1
|
Simm C, Lee TH, Weerasinghe H, Walsh D, Nakou IT, Shankar M, Tse WC, Zhang Y, Inman R, Mulder RJ, Harrison F, Aguilar MI, Challis GL, Traven A. Gladiolin produced by pathogenic Burkholderia synergizes with amphotericin B through membrane lipid rearrangements. mBio 2024; 15:e0261124. [PMID: 39422464 PMCID: PMC11559049 DOI: 10.1128/mbio.02611-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Amphotericin B (AmpB) is an effective but toxic antifungal drug. Thus, improving its activity/toxicity relationship is of interest. AmpB disrupts fungal membranes by two proposed mechanisms: ergosterol sequestration from the membrane and pore formation. Whether these two mechanisms operate in conjunction and how they could be potentiated remains to be fully understood. Here, we report that gladiolin, a polyketide antibiotic produced by Burkholderia gladioli, is a strong potentiator of AmpB and acts synergistically against Cryptococcus and Candida species, including drug-resistant C. auris. Gladiolin also synergizes with AmpB against drug-resistant fungal biofilms, while exerting no mammalian cytotoxicity. To explain the mechanism of synergy, we show that gladiolin interacts with membranes via a previously unreported binding mode for polyketides. Moreover, gladiolin modulates lipid binding by AmpB and, in combination, causes faster and more pronounced lipid rearrangements relative to AmpB alone which include membrane thinning consistent with ergosterol extraction, areas of thickening, pore formation, and increased membrane destruction. These biophysical data provide evidence of a functional interaction between gladiolin and AmpB at the membrane interface. The data further indicate that the two proposed AmpB mechanisms (ergosterol sequestration and pore formation) act in conjunction to disrupt membranes, and that gladiolin synergizes by enhancing both mechanisms. Collectively, our findings shed light on AmpB's mechanism of action and characterize gladiolin as an AmpB potentiator, showing an antifungal mechanism distinct from its proposed antibiotic activity. We shed light on the synergistic mechanism at the membrane, and provide insights into potentiation strategies to improve AmpB's activity/toxicity relationship. IMPORTANCE Amphotericin B (AmpB) is one of the oldest antifungal drugs in clinical use. It is an effective therapeutic, but it comes with toxicity issues due to the similarities between its fungal target (the membrane lipid ergosterol) and its mammalian counterpart (cholesterol). One strategy to improve its activity/toxicity relationship is by combinatorial therapy with potentiators, which would enable a lower therapeutic dose of AmpB. Here, we report on the discovery of the antibiotic gladiolin as a potentiator of AmpB against several priority human fungal pathogens and fungal biofilms, with no increased toxicity against mammalian cells. We show that gladiolin potentiates AmpB by increasing and accelerating membrane damage. Our findings also provide insights into the on-going debate about the mechanism of action of AmpB by indicating that both proposed mechanisms, extraction of ergosterol from membranes and pore formation, are potentiated by gladiolin.
Collapse
Affiliation(s)
- Claudia Simm
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| | - Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Harshini Weerasinghe
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| | - Dean Walsh
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Ioanna T. Nakou
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Madhu Shankar
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| | - Wai Chung Tse
- School of Medicine, Monash University, Clayton, Victoria, Australia
| | - Yu Zhang
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Rebecca Inman
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Roger J. Mulder
- CSIRO Manufacturing, Research Way, Clayton, Victoria, Australia
| | - Freya Harrison
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Gregory L. Challis
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Jacobs SE, Chaturvedi V. CAF to the Rescue! Potential and Challenges of Combination Antifungal Therapy for Reducing Morbidity and Mortality in Hospitalized Patients With Serious Fungal Infections. Open Forum Infect Dis 2024; 11:ofae646. [PMID: 39544494 PMCID: PMC11561589 DOI: 10.1093/ofid/ofae646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
The global burden of invasive fungal disease is substantial and escalating. Combination antifungal therapy (CAF) may improve patient outcomes by reducing development of resistance, improving drug penetration and rate of fungal clearance, and allowing for lower and less toxic antifungal drug doses; yet, increased cost, antagonism, drug-drug interactions, and toxicity are concerns. Clinical practice guidelines recommend antifungal monotherapy, rather than CAF, for most invasive fungal diseases due to a lack of comparative randomized clinical trials. An examination of the existing body of CAF research should frame new hypotheses and determine priorities for future CAF clinical trials. We performed a systematic review of CAF clinical studies for invasive candidiasis, cryptococcosis, invasive aspergillosis, and mucormycosis. Additionally, we summarized findings from animal models of CAF and assessed laboratory methods available to evaluate CAF efficacy. Future CAF trials should be prioritized according to animal models showing improved survival and observational clinical data supporting efficacy and safety.
Collapse
Affiliation(s)
- Samantha E Jacobs
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vishnu Chaturvedi
- Microbiology and Molecular Biology Laboratories, Department of Pathology, Westchester Medical Center, Valhalla, New York, USA
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
3
|
Van de Vliet L, Vackier T, Thevissen K, Decoster D, Steenackers HP. Imidazoles and Quaternary Ammonium Compounds as Effective Therapies against (Multidrug-Resistant) Bacterial Wound Infections. Antibiotics (Basel) 2024; 13:949. [PMID: 39452215 PMCID: PMC11505196 DOI: 10.3390/antibiotics13100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES The rise and spread of antimicrobial resistance complicates the treatment of bacterial wound pathogens, further increasing the need for newer, effective therapies. Azoles such as miconazole have shown promise as antibacterial compounds; however, they are currently only used as antifungals. Previous research has shown that combining azoles with quaternary ammonium compounds yields synergistic activity against fungal pathogens, but the effect on bacterial pathogens has not been studied yet. METHODS In this study, the focus was on finding active synergistic combinations of imidazoles and quaternary ammonium compounds against (multidrug-resistant) bacterial pathogens through checkerboard assays. Experimental evolution in liquid culture was used to evaluate the possible emergence of resistance against the most active synergistic combination. RESULTS Several promising synergistic combinations were identified against an array of Gram-positive pathogens: miconazole/domiphen bromide, ketoconazole/domiphen bromide, clotrimazole/domiphen bromide, fluconazole/domiphen bromide and miconazole/benzalkonium chloride. Especially, miconazole with domiphen bromide exhibits potential, as it has activity at a low concentration against a broad range of pathogens and shows an absence of strong resistance development over 11 cycles of evolution. CONCLUSIONS This study provides valuable insight into the possible combinations of imidazoles and quaternary ammonium compounds that could be repurposed for (topical) wound treatment. Miconazole with domiphen bromide shows the highest application potential as a possible future wound therapy. However, further research is needed into the mode of action of these compounds and their efficacy and toxicity in vivo.
Collapse
Affiliation(s)
- Lauren Van de Vliet
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Thijs Vackier
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Karin Thevissen
- CMPG-PFI (Plant-Fungus Interactions Group of Centre of Microbial and Plant Genetics), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - David Decoster
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Hans P. Steenackers
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
4
|
Reddyrajula R, Perveen S, Negi A, Etikyala U, Manga V, Sharma R, Dalimba UK. N-Acyl phenothiazines as mycobacterial ATP synthase inhibitors: Rational design, synthesis and in vitro evaluation against drug sensitive, RR and MDR-TB. Bioorg Chem 2024; 151:107702. [PMID: 39142196 DOI: 10.1016/j.bioorg.2024.107702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
The mycobacterial F-ATP synthase is responsible for the optimal growth, metabolism and viability of Mycobacteria, establishing it as a validated target for the development of anti-TB therapeutics. Herein, we report the discovery of an N-acyl phenothiazine derivative, termed PT6, targeting the mycobacterial F-ATP synthase. PT6 is bactericidal and active against the drug sensitive, Rifampicin-resistant as well as Multidrug-resistant tuberculosis strains. Compound PT6 showed noteworthy inhibition of F-ATP synthesis, exhibiting an IC50 of 0.788 µM in M. smegmatis IMVs and was observed that it could deplete intracellular ATP levels, exhibiting an IC50 of 30 µM. PT6 displayed a high selectivity towards mycobacterial ATP synthase compared to mitochondrial ATP synthase. Compound PT6 showed a minor synergistic effect in combination with Rifampicin and Isoniazid. PT6 demonstrated null cytotoxicity as confirmed by assessing its toxicity against VERO cell lines. Further, the binding mechanism and the activity profile of PT6 were validated by employing in silico techniques such as molecular docking, Prime MM/GBSA, DFT and ADMET analysis. These results suggest that PT6 presents an attractive lead for the discovery of a novel class of mycobacterial F-ATP synthase inhibitors.
Collapse
Affiliation(s)
- Rajkumar Reddyrajula
- Central Research Facility, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025, India; Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Summaya Perveen
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Anjali Negi
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Umadevi Etikyala
- Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad 500 076, India
| | - Vijjulatha Manga
- Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad 500 076, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| | - Udaya Kumar Dalimba
- Organic and Materials Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025, India.
| |
Collapse
|
5
|
Chahine Z, Abel S, Hollin T, Barnes GL, Chung JH, Daub ME, Renard I, Choi JY, Vydyam P, Pal A, Alba-Argomaniz M, Banks CAS, Kirkwood J, Saraf A, Camino I, Castaneda P, Cuevas MC, De Mercado-Arnanz J, Fernandez-Alvaro E, Garcia-Perez A, Ibarz N, Viera-Morilla S, Prudhomme J, Joyner CJ, Bei AK, Florens L, Ben Mamoun C, Vanderwal CD, Le Roch KG. A kalihinol analog disrupts apicoplast function and vesicular trafficking in P. falciparum malaria. Science 2024; 385:eadm7966. [PMID: 39325875 DOI: 10.1126/science.adm7966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/27/2024] [Accepted: 07/09/2024] [Indexed: 09/28/2024]
Abstract
We report the discovery of MED6-189, an analog of the kalihinol family of isocyanoterpene natural products that is effective against drug-sensitive and drug-resistant Plasmodium falciparum strains, blocking both asexual replication and sexual differentiation. In vivo studies using a humanized mouse model of malaria confirm strong efficacy of the compound in animals with no apparent hemolytic activity or toxicity. Complementary chemical, molecular, and genomics analyses revealed that MED6-189 targets the parasite apicoplast and acts by inhibiting lipid biogenesis and cellular trafficking. Genetic analyses revealed that a mutation in PfSec13, which encodes a component of the parasite secretory machinery, reduced susceptibility to the drug. Its high potency, excellent therapeutic profile, and distinctive mode of action make MED6-189 an excellent addition to the antimalarial drug pipeline.
