives Previously, we showed proof-of-concept in a mouse model that oral administration of cholestyramine prevented enrichment of daptomycin-resistant Enterococcus faecium in the gastrointestinal (GI) tract during daptomycin therapy. Cholestyramine binds daptomycin in the gut, which removes daptomycin selection pressure and so prevents the enrichment of resistant clones. Here, we investigated two open questions related to this approach: (i) can cholestyramine prevent the enrichment of diverse daptomycin mutations emerging de novo in the gut? and (ii) how does the timing of cholestyramine administration impact its ability to suppress resistance? Methodology Mice with GI E. faecium were treated with daptomycin with or without cholestyramine, and E. faecium was cultured from feces to measure changes in daptomycin susceptibility. A subset of clones was sequenced to investigate the genomic basis of daptomycin resistance. Results Cholestyramine prevented the enrichment of diverse resistance mutations that emerged de novo in daptomycin-treated mice. Whole-genome sequencing revealed that resistance emerged through multiple genetic pathways, with most candidate resistance mutations observed in the clsA gene. In addition, we observed that cholestyramine was most effective when administration started prior to the first dose of daptomycin. However, beginning cholestyramine after the first daptomycin dose reduced the frequency of resistant E. faecium compared to not using cholestyramine at all. Conclusions and implications Cholestyramine prevented the enrichment of diverse daptomycin-resistance mutations in intestinal E. faecium populations during daptomycin treatment, and it is a promising tool for managing the transmission of daptomycin-resistant E. faecium.
Collapse
Affiliation(s)
- Valerie J Morley
- Corresponding author. Nature's Toolbox Inc. (NTx), 7701 Innovation Way, Rio Rancho, NM 87144, USA. E-mail:
| | - Derek G Sim
- Department of Biology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Aline Penkevich
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Robert J Woods
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Andrew F Read
- Department of Biology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA,Department of Entomology, The Pennsylvania State University, University Park, PA, USA,Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
4
|
Therapeutic Values of Earthworm Species Extract from Azad Kashmir as Anticoagulant, Antibacterial, and Antioxidant Agents. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:6949117. [PMID: 35228854 PMCID: PMC8882052 DOI: 10.1155/2022/6949117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 11/23/2022]
Abstract
Aims Current research aimed to explore the therapeutic values of different earthworms as antibacterial, anticoagulant, and antioxidant agents. Methods Ten different earthworms, i.e., Amynthas corticis, Amynthas gracilis, Pheretima posthuma, Eisenia fetida, Aporrectodea rosea, Allolobophora chlorotica, Aporrectodea trapezoides, Polypheretima elongata, Aporrectodea caliginosa, and Pheretima hawayana, were collected and screened for biological activities. Antibacterial effect analysis of earthworm species was done against fourteen bacterial pathogens, i.e., Escherichia coli, Serratia marcescens, Streptococcus pyogenes, Staphylococcus epidermidis, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa (1), Salmonella typhimurium, Shigella flexneri, Enterobacter amnigenus, Serratia odorifera, Pseudomonas aeruginosa (2), Staphylococcus warneri, and Lactobacillus curvatus, via agar well diffusion, crystal violet, MTT, agar disc diffusion, and direct bioautography assays. Antioxidant potential was evaluated through ABTS and DPPH assays. Lipolytic, proteolytic, and amylolytic assays were done for lipase, protease, and amylase enzymes confirmation. In vitro anticoagulant effects were examined in the blood samples by measuring prothrombin time. Results Results revealed that all earthworm extracts showed the inhibition of all tested bacterial pathogens except P. aeruginosa (1), P. aeruginosa (2), S. warneri, and L. curvatus. The maximum zone of inhibition of E. coli was recorded as 14.66 ± 0.57 mm by A. corticis, 25.0 ± 0.0 mm by P. posthuma, 20.0 ± 0.0 mm by E. fetida, and 20.0 ± 0.0 mm by A. trapezoid. Cell proliferation, biofilm inhibition, the synergistic effect of extracts along with antibiotics, and direct bioautography supported the results of agar well diffusion assay. Similarly, P. hawayana, A. corticis, A. caliginosa, and A. trapezoids increase the prothrombin time more efficiently compared to other earthworms. A. corticis, A. gracilis, A. rosea, A. chlorotica, P. elongata, and A. trapezoides showed maximum DPPH scavenging potential effect. Conclusions The coelomic fluid of earthworms possessed several bioactive compounds/enzymes/antioxidants that play an important role in the bacterial inhibition and act as anticoagulant agents. Therefore, the development of new therapeutic drugs from invertebrates could be effective and potential for the prevention of the emergence of multidrug-resistant bacteria.
Collapse
|
5
|
Living fabrication of functional semi-interpenetrating polymeric materials. Nat Commun 2021; 12:3422. [PMID: 34103521 PMCID: PMC8187375 DOI: 10.1038/s41467-021-23812-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 05/11/2021] [Indexed: 01/02/2023] Open
Abstract
Cell-mediated living fabrication has great promise for generating materials with versatile, programmable functions. Here, we demonstrate the engineering of living materials consisting of semi-interpenetrating polymer networks (sIPN). The fabrication process is driven by the engineered bacteria encapsulated in a polymeric microcapsule, which serves as the initial scaffold. The bacteria grow and undergo programmed lysis in a density-dependent manner, releasing protein monomers decorated with reactive tags. Those protein monomers polymerize with each other to form the second polymeric component that is interlaced with the initial crosslinked polymeric scaffold. The formation of sIPN serves the dual purposes of enhancing the mechanical property of the living materials and anchoring effector proteins for diverse applications. The material is resilient to perturbations because of the continual assembly of the protein mesh from the monomers released by the engineered bacteria. We demonstrate the adoption of the platform to protect gut microbiota in animals from antibiotic-mediated perturbations. Our work lays the foundation for programming functional living materials for diverse applications.
Collapse
|
6
|
Abstract
We examine 3 different approaches to protecting the gut microbiome: highly targeted antibiotics, antibiotic destruction, and antibiotic binding. Each approach shows promise to prevent the off-target effects of antibiotics on the gut microbiome.
