1
|
Mazza T, Scalise M, Console L, Galluccio M, Giangregorio N, Tonazzi A, Pochini L, Indiveri C. Carnitine traffic and human fertility. Biochem Pharmacol 2024; 230:116565. [PMID: 39368751 DOI: 10.1016/j.bcp.2024.116565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Carnitine is a vital molecule in human metabolism, prominently involved in fatty acid β-oxidation within mitochondria. Predominantly sourced from dietary intake, carnitine also derives from endogenous synthesis. This review delves into the complex network of carnitine transport and distribution, emphasizing its pivotal role in human fertility. Together with its role in fatty acid oxidation, carnitine modulates the acety-CoA/CoA ratio, influencing carbohydrate metabolism, lipid biosynthesis, and gene expression. The intricate regulation of carnitine homeostasis involves a network of membrane transporters, notably OCTN2, which is central in its absorption, reabsorption, and distribution. OCTN2 dysfunction, results in Primary Carnitine Deficiency (PCD), characterized by systemic carnitine depletion and severe clinical manifestations, including fertility issues. In the male reproductive system, carnitine is crucial for sperm maturation and motility. In the female reproductive system, carnitine supports mitochondrial function necessary for oocyte quality, folliculogenesis, and embryonic development. Indeed, deficiencies in carnitine or its transporters have been linked to asthenozoospermia, reduced sperm quality, and suboptimal fertility outcomes in couples. Moreover, the antioxidant properties of carnitine protect spermatozoa from oxidative stress and help in managing conditions like polycystic ovary syndrome (PCOS) and endometriosis, enhancing sperm viability and fertilization potential of oocytes. This review summarizes the key role of membrane transporters in guaranteeing carnitine homeostasis with a special focus on the implications in fertility and possible treatments of infertility and other related disorders.
Collapse
Affiliation(s)
- Tiziano Mazza
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy
| | - Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy.
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, Arcavacata di Rende 87036, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), via Amendola 122/O, Bari 70126, Italy.
| |
Collapse
|
2
|
Marin JJG, Cives-Losada C, Macias RIR, Romero MR, Marijuan RP, Hortelano-Hernandez N, Delgado-Calvo K, Villar C, Gonzalez-Santiago JM, Monte MJ, Asensio M. Impact of liver diseases and pharmacological interactions on the transportome involved in hepatic drug disposition. Biochem Pharmacol 2024; 228:116166. [PMID: 38527556 DOI: 10.1016/j.bcp.2024.116166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The liver plays a pivotal role in drug disposition owing to the expression of transporters accounting for the uptake at the sinusoidal membrane and the efflux across the basolateral and canalicular membranes of hepatocytes of many different compounds. Moreover, intracellular mechanisms of phases I and II biotransformation generate, in general, inactive compounds that are more polar and easier to eliminate into bile or refluxed back toward the blood for their elimination by the kidneys, which becomes crucial when the biliary route is hampered. The set of transporters expressed at a given time, i.e., the so-called transportome, is encoded by genes belonging to two gene superfamilies named Solute Carriers (SLC) and ATP-Binding Cassette (ABC), which account mainly, but not exclusively, for the uptake and efflux of endogenous substances and xenobiotics, which include many different drugs. Besides the existence of genetic variants, which determines a marked interindividual heterogeneity regarding liver drug disposition among patients, prevalent diseases, such as cirrhosis, non-alcoholic steatohepatitis, primary sclerosing cholangitis, primary biliary cirrhosis, viral hepatitis, hepatocellular carcinoma, cholangiocarcinoma, and several cholestatic liver diseases, can alter the transportome and hence affect the pharmacokinetics of drugs used to treat these patients. Moreover, hepatic drug transporters are involved in many drug-drug interactions (DDI) that challenge the safety of using a combination of agents handled by these proteins. Updated information on these questions has been organized in this article by superfamilies and families of members of the transportome involved in hepatic drug disposition.
Collapse
Affiliation(s)
- Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Marta R Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rebeca P Marijuan
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | | | - Kevin Delgado-Calvo
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Carmen Villar
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Department of Gastroenterology and Hepatology, University Hospital of Salamanca, Salamanca, Spain
| | - Jesus M Gonzalez-Santiago
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Department of Gastroenterology and Hepatology, University Hospital of Salamanca, Salamanca, Spain
| | - Maria J Monte
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
3
|
Peng J, Yi J, Yang G, Huang Z, Cao D. ISTransbase: an online database for inhibitor and substrate of drug transporters. Database (Oxford) 2024; 2024:baae053. [PMID: 38943608 PMCID: PMC11214160 DOI: 10.1093/database/baae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/17/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
Drug transporters, integral membrane proteins found throughout the human body, play critical roles in physiological and biochemical processes through interactions with ligands, such as substrates and inhibitors. The extensive and disparate data on drug transporters complicate understanding their complex relationships with ligands. To address this challenge, it is essential to gather and summarize information on drug transporters, inhibitors and substrates, and simultaneously develop a comprehensive and user-friendly database. Current online resources often provide fragmented information and have limited coverage of drug transporter substrates and inhibitors, highlighting the need for a specialized, comprehensive and openly accessible database. ISTransbase addresses this gap by amassing a substantial amount of data from literature, government documents and open databases. It includes 16 528 inhibitors and 4465 substrates of 163 drug transporters from 18 different species, resulting in a total of 93 841 inhibitor records and 51 053 substrate records. ISTransbase provides detailed insights into drug transporters and their inhibitors/substrates, encompassing transporter and molecule structure, transporter function and distribution, as well as experimental methods and results from transport or inhibition experiments. Furthermore, ISTransbase offers three search strategies that allow users to retrieve drugs and transporters based on multiple selectable constraints, as well as perform checks for drug-drug interactions. Users can also browse and download data. In summary, ISTransbase (https://istransbase.scbdd.com/) serves as a valuable resource for accurately and efficiently accessing information on drug transporter inhibitors and substrates, aiding researchers in exploring drug transporter mechanisms and assisting clinicians in mitigating adverse drug reactions Database URL: https://istransbase.scbdd.com/.
Collapse
Affiliation(s)
- Jinfu Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, No.172 Tongzipo Road, Changsha, Hunan 410031, China
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, Hunan 410031, China
| | - Jiacai Yi
- School of Computer Science, National University of Defense Technology, No.869 Furong Middle Road, Changsha, Hunan 410073, China
| | - Guoping Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, No.172 Tongzipo Road, Changsha, Hunan 410031, China
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, Hunan 410031, China
| | - Zhijun Huang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, Hunan 410031, China
- XiangYa School of Medicine, Central South University, No.172 Tongzipo Road, Changsha, Hunan 410031, China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, No.172 Tongzipo Road, Changsha, Hunan 410031, China
| |
Collapse
|
4
|
Ben Mariem O, Palazzolo L, Torre B, Wei Y, Bianchi D, Guerrini U, Laurenzi T, Saporiti S, De Fabiani E, Pochini L, Indiveri C, Eberini I. Atomistic description of the OCTN1 recognition mechanism via in silico methods. PLoS One 2024; 19:e0304512. [PMID: 38829838 PMCID: PMC11146731 DOI: 10.1371/journal.pone.0304512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
The Organic Cation Transporter Novel 1 (OCTN1), also known as SLC22A4, is widely expressed in various human tissues, and involved in numerous physiological and pathological processes remains. It facilitates the transport of organic cations, zwitterions, with selectivity for positively charged solutes. Ergothioneine, an antioxidant compound, and acetylcholine (Ach) are among its substrates. Given the lack of experimentally solved structures of this protein, this study aimed at generating a reliable 3D model of OCTN1 to shed light on its substrate-binding preferences and the role of sodium in substrate recognition and transport. A chimeric model was built by grafting the large extracellular loop 1 (EL1) from an AlphaFold-generated model onto a homology model. Molecular dynamics simulations revealed domain-specific mobility, with EL1 exhibiting the highest impact on overall stability. Molecular docking simulations identified cytarabine and verapamil as highest affinity ligands, consistent with their known inhibitory effects on OCTN1. Furthermore, MM/GBSA analysis allowed the categorization of substrates into weak, good, and strong binders, with molecular weight strongly correlating with binding affinity to the recognition site. Key recognition residues, including Tyr211, Glu381, and Arg469, were identified through interaction analysis. Ach demonstrated a low interaction energy, supporting the hypothesis of its one-directional transport towards to outside of the membrane. Regarding the role of sodium, our model suggested the involvement of Glu381 in sodium binding. Molecular dynamics simulations of systems at increasing levels of Na+ concentrations revealed increased sodium occupancy around Glu381, supporting experimental data associating Na+ concentration to molecule transport. In conclusion, this study provides valuable insights into the 3D structure of OCTN1, its substrate-binding preferences, and the role of sodium in the recognition. These findings contribute to the understanding of OCTN1 involvement in various physiological and pathological processes and may have implications for drug development and disease management.
Collapse
Affiliation(s)
- Omar Ben Mariem
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Beatrice Torre
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Yao Wei
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Davide Bianchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Tommaso Laurenzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Simona Saporiti
- Analytical Excellence and Program Management, Merck Serono S.p.A., Rome, Italy
| | - Emma De Fabiani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Lorena Pochini
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata CS, Italy
| | - Cesare Indiveri
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata CS, Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- DSRC, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Chen M, Yi Y, Chen B, Zhang H, Dong M, Yuan L, Zhou H, Jiang H, Ma Z. Metformin inhibits OCTN1- and OCTN2-mediated hepatic accumulation of doxorubicin and alleviates its hepatotoxicity in mice. Toxicology 2024; 503:153757. [PMID: 38364893 DOI: 10.1016/j.tox.2024.153757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/18/2024]
Abstract
Doxorubicin (DOX) is a widely used antitumor agent; however, its clinical application is limited by dose-related organ damage. Because organic cation/carnitine transporters (OCTN1 and OCTN2), which are critical for DOX uptake, are highly expressed in hepatocytes, we aimed to elucidate the role of these transporters in hepatic DOX uptake. The results indicated that inhibitors and RNA interference both significantly reduced DOX accumulation in HepG2 and HepaRG cells, suggesting that OCTN1/2 contribute substantially to DOX uptake by hepatocytes. To determine whether metformin (MET, an inhibitor of OCTN1 and OCTN2) ameliorates DOX-induced hepatotoxicity, we conducted in vitro and in vivo studies. MET (1-100 μM) inhibited DOX (500 nM) accumulation and cytotoxicity in vitro in a concentration-dependent manner. Furthermore, intravenous MET administration at 250 or 500 mg/kg or by gavage at 50, 100, or 200 mg/kg reduced DOX (8 mg/kg) accumulation in a dose-dependent manner in the mouse liver and attenuated the release of alanine aminotransferase, aspartate aminotransferase, and carboxylesterase 1. Additionally, MET reduced the distribution of DOX in the heart, liver, and kidney and enhanced the urinary elimination of DOX; however, it did not increase the nephric toxicity of DOX. In conclusion, our study demonstrated that MET alleviates DOX hepatotoxicity by inhibiting OCTN1- and OCTN2-mediated DOX uptake in vitro (mouse hepatocytes and HepaRG or HepG2 cells) and in mice.