Collapse
Affiliation(s)
- Z Chahine
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - S Abel
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - T Hollin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - G L Barnes
- Department of Chemistry, University of California, Irvine, CA, USA
| | - J H Chung
- Department of Chemistry, University of California, Irvine, CA, USA
| | - M E Daub
- Department of Chemistry, University of California, Irvine, CA, USA
| | - I Renard
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - J Y Choi
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - P Vydyam
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - A Pal
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - M Alba-Argomaniz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - C A S Banks
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - J Kirkwood
- Metabolomics Core Facility, University of California, Riverside, CA, USA
| | - A Saraf
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Present address: Shankel Structural Biology Center, The University of Kansas, Lawrence, KS, USA
| | - I Camino
- GSK, Tres Cantos (Madrid), Spain
| | | | | | | | | | | | - N Ibarz
- GSK, Tres Cantos (Madrid), Spain
| | | | - J Prudhomme
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - C J Joyner
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - A K Bei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - L Florens
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - C Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - C D Vanderwal
- Department of Chemistry, University of California, Irvine, CA, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - K G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| |
Collapse
|
6
|
Lai X, Yu L, Huang X, Gardner W, Bamford SE, Pigram PJ, Wang S, Brun APL, Muir BW, Song J, Wang Y, Hsu HY, Chan PWH, Shen HH. Enhanced Nitric Oxide Delivery Through Self-Assembling Nanoparticles for Eradicating Gram-Negative Bacteria. Adv Healthc Mater 2024:e2403046. [PMID: 39263842 DOI: 10.1002/adhm.202403046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/02/2024] [Indexed: 09/13/2024]
Abstract
In the current battle against antibiotic resistance, the resilience of Gram-negative bacteria against traditional antibiotics is due not only to their protective outer membranes but also to mechanisms like efflux pumps and enzymatic degradation of drugs, underscores the urgent need for innovative antimicrobial tactics. Herein, this study presents an innovative method involving the synthesis of three furoxan derivatives engineered to self-assemble into nitric oxide (NO) donor nanoparticles (FuNPs). These FuNPs, notably supplied together with polymyxin B (PMB), achieve markedly enhanced bactericidal efficacy against a wide spectrum of bacterial phenotypes at considerably lower NO concentrations (0.1-2.8 µg mL-1), which is at least ten times lower than the reported data for NO donors (≥200 µg mL-1). The bactericidal mechanism is elucidated using confocal, scanning, and transmission electron microscopy techniques. Neutron reflectometry confirms that FuNPs initiate membrane disruption by specifically engaging with the polysaccharides on bacterial surfaces, causing structural perturbations. Subsequently, PMB binds to lipid A on the outer membrane, enhancing permeability and resulting in a synergistic bactericidal action with FuNPs. This pioneering strategy underscores the utility of self-assembly in NO delivery as a groundbreaking paradigm to circumvent traditional antibiotic resistance barriers, marking a significant leap forward in the development of next-generation antimicrobial agents.
Collapse
Affiliation(s)
- Xiangfeng Lai
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Lei Yu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Xiangyi Huang
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Wil Gardner
- Centre for Materials and Surface Science and Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, 3086, Australia
| | - Sarah E Bamford
- Centre for Materials and Surface Science and Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, 3086, Australia
| | - Paul J Pigram
- Centre for Materials and Surface Science and Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, 3086, Australia
| | - Shuhong Wang
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2232, Australia
| | | | - Jiangning Song
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia
| | - Yajun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Shanghai, Wenzhou, 325027, China
| | - Hsien-Yi Hsu
- School of Energy and Environment & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | | | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
7
|
Charria-Girón E, Zeng H, Gorelik TE, Pahl A, Truong KN, Schrey H, Surup F, Marin-Felix Y. Arcopilins: A New Family of Staphylococcus aureus Biofilm Disruptors from the Soil Fungus Arcopilus navicularis. J Med Chem 2024; 67:15029-15040. [PMID: 39141525 PMCID: PMC11403616 DOI: 10.1021/acs.jmedchem.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Biofilms represent a key challenge in the treatment of microbial infections; for instance, Staphylococcus aureus causes chronic or fatal infections by forming biofilms on medical devices. Herein, the fungus Arcopilus navicularis was found to produce a novel family of PKS-NRPS metabolites that are able to disrupt preformed biofilms of S. aureus. Arcopilins A-F (1-6), tetramic acids, and arcopilin G (7), a 2-pyridone, were elucidated using HR-ESI-MS and one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy. Their absolute configuration was established by the synthesis of MPTA-esters for 2, analysis of 1H-1H coupling constants, and ROESY correlations, along with comparison with the crystal structure of 7. Arcopilin A (1) not only effectively disrupts preformed biofilms of S. aureus but also potentiates the activity of gentamicin and vancomycin up to 115- and 31-fold times, respectively. Our findings demonstrate the potential application of arcopilins for the conjugated treatment of infections caused by S. aureus with antibiotics unable to disrupt preformed biofilms.
Collapse
Affiliation(s)
- Esteban Charria-Girón
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Haoxuan Zeng
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Tatiana E Gorelik
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
| | - Alexandra Pahl
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Khai-Nghi Truong
- Rigaku Europe SE, Hugenottenallee 167, 63263 Neu-Isenburg, Germany
| | - Hedda Schrey
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Yasmina Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
8
|
Minnelli C, Mangiaterra G, Laudadio E, Citterio B, Rinaldi S. Investigation on the Synergy between Membrane Permeabilizing Amphiphilic α-Hydrazido Acids and Commonly Used Antibiotics against Drug-Resistant Bacteria. Molecules 2024; 29:4078. [PMID: 39274926 PMCID: PMC11397519 DOI: 10.3390/molecules29174078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
The growth of (multi)drug resistance in bacteria is among the most urgent global health issues. Monocationic amphiphilic α-hydrazido acid derivatives are structurally simple mimics of antimicrobial peptides (AMPs) with fewer drawbacks. Their mechanism of membrane permeabilization at subtoxic concentrations was found to begin with an initial electrostatic attraction of isolated amphiphile molecules to the phospholipid heads, followed by a rapid insertion of the apolar portions. As the accumulation into the bilayer proceeded, the membrane increased its fluidity and permeability without being subjected to major structural damage. After having ascertained that α-hydrazido acid amphiphiles do not interact with bacterial DNA, they were subjected to synergy evaluation for combinations with conventional antibiotics. Synergy was observed for combinations with tetracycline against sensitive S. aureus and E. coli, as well as with ciprofloxacin and colistin against resistant strains. Additivity with a remarkable recovery in activity of conventional antibiotics (from 2-fold to ≥32-fold) together with largely subtoxic concentrations of α-hydrazido acid derivatives was found for combinations with ciprofloxacin toward susceptible S. aureus and methicillin toward MRSa. However, no potentiation of conventional antibiotics was observed for combinations with linezolid and gentamicin against the corresponding resistant S. aureus and E. coli strains.
Collapse
Affiliation(s)
- Cristina Minnelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Gianmarco Mangiaterra
- Department of Biomolecular Science, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| | - Emiliano Laudadio
- Department of Science and Engineering of Matter, Environment and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Barbara Citterio
- Department of Biomolecular Science, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| | - Samuele Rinaldi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
9
|
Mayers JR, Varon J, Zhou RR, Daniel-Ivad M, Beaulieu C, Bhosle A, Glasser NR, Lichtenauer FM, Ng J, Vera MP, Huttenhower C, Perrella MA, Clish CB, Zhao SD, Baron RM, Balskus EP. A metabolomics pipeline highlights microbial metabolism in bloodstream infections. Cell 2024; 187:4095-4112.e21. [PMID: 38885650 PMCID: PMC11283678 DOI: 10.1016/j.cell.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/03/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
The growth of antimicrobial resistance (AMR) highlights an urgent need to identify bacterial pathogenic functions that may be targets for clinical intervention. Although severe infections profoundly alter host metabolism, prior studies have largely ignored microbial metabolism in this context. Here, we describe an iterative, comparative metabolomics pipeline to uncover microbial metabolic features in the complex setting of a host and apply it to investigate gram-negative bloodstream infection (BSI) in patients. We find elevated levels of bacterially derived acetylated polyamines during BSI and discover the enzyme responsible for their production (SpeG). Blocking SpeG activity reduces bacterial proliferation and slows pathogenesis. Reduction of SpeG activity also enhances bacterial membrane permeability and increases intracellular antibiotic accumulation, allowing us to overcome AMR in culture and in vivo. This study highlights how tools to study pathogen metabolism in the natural context of infection can reveal and prioritize therapeutic strategies for addressing challenging infections.
Collapse
Affiliation(s)
- Jared R Mayers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jack Varon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Ruixuan R Zhou
- Department of Statistics, University of Illinois at Urbana Champaign, Champaign, IL 61820, USA
| | - Martin Daniel-Ivad
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Amrisha Bhosle
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nathaniel R Glasser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Julie Ng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Mayra Pinilla Vera
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sihai D Zhao
- Department of Statistics, University of Illinois at Urbana Champaign, Champaign, IL 61820, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Champaign, IL 61820, USA
| | - Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
10
|
Dhiman S, Ramirez D, Arora R, Arthur G, Schweizer F. Enhancing outer membrane permeability of tetracycline antibiotics in P. aeruginosa using TOB-CIP conjugates. RSC Med Chem 2024:d4md00329b. [PMID: 39131887 PMCID: PMC11305099 DOI: 10.1039/d4md00329b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 08/13/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic critical 'priority 1' Gram-negative bacterium that poses a severe threat to public healthcare due to rising antibiotic resistance. Particularly, low membrane permeability and overexpression of efflux pumps in P. aeruginosa lead to intrinsic resistance that compromises the antibacterial activity of antibiotics. The broad-spectrum antibiotics class, tetracyclines, are rarely used to treat P. aeruginosa infections. In the present study, we describe a series of tobramycin-ciprofloxacin (TOB-CIP) conjugates in which the carboxylic acid of ciprofloxacin is linked to the aminoglycoside tobramycin using various tethers thereby generating a cationic amphiphile. The emerging amphiphilic conjugates potentiate tetracycline antibiotics including minocycline, doxycycline, tigecycline, and eravacycline against multidrug-resistant P. aeruginosa isolates. The structure-activity relationship investigation indicates that the flexible hydrophobic C12 carbon-chain linker in TOB-CIP conjugate 1a is an optimal potentiator of tetracyclines against tetracycline-resistant and -susceptible strains of P. aeruginosa. Furthermore, conjugate 1a consistently synergized with the 3rd generation tetracycline, eravacycline, in P. aeruginosa PAO1 in the presence of up to 25% fetal bovine serum (FBS).
Collapse
Affiliation(s)
- Shiv Dhiman
- Department of Chemistry, Faculty of Science, University of Manitoba Winnipeg Manitoba R3T 2N2 Canada
| | - Danyel Ramirez
- Department of Chemistry, Faculty of Science, University of Manitoba Winnipeg Manitoba R3T 2N2 Canada
| | - Rajat Arora
- Department of Chemistry, Faculty of Science, University of Manitoba Winnipeg Manitoba R3T 2N2 Canada
| | - Gilbert Arthur
- Department of Biochemistry and Medical Genetics, University of Manitoba Winnipeg Manitoba R3E 0J9 Canada
| | - Frank Schweizer
- Department of Chemistry, Faculty of Science, University of Manitoba Winnipeg Manitoba R3T 2N2 Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba Winnipeg Manitoba R3E 0J9 Canada
| |
Collapse
|
11
|
Söylemez T, Kaplancıklı ZA, Osmaniye D, Özkay Y, Demirci F. Selective in vitro Synergistic Evaluation of Probiotic Tolerant morpholinyl- and 4-ethylpiperazinyl-Imidazole-chalcone Derivatives on Gastrointestinal System Pathogens. Curr Microbiol 2024; 81:258. [PMID: 38960917 PMCID: PMC11222229 DOI: 10.1007/s00284-024-03788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Imidazole-chalcone compounds are recognised for their broad-spectrum antimicrobial properties. Probiotic-friendly, selective new-generation antimicrobials prove to be more efficient in combating gastrointestinal system pathogens. The aim of this study is to identify imidazole-chalcone derivatives that probiotics tolerate and evaluate their in vitro synergistic antimicrobial effects on pathogens. In this study, fifteen previously identified imidazole-chalcone derivatives were analyzed for their in vitro antimicrobial properties against gastrointestinal microorganisms. Initially, the antimicrobial activity of pathogens was measured using the agar well diffusion method, while the susceptibility of probiotics was determined by microdilution. The chosen imidazole-chalcone derivatives were assessed for synergistic effects using the checkerboard method. Four imidazole-chalcone derivatives to which probiotic bacteria were tolerant exhibited antibacterial and antifungal activity against the human pathogens tested. To our knowledge, this study is the first to reveal the fractional inhibitory concentration (FIC) of combinations of imidazole-chalcone derivatives. Indeed, the minimum inhibitory concentrations (MIC) for morpholinyl- (ZDO-3f) and 4-ethylpiperazinyl- (ZDO-3 m) imidazole-chalcones were notably low when tested against E. coli and B. subtilis, with values of 31.25 μg/mL and 125 μg/mL, respectively. The combination of morpholinyl- and 4-ethylpiperazinyl derivatives demonstrated an indifferent effect against E. coli, but an additive effect was observed for B. subtilis. Additionally, it was observed that imidazole-chalcone derivatives did not exhibit any inhibitory effects on probiotic organisms like Lactobacillus fermentum (CECT-5716), Lactobacillus rhamnosus (GG), and Lactobacillus casei (RSSK-591). This study demonstrates that imidazole-chalcone derivatives that are well tolerated by probiotics can potentially exert a synergistic effect against gastrointestinal system pathogens.