Collapse
Affiliation(s)
- C M Rooney
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom.,Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds General Infirmary, Leeds, United Kingdom
| | - S Ahmed
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom.,Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds General Infirmary, Leeds, United Kingdom
| | - M H Wilcox
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom.,Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds General Infirmary, Leeds, United Kingdom
| |
Collapse
|
7
|
Andremont A, Cervesi J, Bandinelli PA, Vitry F, de Gunzburg J. Spare and repair the gut microbiota from antibiotic-induced dysbiosis: state-of-the-art. Drug Discov Today 2021; 26:2159-2163. [PMID: 33639249 DOI: 10.1016/j.drudis.2021.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 02/08/2023]
Abstract
Homeostasis of the intestinal microbiota is currently recognized as a major contributor to human health. Furthermore, intestinal dysbiosis is associated with a multitude of consequences, including intestinal colonization by antibiotic-resistant or pathogenic bacteria, such as Clostridioides difficile, and reduced efficacy of promising anticancer immunotherapies. By far, the most immediate and drastic exposure leading to dysbiosis is antibiotic treatment. Many attempts have been made to prevent or repair antibiotic-associated dysbiosis. Here, we review these innovations and the difficulties associated with their development.
Collapse
Affiliation(s)
- Antoine Andremont
- Da Volterra, Paris, France; Université de Paris, IAME, INSERM, Paris, France.
| | | | | | | | | |
Collapse
|
8
|
Morley VJ, Kinnear CL, Sim DG, Olson SN, Jackson LM, Hansen E, Usher GA, Showalter SA, Pai MP, Woods RJ, Read AF. An adjunctive therapy administered with an antibiotic prevents enrichment of antibiotic-resistant clones of a colonizing opportunistic pathogen. eLife 2020; 9:e58147. [PMID: 33258450 PMCID: PMC7707840 DOI: 10.7554/elife.58147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022] Open
Abstract
A key challenge in antibiotic stewardship is figuring out how to use antibiotics therapeutically without promoting the evolution of antibiotic resistance. Here, we demonstrate proof of concept for an adjunctive therapy that allows intravenous antibiotic treatment without driving the evolution and onward transmission of resistance. We repurposed the FDA-approved bile acid sequestrant cholestyramine, which we show binds the antibiotic daptomycin, as an 'anti-antibiotic' to disable systemically-administered daptomycin reaching the gut. We hypothesized that adjunctive cholestyramine could enable therapeutic daptomycin treatment in the bloodstream, while preventing transmissible resistance emergence in opportunistic pathogens colonizing the gastrointestinal tract. We tested this idea in a mouse model of Enterococcus faecium gastrointestinal tract colonization. In mice treated with daptomycin, adjunctive cholestyramine therapy reduced the fecal shedding of daptomycin-resistant E. faecium by up to 80-fold. These results provide proof of concept for an approach that could reduce the spread of antibiotic resistance for important hospital pathogens.
Collapse
Affiliation(s)
- Valerie J Morley
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Clare L Kinnear
- Division of Infectious Diseases, Department of Internal Medicine, University of MichiganAnn ArborUnited States
| | - Derek G Sim
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Samantha N Olson
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Lindsey M Jackson
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Elsa Hansen
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Grace A Usher
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Scott A Showalter
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity ParkUnited States
- Department of Chemistry, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Manjunath P Pai
- Department of Clinical Pharmacy, College of Pharmacy, University of MichiganAnn ArborUnited States
| | - Robert J Woods
- Division of Infectious Diseases, Department of Internal Medicine, University of MichiganAnn ArborUnited States
| | - Andrew F Read
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State UniversityUniversity ParkUnited States
- Huck Institutes for the Life Sciences, The Pennsylvania State UniversityUniversity ParkUnited States
- Department of Entomology, The Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
9
|
Follow your Gut: Microbiome-Based Approaches in the Developmental Pipeline for the Prevention and Adjunctive Treatment of Clostridioides difficile Infection (CDI). Curr Infect Dis Rep 2020. [DOI: 10.1007/s11908-020-00729-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Antibiotic Degradation by Commensal Microbes Shields Pathogens. Infect Immun 2020; 88:IAI.00012-20. [PMID: 31964746 DOI: 10.1128/iai.00012-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 01/14/2020] [Indexed: 02/08/2023] Open
Abstract
The complex bacterial populations that constitute the gut microbiota can harbor antibiotic resistance genes (ARGs), including those encoding β-lactamase enzymes (BLA), which degrade commonly prescribed antibiotics such as ampicillin. The prevalence of such genes in commensal bacteria has been increased in recent years by the wide use of antibiotics in human populations and in livestock. While transfer of ARGs between bacterial species has well-established dramatic public health implications, these genes can also function in trans within bacterial consortia, where antibiotic-resistant bacteria can provide antibiotic-sensitive neighbors with leaky protection from drugs, as shown both in vitro and in vivo, in models of lung and subcutaneous coinfection. However, whether the expression of ARGs by harmless commensal bacterial species can destroy antibiotics in the intestinal lumen and shield antibiotic-sensitive pathogens is unknown. To address this question, we colonized germfree or wild-type mice with a model intestinal commensal strain of Escherichia coli that produces either functional or defective BLA. Mice were subsequently infected with Listeria monocytogenes or Clostridioides difficile, followed by treatment with oral ampicillin. The production of functional BLA by commensal E. coli markedly reduced clearance of these pathogens and enhanced systemic dissemination during ampicillin treatment. Pathogen resistance was independent of ARG acquisition via horizontal gene transfer but instead relied on antibiotic degradation in the intestinal lumen by BLA. We conclude that commensal bacteria that have acquired ARGs can mediate shielding of pathogens from the bactericidal effects of antibiotics.