Collapse
Affiliation(s)
- Mingyang Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yaodong Yi
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Binxin Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Hengbin Zhang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Minlei Dong
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Luexiang Yuan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Jinhua Institute of Zhejiang University, Jinhua, China
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Jinhua Institute of Zhejiang University, Jinhua, China.
| | - Zhiyuan Ma
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
| |
Collapse
|
6
|
Lu S, Chen X, Chen Y, Zhang Y, Luo J, Jiang H, Fang L, Zhou H. Downregulation of PDZK1 by TGF-β1 promotes renal fibrosis via inducing epithelial-mesenchymal transition of renal tubular cells. Biochem Pharmacol 2024; 220:116015. [PMID: 38158021 DOI: 10.1016/j.bcp.2023.116015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Transforming growth factor-beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) of renal tubular cells promotes renal fibrosis and the progression of chronic kidney disease (CKD). PDZ domain-containing 1 (PDZK1) is highly expressed in renal tubular epithelial cells; however, its role in TGF-β1-induced EMT remains poorly understood. The present study showed that PDZK1 expression was extremely downregulated in fibrotic mouse kidneys and its negative correlation with TGF-β1 expression and the degree of renal fibrosis. In addition, TGF-β1 downregulated the mRNA expression of PDZK1 in a time- and concentration-dependent manner in vitro. The downregulation of PDZK1 exacerbated TGF-β1-induced EMT upon oxidative stress, while the overexpression of PDZK1 had the converse effect. Subsequent investigations demonstrated that TGF-β1 downregulated PDZK1 expression via p38 MAPK or PI3K/AKT signaling in vitro, but independently of ERK/JNK MAPK signaling. Meanwhile, inhibition of the p38/JNK MAPK or PI3K/AKT signaling using chemical inhibitors restored the PDZK1 expression, mitigated renal fibrosis, and elevated renal levels of endogenous antioxidants carnitine and ergothioneine in adenine-induced CKD mice. These findings provide the first evidence suggesting a negative correlation between PDZK1 and renal fibrosis, and identifying PDZK1 as a novel suppressor of renal fibrosis in CKD through ameliorating oxidant stress.
Collapse
Affiliation(s)
- Shuanghui Lu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiu Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujia Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingqiong Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huidi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321036, China
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Hui Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321036, China.
| |
Collapse
|
7
|
Xiu F, Console L, Indiveri C, Su S, Wang T, Visentin M. Effect of 7-ketocholesterol incorporation on substrate binding affinity and turnover rate of the organic cation transporter 2 (OCT2). Biochem Pharmacol 2024; 220:116017. [PMID: 38176620 DOI: 10.1016/j.bcp.2023.116017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
The organic cation transporter 2 (OCT2) is pivotal in the renal elimination of several positively charged molecules. OCT2 mode of transport is profoundly influenced by the level of membrane cholesterol. The aim of this study was to investigate the effect of oxidized cholesterol on OCT2 transport activity in human embryonic kidney 293 cells stably transfected with OCT2 (OCT2-HEK293) and in primary renal proximal tubular epithelial cells (RPTEC). Cholesterol was exchanged with 7-ketocholesterol, the main product of cholesterol auto-oxidation, by exposing cells to sterol-saturated methyl-β-cyclodextrin (mβcd). After a 30 min-exposure, approximately 50% of the endogenous cholesterol was replaced by 7-ketocholesterol without significant changes in total sterol level. In the presence of 7-ketocholesterol, [3H]1-methyl-4-phenylpyridinium (MPP+) uptake was significantly reduced in both cell lines. 7-ketocholesterol incorporation did not affect lipid raft integrity, nor OCT2 surface expression and spatial organization. The inhibitory effect of 7-ketocholesterol on MPP+ uptake was abolished by the presence of MPP+ in the trans-compartment. In the presence of 7-ketocholesterol, both Kt and Vmax of MPP+ influx decreased. Molecular docking using OCT2 structure in outward occluded conformation showed overlapping poses and similar binding energies between cholesterol and 7-ketocholesterol. The thermal stability of OCT2 was not changed when cholesterol was replaced with 7-ketocholesterol. We conclude that 7-ketocholesterol confers a higher rigidity to the carrier by reducing its conformational entropy, arguably as a result of changes in plasma membrane physical properties, thereby facilitating the achievement of a higher affinity state at the expense of the mobility and overall cycling rate of the transporter.
Collapse
Affiliation(s)
- Fangrui Xiu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Shanshan Su
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Tong Wang
- School of Nursing, Shandong University fo Traditional Chinese Medicine, Jinan 250014, China.
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland.
| |
Collapse
|
8
|
Yi Y, Zhang H, Chen M, Chen B, Chen Y, Li P, Zhou H, Ma Z, Jiang H. Inhibition of multiple uptake transporters in cardiomyocytes/mitochondria alleviates doxorubicin-induced cardiotoxicity. Chem Biol Interact 2023; 382:110627. [PMID: 37453608 DOI: 10.1016/j.cbi.2023.110627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Doxorubicin (DOX) has been widely used to treat various tumors; however, DOX-induced cardiotoxicity limits its utilization. Since high accumulation of DOX in cardiomyocytes/mitochondria is the key reason, we aimed to clarify the mechanisms of DOX uptake and explore whether selectively inhibiting DOX uptake transporters would attenuate DOX accumulation and cardiotoxicity. Our results demonstrated that OCTN1/OCTN2/PMAT (organic cation/carnitine transporter 1/2 or plasma membrane monoamine transporter), especially OCTN2, played crucial roles in DOX uptake in cardiomyocytes, while OCTN2 and OCTN1 contributed to DOX transmembrane transport in mitochondria. Metformin (1-100 μM) concentration-dependently reduced DOX (5 μM for accumulation, 500 nM for cytotoxicity) concentration and toxicity in cardiomyocytes/mitochondria via inhibition of OCTN1-, OCTN2- and PMAT-mediated DOX uptake but did not affect its efflux. Furthermore, metformin (iv: 250 and 500 mg/kg or ig: 50, 100 and 200 mg/kg) could dose-dependently reduce DOX (8 mg/kg) accumulation in mouse myocardium and attenuated its cardiotoxicity. In addition, metformin (1-100 μM) did not impair DOX efficacy in breast cancer or leukemia cells. In conclusion, our study clarified the role of multiple transporters, especially OCTN2, in DOX uptake in cardiomyocytes/mitochondria; metformin alleviated DOX-induced cardiotoxicity without compromising its antitumor efficacy by selective inhibition of multiple transporters mediated DOX accumulation in myocardium/mitochondria.
Collapse
Affiliation(s)
- Yaodong Yi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Hengbin Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Mingyang Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Binxin Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Yingchun Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Ping Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Hui Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Jinhua Institute of Zhejiang University, PR China
| | - Zhiyuan Ma
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
| | - Huidi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Jinhua Institute of Zhejiang University, PR China.
| |
Collapse
|
9
|
Da Wang F, Zhou J, Li LQ, Li YJ, Wang ML, Tao YC, Zhang DM, Wang YH, Chen EQ. Improved bone and renal safety in younger tenofovir disoproxil fumarate experienced chronic hepatitis B patients after switching to tenofovir alafenamide or entecavir. Ann Hepatol 2023; 28:101119. [PMID: 37271480 DOI: 10.1016/j.aohep.2023.101119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/20/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023]
Abstract
INTRODUCTION AND OBJECTIVES Renal and bone impairment has been reported in chronic hepatitis B (CHB) patients receiving long-term tenofovir disoproxil fumarate (TDF) therapy. This study aimed to assess the incidence of renal and bone impairment in CHB patients with long-term TDF therapy and to identify the changes in bone mineral density (BMD) and renal function in these patients after switching to entecavir (ETV) or tenofovir alafenamide (TAF). MATERIALS AND METHODS This retrospective study collected clinical data from CHB patients who received TDF monotherapy over 96 weeks. The changes in BMD and renal function were analyzed after 96 weeks of switching antiviral regimens (ETV or TAF) or maintenance TDF. RESULTS At baseline, 154 patients receiving TDF monotherapy over 96 weeks were enrolled, with a younger median age of 36.75 years, 35.1% (54/154) of patients experienced elevated urinary β2 microglobulin and 20.1% (31/154) of patients had reduced hip BMD (T<-1). At week 96, among the 123 patients with baseline normal BMD, patients who maintained TDF (n=85) had experienced a decrease in hip BMD, while patients who switched antiviral regimens (n=38) experienced an increase (-13.97% vs 2.34%, p<0.05). Among patients with a baseline reduced BMD (n=31), the alterations in BMD were similar in patients who maintained TDF (n=5) and those who switched antiviral regimens (n=26) (-15.81% vs 7.35%, p<0.05). Irrespective of baseline BMD status, renal function decreased significantly in patients who maintained TDF and improved in patients who switched antiviral regimens. CONCLUSIONS Younger CHB patients on long-term TDF therapy are at high risk for bone and renal impairment, with the risk being reduced when switched to ETV or TAF.