Collapse
Affiliation(s)
- Tuncay Söylemez
- Institut Für Lebensmittelchemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany.
| | - Zafer Asım Kaplancıklı
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Türkiye
| | - Derya Osmaniye
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Türkiye
| | - Yusuf Özkay
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Türkiye
| | - Fatih Demirci
- Faculty of Pharmacy, Pharmacognosy Department, Anadolu University, Eskişehir, Türkiye
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, N. Cyprus, Cyprus
| |
Collapse
|
12
|
Salpadoru T, Pinks KE, Lieberman JA, Cotton K, Wozniak KL, Gerasimchuk N, Patrauchan MA. Novel antimony-based antimicrobial drug targets membranes of Gram-positive and Gram-negative bacterial pathogens. Microbiol Spectr 2024; 12:e0423423. [PMID: 38651882 PMCID: PMC11237720 DOI: 10.1128/spectrum.04234-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant worldwide public health crisis that continues to threaten our ability to successfully treat bacterial infections. With the decline in effectiveness of conventional antimicrobial therapies and the lack of new antibiotic pipelines, there is a renewed interest in exploring the potential of metal-based antimicrobial compounds. Antimony-based compounds with a long history of use in medicine have re-emerged as potential antimicrobial agents. We previously synthesized a series of novel organoantimony(V) compounds complexed with cyanoximates with a strong potential of antimicrobial activity against several AMR bacterial and fungal pathogens. Here, five selected compounds were studied for their antibacterial efficacy against three important bacterial pathogens: Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. Among five tested compounds, SbPh4ACO showed antimicrobial activity against all three bacterial strains with the MIC of 50-100 µg/mL. The minimum bactericidal concentration/MIC values were less than or equal to 4 indicating that the effects of SbPh4ACO are bactericidal. Moreover, ultra-thin electron microscopy revealed that SbPh4ACO treatment caused membrane disruption in all three strains, which was further validated by increased membrane permeability. We also showed that SbPh4ACO acted synergistically with the antibiotics, polymyxin B and cefoxitin used to treat AMR strains of P. aeruginosa and S. aureus, respectively, and that at synergistic MIC concentration 12.5 µg/mL, its cytotoxicity against the cell lines, Hela, McCoy, and A549 dropped below the threshold. Overall, the results highlight the antimicrobial potential of novel antimony-based compound, SbPh4ACO, and its use as a potentiator of other antibiotics against both Gram-positive and Gram-negative bacterial pathogens. IMPORTANCE Antibiotic resistance presents a critical global public health crisis that threatens our ability to combat bacterial infections. In light of the declining efficacy of traditional antibiotics, the use of alternative solutions, such as metal-based antimicrobial compounds, has gained renewed interest. Based on the previously synthesized innovative organoantimony(V) compounds, we selected and further characterized the antibacterial efficacy of five of them against three important Gram-positive and Gram-negative bacterial pathogens. Among these compounds, SbPh4ACO showed broad-spectrum bactericidal activity, with membrane-disrupting effects against all three pathogens. Furthermore, we revealed the synergistic potential of SbPh4ACO when combined with antibiotics, such as cefoxitin, at concentrations that exert no cytotoxic effects tested on three mammalian cell lines. This study offers the first report on the mechanisms of action of novel antimony-based antimicrobial and presents the therapeutic potential of SbPh4ACO in combating both Gram-positive and Gram-negative bacterial pathogens while enhancing the efficacy of existing antibiotics.
Collapse
Affiliation(s)
- Tarosha Salpadoru
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kevin E. Pinks
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri, USA
| | - Jacob A. Lieberman
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kaitlyn Cotton
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Nikolay Gerasimchuk
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri, USA
| | - Marianna A. Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
13
|
Manhas R, Rathore A, Havelikar U, Mahajan S, Gandhi SG, Mahapa A. Uncovering the potentiality of quinazoline derivatives against Pseudomonas aeruginosa with antimicrobial synergy and SAR analysis. J Antibiot (Tokyo) 2024; 77:365-381. [PMID: 38514856 DOI: 10.1038/s41429-024-00717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/10/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Antimicrobial resistance has emerged as a covert global health crisis, posing a significant threat to humanity. If left unaddressed, it is poised to become the foremost cause of mortality worldwide. Among the multitude of resistant bacterial pathogens, Pseudomonas aeruginosa, a Gram-negative, facultative bacterium, has been responsible for mild to deadly infections. It is now enlisted as a global critical priority pathogen by WHO. Urgent measures are required to combat this formidable pathogen, necessitating the development of novel anti-pseudomonal drugs. To confront this pressing issue, we conducted an extensive screening of 3561 compounds from the ChemDiv library, resulting in the discovery of potent anti-pseudomonal quinazoline derivatives. Among the identified compounds, IDD-8E has emerged as a lead molecule, exhibiting exceptional efficacy against P. aeruginosa while displaying no cytotoxicity. Moreover, IDD-8E demonstrated significant pseudomonal killing, disruption of pseudomonal biofilm and other anti-bacterial properties comparable to a well-known antibiotic rifampicin. Additionally, IDD-8E's synergy with different antibiotics further strengthens its potential as a powerful anti-pseudomonal agent. IDD-8E also exhibited significant antimicrobial efficacy against other ESKAPE pathogens. Moreover, we elucidated the Structure-Activity-Relationship (SAR) of IDD-8E targeting the essential WaaP protein in P. aeruginosa. Altogether, our findings emphasize the promise of IDD-8E as a clinical candidate for novel anti-pseudomonal drugs, offering hope in the battle against antibiotic resistance and its devastating impact on global health.
Collapse
Affiliation(s)
- Rakshit Manhas
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Arti Rathore
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ujwal Havelikar
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Shavi Mahajan
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Sumit G Gandhi
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Avisek Mahapa
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
14
|
Zeng H, Stadler M, Decock C, Matasyoh JC, Schrey H, Müsken M. Discovery of novel secondary metabolites from the basidiomycete Lentinus cf. sajor-caju and their inhibitory effects on Staphylococcus aureus biofilms. Fitoterapia 2024; 175:105904. [PMID: 38508498 DOI: 10.1016/j.fitote.2024.105904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Three novel derivatives of microporenic acid, microporenic acids H-J, were identified from submerged cultures of a Lentinus species obtained from a basidiome collected during a field trip in the tropical rainforest in Western Kenya. Their structures were elucidated via HR-ESIMS spectra and 1D/2D NMR spectroscopic analyses, as well as by comparison with known derivatives. Applying biofilm assays based on crystal violet staining and confocal microscopy, two of these compounds, microporenic acids H and I, demonstrated the ability to inhibit biofilm formation of the opportunistic pathogen Staphylococcus aureus. Thereby, they were effective in a concentration range that did not affect planktonic growth. Additionally, microporenic acid I enhanced the anti-biofilm activity of the antibiotics vancomycin and gentamicin when used in combination. This opens up possibilities for the use of these compounds in combination therapy to prevent the formation of S. aureus biofilms.
Collapse
Affiliation(s)
- Haoxuan Zeng
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, Braunschweig 38124, Germany; Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, Braunschweig 38106, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, Braunschweig 38124, Germany; Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, Braunschweig 38106, Germany
| | - Cony Decock
- Mycothèque de l'Université Catholique de Louvain (BCCM/MUCL), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Hedda Schrey
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, Braunschweig 38124, Germany; Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, Braunschweig 38106, Germany.
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research GmbH (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, Braunschweig 38124, Germany.
| |
Collapse
|
15
|
Gontijo M, Pereira Teles M, Martins Correia H, Pérez Jorge G, Rodrigues Santos Goes IC, Fasabi Flores AJ, Braz M, de Moraes Ceseti L, Zonzini Ramos P, Rosa e Silva I, Pereira Vidigal PM, Kobarg J, Miguez Couñago R, Alvarez-Martinez CE, Pereira C, Freire CSR, Almeida A, Brocchi M. Combined effect of SAR-endolysin LysKpV475 with polymyxin B and Salmonella bacteriophage phSE-5. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001462. [PMID: 38739436 PMCID: PMC11170124 DOI: 10.1099/mic.0.001462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 μg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 μg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 μg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 μg ml-1) and P. aeruginosa P2307 (65.00 μg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.
Collapse
Affiliation(s)
- Marco Gontijo
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Mateus Pereira Teles
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil
- Department of Biology, and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Hugo Martins Correia
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Genesy Pérez Jorge
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
- Research Group Statistics and Mathematical Modeling Applied to Educational Quality (GEMMA), University of Sucre, Sincelejo, Sucre, Colombia
| | - Isabella Carolina Rodrigues Santos Goes
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Anthony Jhoao Fasabi Flores
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Márcia Braz
- Department of Biology, and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Lucas de Moraes Ceseti
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Priscila Zonzini Ramos
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Ivan Rosa e Silva
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-871, Brazil
| | - Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Universidade Federal de Viçosa (UFV), Viçosa, MG 36570-900, Brazil
| | - Jörg Kobarg
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-871, Brazil
| | - Rafael Miguez Couñago
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Cristina Elisa Alvarez-Martinez
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Carla Pereira
- Department of Biology, and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Carmen S. R. Freire
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Adelaide Almeida
- Department of Biology, and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Marcelo Brocchi
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| |
Collapse
|
16
|
Wang Y, Ma Y, Xiong L, Wang X, Zhou Y, Chi X, Chen T, Fu H, Luo Q, Xiao Y. Comparison of in vitro synergy between polymyxin B or colistin in combination with 16 antimicrobial agents against multidrug-resistant Acinetobacter baumannii isolates. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:300-308. [PMID: 38350840 DOI: 10.1016/j.jmii.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
PURPOSES This study determined the synergy of polymyxin B (POLB) and colistin (COL) with 16 other tested antimicrobial agents in the inhibition of multidrug-resistant Acinetobacter baumannii (MDR-AB). METHODS We used chequerboard assays to determine synergy between the drugs against 50 clinical MDR-AB from a tertiary hospital in the Zhejiang province in 2019, classifying combinations as either antagonistic, independent, additive, or synergistic. The efficacy of hit combinations which showed highest synergistic rate were confirmed using time-kill assays. RESULTS Both POLB and COL displayed similar bactericidal effects when used in combination with these 16 tested drugs. Antagonism was only observed for a few strains (2%) exposed to a combination of POLB and cefoperazone/sulbactam (CSL). A higher percentage of synergistic combinations with POLB and COL were observed with rifabutin (RFB; 90%/96%), rifampicin (RIF; 60%/78%) and rifapentine (RFP; 56%/76%). Time-kill assays also confirmed the synergistic effect of POLB and rifamycin class combinations. 1/2 MIC rifamycin exposure can achieve bacterial clearance when combined with 1/2 MIC POLB or COL. CONCLUSION Nearly no antagonism was observed when combining polymyxins with other drugs by both chequerboard and time-kill assays, suggesting that polymyxins may be effective in combination therapy. The combinations of POLB/COL with RFB, RIF, and RFP displayed neat synergy, with RFB showing the greatest effect.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yingying Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Luying Xiong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xueting Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yanzi Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaohui Chi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Tao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hao Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
17
|
Ramirez DM, Dhiman S, Mukherjee A, Wimalasekara R, Schweizer F. Application of tobramycin benzyl ether as an antibiotic adjuvant capable of sensitizing multidrug-resistant Gram-negative bacteria to rifampicin. RSC Med Chem 2024; 15:1055-1065. [PMID: 38516601 PMCID: PMC10953491 DOI: 10.1039/d3md00602f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024] Open
Abstract
The emergence of aminoglycoside resistance has prompted the development of amphiphilic aminoglycoside derivatives which target bacterial membranes. Tobramycin and nebramine ether derivatives initially designed for this purpose were optimized and screened for their potential application as outer membrane (OM) permeabilizing adjuvants. Structure-activity relationship (SAR) studies revealed that the tobramycin benzyl ether was the most optimal OM permeabilizer, capable of potentiating rifampicin, novobiocin, vancomycin, minocycline, and doxycycline against Gram-negative bacteria. The innovative use of this compound as an adjuvant is highlighted by its ability to sensitize multidrug-resistant (MDR) Gram-negative bacteria to rifampicin and restore the susceptibility of MDR Escherichia coli to minocycline.