Collapse
|
11
|
Morley VJ, Woods RJ, Read AF. Bystander Selection for Antimicrobial Resistance: Implications for Patient Health. Trends Microbiol 2019; 27:864-877. [PMID: 31288975 PMCID: PMC7079199 DOI: 10.1016/j.tim.2019.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/29/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022]
Abstract
Antimicrobial therapy promotes resistance emergence in target infections and in off-target microbiota. Off-target resistance emergence threatens patient health when off-target populations are a source of future infections, as they are for many important drug-resistant pathogens. However, the health risks of antimicrobial exposure in off-target populations remain largely unquantified, making rational antibiotic stewardship challenging. Here, we discuss the contribution of bystander antimicrobial exposure to the resistance crisis, the implications for antimicrobial stewardship, and some novel opportunities to limit resistance evolution while treating target pathogens.
Collapse
Affiliation(s)
- Valerie J Morley
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, The Pennsylvania State University, University Park, PA, USA.
| | - Robert J Woods
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Andrew F Read
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, The Pennsylvania State University, University Park, PA, USA; Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
12
|
Use of ribaxamase (SYN-004), a β-lactamase, to prevent Clostridium difficile infection in β-lactam-treated patients: a double-blind, phase 2b, randomised placebo-controlled trial. THE LANCET. INFECTIOUS DISEASES 2019; 19:487-496. [DOI: 10.1016/s1473-3099(18)30731-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/18/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022]
|
13
|
Tran MCN, Kullar R, Goldstein EJC. Investigational drug therapies currently in early-stage clinical development for the treatment of clostridioides (clostridium) difficile infection. Expert Opin Investig Drugs 2019; 28:323-335. [DOI: 10.1080/13543784.2019.1581763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mai-Chi N. Tran
- Department of Pharmacy, Providence St. John’s Health Center, Santa Monica,
CA, USA
- Department of Pharmacy, Clinica Juan Pablo Medical Group, Los Angeles,
CA, USA
| | | | - Ellie J. C. Goldstein
- R M Alden Research Laboratory, Santa Monica,
CA, USA
- David Geffen School of Medicine, Los Angeles,
CA, USA
| |
Collapse
|
14
|
Pouch SM, Friedman-Moraco RJ. Prevention and Treatment of Clostridium difficile-Associated Diarrhea in Solid Organ Transplant Recipients. Infect Dis Clin North Am 2018; 32:733-748. [PMID: 30146033 DOI: 10.1016/j.idc.2018.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Clostridium difficile infection is a significant cause of morbidity and mortality in solid organ transplant recipients. Risk factors in this population include frequent hospitalizations, receipt of immunosuppressive agents, and intestinal dysbiosis triggered by several factors, including exposure to broad-spectrum antimicrobials. The incidence and potential for significant adverse outcomes among solid organ transplant recipients with C difficile infection highlight the evolving need for strategic C difficile infection risk factor modification and novel approaches to disease management in this patient population. This review focuses on current concepts related to the prevention and treatment of C difficile infection in solid organ transplant recipients.
Collapse
Affiliation(s)
- Stephanie M Pouch
- Division of Infectious Diseases, Emory University School of Medicine, 101 Woodruff Circle, WMB #2101, Atlanta, GA 30322, USA.
| | - Rachel J Friedman-Moraco
- Division of Infectious Diseases, Emory University School of Medicine, 101 Woodruff Circle, WMB #2101, Atlanta, GA 30322, USA
| |
Collapse
|
15
|
Hourigan SK, Subramanian P, Hasan NA, Ta A, Klein E, Chettout N, Huddleston K, Deopujari V, Levy S, Baveja R, Clemency NC, Baker RL, Niederhuber JE, Colwell RR. Comparison of Infant Gut and Skin Microbiota, Resistome and Virulome Between Neonatal Intensive Care Unit (NICU) Environments. Front Microbiol 2018; 9:1361. [PMID: 29988506 PMCID: PMC6026636 DOI: 10.3389/fmicb.2018.01361] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/05/2018] [Indexed: 01/08/2023] Open
Abstract
Background: There is a growing move to provide care for premature infants in a single family, private room neonatal intensive care unit (NICU) in place of the traditional shared space, open bay NICU. The resultant effect on the developing neonatal microbiota is unknown. Study Design: Stool and groin skin swabs were collected from infants in a shared-space NICU (old NICU) and a single-family room NICU (new NICU) on the same hospital campus. Metagenomic sequencing was performed and data analyzed by CosmosID bioinformatics software package. Results: There were no significant differences between the cohorts in gestational age, length of stay, and delivery mode; infants in the old NICU received significantly more antibiotics (p = 0.03). Differentially abundant antimicrobial resistance genes and virulence associated genes were found between the cohorts in stool and skin, with more differentially abundant antimicrobial resistance genes in the new NICU. The entire bacterial microbiota analyzed to the genus level significantly differed between cohorts in skin (p = 0.0001) but not in stool samples. There was no difference in alpha diversity between the two cohorts. DNA viruses and fungi were detected but did not differ between cohorts. Conclusion: Differences were seen in the resistome and virulome between the two cohorts with more differentially abundant antimicrobial resistance genes in the new NICU. This highlights the influence that different NICU environments can have on the neonatal microbiota. Whether the differences were due to the new NICU being a single-family NICU or located in a newly constructed building warrants exploration. Long term health outcomes from the differences observed must be followed longitudinally.