Collapse
Affiliation(s)
- Fa- Da Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, Sichuan Province, China; Department of infectious disease, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Jing Zhou
- Center of Infectious Diseases, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, Sichuan Province, China
| | - Lan-Qing Li
- Center of Infectious Diseases, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, Sichuan Province, China
| | - Yu-Jing Li
- Center of Infectious Diseases, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, Sichuan Province, China
| | - Meng-Lan Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, Sichuan Province, China
| | - Ya-Chao Tao
- Center of Infectious Diseases, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, Sichuan Province, China
| | - Dong-Mei Zhang
- Center of Infectious Diseases, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, Sichuan Province, China
| | - Yong-Hong Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, Sichuan Province, China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, Sichuan Province, China.
| |
Collapse
|
10
|
Nie J, Zhou J, Shen Y, Lin R, Hu H, Zeng K, Bi H, Huang M, Yu L, Zeng S, Miao J. Studies on the interaction of five triazole fungicides with human renal transporters in cells. Toxicol In Vitro 2023; 88:105555. [PMID: 36669674 DOI: 10.1016/j.tiv.2023.105555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
The widespread use of triazole fungicides in agricultural production poses a potential risk to human health. This study investigates the interaction of five triazole fungicides, i.e., tebuconazole, triticonazole, hexaconazole, penconazole, and uniconazole with human renal transporters, including OAT1, OAT3, OCT2, OCTN1, OCTN2, MATE1, MATE2-K, MRP2, MDR1, and BCRP, using transgenic cell models. For uptake transporters, triticonazole was the substrate of OAT1 and OAT3 and the inhibitor of OCT2. Tebuconazole and penconazole inhibited OCTN2 (100 μM), while tebuconazole, triticonazole, hexaconazole, penconazole, and uniconazole inhibited MATE1 (100 μM). Tebuconazole and hexaconazole inhibited MATE2-K (100 μM). All five triazole fungicides were not substrates or strong inhibitors of MRP2, MDR1, and BCRP efflux transporters. Penconazole inhibited OCT2 with IC50 = 1.12 μM. Penconazole and uniconazole inhibited MATE1 with IC50 = 0.94 μM and 0.87 μM. Tebuconazole and hexaconazole inhibited MATE2-K with IC50 = 0.96 μM and 1.04 μM, indicating that triazole fungicides may inhibit renal drug transporter activity at low concentrations. Triticonazole was transported by OAT1 and OAT3, and the Km values of triticonazole were 5.81 ± 1.75 and 47.35 ± 14.27, respectively. Tebuconazole and uniconazole were transported by OAT3, and the Km values of tebuconazole and uniconazole were 30.28 ± 7.18 and 87.61 ± 31.70, respectively, which may induce nephrotoxicity.
Collapse
Affiliation(s)
- Jing Nie
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, Zhejiang 310058, China
| | - Jiabei Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yi Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ruimiao Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haihong Hu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, Zhejiang 310058, China
| | - Kui Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, Zhejiang 310058, China
| | - Huichang Bi
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Min Huang
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, Zhejiang 310058, China
| | - Su Zeng
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, Zhejiang 310058, China.
| | - Jing Miao
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
11
|
Cerveny L, Karbanova S, Karahoda R, Horackova H, Jiraskova L, Ali MNH, Staud F. Assessment of the role of nucleoside transporters, P-glycoprotein, breast cancer resistance protein, and multidrug resistance-associated protein 2 in the placental transport of entecavir using in vitro, ex vivo, and in situ methods. Toxicol Appl Pharmacol 2023; 463:116427. [PMID: 36801311 DOI: 10.1016/j.taap.2023.116427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
The nucleoside analog entecavir (ETV) is a first-line pharmacotherapy for chronic hepatitis B in adult and pediatric patients. However, due to insufficient data on placental transfer and its effects on pregnancy, ETV administration is not recommended for women after conception. To expand knowledge of safety, we focused on evaluating the contribution of nucleoside transporters (NBMPR sensitive ENTs and Na+ dependent CNTs) and efflux transporters, P-glycoprotein (ABCB1), breast cancer resistance protein (ABCG2), and multidrug resistance-associated transporter 2 (ABCC2), to the placental kinetics of ETV. We observed that NBMPR and nucleosides (adenosine and/or uridine) inhibited [3H]ETV uptake into BeWo cells, microvillous membrane vesicles, and fresh villous fragments prepared from the human term placenta, while Na+ depletion had no effect. Using a dual perfusion study in an open-circuit setup, we showed that maternal-to-fetal and fetal-to-maternal clearances of [3H]ETV in the rat term placenta were decreased by NBMPR and uridine. Net efflux ratios calculated for bidirectional transport studies performed in MDCKII cells expressing human ABCB1, ABCG2, or ABCC2 were close to the value of one. Consistently, no significant decrease in fetal perfusate was observed in the closed-circuit setup of dual perfusion studies, suggesting that active efflux does not significantly reduce maternal-to-fetal transport. In conclusion, ENTs (most likely ENT1), but not CNTs, ABCB1, ABCG2, and ABCC2, contribute significantly to the placental kinetics of ETV. Future studies should investigate the placental/fetal toxicity of ETV, the impact of drug-drug interactions on ENT1, and interindividual variability in ENT1 expression on the placental uptake and fetal exposure to ETV.
Collapse
Affiliation(s)
- Lukas Cerveny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic.
| | - Sara Karbanova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Rona Karahoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Hana Horackova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Lucie Jiraskova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Mohammed Naji Husaen Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
12
|
OAT3 Participates in Drug-Drug Interaction between Bentysrepinine and Entecavir through Interactions with M8-A Metabolite of Bentysrepinine-In Rats and Humans In Vitro. Molecules 2023; 28:molecules28041995. [PMID: 36838982 PMCID: PMC9967645 DOI: 10.3390/molecules28041995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 02/23/2023] Open
Abstract
Bentysrepinine (Y101) is a novel phenylalanine dipeptide for the treatment of hepatitis B virus. Renal excretion played an important role in the elimination of Y101 and its metabolites, M8 and M9, in healthy Chinese subjects, although the molecular mechanisms of renal excretion and potential drug-drug interactions (DDIs) remain unclear. The present study aimed to determine the organic anion transporters (OATs) involved in the renal disposition of Y101 and to predict the potential DDI between Y101 and entecavir, the first-line agent against HBV and a substrate of OAT1/3. Pharmacokinetic studies and uptake assays using rat kidney slices, as well as hOAT1/3-HEK293 cells, were performed to evaluate potential DDI. The co-administration of probenecid (an inhibitor of OATs) significantly increased the plasma concentrations and area under the plasma concentration-time curves of M8 and M9 but not Y101, while reduced renal clearance and the cumulative urinary excretion of M8 were observed in rats. The time course of Y101 and M8 uptake via rat kidney slices was temperature-dependent. Moreover, the uptake of M8 was inhibited significantly by probenecid and benzylpenicillin, but not by p-aminohippurate or tetraethyl ammonium. M8 was found to be a substrate of hOAT3, but Y101 is not a substrate of either hOAT1 or hOAT3. Additionally, the entecavir inhibited the uptake of M8 in the hOAT3-transfected cells and rat kidney slices in vitro. Interestingly, no significant changes were observed in the pharmacokinetic parameters of Y101, M8 or entecavir, regardless of intravenous or oral co-administration of Y101 and entecavir in rats. In conclusion, M8 is a substrate of OAT3 in rats and humans. Furthermore, M8 also mediates the DDI between Y101 and entecavir in vitro, mediated by OAT3. We speculate that it would be safe to use Y101 with entecavir in clinical practice. Our results provide useful information with which to predict the DDIs between Y101 and other drugs that act as substrates of OAT3.
Collapse
|
13
|
Zhang R, Li P, Guo P, Zhou J, Wan J, Yang C, Zhou J, Liu Y, Shi S. A Pharmacokinetic Drug-Drug Interactions Study between Entecavir and Hydronidone, a Potential Novel Antifibrotic Small Molecule, in Healthy Male Volunteers. Adv Ther 2023; 40:658-670. [PMID: 36477590 DOI: 10.1007/s12325-022-02377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Hepatic fibrosis is an inevitable process of hepatic sclerosis, malignancy, and insufficiency, and hydronidone is an innovative antifibrosis drug. This study focus on the pharmacokinetic interaction of hydronidone and entecavir in healthy Chinese male subjects. METHODS An open-label, three-period, multiple-dosage, self-controlled clinical trial was executed in 12 healthy male subjects. In period 1, the subjects took hydronidone 60 mg, q8h, for 7 days. In period 2, they were given entecavir 0.5 mg once daily for 9 days. Then, hydronidone and entecavir were given in combination for 6 days (days 20-26). Blood samples were taken up to 24 h post-dosing, while pre-dose blood samples were drawn on days 7, 19, and 26. RESULTS The area under the curve (AUC)0-t_ss of entecavir slightly increased from 15.56 ± 2.67 to 16.17 ± 2.77 ng h/ml with coadministration with hydronidone, while the other pharmacokinetic parameters of hydronidone and entecavir were comparable between monotherapy and combination therapy. The geometric mean ratios (GMRs) [90% confidence intervals (CIs)] of Cmax_ss, AUC0-t_ss, and AUC0-∞_ss of entecavir after coadministration compared with entecavir alone were 107.21% (97.04-118.45%), 103.85% (100.94-106.83%), and 110.81% (97.19-126.33%), respectively. And the GMRs and 90% CIs of Cmax,ss, AUC0-t_ss, and AUC0-∞_ss for combination therapy compared with the hydronidone monotherapy group were 102.72% (84.21-125.29%), 106.52% (97.06-116.90%), and 108.86% (96.42-122.89%), respectively. CONCLUSIONS There was no drug-drug interaction between hydronidone and entecavir in healthy male volunteers. However, multiple doses of hydronidone have a risk with increasing exposure to entecavir in vivo, which needs to be further clarified. REGISTRATION NUMBER ChiCTR2200059683 (retrospectively registered).