Collapse
Affiliation(s)
| | - Shiv Dhiman
- Department of Chemistry, University of Manitoba Winnipeg MB R3T 2N2 Canada
| | - Ayan Mukherjee
- Department of Chemistry, University of Manitoba Winnipeg MB R3T 2N2 Canada
| | - Ruwani Wimalasekara
- Department of Microbiology, University of Manitoba Winnipeg MB R3T 2N2 Canada
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba Winnipeg MB R3T 2N2 Canada
| |
Collapse
|
18
|
Schaefer S, Melodia D, Pracey C, Corrigan N, Lenardon MD, Boyer C. Mimicking Charged Host-Defense Peptides to Tune the Antifungal Activity and Biocompatibility of Amphiphilic Polymers. Biomacromolecules 2024; 25:871-889. [PMID: 38165721 DOI: 10.1021/acs.biomac.3c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Invasive fungal infections impose a substantial global health burden. They cause more than 1.5 million deaths annually and are insufficiently met by the currently approved antifungal drugs. Antifungal peptides are a promising alternative to existing antifungal drugs; however, they can be challenging to synthesize, and are often susceptible to proteases in vivo. Synthetic polymers which mimic the properties of natural antifungal peptides can circumvent these limitations. In this study, we developed a library of 29 amphiphilic polyacrylamides with different charged units, namely, amines, guanidinium, imidazole, and carboxylic acid groups, representative of the natural amino acids lysine, arginine, histidine, and glutamic acid. Ternary polymers incorporating primary ammonium (lysine-like) or imidazole (histidine-like) groups demonstrated superior activity against Candida albicans and biocompatibility with mammalian cells compared to the polymers containing the other charged groups. Furthermore, a combination of primary ammonium, imidazole, and guanidinium (arginine-like) within the same polymer outperformed the antifungal drug amphotericin B in terms of therapeutic index and exhibited fast C. albicans-killing activity. The most promising polymer compositions showed synergistic effects in combination with caspofungin and fluconazole against C. albicans and additionally demonstrated activity against other clinically relevant fungi. Collectively, these results indicate the strong potential of these easily producible polymers to be used as antifungals.
Collapse
Affiliation(s)
- Sebastian Schaefer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Daniele Melodia
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Christopher Pracey
- Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| |
Collapse
|
19
|
Lopes RP, Ferreira FL, Faria de Sousa G, Cruz Nizer WSD, Magalhães CLDB, Ferreira JMS, Tótola AH, Duarte LP, de Magalhães JC. Activity of extracts and terpenoids from Tontelea micrantha (Mart. ex Schult.) A.C.Sm. (Celastraceae) against pathogenic bacteria. Nat Prod Res 2024:1-10. [PMID: 38328949 DOI: 10.1080/14786419.2024.2309554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
The pharmacological properties of plant extracts and phytochemicals, such as flavonoids and terpenoids, remain of great interest. In this work, the effect of extracts, friedelan-3,21-dione, and 3β-O-D-glucosyl-sitosterol isolated from Tontelea micrantha roots was evaluated against Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumoniae, Klebsiella oxytoca and Escherichia coli. The antibacterial activity was evaluated by the minimum inhibitory and bactericidal concentrations (MIC and MBC, respectively), and the synergistic effect was assessed by the Checkerboard assay. Furthermore, the cytotoxicity of the plant-derived compounds against Vero cells was measured by the 3-(4 5-dimethylthiazol-2-yl)-2 5-diphenyltetrazolium bromide (MTT) method. The biological effects of the isolated compounds were predicted using the PASS online software. The chloroform and hexane extracts of T. micrantha roots showed promising antibacterial effect, with MIC in the range of 4.8-78.0 µg/mL. Further analyses showed that these compounds do not affect the integrity of the membrane. The combination with streptomycin strongly reduced the MIC of this antibiotic and extracts. The extracts were highly toxic to Vero cells, and no cytotoxicity was detected for the two terpenoids isolated from them (i.e. friedelan-3,21-dione and 3β-O-D-glucosyl-sitosterol; CC50 > 1000 μg/mL). Therefore, extracts obtained from T. micrantha roots significantly inhibited bacterial growth and are considered promising agents against pathogenic bacteria. The cytotoxicity results were very relevant and can be tested in bioassays.
Collapse
Affiliation(s)
- Ranieli Paiva Lopes
- Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | | | | | | | | | | | - Antônio Helvécio Tótola
- Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - Lucienir Pains Duarte
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - José Carlos de Magalhães
- Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| |
Collapse
|
20
|
Naranjo MF, Kumar A, Ratrey P, Hudson SP. Pre-formulation of an additive combination of two antimicrobial agents, clofazimine and nisin A, to boost antimicrobial activity. J Mater Chem B 2024; 12:1558-1568. [PMID: 38252026 DOI: 10.1039/d3tb01800h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
According to the World Health Organization, antimicrobial resistance is one of the top ten issues that pose a major threat to humanity. The lack of investment by the pharmaceutical industry has meant fewer novel antimicrobial agents are in development, exacerbating the problem. Emerging drug design strategies are exploring the repurposing of existing drugs and the utilization of novel drug candidates, like antimicrobial peptides, to combat drug resistance. This proactive approach is crucial in fighting global health threats. In this study, an additive combination of a repurposed anti-leprosy drug, clofazimine, and an antimicrobial peptide, nisin A, are preformulated using liquid antisolvent precipitation to generate a stable amorphous, ionized nanoparticle system to boost antimicrobial activity. The nanotechnology aims to improve the physicochemical properties of the inherently poorly water-soluble clofazimine molecules while also harnessing the previously unreported additive effect of clofazimine and nisin A. The approach transformed clofazimine into a more water-soluble salt, yielding amorphous nanoparticles stabilized by the antimicrobial peptide; and combined the two drugs into a more soluble and more active formulation. Blending pre-formulation strategies like amorphization, salt formation, and nanosizing to improve the inherent low aqueous solubility of drugs can open many new possibilities for the design of new antimicrobial agents. This fusion of pre-formulation technologies in combination with the multi-hurdle approach of selecting drugs with different effects on microbes could be key in the design platform of new antibiotics in the fight against antimicrobial resistance.
Collapse
Affiliation(s)
- Mateo Flores Naranjo
- Department of Chemical Sciences, SSPC, Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland.
| | - Ajay Kumar
- Department of Chemical Sciences, SSPC, Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland.
| | - Poonam Ratrey
- Department of Chemical Sciences, SSPC, Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland.
| | - Sarah P Hudson
- Department of Chemical Sciences, SSPC, Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland.
| |
Collapse
|
21
|
Lai X, Chow SH, Le Brun AP, Muir BW, Bergen PJ, White J, Yu HH, Wang J, Danne J, Jiang JH, Short FL, Han ML, Strugnell RA, Song J, Cameron NR, Peleg AY, Li J, Shen HH. Polysaccharide-Targeting Lipid Nanoparticles to Kill Gram-Negative Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305052. [PMID: 37798622 DOI: 10.1002/smll.202305052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/16/2023] [Indexed: 10/07/2023]
Abstract
The rapid increase and spread of Gram-negative bacteria resistant to many or all existing treatments threaten a return to the preantibiotic era. The presence of bacterial polysaccharides that impede the penetration of many antimicrobials and protect them from the innate immune system contributes to resistance and pathogenicity. No currently approved antibiotics target the polysaccharide regions of microbes. Here, describe monolaurin-based niosomes, the first lipid nanoparticles that can eliminate bacterial polysaccharides from hypervirulent Klebsiella pneumoniae, are described. Their combination with polymyxin B shows no cytotoxicity in vitro and is highly effective in combating K. pneumoniae infection in vivo. Comprehensive mechanistic studies have revealed that antimicrobial activity proceeds via a multimodal mechanism. Initially, lipid nanoparticles disrupt polysaccharides, then outer and inner membranes are destabilized and destroyed by polymyxin B, resulting in synergistic cell lysis. This novel lipidic nanoparticle system shows tremendous promise as a highly effective antimicrobial treatment targeting multidrug-resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Xiangfeng Lai
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Seong Hoong Chow
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, New South Wales, 2232, Australia
| | | | - Phillip J Bergen
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Jacinta White
- CSIRO Manufacturing, Clayton, Victoria, 3168, Australia
| | - Heidi H Yu
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Jiping Wang
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Jill Danne
- Monash Ramaciotti Centre for Cryo-Electron Microscopy, A Node of Microscopy Australia, Monash University, Clayton, Victoria, 3800, Australia
| | - Jhih-Hang Jiang
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Francesca L Short
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Mei-Ling Han
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Richard A Strugnell
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Anton Y Peleg
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Jian Li
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
22
|
Sekar A, Gil D, Tierney P, McCanne M, Daesety V, Trendafilova D, Muratoglu OK, Oral E. Synergistic use of anti-inflammatory ketorolac and gentamicin to target staphylococcal biofilms. J Transl Med 2024; 22:102. [PMID: 38273276 PMCID: PMC10809490 DOI: 10.1186/s12967-024-04871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND While antibiotics remain our primary tools against microbial infection, increasing antibiotic resistance (inherent and acquired) is a major detriment to their efficacy. A practical approach to maintaining or reversing the efficacy of antibiotics is the use of other commonly used therapeutics, which show synergistic antibacterial action with antibiotics. Here, we investigated the extent of antibacterial synergy between the antibiotic gentamicin and the anti-inflammatory ketorolac regarding the dynamics of biofilm growth, the rate of acquired resistance, and the possible mechanism of synergy. METHODS Control (ATCC 12600, ATCC 35984) and clinical strains (L1101, L1116) of Staphylococcus aureus and Staphylococcus epidermidis with varying antibiotic susceptibility profiles were used in this study to simulate implant-material associated low-risk and high-risk biofilms in vitro. The synergistic action of gentamicin sulfate (GS) and ketorolac tromethamine (KT), against planktonic staphylococcal strains were determined using the fractional inhibitory concentration measurement assay. Nascent (6 h) and established (24 h) biofilms were grown on 316L stainless steel plates and the synergistic biofilm eradication activity was determined and characterized using adherent bacteria count, minimum biofilm eradication concentration (MBEC) measurement for GS, visualization by live/dead imaging, scanning electron microscopy, gene expression of biofilm-associated genes, and bacterial membrane fluidity assessment. RESULTS Gentamicin-ketorolac (GS-KT) combination demonstrated synergistic antibacterial action against planktonic Staphylococci. Control and clinical strains showed distinct biofilm growth dynamics and an increase in biofilm maturity was shown to confer further resistance to gentamicin for both 'low-risk' and 'high-risk' biofilms. The addition of ketorolac enhanced the antibiofilm activity of gentamicin against acquired resistance in staphylococcal biofilms. Mechanistic studies revealed that the synergistic action of gentamicin-ketorolac interferes with biofilm morphology and subverts bacterial stress response altering bacterial physiology, membrane dynamics, and biofilm properties. CONCLUSION The results of this study have a significant impact on the local administration of antibiotics and other therapeutic agents commonly used in the prevention and treatment of orthopaedic infections. Further, these results warrant the study of synergy for the concurrent or sequential administration of non-antibiotic drugs for antimicrobial effect.