Collapse
Affiliation(s)
- Suchitra K Hourigan
- Department of Pediatrics, Inova Children's Hospital, Falls Church, VA, United States.,Inova Translational Medicine Institute, Falls Church, VA, United States.,Department of Pediatric Gastroenterology, Pediatric Specialists of Virginia, Fairfax, VA, United States
| | | | | | - Allison Ta
- Department of Pediatrics, Inova Children's Hospital, Falls Church, VA, United States
| | - Elisabeth Klein
- Inova Translational Medicine Institute, Falls Church, VA, United States
| | - Nassim Chettout
- Inova Translational Medicine Institute, Falls Church, VA, United States
| | - Kathi Huddleston
- Inova Translational Medicine Institute, Falls Church, VA, United States
| | - Varsha Deopujari
- Inova Translational Medicine Institute, Falls Church, VA, United States
| | - Shira Levy
- Inova Translational Medicine Institute, Falls Church, VA, United States
| | - Rajiv Baveja
- Fairfax Neonatal Associates PC, Falls Church, VA, United States
| | - Nicole C Clemency
- Inova Translational Medicine Institute, Falls Church, VA, United States
| | - Robin L Baker
- Fairfax Neonatal Associates PC, Falls Church, VA, United States
| | | | | |
Collapse
|
16
|
Formulation development of SYN-004 (ribaxamase) oral solid dosage form, a β-lactamase to prevent intravenous antibiotic-associated dysbiosis of the colon. Int J Pharm 2017; 534:25-34. [DOI: 10.1016/j.ijpharm.2017.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/12/2017] [Accepted: 10/01/2017] [Indexed: 01/05/2023]
|
17
|
Protection of Hamsters from Mortality by Reducing Fecal Moxifloxacin Concentration with DAV131A in a Model of Moxifloxacin-Induced Clostridium difficile Colitis. Antimicrob Agents Chemother 2017; 61:AAC.00543-17. [PMID: 28739791 DOI: 10.1128/aac.00543-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/14/2017] [Indexed: 12/28/2022] Open
Abstract
Lowering the gut exposure to antibiotics during treatments can prevent microbiota disruption. We evaluated the effects of an activated charcoal-based adsorbent, DAV131A, on the fecal free moxifloxacin concentration and mortality in a hamster model of moxifloxacin-induced Clostridium difficile infection. A total of 215 hamsters receiving moxifloxacin subcutaneously (day 1 [D1] to D5) were orally infected at D3 with C. difficile spores. They received various doses (0 to 1,800 mg/kg of body weight/day) and schedules (twice a day [BID] or three times a day [TID]) of DAV131A (D1 to D8). Moxifloxacin concentrations and C. difficile counts were determined at D3, and mortality was determined at D12 We compared mortality rates, moxifloxacin concentrations, and C. difficile counts according to DAV131A regimen and modeled the links between DAV131A regimen, moxifloxacin concentration, and mortality. All hamsters that received no DAV131A died, but none of those that received 1,800 mg/kg/day died. Significant dose-dependent relationships between DAV131A dose and (i) mortality, (ii) moxifloxacin concentration, and (iii) C. difficile count were evidenced. Mathematical modeling suggested that (i) lowering the moxifloxacin concentration at D3, which was 58 μg/g (95% confidence interval [CI] = 50 to 66 μg/g) without DAV131A, to 17 μg/g (14 to 21 μg/g) would reduce mortality by 90%; and (ii) this would be achieved with a daily DAV131A dose of 703 mg/kg (596 to 809 mg/kg). In this model of C. difficile infection, DAV131A reduced mortality in a dose-dependent manner by decreasing the fecal free moxifloxacin concentration.
Collapse
|
18
|
Connelly S, Bristol JA, Hubert S, Subramanian P, Hasan NA, Colwell RR, Kaleko M. SYN-004 (ribaxamase), an oral beta-lactamase, mitigates antibiotic-mediated dysbiosis in a porcine gut microbiome model. J Appl Microbiol 2017; 123:66-79. [PMID: 28245091 DOI: 10.1111/jam.13432] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 12/13/2022]
Abstract
AIM To evaluate an antibiotic inactivation strategy to protect the gut microbiome from antibiotic-mediated damage. METHODS AND RESULTS SYN-004 (ribaxamase) is an orally delivered beta-lactamase intended to degrade penicillins and cephalosporins within the gastrointestinal tract to protect the microbiome. Pigs (20 kg, n = 10) were treated with ceftriaxone (CRO) (IV, 50 mg kg-1 , SID) for 7 days and a cohort (n = 5) received ribaxamase (PO, 75 mg, QID) for 9 days beginning the day before antibiotic administration. Ceftriaxone serum levels were not statistically different in the antibiotic-alone and antibiotic + ribaxamase groups, indicating ribaxamase did not alter systemic antibiotic levels. Whole-genome metagenomic analyses of pig faecal DNA revealed that CRO caused significant changes to the gut microbiome and an increased frequency of antibiotic resistance genes. With ribaxamase, the gut microbiomes were not significantly different from pretreatment and antibiotic resistance gene frequency was not increased. CONCLUSION Ribaxamase mitigated CRO-mediated gut microbiome dysbiosis and attenuated propagation of the antibiotic resistance genes in pigs. SIGNIFICANCE AND IMPACT OF THE STUDY Damage of the microbiome can lead to overgrowth of pathogenic organisms and antibiotic exposure can promote selection for antibiotic-resistant micro-organisms. Ribaxamase has the potential to become the first therapy designed to protect the gut microbiome from antibiotic-mediated dysbiosis and reduce emergence of antibiotic resistance.