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peixia Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pengpeng Guo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinping Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Wan
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chunxiao Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiali Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yani Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Shaojun Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Union Jiangnan Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
14
|
Redeker KEM, Jensen O, Gebauer L, Meyer-Tönnies MJ, Brockmöller J. Atypical Substrates of the Organic Cation Transporter 1. Biomolecules 2022; 12:1664. [PMID: 36359014 PMCID: PMC9687798 DOI: 10.3390/biom12111664] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 10/29/2023] Open
Abstract
The human organic cation transporter 1 (OCT1) is expressed in the liver and mediates hepatocellular uptake of organic cations. However, some studies have indicated that OCT1 could transport neutral or even anionic substrates. This capability is interesting concerning protein-substrate interactions and the clinical relevance of OCT1. To better understand the transport of neutral, anionic, or zwitterionic substrates, we used HEK293 cells overexpressing wild-type OCT1 and a variant in which we changed the putative substrate binding site (aspartate474) to a neutral amino acid. The uncharged drugs trimethoprim, lamivudine, and emtricitabine were good substrates of hOCT1. However, the uncharged drugs zalcitabine and lamotrigine, and the anionic levofloxacin, and prostaglandins E2 and F2α, were transported with lower activity. Finally, we could detect only extremely weak transport rates of acyclovir, ganciclovir, and stachydrine. Deleting aspartate474 had a similar transport-lowering effect on anionic substrates as on cationic substrates, indicating that aspartate474 might be relevant for intra-protein, rather than substrate-protein, interactions. Cellular uptake of the atypical substrates by the naturally occurring frequent variants OCT1*2 (methionine420del) and OCT1*3 (arginine61cysteine) was similarly reduced, as it is known for typical organic cations. Thus, to comprehensively understand the substrate spectrum and transport mechanisms of OCT1, one should also look at organic anions.
Collapse
Affiliation(s)
- Kyra-Elisa Maria Redeker
- Institute of Clinical Pharmacology, University Medical Centre Göttingen, 37075 Göttingen, Germany
| | - Ole Jensen
- Institute of Clinical Pharmacology, University Medical Centre Göttingen, 37075 Göttingen, Germany
| | - Lukas Gebauer
- Institute of Clinical Pharmacology, University Medical Centre Göttingen, 37075 Göttingen, Germany
| | - Marleen Julia Meyer-Tönnies
- Department of General Pharmacology, Institute of Pharmacology, Centre of Drug Absorption and Transport (C-DAT), University Medical Centre Greifswald, 17487 Greifswald, Germany
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Centre Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
15
|
Effects of 1α,25-dihydroxyvitamin D3 on the pharmacokinetics and biodistribution of ergothioneine, an endogenous organic cation/carnitine transporter 1 substrate, in rats. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022; 52:341-351. [PMID: 35291466 PMCID: PMC8911105 DOI: 10.1007/s40005-022-00563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/03/2022] [Indexed: 11/25/2022]
Abstract
Purpose This study aimed to investigate the effects of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) on the expression levels of organic cation/carnitine transporter 1 (OCTN1) as well as the pharmacokinetics and biodistribution of ergothioneine, an OCTN1 substrate, in rats. Methods Rats pretreated with 1,25(OH)2D3 (2.56 nmol/kg/day) for four days were administered ergothioneine (2 mg/kg) intravenously. The expression levels of rat OCTN1 (rOCTN1) in organs were determined using real-time quantitative polymerase chain reaction. Ergothioneine levels in plasma, urine, and organs (with and without intravenous injection of exogenous ergothioneine) were determined using liquid chromatography-tandem mass spectrometry. Results 1,25(OH)2D3 pretreatment resulted in a significant decrease in rOCTN1 mRNA expression levels in the kidney and brain, a significant increase in basal plasma levels of ergothioneine (from 48 h), and a significant decrease in the tissue-plasma partition coefficient (Kp) in all tissues (except the heart and lungs) and the basal urine levels of ergothioneine. After intravenous administration, the pharmacokinetic profiles of ergothioneine were consistent with the basal levels of endogenous ergothioneine, with an increase in AUC∞ by 85%, a significant decrease in total clearance by 49%, and a decrease in Vss by 32% in 1,25(OH)2D3-treated rats. The Kp value and urinary recovery of ergothioneine also decreased in the 1,25(OH)2D3-treated group. Conclusion This study showed the effects of 1,25(OH)2D3 on the expression and function of rOCTN1 by investigating the interaction between 1,25(OH)2D3 and ergothioneine. Dose adjustment and possible changes in bioavailability should be considered before the co-administration of vitamin D or its active forms and OCTN1 substrates. Supplementary Information The online version contains supplementary material available at 10.1007/s40005-022-00563-1.
Collapse
|
16
|
Pochini L, Galluccio M, Scalise M, Console L, Pappacoda G, Indiveri C. OCTN1: A Widely Studied but Still Enigmatic Organic Cation Transporter Linked to Human Pathology and Drug Interactions. Int J Mol Sci 2022; 23:ijms23020914. [PMID: 35055100 PMCID: PMC8776198 DOI: 10.3390/ijms23020914] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
The Novel Organic Cation Transporter, OCTN1, is the first member of the OCTN subfamily; it belongs to the wider Solute Carrier family SLC22, which counts many members including cation and anion organic transporters. The tertiary structure has not been resolved for any cation organic transporter. The functional role of OCNT1 is still not well assessed despite the many functional studies so far conducted. The lack of a definitive identification of OCTN1 function can be attributed to the different experimental systems and methodologies adopted for studying each of the proposed ligands. Apart from the contradictory data, the international scientific community agrees on a role of OCTN1 in protecting cells and tissues from oxidative and/or inflammatory damage. Moreover, the involvement of this transporter in drug interactions and delivery has been well clarified, even though the exact profile of the transported/interacting molecules is still somehow confusing. Therefore, OCTN1 continues to be a hot topic in terms of its functional role and structure. This review focuses on the most recent advances on OCTN1 in terms of functional aspects, physiological roles, substrate specificity, drug interactions, tissue expression, and relationships with pathology.
Collapse
Affiliation(s)
- Lorena Pochini
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Michele Galluccio
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Mariafrancesca Scalise
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Lara Console
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Gilda Pappacoda
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
| | - Cesare Indiveri
- Unit of Biochemistry, Molecular Biotechnology and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (L.P.); (M.G.); (M.S.); (L.C.); (G.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council—CNR, Via Amendola 122/O, 70126 Bari, Italy
- Correspondence:
| |
Collapse
|
17
|
Gründemann D, Hartmann L, Flögel S. The Ergothioneine Transporter (ETT): Substrates and Locations, an Inventory. FEBS Lett 2021; 596:1252-1269. [PMID: 34958679 DOI: 10.1002/1873-3468.14269] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/07/2022]
Abstract
In all vertebrates including mammals, the ergothioneine transporter ETT (obsolete name OCTN1; human gene symbol SLC22A4) is a powerful and highly specific transporter for the uptake of ergothioneine (ET). ETT is not expressed ubiquitously and only cells with high ETT cell-surface levels can accumulate ET to high concentration. Without ETT, there is no uptake because the plasma membrane is essentially impermeable to this hydrophilic zwitterion. Here, we review the substrate specificity and localization of ETT, which is prominently expressed in neutrophils, monocytes/macrophages, and developing erythrocytes. Most sites of strong expression are conserved across species, but there are also major differences. In particular, we critically analyze the evidence for the expression of ETT in the brain as well as recent data suggesting that the transporter SLC22A15 may transport also ET. We conclude that, to date, ETT remains the only well-defined biomarker for intracellular ET activity. In humans, the ability to take up, distribute, and retain ET depends principally on this transporter.
Collapse
Affiliation(s)
- Dirk Gründemann
- Department of Pharmacology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| | - Lea Hartmann
- Department of Pharmacology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| | - Svenja Flögel
- Department of Pharmacology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| |
Collapse
|
18
|
Hashimoto M, Taguchi K, Imoto S, Yamasaki K, Mitsuya H, Otagiri M. Pharmacokinetics of 4'-cyano-2'-deoxyguanosine, a novel nucleoside analog inhibitor of the resistant hepatitis B virus, in a rat model of chronic kidney disease. J Infect Chemother 2021; 27:702-706. [PMID: 33386259 DOI: 10.1016/j.jiac.2020.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The novel nucleoside analog, 4'-cyano-2'-deoxyguanosine (CdG), possesses inhibitory activity against both the wild-type and resistant hepatitis B virus. Since the dosage of the currently available nucleoside analog preparations needs to be adjusted, depending on renal function, we investigated the effect of renal dysfunction on the pharmacokinetics of CdG in a rat model of chronic kidney disease (CKD). METHODS CKD model rats were either intravenously or orally administered CdG at a dose of 1 mg/kg. The concentration of CdG in plasma, organs (liver and kidney) and urine samples were determined by means of a UPLC system interfaced with a TOF-MS system. RESULTS Following intravenous administration, the plasma retention of CdG was prolonged in CKD model rats compared to healthy rats. In addition, the clearance of CdG was well correlated with plasma creatinine levels in CKD model rats. Similar to the results for intravenous administration, the plasma concentration profiles of CdG after oral administration were also found to be much higher in CKD model rats than in healthy rats. However, the results for the organ distribution and urinary excretion of CdG, the profiles of which were similar to that of healthy rats, indicated that CdG did not accumulate to a significant extent in the body. CONCLUSION The extent of renal dysfunction has a direct influence on the pharmacokinetics (plasma retention) of CdG without a significant accumulation, indicating that the dosage of CdG will be dependent on the extent of renal function. .