Collapse
Affiliation(s)
- Amita Sekar
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, USA
| | - Dmitry Gil
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, USA
| | - Peyton Tierney
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
| | - Madeline McCanne
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
| | - Vikram Daesety
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
| | | | - Orhun K Muratoglu
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, USA
| | - Ebru Oral
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, USA.
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, USA.
| |
Collapse
|
23
|
Liu F, Greenwood AI, Xiong Y, Miceli RT, Fu R, Anderson KW, McCallum SA, Mihailescu M, Gross R, Cotten ML. Host Defense Peptide Piscidin and Yeast-Derived Glycolipid Exhibit Synergistic Antimicrobial Action through Concerted Interactions with Membranes. JACS AU 2023; 3:3345-3365. [PMID: 38155643 PMCID: PMC10751773 DOI: 10.1021/jacsau.3c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 12/30/2023]
Abstract
Developing new antimicrobials as alternatives to conventional antibiotics has become an urgent race to eradicate drug-resistant bacteria and to save human lives. Conventionally, antimicrobial molecules are studied independently even though they can be cosecreted in vivo. In this research, we investigate two classes of naturally derived antimicrobials: sophorolipid (SL) esters as modified yeast-derived glycolipid biosurfactants that feature high biocompatibility and low production cost; piscidins, which are host defense peptides (HDPs) from fish. While HDPs such as piscidins target the membrane of pathogens, and thus result in low incidence of resistance, SLs are not well understood on a mechanistic level. Here, we demonstrate that combining SL-hexyl ester (SL-HE) with subinhibitory concentration of piscidins 1 (P1) and 3 (P3) stimulates strong antimicrobial synergy, potentiating a promising therapeutic window. Permeabilization assays and biophysical studies employing circular dichroism, NMR, mass spectrometry, and X-ray diffraction are performed to investigate the mechanism underlying this powerful synergy. We reveal four key mechanistic features underlying the synergistic action: (1) P1/3 binds to SL-HE aggregates, becoming α-helical; (2) piscidin-glycolipid assemblies synergistically accumulate on membranes; (3) SL-HE used alone or bound to P1/3 associates with phospholipid bilayers where it induces defects; (4) piscidin-glycolipid complexes disrupt the bilayer structure more dramatically and differently than either compound alone, with phase separation occurring when both agents are present. Overall, dramatic enhancement in antimicrobial activity is associated with the use of two membrane-active agents, with the glycolipid playing the roles of prefolding the peptide, coordinating the delivery of both agents to bacterial surfaces, recruiting the peptide to the pathogenic membranes, and supporting membrane disruption by the peptide. Given that SLs are ubiquitously and safely used in consumer products, the SL/peptide formulation engineered and mechanistically characterized in this study could represent fertile ground to develop novel synergistic agents against drug-resistant bacteria.
Collapse
Affiliation(s)
- Fei Liu
- Department
of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Alexander I. Greenwood
- Department
of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States
| | - Yawei Xiong
- Department
of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States
| | - Rebecca T. Miceli
- Department
of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Riqiang Fu
- Center
of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Kyle W. Anderson
- National
Institute of Standards and Technology, Rockville, Maryland 20850, United States
| | - Scott A. McCallum
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Mihaela Mihailescu
- Institute
for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Richard Gross
- Department
of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Myriam L. Cotten
- Department
of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States
| |
Collapse
|
24
|
Li Y, Tang X, Yang Z, He J, Ma N, Huang A, Shi Y. BCp12/PLA combination: A novel antibacterial agent targeting Mur family, DNA gyrase and DHFR. Int J Food Microbiol 2023; 406:110370. [PMID: 37678070 DOI: 10.1016/j.ijfoodmicro.2023.110370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
The combination of natural antimicrobial peptide BCp12/phenyllatic acid (BCp12/PLA) presents a more efficient antibacterial effect, but its antibacterial mechanism remains unclear. This study studied the synergistic antibacterial mechanism of BCp12 and PLA against S. aureus. The results demonstrated that the BCp12/PLA combination presented a synergistic antibacterial effect against S. aureus, with a fractional inhibitory concentration of 0.05. Furthermore, flow cytometry and scanning electron microscope analysis revealed that BCp12 and PLA synergistically promoted cell membrane disruption compared with the group treated only with one compound, inducing structural cell damage and cytoplasmic leakage. In addition, fluorescence spectroscopy analysis suggested that BCp12 and PLA synergistically influenced genomic DNA. BCp12 and PLA targeted enzymes related to peptidoglycan and DNA synthesis and interacted by hydrogen bonding and hydrophobic interactions with mur enzymes (murC, murD, murE, murF, and murG), dihydrofolate reductase, and DNA gyrase. Additionally, the combined treatment successfully inhibited microbial reproduction in the storage of pasteurized milk, indicating that the combination of BCp12 and PLA can be used as a new preservative strategy in food systems. Overall, this study could provide potential strategies for preventing and controlling foodborne pathogens.
Collapse
Affiliation(s)
- Yufang Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xiaozhao Tang
- Yunnan Center for Disease Control and Prevention, Kunming 650022, Yunnan, China
| | - Zushun Yang
- Yunnan Center for Disease Control and Prevention, Kunming 650022, Yunnan, China
| | - Jinze He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Ni Ma
- Yunnan Center for Disease Control and Prevention, Kunming 650022, Yunnan, China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| | - Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
25
|
Chahine Z, Abel S, Hollin T, Chung JH, Barnes GL, Daub ME, Renard I, Choi JY, Pratap V, Pal A, Alba-Argomaniz M, Banks CAS, Kirkwood J, Saraf A, Camino I, Castaneda P, Cuevas MC, De Mercado-Arnanz J, Fernandez-Alvaro E, Garcia-Perez A, Ibarz N, Viera-Morilla S, Prudhomme J, Joyner CJ, Bei AK, Florens L, Ben Mamoun C, Vanderwal CD, Le Roch KG. A Potent Kalihinol Analogue Disrupts Apicoplast Function and Vesicular Trafficking in P. falciparum Malaria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568162. [PMID: 38045341 PMCID: PMC10690269 DOI: 10.1101/2023.11.21.568162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Here we report the discovery of MED6-189, a new analogue of the kalihinol family of isocyanoterpene (ICT) natural products. MED6-189 is effective against drug-sensitive and -resistant P. falciparum strains blocking both intraerythrocytic asexual replication and sexual differentiation. This compound was also effective against P. knowlesi and P. cynomolgi. In vivo efficacy studies using a humanized mouse model of malaria confirms strong efficacy of the compound in animals with no apparent hemolytic activity or apparent toxicity. Complementary chemical biology, molecular biology, genomics and cell biological analyses revealed that MED6-189 primarily targets the parasite apicoplast and acts by inhibiting lipid biogenesis and cellular trafficking. Genetic analyses in P. falciparum revealed that a mutation in PfSec13, which encodes a component of the parasite secretory machinery, reduced susceptibility to the drug. The high potency of MED6-189 in vitro and in vivo, its broad range of efficacy, excellent therapeutic profile, and unique mode of action make it an excellent addition to the antimalarial drug pipeline.
Collapse
Affiliation(s)
- Z Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - S Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - T Hollin
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - JH Chung
- Department of Chemistry, University of California, Irvine, California, 92617, USA
| | - GL Barnes
- Department of Chemistry, University of California, Irvine, California, 92617, USA
| | - ME Daub
- Department of Chemistry, University of California, Irvine, California, 92617, USA
| | - I Renard
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - JY Choi
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - V Pratap
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - A Pal
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - M Alba-Argomaniz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | - CAS Banks
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - J Kirkwood
- Metabolomics Core Facility, University of California, Riverside, CA 92521, USA
| | - A Saraf
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - I Camino
- GSK, C/ Severo Ochoa, 2 PTM, 28760 Tres Cantos (Madrid), Spain
| | - P Castaneda
- GSK, C/ Severo Ochoa, 2 PTM, 28760 Tres Cantos (Madrid), Spain
| | - MC Cuevas
- GSK, C/ Severo Ochoa, 2 PTM, 28760 Tres Cantos (Madrid), Spain
| | | | | | - A Garcia-Perez
- GSK, C/ Severo Ochoa, 2 PTM, 28760 Tres Cantos (Madrid), Spain
| | - N Ibarz
- GSK, C/ Severo Ochoa, 2 PTM, 28760 Tres Cantos (Madrid), Spain
| | - S Viera-Morilla
- GSK, C/ Severo Ochoa, 2 PTM, 28760 Tres Cantos (Madrid), Spain
| | - J Prudhomme
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - CJ Joyner
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | - AK Bei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - L Florens
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - C Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - CD Vanderwal
- Department of Chemistry, University of California, Irvine, California, 92617, USA
| | - KG Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| |
Collapse
|
26
|
Inclán M, Torres Hernández N, Martínez Serra A, Torrijos Jabón G, Blasco S, Andreu C, del Olmo ML, Jávega B, O’Connor JE, García-España E. Antimicrobial Properties of New Polyamines Conjugated with Oxygen-Containing Aromatic Functional Groups. Molecules 2023; 28:7678. [PMID: 38005400 PMCID: PMC10675077 DOI: 10.3390/molecules28227678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Antibiotic resistance is now a first-order health problem, which makes the development of new families of antimicrobials imperative. These compounds should ideally be inexpensive, readily available, highly active, and non-toxic. Here, we present the results of our investigation regarding the antimicrobial activity of a series of natural and synthetic polyamines with different architectures (linear, tripodal, and macrocyclic) and their derivatives with the oxygen-containing aromatic functional groups 1,3-benzodioxol, ortho/para phenol, or 2,3-dihydrobenzofuran. The new compounds were prepared through an inexpensive process, and their activity was tested against selected strains of yeast, as well as Gram-positive and Gram-negative bacteria. In all cases, the conjugated derivatives showed antimicrobial activity higher than the unsubstituted polyamines. Several factors, such as the overall charge at physiological pH, lipophilicity, and the topology of the polyamine scaffold were relevant to their activity. The nature of the lipophilic moiety was also a determinant of human cell toxicity. The lead compounds were found to be bactericidal and fungistatic, and they were synergic with the commercial antifungals fluconazole, cycloheximide, and amphotericin B against the yeast strains tested.