Collapse
Affiliation(s)
- S Connelly
- Synthetic Biologics Inc., Rockville, MD, USA
| | - J A Bristol
- Synthetic Biologics Inc., Rockville, MD, USA
| | - S Hubert
- Synthetic Biologics Inc., Rockville, MD, USA
| | | | - N A Hasan
- CosmosID Inc., Rockville, MD, USA.,University of Maryland Institute of Advanced Computer Studies, University of Maryland, College Park, MD, USA
| | - R R Colwell
- CosmosID Inc., Rockville, MD, USA.,University of Maryland Institute of Advanced Computer Studies, University of Maryland, College Park, MD, USA
| | - M Kaleko
- Synthetic Biologics Inc., Rockville, MD, USA
| |
Collapse
|
19
|
The Oral β-Lactamase SYN-004 (Ribaxamase) Degrades Ceftriaxone Excreted into the Intestine in Phase 2a Clinical Studies. Antimicrob Agents Chemother 2017; 61:AAC.02197-16. [PMID: 28052855 PMCID: PMC5328510 DOI: 10.1128/aac.02197-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/20/2016] [Indexed: 12/28/2022] Open
Abstract
SYN-004 (ribaxamase) is a β-lactamase designed to be orally administered concurrently with intravenous β-lactam antibiotics, including most penicillins and cephalosporins. Ribaxamase's anticipated mechanism of action is to degrade excess β-lactam antibiotic that is excreted into the small intestine. This enzymatic inactivation of excreted antibiotic is expected to protect the gut microbiome from disruption and thus prevent undesirable side effects, including secondary infections such as Clostridium difficile infections, as well as other antibiotic-associated diarrheas. In phase 1 clinical studies, ribaxamase was well tolerated compared to a placebo group and displayed negligible systemic absorption. The two phase 2a clinical studies described here were performed to confirm the mechanism of action of ribaxamase, degradation of β-lactam antibiotics in the human intestine, and were therefore conducted in subjects with functioning ileostomies to allow serial sampling of their intestinal chyme. Ribaxamase fully degraded ceftriaxone to below the level of quantitation in the intestines of all subjects in both studies. Coadministration of oral ribaxamase with intravenous ceftriaxone was also well tolerated, and the plasma pharmacokinetics of ceftriaxone were unchanged by ribaxamase administration. Since ribaxamase is formulated as a pH-dependent, delayed-release formulation, the activity of ribaxamase in the presence of the proton pump inhibitor esomeprazole was examined in the second study; coadministration of these drugs did not adversely affect ribaxamase's ability to degrade ceftriaxone excreted into the intestine. These studies have confirmed the in vivo mechanism of action of ribaxamase, degradation of β-lactam antibiotics in the human intestine (registered at ClinicalTrials.gov under NCT02419001 and NCT02473640).
Collapse
|
20
|
Roberts T, Kokai-Kun JF, Coughlin O, Lopez BV, Whalen H, Bristol JA, Hubert S, Longstreth J, Lasseter K, Sliman J. Tolerability and Pharmacokinetics of SYN-004, an Orally Administered β-Lactamase for the Prevention of Clostridium difficile-Associated Disease and Antibiotic-Associated Diarrhea, in Two Phase 1 Studies. Clin Drug Investig 2017; 36:725-734. [PMID: 27283946 DOI: 10.1007/s40261-016-0420-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND SYN-004 is an orally administered β-lactamase enzyme, designed to be given concurrently with certain intravenous β-lactam antibiotics like cephalosporins. SYN-004 is intended to degrade residual antibiotics excreted into the intestine as a result of hepatobiliary excretion and to prevent the disruption of the gut microbiome by these excess antibiotics. Preserving the gut microbiome is expected to prevent secondary infections by pathogens like Clostridium difficile and protect against other antibiotic-associated diarrheas. METHODS Two, randomized, double blind, placebo-controlled Phase 1 clinical studies were conducted in normal healthy adult volunteers to assess the tolerability and systemic absorption of single and multiple doses of SYN-004. A single-ascending dose study investigated single oral doses of 75-750 mg SYN-004 and was conducted in 40 subjects (five cohorts of six active and two placebo subjects). A multiple-ascending dose study investigated doses of 75-300 mg SYN-004, administered every 6 h for 7 days and was conducted in 24 subjects (three cohorts of six active and two placebo subjects). The safety and tolerability of SYN-004 was assessed and serial plasma and serum samples were collected to assess the pharmacokinetics and potential immunogenicity of SYN-004. RESULTS Minimal and mild adverse events were reported in ~30 % of the subjects who received active drug and placebo and no antidrug antibodies were detected in any subject. Analysis of serial plasma samples demonstrated negligible systemic bioavailability of SYN-004 with most plasma concentrations being below the lower limit of quantitation (0.8 ng/mL) for the assay. SYN-004 was well tolerated in the 48 subjects who received active drug, and adverse events in those subjects were comparable to the 16 subjects who received placebo, up to the maximum doses administered in each study. CONCLUSION SYN-004 was well tolerated up to a single oral dose of 750 mg and multiple doses of 300 mg every 6 h for 7 days. The pharmacokinetic results support that SYN-004 remained localized in the intestine.
Collapse
Affiliation(s)
- Tracey Roberts
- Synthetic Biologics, Inc., 9605 Medical Center Drive, Suite 270, Rockville, MD, 20850, USA
| | - John F Kokai-Kun
- Synthetic Biologics, Inc., 9605 Medical Center Drive, Suite 270, Rockville, MD, 20850, USA.
| | - Olivia Coughlin
- Synthetic Biologics, Inc., 9605 Medical Center Drive, Suite 270, Rockville, MD, 20850, USA
| | | | - Heidi Whalen
- Synthetic Biologics, Inc., 9605 Medical Center Drive, Suite 270, Rockville, MD, 20850, USA
| | - J Andrew Bristol
- Synthetic Biologics, Inc., 9605 Medical Center Drive, Suite 270, Rockville, MD, 20850, USA
| | - Steven Hubert
- Synthetic Biologics, Inc., 9605 Medical Center Drive, Suite 270, Rockville, MD, 20850, USA
| | | | | | - Joseph Sliman
- Synthetic Biologics, Inc., 9605 Medical Center Drive, Suite 270, Rockville, MD, 20850, USA
| |
Collapse
|
21
|
Kaleko M, Bristol JA, Hubert S, Parsley T, Widmer G, Tzipori S, Subramanian P, Hasan N, Koski P, Kokai-Kun J, Sliman J, Jones A, Connelly S. Development of SYN-004, an oral beta-lactamase treatment to protect the gut microbiome from antibiotic-mediated damage and prevent Clostridium difficile infection. Anaerobe 2016; 41:58-67. [DOI: 10.1016/j.anaerobe.2016.05.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/20/2023]
|
22
|
Czaplewski L, Bax R, Clokie M, Dawson M, Fairhead H, Fischetti VA, Foster S, Gilmore BF, Hancock REW, Harper D, Henderson IR, Hilpert K, Jones BV, Kadioglu A, Knowles D, Ólafsdóttir S, Payne D, Projan S, Shaunak S, Silverman J, Thomas CM, Trust TJ, Warn P, Rex JH. Alternatives to antibiotics-a pipeline portfolio review. THE LANCET. INFECTIOUS DISEASES 2016; 16:239-51. [PMID: 26795692 DOI: 10.1016/s1473-3099(15)00466-1] [Citation(s) in RCA: 564] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 01/21/2023]
Abstract
Antibiotics have saved countless lives and enabled the development of modern medicine over the past 70 years. However, it is clear that the success of antibiotics might only have been temporary and we now expect a long-term and perhaps never-ending challenge to find new therapies to combat antibiotic-resistant bacteria. A broader approach to address bacterial infection is needed. In this Review, we discuss alternatives to antibiotics, which we defined as non-compound approaches (products other than classic antibacterial agents) that target bacteria or any approaches that target the host. The most advanced approaches are antibodies, probiotics, and vaccines in phase 2 and phase 3 trials. This first wave of alternatives to antibiotics will probably best serve as adjunctive or preventive therapies, which suggests that conventional antibiotics are still needed. Funding of more than £1·5 billion is needed over 10 years to test and develop these alternatives to antibiotics. Investment needs to be partnered with translational expertise and targeted to support the validation of these approaches in phase 2 trials, which would be a catalyst for active engagement and investment by the pharmaceutical and biotechnology industry. Only a sustained, concerted, and coordinated international effort will provide the solutions needed for the future.