Collapse
Affiliation(s)
- Mai Hashimoto
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
| | - Kazuaki Taguchi
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan; Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Shuhei Imoto
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
| | - Keishi Yamasaki
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan; DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto, 860-0082, Japan
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, 1-21-1 Toyama, Shinjuku, Tokyo, 162-8655, Japan; Department of Clinical Science, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, United States
| | - Masaki Otagiri
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan; DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto, 860-0082, Japan.
| |
Collapse
|
19
|
Nicklisch SC, Hamdoun A. Disruption of small molecule transporter systems by Transporter-Interfering Chemicals (TICs). FEBS Lett 2020; 594:4158-4185. [PMID: 33222203 PMCID: PMC8112642 DOI: 10.1002/1873-3468.14005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022]
Abstract
Small molecule transporters (SMTs) in the ABC and SLC families are important players in disposition of diverse endo- and xenobiotics. Interactions of environmental chemicals with these transporters were first postulated in the 1990s, and since validated in numerous in vitro and in vivo scenarios. Recent results on the co-crystal structure of ABCB1 with the flame-retardant BDE-100 demonstrate that a diverse range of man-made and natural toxic molecules, hereafter termed transporter-interfering chemicals (TICs), can directly bind to SMTs and interfere with their function. TIC-binding modes mimic those of substrates, inhibitors, modulators, inducers, and possibly stimulants through direct and allosteric mechanisms. Similarly, the effects could directly or indirectly agonize, antagonize or perhaps even prime the SMT system to alter transport function. Importantly, TICs are distinguished from drugs and pharmaceuticals that interact with transporters in that exposure is unintended and inherently variant. Here, we review the molecular mechanisms of environmental chemical interaction with SMTs, the methodological considerations for their evaluation, and the future directions for TIC discovery.
Collapse
Affiliation(s)
- Sascha C.T. Nicklisch
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202
| |
Collapse
|
20
|
Zafeiri A, Mitchell RT, Hay DC, Fowler PA. Over-the-counter analgesics during pregnancy: a comprehensive review of global prevalence and offspring safety. Hum Reprod Update 2020; 27:67-95. [PMID: 33118024 DOI: 10.1093/humupd/dmaa042] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/16/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Analgesia during pregnancy is often necessary. Due to their widespread availability, many mothers opt to use over-the-counter (OTC) analgesics. Those analgesic compounds and their metabolites can readily cross the placenta and reach the developing foetus. Evidence for safety or associations with adverse health outcomes is conflicting, limiting definitive decision-making for healthcare professionals. OBJECTIVE AND RATIONALE This review provides a detailed and objective overview of research in this field. We consider the global prevalence of OTC analgesia during pregnancy, explain the current mechanistic understanding of how analgesic compounds cross the placenta and reach the foetus, and review current research on exposure associations with offspring health outcomes. SEARCH METHODS A comprehensive English language literature search was conducted using PubMed and Scopus databases. Different combinations of key search terms were used including 'over-the-counter/non-prescription analgesics', 'pregnancy', 'self-medication', 'paracetamol', 'acetaminophen', 'diclofenac', 'aspirin', 'ibuprofen', 'in utero exposure', 'placenta drug transport', 'placental transporters', 'placenta drug metabolism' and 'offspring outcomes'. OUTCOMES This article examines the evidence of foetal exposure to OTC analgesia, starting from different routes of exposure to evidence, or the lack thereof, linking maternal consumption to offspring ill health. There is a very high prevalence of maternal consumption of OTC analgesics globally, which is increasing sharply. The choice of analgesia selected by pregnant women differs across populations. Location was also observed to have an effect on prevalence of use, with more developed countries reporting the highest consumption rates. Some of the literature focuses on the association of in utero exposure at different pregnancy trimesters and the development of neurodevelopmental, cardiovascular, respiratory and reproductive defects. This is in contrast to other studies which report no associations. WIDER IMPLICATIONS The high prevalence and the challenges of reporting exact consumption rates make OTC analgesia during pregnancy a pressing reproductive health issue globally. Even though some healthcare policy-making authorities have declared the consumption of some OTC analgesics for most stages of pregnancy to be safe, such decisions are often based on partial review of literature. Our comprehensive review of current evidence highlights that important knowledge gaps still exist. Those areas require further research in order to provide pregnant mothers with clear guidance with regard to OTC analgesic use during pregnancy.
Collapse
Affiliation(s)
- Aikaterini Zafeiri
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - David C Hay
- MRC Centre for Regenerative Medicine, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
21
|
Abstract
The organic cation transporters (OCTs) OCT1, OCT2, OCT3, novel OCT (OCTN)1, OCTN2, multidrug and toxin exclusion (MATE)1, and MATE kidney-specific 2 are polyspecific transporters exhibiting broadly overlapping substrate selectivities. They transport organic cations, zwitterions, and some uncharged compounds and operate as facilitated diffusion systems and/or antiporters. OCTs are critically involved in intestinal absorption, hepatic uptake, and renal excretion of hydrophilic drugs. They modulate the distribution of endogenous compounds such as thiamine, L-carnitine, and neurotransmitters. Sites of expression and functions of OCTs have important impact on energy metabolism, pharmacokinetics, and toxicity of drugs, and on drug-drug interactions. In this work, an overview about the human OCTs is presented. Functional properties of human OCTs, including identified substrates and inhibitors of the individual transporters, are described. Sites of expression are compiled, and data on regulation of OCTs are presented. In addition, genetic variations of OCTs are listed, and data on their impact on transport, drug treatment, and diseases are reported. Moreover, recent data are summarized that indicate complex drug-drug interaction at OCTs, such as allosteric high-affinity inhibition of transport and substrate dependence of inhibitor efficacies. A hypothesis about the molecular mechanism of polyspecific substrate recognition by OCTs is presented that is based on functional studies and mutagenesis experiments in OCT1 and OCT2. This hypothesis provides a framework to imagine how observed complex drug-drug interactions at OCTs arise. Finally, preclinical in vitro tests that are performed by pharmaceutical companies to identify interaction of novel drugs with OCTs are discussed. Optimized experimental procedures are proposed that allow a gapless detection of inhibitory and transported drugs.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute of Anatomy and Cell Biology and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
22
|
L-tetrahydropalmatine attenuates cisplatin-induced nephrotoxicity via selective inhibition of organic cation transporter 2 without impairing its antitumor efficacy. Biochem Pharmacol 2020; 177:114021. [DOI: 10.1016/j.bcp.2020.114021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/04/2020] [Indexed: 11/23/2022]
|
23
|
Zhang Y, Xi H, Nie X, Zhang P, Lan N, Lu Y, Liu J, Yuan W. Assessment of miR-212 and Other Biomarkers in the Diagnosis and Treatment of HBV-infection-related Liver Diseases. Curr Drug Metab 2020; 20:785-798. [PMID: 31608838 DOI: 10.2174/1389200220666191011120434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/31/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Our study aims to detect the sensitivity of the new biomarker miR-212 existing in serum exosomes along with other hepatocellular carcinoma biomarkers such as AFP (alpha-fetoprotein), CA125 (carbohydrate antigen-ca125), and Hbx protein in the diagnosis of HBV-related liver diseases. We also aim to study the roles of these biomarkers in the progression of chronic hepatitis B and provide scientific data to show the clinical value of these biomarkers. METHODS We selected 200 patients with HBV-infection (58 cases of chronic hepatitis B, 47 cases of hepatocellular carcinoma, 30 cases of compensatory phase cirrhosis, and 65 cases of decompensatory phase cirrhosis), 31 patients with primary liver cancer without HBV infection, and 70 healthy individuals as the control group. The expression level of serum AFP and CA125 was detected with electrochemiluminescence immunoassay. The expression level of the Hbx protein was detected with ELISA. Meanwhile, the expression level of miR-212 in serum was analyzed with RT-qPCR. We collected patients' clinical information following the Child-Pugh classification and MELD score criterion, and statistical analysis was made between the expression level of miR-212 and the collected clinical indexes. Lastly, we predicted the target genes of the miR-212 and its functions using bioinformatics methods such as cluster analysis and survival prediction. RESULTS Compared to the control group, the expression level of miR-212 in HBV infected patients was remarkably increased (P<0.05), especially between the HBV-infection Hepatocellular carcinoma group and the non-HBVinfection liver cancer group (P<0.05). The expression of miR-212 was increased in patients' Child-Pugh classification, MELD score, and TNM staging. Moreover, the sensitivity and specificity of miR-212 were superior to AFP, CA125, and HBx protein. CONCLUSION There is a linear relationship between disease progression and expression level of miR-212 in the serum of HBV infected patients. This demonstrates that miR-212 plays a significant role in liver diseases. miR-212 is expected to be a new biomarker used for the diagnosis and assessment of patients with HBV-infection-related liver diseases.
Collapse
Affiliation(s)
- Yigan Zhang
- The First School of Clinical Medicine, Lanzhou University, 730000, Lanzhou, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., 730000, Lanzhou, China
| | - Huaze Xi
- The First School of Clinical Medicine, Lanzhou University, 730000, Lanzhou, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., 730000, Lanzhou, China
| | - Xin Nie
- The First School of Clinical Medicine, Lanzhou University, 730000, Lanzhou, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., 730000, Lanzhou, China
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., 730000, Lanzhou, China
| | - Ning Lan
- The First School of Clinical Medicine, Lanzhou University, 730000, Lanzhou, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., 730000, Lanzhou, China
| | - Ying Lu
- The First School of Clinical Medicine, Lanzhou University, 730000, Lanzhou, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., 730000, Lanzhou, China
| | - Jinrong Liu
- School of Life Science, Lanzhou University, 730000, Lanzhou, China
| | - Wenzhen Yuan
- The Department of Surgical Oncology, the First Hospital of Lanzhou University, 730000, Lanzhou, China
| |
Collapse
|
24
|
Lu S, Yang X, Jiang T, Zhou H, Wang W, Lin N, Zeng S, Ma Z, Jiang H. Pregnancy Impacts Entecavir Pharmacokinetics but Does Not Alter Its Renal Excretion. J Pharm Sci 2020; 109:1811-1818. [PMID: 32027922 DOI: 10.1016/j.xphs.2020.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/16/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
Entecavir (ETV) is a first-line antiviral drug against the hepatitis B virus. This study was designed to investigate whether ETV pharmacokinetics changes during pregnancy and the underlying mechanism. The results showed that ETV exposure in plasma was higher in pregnant rats than in nonpregnant rats, whereas the exposure after delivery was recovered to that in nonpregnant rats. Because 70% of orally dosed ETV is eliminated by kidney, the effects of estradiol (E2) and progesterone (P4), 2 important hormones during pregnancy, on ETV-related renal transporters were investigated. Our results revealed that the activities of the ETV-related renal transporters hOAT1, hOAT3, hMATE1, and hMATE2-K were clearly inhibited by E2 and P4, resulting in reduced ETV accumulation in transporter-transfected cell models. However, the cumulative urinary excretion of ETV in pregnant rats exhibited no significant difference compared to nonpregnant rats, although the endogenous creatinine clearance in pregnant rats was 1.5-fold that of nonpregnant rats. In conclusion, ETV plasma exposure is increased during pregnancy, but ETV renal excretion displays no significant alteration. This may be because, during pregnancy, increased glomerular ETV filtration compensated for the decrease in renal tubular ETV secretion that occurs by E2- and P4-mediated inhibition of related transporters.