Collapse
Affiliation(s)
- Mario Inclán
- Institute of Molecular Science, University of Valencia, 46980 Valencia, Spain; (N.T.H.); (A.M.S.); (S.B.); (E.G.-E.)
- Escuela Superior de Ingeniería, Ciencia y Tecnología, International University of Valencia—VIU, 46002 Valencia, Spain
| | - Neus Torres Hernández
- Institute of Molecular Science, University of Valencia, 46980 Valencia, Spain; (N.T.H.); (A.M.S.); (S.B.); (E.G.-E.)
| | - Alejandro Martínez Serra
- Institute of Molecular Science, University of Valencia, 46980 Valencia, Spain; (N.T.H.); (A.M.S.); (S.B.); (E.G.-E.)
| | - Gonzalo Torrijos Jabón
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, University of Valencia, 46100 Valencia, Spain; (G.T.J.); (M.l.d.O.)
| | - Salvador Blasco
- Institute of Molecular Science, University of Valencia, 46980 Valencia, Spain; (N.T.H.); (A.M.S.); (S.B.); (E.G.-E.)
| | - Cecilia Andreu
- Departament de Química Orgànica, Facultat de Farmàcia, University of Valencia, 46100 Valencia, Spain
| | - Marcel lí del Olmo
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, University of Valencia, 46100 Valencia, Spain; (G.T.J.); (M.l.d.O.)
| | - Beatriz Jávega
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (B.J.); (J.-E.O.)
| | - José-Enrique O’Connor
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (B.J.); (J.-E.O.)
| | - Enrique García-España
- Institute of Molecular Science, University of Valencia, 46980 Valencia, Spain; (N.T.H.); (A.M.S.); (S.B.); (E.G.-E.)
| |
Collapse
|
27
|
Mensah E, Fourie PB, Peters RPH. Antimicrobial effects of Medicines for Malaria Venture Pathogen Box compounds on strains of Neisseria gonorrhoeae. Antimicrob Agents Chemother 2023; 67:e0034823. [PMID: 37791750 PMCID: PMC10648949 DOI: 10.1128/aac.00348-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/02/2023] [Indexed: 10/05/2023] Open
Abstract
Therapeutic options for Neisseria gonorrhoeae are limited due to emerging global resistance. New agents and treatment options to treat patients with susceptible and multi-extensively drug-resistant N. gonorrhoeae is a high priority. This study used an in vitro approach to explore the antimicrobial potential, as well as synergistic effects of Medicine for Malaria Venture (MMV) Pathogen Box compounds against ATCC and clinical N. gonorrhoeae strains. Microbroth dilution assay was used to determine pathogen-specific minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the Pathogen Box compounds against susceptible and resistant N. gonorrhoeae strains, with modification, by adding PrestoBlue HS Cell Viability Reagent. A checkerboard assay was used to determine synergy between the active compounds and in conjunction with ceftriaxone. Time-kill kinetics was performed to determine if the compounds were either bactericidal or bacteriostatic. The Pathogen Box compounds: MMV676501, MMV002817, MMV688327, MMV688508, MMV024937, MMV687798 (levofloxacin), MMV021013, and MMV688978 (auranofin) showed potent activity against resistant strains of N. gonorrhoeae at an MIC and MBC of ≤10 µM. Besides the eight compounds, MMV676388 and MMV272144 were active against susceptible N. gonorrhoeae strains, also at MIC and MBC of ≤10 µM. All the compounds were bactericidal and were either synergistic or additive with fractional inhibitory concentration index ranging between 0.40 and 1.8. The study identified novel Pathogen Box compounds with potent activity against N. gonorrhoeae strains and has the potential to be further investigated as primary or adjunctive therapy to treat gonococcal infections.
Collapse
Affiliation(s)
- Eric Mensah
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - P. Bernard Fourie
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - Remco P. H. Peters
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
- Foundation for Professional Development, Research Unit, East London, South Africa
| |
Collapse
|
28
|
Sekar A, Gil D, Tierney PA, McCanne M, Daesety V, Trendafilova D, Muratoglu OK, Oral E. Synergistic use of anti-inflammatory ketorolac and gentamicin to target staphylococcal biofilms. RESEARCH SQUARE 2023:rs.3.rs-3471646. [PMID: 37961705 PMCID: PMC10635368 DOI: 10.21203/rs.3.rs-3471646/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background While antibiotics remain our primary tools against microbial infection, increasing antibiotic resistance (inherent and acquired) is a major detriment to their efficacy. A practical approach to maintaining or reversing the efficacy of antibiotics is the use of other commonly used therapeutics, which show synergistic antibacterial action with antibiotics. Here, we investigated the extent of antibacterial synergy between the antibiotic gentamicin and the anti-inflammatory ketorolac regarding the dynamics of biofilm growth, the rate of acquired resistance, and the possible mechanism of synergy. Methods Control (ATCC 12600, ATCC 35984) and clinical strains (L1101, L1116) of S. aureus and S. epidermidis with varying antibiotic susceptibility profiles were used in this study to simulate implant-material associated low-risk and high-risk biofilms in vitro. The synergistic action of gentamicin sulfate (GS) and ketorolac tromethamine (KT), against planktonic staphylococcal strains were determined using the fractional inhibitory concentration measurement assay. Nascent (6hr) and established (24hr) biofilms were grown on 316 stainless steel plates and the synergistic biofilm eradication activity was determined and characterized using adherent bacteria count, MBEC measurement for GS, gene expression of biofilm-associated genes, visualization by live/dead imaging, scanning electron microscopy, and bacterial membrane fluidity assessment. Results Gentamicin-ketorolac combination demonstrated synergistic antibacterial action against planktonic Staphylococci. Control and clinical strains showed distinct biofilm growth dynamics and an increase in biofilm maturity was shown to confer further resistance to gentamicin for both 'low-risk' and 'high-risk' biofilms. The addition of ketorolac enhanced the antibiofilm activity of gentamicin against acquired resistance in staphylococcal biofilms. Mechanistic studies revealed that the synergistic action of gentamicin-ketorolac interferes with biofilm morphology and subverts bacterial stress response altering bacterial physiology, membrane dynamics, and biofilm properties. Conclusion The results of this study have a significant impact on the local administration of antibiotics and other therapeutic agents commonly used in the prevention and treatment of orthopaedic infections. Further, these results warrant the study of synergy for the concurrent or sequential administration of non-antibiotic drugs for antimicrobial effect.
Collapse
Affiliation(s)
- Amita Sekar
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University; Boston, U.S.A
| | - Dmitry Gil
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University; Boston, U.S.A
| | - Peyton Anne Tierney
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
| | - Madeline McCanne
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
| | - Vikram Daesety
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
| | - Darina Trendafilova
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
| | - Orhun K Muratoglu
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University; Boston, U.S.A
| | - Ebru Oral
- Harris Orthopaedic Laboratory, Massachusetts General Hospital; Boston, U.S.A
- Department of Orthopaedic Surgery, Harvard Medical School, Harvard University; Boston, U.S.A
| |
Collapse
|
29
|
Li J, Nian Y, Liu J, Yang M, Jin Y, Kang X, Xu H, Shang Z, Lin W. Identification of a Potential Antimycobacterial Drug Sensitizer Targeting a Flavin-Independent Methylenetetrahydrofolate Reductase. ACS OMEGA 2023; 8:38406-38417. [PMID: 37867661 PMCID: PMC10586308 DOI: 10.1021/acsomega.3c05021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
The increasing antibiotic resistance of Mycobacterium tuberculosis and pathogenic nontuberculosis mycobacteria highlights the urgent need for new prevention and treatment strategies. Recently, the cocrystal structure of a Mycobacterium smegmatis flavin-independent 5,10-methylenetetrahydrofolate reductase (MsmMTHFR) that binds with a reduced nicotinamide adenine dinucleotide (NADH) has been well-determined, providing a structural basis for the screening of antimycobacterial leads targeting MsmMTHFR, a new enzyme involved in tetrahydrofolic acid (THF) biosynthesis. In this study, we identified compound AB131 as a promising candidate that fits well into the NADH binding pocket of MsmMTHFR through virtual screening. We discovered that AB131 and its derivatives (13 and 14) can sensitize the antimycobacterial activity of the antitubercular drug para-aminosalicyclic acid (PAS) by 2-5-fold against various species of mycobacteria. Although the compounds themselves do not exhibit any antimycobacterial activity, the high binding affinity of AB131 with MsmMTHFR or Rv2172c was evaluated by microscale thermophoresis analysis. Additionally, we predicted and validated the key residues (V115, V117, P118, and R163) of MsmMTHFR that are involved in the interaction with AB131 by using molecular docking and mutagenesis analysis. These findings offer a potential exploitable target for developing potent and specific antimycobacterial drug sensitizers.
Collapse
Affiliation(s)
- Jiacong Li
- Department
of Pathogen Biology, School of Medicine & Holistic Integrative
Medicine, Nanjing University of Chinese
Medicine, 210023 Nanjing, China
- School
of Pharmacy, Nanjing University of Chinese
Medicine, 210023 Nanjing, China
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Yong Nian
- School
of Pharmacy, Nanjing University of Chinese
Medicine, 210023 Nanjing, China
| | - Jian Liu
- School
of Pharmacy, Nanjing University of Chinese
Medicine, 210023 Nanjing, China
| | - Mingxia Yang
- Department
of Pathogen Biology, School of Medicine & Holistic Integrative
Medicine, Nanjing University of Chinese
Medicine, 210023 Nanjing, China
- The
Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Yuanling Jin
- Department
of Pathogen Biology, School of Medicine & Holistic Integrative
Medicine, Nanjing University of Chinese
Medicine, 210023 Nanjing, China
| | - Xiaoman Kang
- CAS
Key Laboratory of Synthetic Biology, Centre
of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Haodong Xu
- School
of Pharmacy, Nanjing University of Chinese
Medicine, 210023 Nanjing, China
| | - Zhuo Shang
- School of
Pharmaceutical Sciences, Shandong University, 250100 Jinan, China
| | - Wei Lin
- Department
of Pathogen Biology, School of Medicine & Holistic Integrative
Medicine, Nanjing University of Chinese
Medicine, 210023 Nanjing, China
- School
of Pharmacy, Nanjing University of Chinese
Medicine, 210023 Nanjing, China
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237 Shanghai, China
- Jiangsu
Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, 210023 Nanjing, China
| |
Collapse
|
30
|
Agrawal P, Kumari S, Mohmmed A, Malhotra P, Sharma U, Sahal D. Identification of Novel, Potent, and Selective Compounds against Malaria Using Glideosomal-Associated Protein 50 as a Drug Target. ACS OMEGA 2023; 8:38506-38523. [PMID: 37867646 PMCID: PMC10586260 DOI: 10.1021/acsomega.3c05323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/01/2023] [Indexed: 10/24/2023]
Abstract
Phylum apicomplexan consists of parasites, such as Plasmodium and Toxoplasma. These obligate intracellular parasites enter host cells via an energy-dependent process using specialized machinery, called the glideosome. In the present study, we used Plasmodium falciparum GAP50, a glideosome-associated protein, as a target to screen 951 different compounds from diverse chemical libraries. Using different screening methods, eight compounds (Hayatinine, Curine, MMV689758 (Bedaquiline), MMV1634402 (Brilacidin), and MMV688271, MMV782353, MMV642550, and USINB4-124-8) were identified, which showed promising binding affinity (KD < 75 μM), along with submicromolar range antiparasitic efficacy and selectivity index > 100 fold for malaria parasite. These eight compounds were effective against Chloroquine-resistant PfINDO and Artemisinin-resistant PfCam3.1R359T strains. Studies on the effect of these compounds at asexual blood stages showed that these eight compounds act differently at different developmental stages, indicating the binding of these compounds to other Plasmodium proteins, in addition to PfGAP50. We further studied the effects of compounds (Bedaquiline and USINB4-124-8) in an in vivoPlasmodium berghei mouse model of malaria. Importantly, the oral delivery of Bedaquiline (50 mg/kg b. wt.) showed substantial suppression of parasitemia, and three out of seven mice were cured of the infection. Thus, our study provides new scaffolds for the development of antimalarials that can act at multiple Plasmodium lifecycle stages.