Collapse
Affiliation(s)
- Lloyd Czaplewski
- Chemical Biology Ventures, Abingdon, Oxfordshire, UK; Abgentis, Edgbaston, Birmingham, UK; Persica Pharmaceuticals, Canterbury, Kent, UK.
| | | | - Martha Clokie
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Mike Dawson
- Novacta Biosystems, Welwyn Garden City, Hertfordshire, UK; Cantab Anti-infectives, Welwyn Garden City, Hertfordshire, UK
| | | | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, USA
| | - Simon Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK; Absynth Biologics, Liverpool, UK
| | | | - Robert E W Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - David Harper
- Evolution Biotechnologies, Ampthill, Bedfordshire, UK
| | - Ian R Henderson
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, UK
| | - Kai Hilpert
- Institute of Infection and Immunity, St George's, University of London, London, UK; TiKa Diagnostics, London, UK
| | - Brian V Jones
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK; Queen Victoria Hospital NHS Foundation Trust, East Grinstead, West Sussex, UK
| | - Aras Kadioglu
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - David Knowles
- Absynth Biologics, Liverpool, UK; Procarta Biosystems, Norwich, UK
| | | | - David Payne
- GlaxoSmithKline, Collegeville, Pennsylvania, PA, USA
| | | | - Sunil Shaunak
- Department of Medicine, Imperial College London, London, UK
| | | | - Christopher M Thomas
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, UK; Plasgene, Edgbaston, Birmingham, UK
| | - Trevor J Trust
- Pan-Provincial Vaccine Enterprise, Saskatoon, SK, Canada
| | | | - John H Rex
- AstraZeneca, Boston, MA, USA; F2G, Manchester, UK
| |
Collapse
|
23
|
Current therapeutics and prophylactic approaches to treat pneumonia. THE MICROBIOLOGY OF RESPIRATORY SYSTEM INFECTIONS 2016. [PMCID: PMC7150263 DOI: 10.1016/b978-0-12-804543-5.00017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bacterial pneumonia caused by Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus, Mycoplasma pneumoniae, and Klebsiella pneumoniae represents a frequent cause of mortality worldwide. The increased incidence of pneumococcal diseases in both developed and developing countries is alarmingly high, affecting infants and aged adult populations. The growing rate of antibiotic resistance and biofilm formation on medical device surfaces poses a greater challenge for treating respiratory infections. Over recent years, a better understanding of bacterial growth, metabolism, and virulence has offered several potential targets for developing therapeutics against bacterial pneumonia. This chapter will discuss the current and developing trends in treating bacterial pneumonia.
Collapse
|
24
|
Kokai-Kun JF, Bristol JA, Setser J, Schlosser M. Nonclinical Safety Assessment of SYN-004: An Oral β-lactamase for the Protection of the Gut Microbiome From Disruption by Biliary-Excreted, Intravenously Administered Antibiotics. Int J Toxicol 2015; 35:309-16. [PMID: 26700136 DOI: 10.1177/1091581815623236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
SYN-004 is a first in class, recombinant β-lactamase that degrades β-lactam antibiotics and has been formulated to be administered orally to patients receiving intravenous β-lactam antibiotics including cephalosporins. SYN-004 is intended to degrade unmetabolized antibiotics excreted into the intestines and thus has the potential to protect the gut microbiome from disruption by these antibiotics. Protection of the gut microbiome is expected to protect against opportunistic enteric infections such as Clostridium difficile infection as well as antibiotic-associated diarrhea. In order to demonstrate that oral SYN-004 is safe for human clinical trials, 2 Good Laboratory Practice-compliant toxicity studies were conducted in Beagle dogs. In both studies, SYN-004 was administered orally 3 times per day up to the maximum tolerated dose of the formulation. In the first study, doses of SYN-004 administered over 28 days were safe and well tolerated in dogs with the no-observed-adverse-effect level at the high dose of 57 mg/kg/day. Systemic absorption of SYN-004 was minimal and sporadic and showed no accumulation during the study. In the second study, doses up to 57 mg/kg/day were administered to dogs in combination with an intravenous dose of ceftriaxone (300 mg/kg) given once per day for 14 days. Coadministration of oral SYN-004 with intravenous ceftriaxone was safe and well tolerated, with SYN-004 having no noticeable effect on the plasma pharmacokinetics of ceftriaxone. These preclinical studies demonstrate that SYN-004 is well tolerated and, when coadministered with ceftriaxone, does not interfere with its systemic pharmacokinetics. These data supported advancing SYN-004 into human clinical trials.