Collapse
Affiliation(s)
- Shuanghui Lu
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Xi Yang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Ting Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Hui Zhou
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Wei Wang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Nengming Lin
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Su Zeng
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Zhiyuan Ma
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.
| | - Huidi Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
25
|
Pochini L, Pappacoda G, Galluccio M, Pastore F, Scalise M, Indiveri C. Effect of Cholesterol on the Organic Cation Transporter OCTN1 (SLC22A4). Int J Mol Sci 2020; 21:ijms21031091. [PMID: 32041338 PMCID: PMC7037232 DOI: 10.3390/ijms21031091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
The effect of cholesterol was investigated on the OCTN1 transport activity measured as [14C]-tetraethylamonium or [3H]-acetylcholine uptake in proteoliposomes reconstituted with native transporter extracted from HeLa cells or the human recombinant OCTN1 over-expressed in E. coli. Removal of cholesterol from the native transporter by MβCD before reconstitution led to impairment of transport activity. A similar activity impairment was observed after treatment of proteoliposomes harboring the recombinant (cholesterol-free) protein by MβCD, suggesting that the lipid mixture used for reconstitution contained some cholesterol. An enzymatic assay revealed the presence of 10 µg cholesterol/mg total lipids corresponding to 1% cholesterol in the phospholipid mixture used for the proteoliposome preparation. On the other way around, the activity of the recombinant OCTN1 was stimulated by adding the cholesterol analogue, CHS to the proteoliposome preparation. Optimal transport activity was detected in the presence of 83 µg CHS/ mg total lipids for both [14C]-tetraethylamonium or [3H]-acetylcholine uptake. Kinetic analysis of transport demonstrated that the stimulation of transport activity by CHS consisted in an increase of the Vmax of transport with no changes of the Km. Altogether, the data suggests a direct interaction of cholesterol with the protein. A further support to this interpretation was given by a docking analysis indicating the interaction of cholesterol with some protein sites corresponding to CARC-CRAC motifs. The observed direct interaction of cholesterol with OCTN1 points to a possible direct influence of cholesterol on tumor cells or on acetylcholine transport in neuronal and non-neuronal cells via OCTN1.
Collapse
|
26
|
Drug-drug interaction between crizotinib and entecavir via renal secretory transporter OCT2. Eur J Pharm Sci 2020; 142:105153. [DOI: 10.1016/j.ejps.2019.105153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/08/2019] [Accepted: 11/14/2019] [Indexed: 01/05/2023]
|
27
|
Dehydrocorydaline induced antidepressant-like effect in a chronic unpredictable mild stress mouse model via inhibiting uptake-2 monoamine transporters. Eur J Pharmacol 2019; 864:172725. [DOI: 10.1016/j.ejphar.2019.172725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/26/2022]
|
28
|
Wang Y, Li P, Song F, Yang X, Weng Y, Ma Z, Wang L, Jiang H. Substrate Transport Properties of the Human Peptide/Histidine Transporter PHT2 in Transfected MDCK Cells. J Pharm Sci 2019; 108:3416-3424. [DOI: 10.1016/j.xphs.2019.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/04/2019] [Accepted: 06/20/2019] [Indexed: 01/19/2023]
|
29
|
Zeng Q, Bai M, Li C, Lu S, Ma Z, Zhao Y, Zhou H, Jiang H, Sun D, Zheng C. Multiple Drug Transporters Contribute to the Placental Transfer of Emtricitabine. Antimicrob Agents Chemother 2019; 63:e00199-19. [PMID: 31160284 PMCID: PMC6658773 DOI: 10.1128/aac.00199-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/25/2019] [Indexed: 11/20/2022] Open
Abstract
Emtricitabine (FTC) is a first-line antiviral drug recommended for the treatment of AIDS during pregnancy. We hypothesized that transporters located in the placenta contribute to FTC transfer across the blood-placenta barrier. BeWo cells, cell models with stable or transient expression of transporter genes, primary human trophoblast cells (PHTCs), and small interfering RNAs (siRNAs) were applied to demonstrate which transporters were involved. FTC accumulation in BeWo cells was reduced markedly by inhibitors of equilibrative nucleoside transporters (ENTs), concentrative nucleoside transporters (CNTs), organic cation transporters (OCTs), and organic cation/carnitine transporter 1 (OCTN1) and increased by inhibitors of breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs). ENT1, CNT1, OCTN1, MRP1/2/3, and BCRP, but not ENT2, CNT3, OCTN2, or multidrug resistance protein 1 (MDR1), were found to transport FTC. FTC accumulation in PHTCs was decreased significantly by inhibitors of ENTs and OCTN1. These results suggest that ENT1, CNT1, and OCTN1 probably contribute to FTC uptake from maternal circulation to trophoblasts and that ENT1, CNT1, and MRP1 are likely involved in FTC transport between trophoblasts and fetal blood, whereas BCRP and MRP1/2/3 facilitate FTC transport from trophoblasts to maternal circulation. Coexistence of tenofovir or efavirenz with FTC in the cell medium did not influence FTC accumulation in BeWo cells or PHTCs.
Collapse
Affiliation(s)
- Qingquan Zeng
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengru Bai
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cui Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuanghui Lu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhiyuan Ma
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunchun Zhao
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huidi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dongli Sun
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Caihong Zheng
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Ma Z, Lu S, Sun D, Bai M, Jiang T, Lin N, Zhou H, Zeng S, Jiang H. Roles of organic anion transporter 2 and equilibrative nucleoside transporter 1 in hepatic disposition and antiviral activity of entecavir during non-pregnancy and pregnancy. Br J Pharmacol 2019; 176:3236-3249. [PMID: 31166004 DOI: 10.1111/bph.14756] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Entecavir (ETV), a first-line antiviral drug against hepatitis B virus (HBV), has the possibility to be used to prevent mother-to-child transmission. The aim of present study was to clarify the mechanism of ETV uptake into hepatocytes and evaluate the alteration of ETV's hepatic distribution during pregnancy. EXPERIMENTAL APPROACH The roles of equilibrative nucleotide transporter (ENT) 1 and organic anion transporter (OAT) 2 in ETV accumulation and anti-HBV efficacy were studied in human ENT1 or OAT2 overexpressed cell models and HepG2.2.15 cells, respectively; meanwhile, the liver-to-plasma ETV concentration ratios in non-pregnant and pregnant mice were measured to evaluate the effect of pregnancy on ETV hepatic distribution. KEY RESULTS ETV was shown to be a substrate of ENT1 and OAT2. An ENT1 inhibitor significantly decreased the efficacy of ETV in HepG2.2.15 cells, while overexpression of OAT2 increased susceptibility of HBV to ETV. The liver-to-plasma ETV concentration ratios in pregnant mice were sharply reduced; whereas, the absolute concentration of ETV in the liver did not obviously alter in pregnancy. Although oestradiol and progesterone showed a concentration-dependent inhibition on ETV accumulation both in hepatic cell lines and in primary human hepatocytes, a physiologically relevant concentration of oestradiol and progesterone did not affect antiviral activity of ETV. CONCLUSIONS AND IMPLICATIONS OAT2 and ENT1 are the main transporters involved in the hepatic uptake and anti-HBV efficacy of ETV. The concentration of ETV in the liver was not obviously altered during pregnancy, which indicates that dosage adjustment in pregnancy is not necessary.
Collapse
Affiliation(s)
- Zhiyuan Ma
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuanghui Lu
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Dongli Sun
- Women's Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengru Bai
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ting Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Nengming Lin
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Zhou
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Su Zeng
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Huidi Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
A case of entecavir-induced Fanconi syndrome. CEN Case Rep 2019; 8:256-260. [PMID: 31154657 DOI: 10.1007/s13730-019-00404-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/23/2019] [Indexed: 12/30/2022] Open
Abstract
Acquired Fanconi syndrome has been associated with the long-term ingestion of several nucleoside analogs used to treat chronic hepatitis B virus infection. However, the nucleoside analog entecavir has not been found to cause nephrotoxicity. We report a case of entecavir-induced Fanconi syndrome. Our patient was a 73-year-old man admitted to our hospital because of renal dysfunction. He also presented with hyperaminoaciduria, renal diabetes, phosphaturia, hypophosphatemia, hypokalemia, hypouricemia, and hyperchloremic metabolic acidosis, supporting a diagnosis of Fanconi syndrome. In this case, the cause of Fanconi syndrome was most likely entecavir, which had been administered as needed depending on his renal function for 5 years. After drug discontinuation and replacement with tenofovir alafenamide fumarate therapy once a week, the patient's kidney function recovered and electrolyte anomalies partially improved. We highlight the fact that entecavir may induce severe renal dysfunction, which can cause the development of Fanconi syndrome; therefore, close monitoring of proximal tubular function is recommended during entecavir therapy.