Collapse
Affiliation(s)
- Prakhar Agrawal
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Surekha Kumari
- Chemical
Technology Division, CSIR-Institute of Himalayan
Bioresource Technology, Palampur 176061, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Asif Mohmmed
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Pawan Malhotra
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Upendra Sharma
- Chemical
Technology Division, CSIR-Institute of Himalayan
Bioresource Technology, Palampur 176061, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Dinkar Sahal
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| |
Collapse
|
31
|
Mayers JR, Varon J, Zhou RR, Daniel-Ivad M, Beaulieu C, Bholse A, Glasser NR, Lichtenauer FM, Ng J, Vera MP, Huttenhower C, Perrella MA, Clish CB, Zhao SD, Baron RM, Balskus EP. Identification and targeting of microbial putrescine acetylation in bloodstream infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558834. [PMID: 37790300 PMCID: PMC10542159 DOI: 10.1101/2023.09.21.558834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The growth of antimicrobial resistance (AMR) has highlighted an urgent need to identify bacterial pathogenic functions that may be targets for clinical intervention. Although severe bacterial infections profoundly alter host metabolism, prior studies have largely ignored alterations in microbial metabolism in this context. Performing metabolomics on patient and mouse plasma samples, we identify elevated levels of bacterially-derived N-acetylputrescine during gram-negative bloodstream infections (BSI), with higher levels associated with worse clinical outcomes. We discover that SpeG is the bacterial enzyme responsible for acetylating putrescine and show that blocking its activity reduces bacterial proliferation and slows pathogenesis. Reduction of SpeG activity enhances bacterial membrane permeability and results in increased intracellular accumulation of antibiotics, allowing us to overcome AMR of clinical isolates both in culture and in vivo. This study highlights how studying pathogen metabolism in the natural context of infection can reveal new therapeutic strategies for addressing challenging infections.
Collapse
Affiliation(s)
- Jared R. Mayers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA 02115
- Harvard Medical School, Boston, MA, USA 02115
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA 02138
| | - Jack Varon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA 02115
- Harvard Medical School, Boston, MA, USA 02115
| | - Ruixuan R. Zhou
- Department of Statistics, University of Illinois at Urbana Champaign, Champaign, IL, USA 61820
| | - Martin Daniel-Ivad
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA 02138
- Broad Institute of MIT and Harvard, Cambridge, MA, USA 02142
| | | | - Amrisha Bholse
- Broad Institute of MIT and Harvard, Cambridge, MA, USA 02142
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA 02115
| | - Nathaniel R. Glasser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA 02138
| | | | - Julie Ng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA 02115
- Harvard Medical School, Boston, MA, USA 02115
| | - Mayra Pinilla Vera
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA 02115
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA, USA 02142
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA 02115
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mark A. Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA 02115
- Harvard Medical School, Boston, MA, USA 02115
| | - Clary B. Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA 02142
| | - Sihai D. Zhao
- Department of Statistics, University of Illinois at Urbana Champaign, Champaign, IL, USA 61820
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Champaign, IL, USA 61820
| | - Rebecca M. Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA 02115
- Harvard Medical School, Boston, MA, USA 02115
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA 02138
| |
Collapse
|
32
|
Kavanaugh LG, Mahoney AR, Dey D, Wuest WM, Conn GL. Di-berberine conjugates as chemical probes of Pseudomonas aeruginosa MexXY-OprM efflux function and inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.533986. [PMID: 37425949 PMCID: PMC10327050 DOI: 10.1101/2023.03.24.533986] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The Resistance-Nodulation-Division (RND) efflux pump superfamily is pervasive among Gram-negative pathogens and contributes extensively to clinical antibiotic resistance. The opportunistic pathogen Pseudomonas aeruginosa contains 12 RND-type efflux systems, with four contributing to resistance including MexXY-OprM which is uniquely able to export aminoglycosides. At the site of initial substrate recognition, small molecule probes of the inner membrane transporter (e.g., MexY) have potential as important functional tools to understand substrate selectivity and a foundation for developing adjuvant efflux pump inhibitors (EPIs). Here, we optimized the scaffold of berberine, a known but weak MexY EPI, using an in-silico high-throughput screen to identify di-berberine conjugates with enhanced synergistic action with aminoglycosides. Further, docking and molecular dynamics simulations of di-berberine conjugates reveal unique contact residues and thus sensitivities of MexY from distinct P. aeruginosa strains. This work thereby reveals di-berberine conjugates to be useful probes of MexY transporter function and potential leads for EPI development.
Collapse
Affiliation(s)
- Logan G. Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA
| | | | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA
| | - William M. Wuest
- Department of Chemistry, Emory University, Atlanta, GA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA
| | - Graeme L. Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA
| |
Collapse
|
33
|
Zhao J, Zhu Y, Han ML, Lu J, Yu HH, Wickremasinghe H, Zhou QT, Bergen P, Rao G, Velkov T, Lin YW, Li J. Model-informed dose optimisation of polymyxin-rifampicin combination therapy against multidrug-resistant Acinetobacter baumannii. Int J Antimicrob Agents 2023; 62:106902. [PMID: 37380093 DOI: 10.1016/j.ijantimicag.2023.106902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVES Antimicrobial resistance is a major global threat. Because of the stagnant antibiotic pipeline, synergistic antibiotic combination therapy has been proposed to treat rapidly emerging multidrug-resistant (MDR) pathogens. We investigated antimicrobial synergy of polymyxin/rifampicin combination against MDR Acinetobacter baumannii. METHODS In vitro static time-kill studies were performed over 48 h at an initial inoculum of ∼107 CFU/mL against three polymyxin-susceptible but MDR A. baumannii isolates. Membrane integrity was examined at 1 and 4 h post-treatment to elucidate the mechanism of synergy. Finally, a semi-mechanistic PK/PD model was developed to simultaneously describe the time course of bacterial killing and prevention of regrowth by mono- and combination therapies. RESULTS Polymyxin B and rifampicin alone produced initial killing against MDR A. baumannii but were associated with extensive regrowth. Notably, the combination showed synergistic killing across all three A. baumannii isolates with bacterial loads below the limit of quantification for up to 48 h. Membrane integrity assays confirmed the role of polymyxin-driven outer membrane remodelling in the observed synergy. Subsequently, the mechanism of synergy was incorporated into a PK/PD model to describe the enhanced uptake of rifampicin due to polymyxin-induced membrane permeabilisation. Simulations with clinically utilised dosing regimens confirmed the therapeutic potential of this combination, particularly in the prevention of bacterial regrowth. Finally, results from a neutropenic mouse thigh infection model confirmed the in vivo synergistic killing of the combination against A. baumannii AB5075. CONCLUSION Our results showed that polymyxin B combined with rifampicin is a promising option to treat bloodstream and tissue infection caused by MDR A. baumannii and warrants clinical evaluations.
Collapse
Affiliation(s)
- Jinxin Zhao
- Monash Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Yan Zhu
- Monash Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Mei-Ling Han
- Monash Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jing Lu
- Monash Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Heidi H Yu
- Monash Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Hasini Wickremasinghe
- Monash Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana
| | - Phillip Bergen
- Monash Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Gauri Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Tony Velkov
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yu-Wei Lin
- Monash Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia.
| | - Jian Li
- Monash Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
34
|
Dhiman S, Ramirez D, Arora R, Gandhi K, Wimalasekara R, Arthur G, Kumar A, Schweizer F. Trimeric Tobramycin/Nebramine Synergizes β-Lactam Antibiotics against Pseudomonas aeruginosa. ACS OMEGA 2023; 8:29359-29373. [PMID: 37599980 PMCID: PMC10433466 DOI: 10.1021/acsomega.3c02810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023]
Abstract
β-Lactam antibiotics remain one of the most effective therapeutics to treat infections caused by Gram-negative bacteria (GNB). However, since ancient times, bacteria have developed multiple resistance mechanisms toward this class of antibiotics including overexpression of β-lactamases, suppression of porins, outer membrane impermeability, overexpression of efflux pumps, and target modifications. To cope with these challenges and to extend the lifetime of existing β-lactam antibiotics, β-lactamase inhibitors are combined with β-lactam antibiotics to prevent antibiotic inactivation by β-lactamases. The combination therapy of an outer membrane permeabilizer with β-lactam antibiotics is an alternative approach to overcoming bacterial resistance of β-lactams in GNB. This approach is of particular interest for pathogens with highly impermeable outer membranes like Pseudomonas aeruginosa. Previous studies have shown that outer membrane permeabilizers can be designed by linking tobramycin and nebramine units together in the form of dimers or chimeras. In this study, we developed trimeric tobramycin and nebramine-based outer membrane permeabilizers presented on a central 1,3,5-triazine framework. The resultant trimers are capable of potentiating outer membrane-impermeable antibiotics but also β-lactams and β-lactam/β-lactamase inhibitor combinations against resistant P. aeruginosa isolates. Furthermore, the microbiological susceptibility breakpoints of ceftazidime, aztreonam, and imipenem were reached by a triple combination consisting of an outer-membrane permeabilizer/β-lactam/β-lactamase inhibitor in β-lactam-resistant P. aeruginosa isolates. Overall, our results indicate that trimeric tobramycins/nebramines can rescue clinically approved β-lactams and β-lactam/β-lactamase inhibitor combinations from resistance.
Collapse
Affiliation(s)
- Shiv Dhiman
- Department
of Chemistry, Faculty of Science, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Danyel Ramirez
- Department
of Chemistry, Faculty of Science, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Rajat Arora
- Department
of Chemistry, Faculty of Science, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Karan Gandhi
- Department
of Chemistry, Faculty of Science, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ruwani Wimalasekara
- Department
of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Gilbert Arthur
- Department
of Biochemistry and Medical Genetics, University
of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Ayush Kumar
- Department
of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Frank Schweizer
- Department
of Chemistry, Faculty of Science, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
35
|
Masterson K, Major I, Lynch M, Rowan N. Synergy Assessment of Four Antimicrobial Bioactive Compounds for the Combinational Treatment of Bacterial Pathogens. Biomedicines 2023; 11:2216. [PMID: 37626713 PMCID: PMC10452528 DOI: 10.3390/biomedicines11082216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial resistance (AMR) has become a topic of great concern in recent years, with much effort being committed to developing alternative treatments for resistant bacterial pathogens. Drug combinational therapies have been a major area of research for several years, with modern iterations using combining well-established antibiotics and other antimicrobials with the aim of discovering complementary mechanisms. Previously, we characterised four GRAS antimicrobials that can withstand thermal polymer extrusion processes for novel medical device-based and therapeutic applications. In the present study, four antimicrobial bioactive-silver nitrate, nisin, chitosan and zinc oxide-were assessed for their potential combined use as an alternative synergistic treatment for AMR bacteria via a broth microdilution assay based on a checkerboard format. The bioactives were tested in arrangements of two-, three- and four-drug combinations, and their interactions were determined and expressed in terms of a synergy score. Results have revealed interesting interactions based on treatments against recognised test bacterial strains that cause human and animal infections, namely E. coli, S. aureus and S. epidermidis. Silver nitrate was seen to greatly enhance the efficacy of its paired treatment. Combinations with nisin, which is a lantibiotic, exhibited the most interesting results, as nisin has no effect against Gram-negative bacteria when used alone; however, it demonstrated antimicrobial effects when combined with silver nitrate or chitosan. This study constitutes the first study to both report on practical three- and four-drug combinational assays and utilise these methods for the assessment of established and emerging antimicrobials. The novel methods and results presented in this study show the potential to explore previously unknown drug combination compatibility measures in an ease-of-use- and high-throughput-based format, which can greatly help future research that aims to identify appropriate alternative treatments for AMR, including the screening of potential new bioactives biorefined from various sources.