Collapse
|
25
|
Crowther GS, Wilcox MH. Antibiotic therapy and Clostridium difficile infection - primum non nocere - first do no harm. Infect Drug Resist 2015; 8:333-7. [PMID: 26396535 PMCID: PMC4576896 DOI: 10.2147/idr.s87224] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Treatment options for Clostridium difficile infection (CDI) remain limited despite this usually nosocomial infection posing an urgent threat to public health. A major paradox of the management of CDI is the use of antimicrobial agents to treat infection, which runs the risk of prolonged gut microbiota perturbation and so recurrence of infection. Here, we explore alternative CDI treatment and prevention options currently available or in development. Notably, strategies that aim to reduce the negative effects of antibiotics on gut microbiota offer the potential to alter current antimicrobial stewardship approaches to preventing CDI.
Collapse
Affiliation(s)
| | - Mark H Wilcox
- Faculty of Medicine and Health, University of Leeds, Leeds, UK ; Department of Microbiology, Leeds Teaching Hospitals Trust, Leeds, UK
| |
Collapse
|
26
|
Relative fecal abundance of extended-spectrum-β-lactamase-producing Escherichia coli strains and their occurrence in urinary tract infections in women. Antimicrob Agents Chemother 2013; 57:4512-7. [PMID: 23836184 DOI: 10.1128/aac.00238-13] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Extended-spectrum-beta-lactamase (ESBL)-producing Escherichia coli (ESBL E. coli) strains are of major concern because few antibiotics remain active against these bacteria. We investigated the association between the fecal relative abundance (RA) of ESBL-producing E. coli (ESBL-RA) and the occurrence of ESBL E. coli urinary tract infections (UTIs). The first stool samples passed after suspicion of UTI from 310 women with subsequently confirmed E. coli UTIs were sampled and tested for ESBL-RA by culture on selective agar. Predictive values of ESBL-RA for ESBL E. coli UTI were analyzed for women who were not exposed to antibiotics when the stool was passed. ESBL E. coli isolates were characterized for ESBL type, phylogroup, relatedness, and virulence factors. The prevalence of ESBL E. coli fecal carriage was 20.3%, with ESBL E. coli UTIs being present in 12.3% of the women. The mean ESBL-RA (95% confidence interval [CI]) was 13-fold higher in women exposed to antibiotics at the time of sampling than in those not exposed (14.3% [range, 5.6% to 36.9%] versus 1.1% [range, 0.32% to 3.6%], respectively; P < 0.001) and 18-fold higher in women with ESBL E. coli UTI than in those with another E. coli UTI (10.0% [range, 0.54% to 100%] versus 0.56% [range, 0.15% to 2.1%[, respectively; P < 0.05). An ESBL-RA of <0.1% was 100% predictive of a non-ESBL E. coli UTI. ESBL type, phylogroup, relatedness, and virulence factors were not found to be associated with ESBL-RA. In conclusion, ESBL-RA was linked to the occurrence of ESBL E. coli UTI in women who were not exposed to antibiotics and who had the same clone of E. coli in urine samples and fecal samples. Especially, a low ESBL-RA appeared to be associated with a low risk of ESBL E. coli infection.
Collapse
|
27
|
Rai J, Randhawa GK, Kaur M. Recent advances in antibacterial drugs. Int J Appl Basic Med Res 2013; 3:3-10. [PMID: 23776832 PMCID: PMC3678679 DOI: 10.4103/2229-516x.112229] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 10/08/2012] [Indexed: 11/15/2022] Open
Abstract
The incidence of antimicrobial resistance is on continued rise with a threat to return to the “pre-antibiotic” era. This has led to emergence of such bacterial infections which are essentially untreatable by the current armamentarium of available treatment options. Various efforts have been made to develop the newer antimicrobials with novel modes of action which can act against these multi-drug resistant strains. This review aims to focus on these newly available and investigational antibacterials approved after year 2000, their mechanism of actions/resistance, and spectrum of activity and their phases of clinical trials. Newer unexploited targets and strategies for the next generation of antimicrobial drugs for combating the drug resistance and emerging pathogens in the 21st century have also been reviewed in the present article.
Collapse
Affiliation(s)
- Jaswant Rai
- Department of Pharmacology, Govt. Medical College, Amritsar, Punjab, India
| | | | | |
Collapse
|
28
|
Ruppé E, Andremont A. Causes, consequences, and perspectives in the variations of intestinal density of colonization of multidrug-resistant enterobacteria. Front Microbiol 2013; 4:129. [PMID: 23755045 PMCID: PMC3664761 DOI: 10.3389/fmicb.2013.00129] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/06/2013] [Indexed: 11/17/2022] Open
Abstract
The intestinal microbiota is a complex environment that hosts 1013 to 1014 bacteria. Among these bacteria stand multidrug-resistant enterobacteria (MDRE), which intestinal densities can substantially vary, especially according to antibiotic exposure. The intestinal density of MDRE and their relative abundance (i.e., the proportion between the density of MDRE and the density of total enterobacteria) could play a major role in the infection process or patient-to-patient transmission. This review discusses the recent advances in understanding (i) what causes variations in the density or relative abundance of intestinal colonization, (ii) what are the clinical consequences of these variations, and (iii) what are the perspectives for maintaining these markers at low levels.