Collapse
|
32
|
Szilagyi JT, Gorczyca L, Brinker A, Buckley B, Laskin JD, Aleksunes LM. Placental BCRP/ABCG2 Transporter Prevents Fetal Exposure to the Estrogenic Mycotoxin Zearalenone. Toxicol Sci 2019; 168:394-404. [PMID: 30576553 PMCID: PMC6432861 DOI: 10.1093/toxsci/kfy303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the placenta, the breast cancer resistance protein (BCRP)/ABCG2 efflux transporter limits the maternal-to-fetal transfer of drugs and chemicals. Previous research has pointed to the estrogenic mycotoxin zearalenone as a potential substrate for BCRP. Here, we sought to assess the role of the BCRP transporter in the transplacental disposition of zearalenone during pregnancy. In vitro transwell transport assays employing BCRP/Bcrp-transfected Madine-Darby canine kidney cells and BeWo trophoblasts with reduced BCRP expression were used to characterize the impact of BCRP on the bidirectional transport of zearalenone. In both models, the presence of BCRP protein increased the basolateral-to-apical transport and reduced the apical-to-basolateral transport of zearalenone over a 2-h period. In vivo pharmacokinetic analyses were then performed using pregnant wild-type and Bcrp-/- mice after a single tail vein injection of zearalenone. Zearalenone and its metabolite α-zearalenol were detectable in serum, placentas, and fetuses from all animals, and β-zearalenol was detected in serum and fetuses, but not placentas. There were no significant differences in the maternal serum concentrations of any analytes between the two genotypes. In Bcrp-/- mice, the free fetal concentrations of zearalenone, α-zearalenol, and β-zearalenol were increased by 115%, 84%, and 150%, respectively, when compared with wild-type mice. Concentrations of free zearalenone and α-zearalenol were elevated 145% and 78% in Bcrp-/- placentas, respectively, when compared with wild-type placentas. Taken together, these data indicate that the placental BCRP transporter functions to reduce the fetal accumulation of zearalenone, which may impact susceptibility to developmental toxicities associated with in utero zearalenone exposure.
Collapse
Affiliation(s)
- John T Szilagyi
- Joint Graduate Program in Toxicology, Rutgers University School of Graduate Studies, Piscataway, New Jersey 08854
| | - Ludwik Gorczyca
- Joint Graduate Program in Toxicology, Rutgers University School of Graduate Studies, Piscataway, New Jersey 08854
| | - Anita Brinker
- Environmental and Occupational Health Sciences Institute
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute
| | - Jeffrey D Laskin
- Environmental and Occupational Health Sciences Institute
- Department of Environmental and Occupational Health, School of Public Health
| | - Lauren M Aleksunes
- Environmental and Occupational Health Sciences Institute
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854
| |
Collapse
|
33
|
Kim SR, Ho MJ, Choi YW, Kang MJ. Improved Drug Loading and Sustained Release of Entecavir‐loaded PLGA Microsphere Prepared by Spray Drying Technique. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sung Rae Kim
- College of PharmacyChung‐Ang University Seoul 150‐756 South Korea
| | - Myoung Jin Ho
- College of PharmacyDankook University Chungnam 330‐714 South Korea
| | - Young Wook Choi
- College of PharmacyChung‐Ang University Seoul 150‐756 South Korea
| | - Myung Joo Kang
- College of PharmacyDankook University Chungnam 330‐714 South Korea
| |
Collapse
|
34
|
Wang W, Bai M, Jiang T, Li C, Li P, Zhou H, Wang Z, Li L, Jiang H. Clozapine-induced reduction of l-carnitine reabsorption via inhibition/down-regulation of renal carnitine/organic cation transporter 2 contributes to liver lipid metabolic disorder in mice. Toxicol Appl Pharmacol 2019; 363:47-56. [DOI: 10.1016/j.taap.2018.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 12/30/2022]
|
35
|
Pochini L, Galluccio M, Scalise M, Console L, Indiveri C. OCTN: A Small Transporter Subfamily with Great Relevance to Human Pathophysiology, Drug Discovery, and Diagnostics. SLAS DISCOVERY 2018; 24:89-110. [PMID: 30523710 DOI: 10.1177/2472555218812821] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OCTN is a small subfamily of membrane transport proteins that belongs to the larger SLC22 family. Two of the three members of the subfamily, namely, OCTN2 and OCTN1, are present in humans. OCTN2 plays a crucial role in the absorption of carnitine from diet and in its distribution to tissues, as demonstrated by the occurrence of severe pathologies caused by malfunctioning or altered expression of this transporter. These findings suggest avoiding a strict vegetarian diet during pregnancy and in childhood. Other roles of OCTN2 are related to the traffic of carnitine derivatives in many tissues. The role of OCTN1 is still unclear, despite the identification of some substrates such as ergothioneine, acetylcholine, and choline. Plausibly, the transporter acts on the control of inflammation and oxidative stress, even though knockout mice do not display phenotypes. A clear role of both transporters has been revealed in drug interaction and delivery. The polyspecificity of the OCTNs is at the base of the interactions with drugs. Interestingly, OCTN2 has been recently exploited in the prodrug approach and in diagnostics. A promising application derives from the localization of OCTN2 in exosomes that represent a noninvasive diagnostic tool.
Collapse
Affiliation(s)
- Lorena Pochini
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Michele Galluccio
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lara Console
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy.,2 CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, Bari, Italy
| |
Collapse
|
36
|
Li L, Lei H, Wang W, Du W, Yuan J, Tu M, Zhou H, Zeng S, Jiang H. Co-administration of nuciferine reduces the concentration of metformin in liver via differential inhibition of hepatic drug transporter OCT1 and MATE1. Biopharm Drug Dispos 2018; 39:411-419. [PMID: 30294927 DOI: 10.1002/bdd.2158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/18/2018] [Accepted: 09/24/2018] [Indexed: 01/19/2023]
Abstract
Nuciferine (NF), one of the main and effective components in Nelumbo nucifera Gaertn. leaf extracts, is a promising drug candidate for the treatment of obesity-related diseases, while metformin is a first line therapeutic drug for type 2 diabetes mellitus. Since nuciferine and metformin are likely to be co-administered, the aim of the present study was to evaluate whether co-administration of nuciferine would influence the liver (target tissue) distribution and the anti-diabetic effect of metformin by inhibiting hepatic organic cation transporter 1 (OCT1) and multidrug and toxin extrusion 1 (MATE1). The data demonstrated that nuciferine significantly reduced metformin accumulation in MDCK cells stably expressing human OCT1 (MDCK-hOCT1) or hMATE1 (MDCK-hMATE1), and primary cultured mouse hepatocytes. Furthermore, the presence of nuciferine in the basal compartment caused a concentration-dependent reduction of intracellular metformin accumulation in MDCK-hOCT1/hMATE1 cell monolayers. Compared with the metformin treatment-alone group, co-administration of nuciferine (40 mg/kg) markedly reduced the metformin concentration in mouse livers at 30 and 60 min after a single oral dose of metformin (200 mg/kg), and subsequently impaired the glucose-lowering effect of metformin (200 mg/kg), but the glucose-lowering effect became no different at 90 and 120 min. Therefore, nuciferine influenced the liver concentration and glucose-lowering effect of metformin only for a period of time after dose, administration of nuciferine and metformin with an interval might prevent the drug-drug interaction mediated by OCT1 and MATE1.
Collapse
Affiliation(s)
- Liping Li
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongmei Lei
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weijuan Du
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingqun Yuan
- Center of Analysis and Measurement, Zhejiang University, Hangzhou, Zhejiang, China
| | - Meijuan Tu
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Zhou
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Su Zeng
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huidi Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
37
|
Hashimoto M, Taguchi K, Ishiguro T, Kohgo S, Imoto S, Yamasaki K, Mitsuya H, Otagiri M. Pharmacokinetic properties of a novel inosine analog, 4'-cyano-2'-deoxyinosine, after oral administration in rats. PLoS One 2018; 13:e0198636. [PMID: 29874291 PMCID: PMC5991393 DOI: 10.1371/journal.pone.0198636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/22/2018] [Indexed: 12/22/2022] Open
Abstract
4′-cyano-2′-deoxyinosine (SK14-061a), a novel nucleoside analog based on inosine, has antiviral activity against the human immunodeficiency virus type 1 that has the ability to acquire resistance against many types of reverse transcriptase inhibitors based on nucleosides. The aim of this study was to investigate the pharmacokinetics studies after its oral administration to rats. For this purpose, we first developed and validated an analytical method for quantitatively determining SK14-061a levels in biological samples by a UPLC system interfaced with a TOF-MS system. A rapid, simple and selective method for the quantification of SK14-061a in biological samples was established using liquid chromatography mass spectrometry (LC-MS) with solid phase extraction. The pharmacokinetic properties of SK14-061a in rats after oral administration were then evaluated using this LC-MS method. SK14-061a was found to be relatively highly bioavailable, is rapidly absorbed from the intestinal tract, and is then mainly distributed to the liver and then ultimately excreted via the urine in an unchanged form. Furthermore, the simultaneous administration of SK14-061a with the nucleoside analog, entecavir, led to a significant alteration in the pharmacokinetics of SK14-061a. These results suggest that the SK14-061a has favorable pharmacokinetic properties with a high bioavailability with the potential for use in oral pharmaceutical formulations, but drug-drug interactions should also be considered.
Collapse
Affiliation(s)
- Mai Hashimoto
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda, Kumamoto, Japan
| | - Kazuaki Taguchi
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda, Kumamoto, Japan
| | - Takako Ishiguro
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda, Kumamoto, Japan
| | - Satoru Kohgo
- Center for Clinical Sciences, National Center for Global Health and Medicine, Toyama, Shinjuku, Tokyo, Japan
| | - Shuhei Imoto
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda, Kumamoto, Japan
| | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda, Kumamoto, Japan.,DDS Research Institutes, Sojo University, Ikeda, Kumamoto, Japan
| | - Hiroaki Mitsuya
- Center for Clinical Sciences, National Center for Global Health and Medicine, Toyama, Shinjuku, Tokyo, Japan.,Department of Infectious Diseases and Hematology, Kumamoto University, School of Medicine, Kumamoto, Japan.,Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda, Kumamoto, Japan.,DDS Research Institutes, Sojo University, Ikeda, Kumamoto, Japan
| |
Collapse
|
38
|
Genetic Heterogeneity of SLC22 Family of Transporters in Drug Disposition. J Pers Med 2018; 8:jpm8020014. [PMID: 29659532 PMCID: PMC6023491 DOI: 10.3390/jpm8020014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
An important aspect of modern medicine is its orientation to achieve more personalized pharmacological treatments. In this context, transporters involved in drug disposition have gained well-justified attention. Owing to its broad spectrum of substrate specificity, including endogenous compounds and xenobiotics, and its strategical expression in organs accounting for drug disposition, such as intestine, liver and kidney, the SLC22 family of transporters plays an important role in physiology, pharmacology and toxicology. Among these carriers are plasma membrane transporters for organic cations (OCTs) and anions (OATs) with a marked overlap in substrate specificity. These two major clades of SLC22 proteins share a similar membrane topology but differ in their degree of genetic variability. Members of the OCT subfamily are highly polymorphic, whereas OATs have a lower number of genetic variants. Regarding drug disposition, changes in the activity of these variants affect intestinal absorption and target tissue uptake, but more frequently they modify plasma levels due to enhanced or reduced clearance by the liver and secretion by the kidney. The consequences of these changes in transport-associated function markedly affect the effectiveness and toxicity of the treatment in patients carrying the mutation. In solid tumors, changes in the expression of these transporters and the existence of genetic variants substantially determine the response to anticancer drugs. Moreover, chemoresistance usually evolves in response to pharmacological and radiological treatment. Future personalized medicine will require monitoring these changes in a dynamic way to adapt the treatment to the weaknesses shown by each tumor at each stage in each patient.
Collapse
|
39
|
Synthesis and Physicochemical Evaluation of Entecavir-Fatty Acid Conjugates in Reducing Food Effect on Intestinal Absorption. Molecules 2018; 23:molecules23040731. [PMID: 29565327 PMCID: PMC6017406 DOI: 10.3390/molecules23040731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 12/31/2022] Open
Abstract
The oral bioavailability of entecavir (EV), an anti-viral agent commonly prescribed to treat hepatitis B infections, is drastically reduced under a post-prandial state. This is primarily due to its low permeability in the gastrointestinal tract. To reduce the food effect on the intestinal absorption of the nucleotide analogue, four lipidic prodrugs were synthesized via the esterification of the primary alcohol of EV with fatty acids (hexanoic acid, octanoic acid, decanoic acid, and dodecanoic acid). EV-3-dodecanoate (or EV-C12) exhibited high solubility in a fed state simulated intestinal fluid (78.8 μg/mL), with the acceptable calculated logP value (3.62) and the lowest hydrolysis rate (22.5% for 12 h in simulated gastric fluid, pH 1.2). Therefore, it was chosen as a candidate to improve intestinal absorption of EV, especially under a fed state condition. Physical characterization using scanning electron microscopy, a differential scanning calorimeter, and X-ray powder diffraction revealed that EV-C12 had a rectangular-shaped crystalline form, with a melting point of about 170 °C. In a release test in biorelevant media, such as fasted and fed state-simulated intestinal and/or gastric fluid, more than 90% of the prodrug was released within 2 h in all media tested. These data suggest that this lipidic prodrug might have the potential to alleviate the negative food effect on the intestinal absorption of EV with increased therapeutic efficacy and patient compliance.
Collapse
|
40
|
Hashimoto M, Taguchi K, Ishiguro T, Kohgo S, Imoto S, Yamasaki K, Mitsuya H, Otagiri M. Pharmacokinetics studies of 4'-cyano-2'-deoxyguanosine, a potent inhibitor of the hepatitis B virus, in rats. J Pharm Pharmacol 2018. [PMID: 29528116 DOI: 10.1111/jphp.12897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVES 4'-cyano-2'-deoxyguanosine (CdG), a novel nucleoside analogue, has a high degree of antiviral activity against the chronic hepatitis B virus (HBV). The objective of this study was to develop an analytical method for quantitatively determining CdG levels in biological samples by liquid chromatography-mass spectrometry (LC/MS) and to investigate the pharmacokinetic properties of CdG in rats after intravenous and oral administration. METHODS An analytical method using a UPLC system interfaced with a TOF-MS system was developed and validated. The pharmacokinetic properties after the intravenous and oral administration of CdG to rats were evaluated. In vivo pharmacokinetic interactions between CdG and entecavir were also investigated. KEY FINDINGS A rapid, simple and selective method for the quantification of CdG in biological samples was established using LC/MS with solid-phase extraction. In vivo pharmacokinetic studies of CdG in rats demonstrated that CdG is highly bioavailable, is rapidly absorbed from the intestinal tract, is then distributed to the liver rather than kidney and is ultimately excreted via the urine in an unchanged form. The co-administration of CdG and entecavir led to pharmacokinetic interactions with each other. CONCLUSIONS The data generated in this study provide support for the clinical development of CdG for use in the treatment of HBV.
Collapse
Affiliation(s)
- Mai Hashimoto
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Kazuaki Taguchi
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Takako Ishiguro
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Satoru Kohgo
- Center for Clinical Sciences, National Center for Global Health and Medicine, Shinjuku, Japan
| | - Shuhei Imoto
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan.,DDS Research Institutes, Sojo University, Kumamoto, Japan
| | - Hiroaki Mitsuya
- Center for Clinical Sciences, National Center for Global Health and Medicine, Shinjuku, Japan.,Department of Infectious Diseases and Hematology, Kumamoto University School of Medicine, Kumamoto, Japan.,Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan.,DDS Research Institutes, Sojo University, Kumamoto, Japan
| |
Collapse
|
41
|
Li L, Weng Y, Wang W, Bai M, Lei H, Zhou H, Jiang H. Multiple organic cation transporters contribute to the renal transport of sulpiride. Biopharm Drug Dispos 2017; 38:526-534. [PMID: 28926871 DOI: 10.1002/bdd.2104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/29/2017] [Accepted: 09/07/2017] [Indexed: 01/01/2023]
Abstract
Sulpiride, a selective dopamine D2 receptor blocker, is used widely for the treatment of schizophrenia, depression and gastric/duodenal ulcers. Because the great majority of sulpiride is positively charged at physiological pH 7.4, and ~70% of the dose recovered in urine is in the unchanged form after human intravenous administration of sulpiride, it is believed that transporters play an important role in the renal excretion of sulpiride. The aim of the present study was to explore which transporters contribute to the renal disposition of sulpiride. The results demonstrated that sulpiride was a substrate of human carnitine/organic cation transporter 1 (hOCTN1) and 2 (hOCTN2), human organic cation transporter 2 (hOCT2), human multidrug and toxin efflux extrusion protein 1 (hMATE1) and 2-K (hMATE2-K). Sulpiride accumulation from the basolateral (BL) to the apical (AP) side in MDCK-hOCT2/pcDNA3.1 cell monolayers was much greater than that in MDCK-hOCT2/hMATE1 cells, and cimetidine dramatically reduced the intracellular accumulation of sulpiride from BL to AP. In addition, the accumulation of sulpiride in mouse primary renal tubular cells (mPRTCs) was markedly reduced by inhibitors of Oct2 and Octns. The results implied that OCTN1, OCTN2, OCT2, MATE1 and MATE2-K probably contributed to the renal transfer of sulpiride, in which OCT2 mediated the uptake of sulpiride from the bloodstream to the proximal tubular cells, while MATEs contributed to the sulpiride efflux from the proximal tubular cells to the renal lumen, and OCTNs participated in both renal secretion and reabsorption.
Collapse
Affiliation(s)
- Liping Li
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yayun Weng
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengru Bai
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongmei Lei
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Zhou
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huidi Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
42
|
Yuan G, Hu C, Zhou Y, Liu J, Huang H, Li Y, Yang D, Zhou F, Zhang YY, Zhou Y. A different inhibitor is required for overcoming entecavir resistance: a comparison of four rescue therapies in a retrospective study. Br J Clin Pharmacol 2017; 83:2259-2265. [PMID: 28511283 DOI: 10.1111/bcp.13330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 05/03/2017] [Accepted: 05/14/2017] [Indexed: 01/02/2023] Open
Abstract
AIMS Little clinical data are available regarding re-establishing the effective inhibition of entecavir (ETV)-resistant mutants. In this retrospective study, we aimed to compare the efficacies of four treatment regimens as rescue therapy for those chronic hepatitis B (CHB) patients with ETV resistance. METHODS A total of 65 patients with ETV resistance were assigned either with tenofovir disoproxil fumarate (TDF) monotherapy (n = 21), ETV (0.5 mg) plus adefovir (ADV) combination therapy (n = 19), ETV (1.0 mg) monotherapy (n = 11) or ETV (0.5 mg) plus TDF combination therapy (n = 14). The efficacy and safety of four treatment regimens were compared. RESULTS There were no significant differences among the four study groups in baseline characteristics, including HBV DNA levels (χ2 = 0.749, P = 0.862) and hepatitis B e antigen-positivity (χ2 = 0.099, P = 0.992). The median reduction in serum HBV DNA level from baseline at week 48 was -2.37 ± 1.07 log10 IU ml-1 , -2.16 ± 0.81 log10 IU ml-1 , -1.17 ± 1.23 log10 IU ml-1 and -2.49 ± 1.10 log10 IU ml-1 , respectively (F = 4.078, P = 0.011). The TDF group and ETV (0.5 mg) + TDF group have the highest undetectable HBV DNA rate (76.19% vs. 78.57%) compared to the ETV (0.5 mg) + ADV group and the ETV (1.0 mg) group (63.16% vs. 18.18%, respectively). Two patients in the ETV (1.0 mg) group experienced virological breakthrough at week 48 and was attributed to poor drug adherence. CONCLUSIONS TDF monotherapy appeared to deliver the highest undetectable HBV DNA rate in patients with ETV resistance, and ADV plus ETV combination therapy could be another choice for patients with financial restraint.
Collapse
Affiliation(s)
- Guosheng Yuan
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengguang Hu
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuchen Zhou
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junwei Liu
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huaping Huang
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Li
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dinghua Yang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fuyuan Zhou
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Yuanping Zhou
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
43
|
Multiple drug transporters mediate the placental transport of sulpiride. Arch Toxicol 2017; 91:3873-3884. [DOI: 10.1007/s00204-017-2008-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/01/2017] [Indexed: 01/15/2023]
|
44
|
Ma Z, Yang X, Jiang T, Bai M, Zheng C, Zeng S, Sun D, Jiang H. Multiple SLC and ABC Transporters Contribute to the Placental Transfer of Entecavir. Drug Metab Dispos 2017; 45:269-278. [DOI: 10.1124/dmd.116.073304] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/04/2017] [Indexed: 12/22/2022] Open
|