Collapse
Affiliation(s)
- Etienne Ruppé
- Laboratoire de Bactériologie, AP-HP, Hôpitaux Paris Nord Val de Seine site Bichat-Claude Bernard, Paris, France
| | | |
Collapse
|
29
|
Emergence of imipenem-resistant gram-negative bacilli in intestinal flora of intensive care patients. Antimicrob Agents Chemother 2013; 57:1488-95. [PMID: 23318796 DOI: 10.1128/aac.01823-12] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intestinal flora contains a reservoir of Gram-negative bacilli (GNB) resistant to cephalosporins, which are potentially pathogenic for intensive care unit (ICU) patients; this has led to increasing use of carbapenems. The emergence of carbapenem resistance is a major concern for ICUs. Therefore, in this study, we aimed to assess the intestinal carriage of imipenem-resistant GNB (IR-GNB) in intensive care patients. For 6 months, 523 consecutive ICU patients were screened for rectal IR-GNB colonization upon admission and weekly thereafter. The phenotypes and genotypes of all isolates were determined, and a case control study was performed to identify risk factors for colonization. The IR-GNB colonization rate increased regularly from 5.6% after 1 week to 58.6% after 6 weeks in the ICU. In all, 56 IR-GNB strains were collected from 50 patients: 36 Pseudomonas aeruginosa strains, 12 Stenotrophomonas maltophilia strains, 6 Enterobacteriaceae strains, and 2 Acinetobacter baumannii strains. In P. aeruginosa, imipenem resistance was due to chromosomally encoded resistance (32 strains) or carbapenemase production (4 strains). In the Enterobacteriaceae strains, resistance was due to AmpC cephalosporinase and/or extended-spectrum β-lactamase production with porin loss. Genomic comparison showed that the strains were highly diverse, with 8 exceptions (4 VIM-2 carbapenemase-producing P. aeruginosa strains, 2 Klebsiella pneumoniae strains, and 2 S. maltophilia strains). The main risk factor for IR-GNB colonization was prior imipenem exposure. The odds ratio for colonization was already as high as 5.9 (95% confidence interval [95% CI], 1.5 to 25.7) after 1 to 3 days of exposure and increased to 7.8 (95% CI, 2.4 to 29.8) thereafter. In conclusion, even brief exposure to imipenem is a major risk factor for IR-GNB carriage.
Collapse
|
30
|
Abstract
The gut contains very large numbers of bacteria. Changes in the composition of the gut flora, due in particular to antibiotics, can happen silently, leading to the selection of highly resistant bacteria and Candida species. These resistant organisms may remain for months in the gut of the carrier without causing any symptoms or translocate through the gut epithelium, induce healthcare-associated infections, undergo cross-transmission to other individuals, and cause limited outbreaks. Techniques are available to prevent, detect, and treat the carriage of resistant organisms in the gut. However, evidence on these techniques is scant, the only exception being selective digestive decontamination (SDD), which has been extensively studied in neutropenic and ICU patients. After the destruction of resistant colonizing bacteria, which has been successfully obtained in several studies, the gut could be re-colonized with normal faecal flora or probiotics. Studies are warranted to evaluate this concept.
Collapse
Affiliation(s)
- Jean Carlet
- Réanimation Polyvalente, Fondation Hopital St Joseph, 185 Rue Raymond Losserand, Paris, 75014, France.
| |
Collapse
|
31
|
Brugha RE, Davies JC. Pseudomonas aeruginosa in cystic fibrosis: Pathogenesis and new treatments. Br J Hosp Med (Lond) 2011; 72:614-9. [DOI: 10.12968/hmed.2011.72.11.614] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rossa E Brugha
- Centre for Paediatrics, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, London
| | - Jane C Davies
- Departments of Paediatric Respiratory Medicine and Gene Therapy, Imperial College London and Royal Brompton and Harefield NHS Foundation Trust, London SW3 6NP
| |
Collapse
|
32
|
Aminov RI. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 2010; 1:134. [PMID: 21687759 PMCID: PMC3109405 DOI: 10.3389/fmicb.2010.00134] [Citation(s) in RCA: 742] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 11/17/2010] [Indexed: 12/03/2022] Open
Abstract
This article gives a very brief overview of the antibiotic era, beginning from the discovery of first antibiotics until the present day situation, which is marred by the emergence of hard-to-treat multiple antibiotic-resistant infections. The ways of responding to the antibiotic resistance challenges such as the development of novel strategies in the search for new antimicrobials, designing more effective preventive measures and, importantly, better understanding the ecology of antibiotics and antibiotic resistance are discussed. The expansion of conceptual frameworks based on recent developments in the field of antimicrobials, antibiotic resistance, and chemotherapy is also discussed.
Collapse
Affiliation(s)
- Rustam I. Aminov
- Rowett Institute of Nutrition and Health, University of AberdeenAberdeen, UK
| |
Collapse
|
33
|
Khoder M, Tsapis N, Domergue-Dupont V, Gueutin C, Fattal E. Removal of residual colonic ciprofloxacin in the rat by activated charcoal entrapped within zinc-pectinate beads. Eur J Pharm Sci 2010; 41:281-8. [DOI: 10.1016/j.ejps.2010.06.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/21/2010] [Accepted: 06/24/2010] [Indexed: 11/27/2022]
|
34
|
Devasahayam G, Scheld WM, Hoffman PS. Newer antibacterial drugs for a new century. Expert Opin Investig Drugs 2010; 19:215-34. [PMID: 20053150 DOI: 10.1517/13543780903505092] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
IMPORTANCE OF THE FIELD Antibacterial drug discovery and development has slowed considerably in recent years, with novel classes discovered decades ago and regulatory approvals tougher to get. Traditional approaches and the newer genomic mining approaches have not yielded novel classes of antibacterial compounds. Instead, improved analogues of existing classes of antibacterial drugs have been developed by improving potency, minimizing resistance and alleviating toxicity. AREAS COVERED IN THIS REVIEW This article is a comprehensive review of newer classes of antibacterial drugs introduced or approved after year 2000. WHAT THE READER WILL GAIN It describes their mechanisms of action/resistance, improved analogues, spectrum of activity and clinical trials. It also discusses new compounds in development with novel mechanisms of action, as well as novel unexploited bacterial targets and strategies that may pave the way for combating drug resistance and emerging pathogens in the twenty-first century. TAKE HOME MESSAGE The outlook of antibacterial drug discovery, though challenging, may not be insurmountable in the years ahead, with legislation on incentives and funding introduced for developing an antimicrobial discovery program and efforts to conserve antibacterial drug use.
Collapse
Affiliation(s)
- Gina Devasahayam
- University of Virginia, Department of Medicine, Room 2146 MR4 Bldg, 409 Lane Rd, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
35
|
Khoder M, Tsapis N, Fattal E. Mechanisms of antibiotic resistance and delivery strategies to prevent its emergence. J Drug Deliv Sci Technol 2010. [DOI: 10.1016/s1773-2247(10)50072-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|