Collapse
Affiliation(s)
- Kevin Masterson
- Bioscience Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland; (M.L.); (N.R.)
| | - Ian Major
- PRISM Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland;
| | - Mark Lynch
- Bioscience Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland; (M.L.); (N.R.)
| | - Neil Rowan
- Bioscience Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland; (M.L.); (N.R.)
| |
Collapse
|
36
|
Orta-Rivera AM, Meléndez-Contés Y, Medina-Berríos N, Gómez-Cardona AM, Ramos-Rodríguez A, Cruz-Santiago C, González-Dumeng C, López J, Escribano J, Rivera-Otero JJ, Díaz-Rivera J, Díaz-Vélez SC, Feliciano-Delgado Z, Tinoco AD. Copper-Based Antibiotic Strategies: Exploring Applications in the Hospital Setting and the Targeting of Cu Regulatory Pathways and Current Drug Design Trends. INORGANICS 2023; 11:252. [PMID: 39381734 PMCID: PMC11460770 DOI: 10.3390/inorganics11060252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Classical antibacterial drugs were designed to target specific bacterial properties distinct from host human cells to maximize potency and selectivity. These designs were quite effective as they could be easily derivatized to bear next-generation drugs. However, the rapid mutation of bacteria and their associated acquired drug resistance have led to the rise of highly pathogenic superbug bacterial strains for which treatment with first line drugs is no match. More than ever, there is a dire need for antibacterial drug design that goes beyond conventional standards. Taking inspiration by the body's innate immune response to employ its own supply of labile copper ions in a toxic attack against pathogenic bacteria, which have a very low Cu tolerance, this review article examines the feasibility of Cu-centric strategies for antibacterial preventative and therapeutic applications. Promising results are shown for the use of Cu-containing materials in the hospital setting to minimize patient bacterial infections. Studies directed at disrupting bacterial Cu regulatory pathways elucidate new drug targets that can enable toxic increase of Cu levels and perturb bacterial dependence on iron. Likewise, Cu intracellular chelation/prochelation strategies effectively induce bacterial Cu toxicity. Cu-based small molecules and nanoparticles demonstrate the importance of the Cu ions in their mechanism and display potential synergism with classical drugs.
Collapse
|
37
|
Elgammal Y, Salama EA, Seleem MN. Atazanavir Resensitizes Candida auris to Azoles. Antimicrob Agents Chemother 2023; 67:e0163122. [PMID: 37092991 PMCID: PMC10190639 DOI: 10.1128/aac.01631-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/07/2023] [Indexed: 04/25/2023] Open
Abstract
Candida auris represents an urgent health threat. Here, we identified atazanavir as a potent drug capable of resensitizing C. auris clinical isolates to the activity of azole antifungals. Atazanavir was able to significantly inhibit the efflux pumps, glucose transport, and ATP synthesis of all tested isolates of C. auris. In addition, the combination of itraconazole with atazanavir-ritonavir significantly reduced the burden of azole-resistant C. auris in murine kidneys by 1.3 log10 (95%), compared to itraconazole alone.
Collapse
Affiliation(s)
- Yehia Elgammal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Ehab A. Salama
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Mohamed N. Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
38
|
Abeydeera N, Benin BM, Mudarmah K, Pant BD, Chen G, Shin WS, Kim MH, Huang SD. Harnessing the Dual Antimicrobial Mechanism of Action with Fe(8-Hydroxyquinoline) 3 to Develop a Topical Ointment for Mupirocin-Resistant MRSA Infections. Antibiotics (Basel) 2023; 12:antibiotics12050886. [PMID: 37237789 DOI: 10.3390/antibiotics12050886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
8-Hydroxyquinoline (8-hq) exhibits potent antimicrobial activity against Staphylococcus aureus (SA) bacteria with MIC = 16.0-32.0 µM owing to its ability to chelate metal ions such as Mn2+, Zn2+, and Cu2+ to disrupt metal homeostasis in bacterial cells. We demonstrate that Fe(8-hq)3, the 1:3 complex formed between Fe(III) and 8-hq, can readily transport Fe(III) across the bacterial cell membrane and deliver iron into the bacterial cell, thus, harnessing a dual antimicrobial mechanism of action that combines the bactericidal activity of iron with the metal chelating effect of 8-hq to kill bacteria. As a result, the antimicrobial potency of Fe(8-hq)3 is significantly enhanced in comparison with 8-hq. Resistance development by SA toward Fe(8-hq)3 is considerably delayed as compared with ciprofloxacin and 8-hq. Fe(8-hq)3 can also overcome the 8-hq and mupirocin resistance developed in the SA mutant and MRSA mutant bacteria, respectively. Fe(8-hq)3 can stimulate M1-like macrophage polarization of RAW 264.7 cells to kill the SA internalized in such macrophages. Fe(8-hq)3 exhibits a synergistic effect with both ciprofloxacin and imipenem, showing potential for combination therapies with topical and systemic antibiotics for more serious MRSA infections. The in vivo antimicrobial efficacy of a 2% Fe(8-hq)3 topical ointment is confirmed by the use of a murine model with skin wound infection by bioluminescent SA with a reduction of the bacterial burden by 99 ± 0.5%, indicating that this non-antibiotic iron complex has therapeutic potential for skin and soft tissue infections (SSTIs).
Collapse
Affiliation(s)
- Nalin Abeydeera
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| | - Bogdan M Benin
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Khalil Mudarmah
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
- Department of Chemistry, Jazan University, Jazan 45142, Saudi Arabia
| | - Bishnu D Pant
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| | - Guanyu Chen
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Min-Ho Kim
- Department of Biological Sciences, Kent State University, Kent, OH 44240, USA
| | - Songping D Huang
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| |
Collapse
|
39
|
Pant BD, Abeydeera N, Dubadi R, Kim MH, Huang SD. Broad-Spectrum Antimicrobial Activity of Ultrafine (BiO) 2CO 3 NPs Functionalized with PVP That Can Overcome the Resistance to Ciprofloxacin, AgNPs and Meropenem in Pseudomonas aeruginosa. Antibiotics (Basel) 2023; 12:antibiotics12040753. [PMID: 37107115 PMCID: PMC10135073 DOI: 10.3390/antibiotics12040753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Although it has no known biochemical role in living organisms, bismuth has been used to treat syphilis, diarrhea, gastritis and colitis for almost a century due to its nontoxic nature to mammalian cells. When prepared via a top-down sonication route from a bulk sample, bismuth subcarbonate (BiO)2CO3 nanoparticles (NPs) with an average size of 5.35 ± 0.82 nm exhibit broad-spectrum potent antibacterial activity against both the gram-positive and gram-negative bacteria including methicillin-susceptible Staphylococcus aureus (DSSA), methicillin-resistant Staphylococcus aureus (MRSA), drug-susceptible Pseudomonas aeruginosa (DSPA) and multidrug-resistant Pseudomonas aeruginosa (DRPA). Specifically, the minimum inhibitory concentrations (MICs) are 2.0 µg/mL against DSSA and MRSA and 0.75 µg/mL against DSPA and DRPA. In sharp contrast to ciprofloxacin, AgNPs and meropenem, (BiO)2CO3 NPs show no sign of developing Bi-resistant phenotypes after 30 consecutive passages. On the other hand, such NPs can readily overcome the resistance to ciprofloxacin, AgNPs and meropenem in DSPA. Finally, the combination of (BiO)2CO3 NPs and meropenem shows a synergistic effect with the fractional inhibitory concentration (FIC) index of 0.45.
Collapse
Affiliation(s)
- Bishnu D Pant
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| | - Nalin Abeydeera
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| | - Rabindra Dubadi
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| | - Min-Ho Kim
- Department of Biological Sciences, Kent State University, Kent, OH 44240, USA
| | - Songping D Huang
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| |
Collapse
|
40
|
Shen K, Shu M, Zhong C, Zhao Y, Bao S, Pan H, Wang S, Wu G. Characterization of a broad-spectrum endolysin rLysJNwz and its utility against Salmonella in foods. Appl Microbiol Biotechnol 2023; 107:3229-3241. [PMID: 37039849 DOI: 10.1007/s00253-023-12500-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023]
Abstract
Salmonella is a common foodborne pathogen worldwide. The use of bacteriophage-encoded endolysins as antimicrobial agents is a promising approach for controlling pathogenic contamination. In this context, a recombinant endolysin named rLysJNwz, consisting of a single domain falling with the L-alanogyl-D-glutamate peptidase-like family, was cloned, expressed, and characterized. The yield of rLysJNwz was about 25 mg/L. Synergy between 7.5 μg/mL rLysJNwz and 0.5 mmol/L EDTA could decrease the viable counts of Salmonella NCTC 8271 by 93.28%. A synergistic effect between rLysJNwz and polymyxin B was demonstrated, exhibiting the MIC of polymyxin B decreased by twofold. Specifically, rlysJNwz had strong thermostability at temperatures (4-95 °C) and maintained high activity at pHs from 5.0 to 11.0. rlysJNwz was a metal ion-dependent peptidase, which activated by divalent metal ions such as Zn2+, Mn2+, or Ca2+. Moreover, it was also found that the synergism of rlysJNwz and EDTA had bactericidal activities against a broad range of Gram-negative bacteria, including several multidrug-resistant bacteria. The application of rLysJNwz combined with EDTA was evaluated on contaminated eggs and lettuce for 60 min, displaying more than 86.7% and 86.5% reduction of viable Salmonella, respectively. Hence, these results suggest that rLysJNwz is a potential antibacterial agent to control Salmonella, especially antibiotic-resistant pathogen contamination in the field of food safety. KEY POINTS: • rLysJNwz shows lytic activities against a broad range of Gram-negative bacteria. • Endolysin rLysJNwz is a stable metalloenzyme and has high thermostability. • rLysJNwz and 0.5 mmol/L EDTA synergistically inactivate Salmonella on eggs and lettuce.
Collapse
Affiliation(s)
- Kaisheng Shen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Mei Shu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chan Zhong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yuanyang Zhao
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shiwei Bao
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hong Pan
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shuchao Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Guoping Wu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
41
|
Nikoomanesh F, Falahatinejad M, Černáková L, Dos Santos ALS, Mohammadi SR, Rafiee M, Rodrigues CF, Roudbary M. Combination of Farnesol with Common Antifungal Drugs: Inhibitory Effect against Candida Species Isolated from Women with RVVC. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040743. [PMID: 37109701 PMCID: PMC10143126 DOI: 10.3390/medicina59040743] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
Background and Objectives: Vulvovaginal candidiasis (VVC) is a mucous membrane infection, with an increased rate of antifungal resistance of Candida species. In this study, the in vitro efficacy of farnesol alone or in combination with traditional antifungals was assessed against resistant Candida strains recovered from women with VVC. Materials and Methods: Eighty Candida isolates were identified by multiplex polymerase chain reaction (PCR), and the antifungal susceptibility to amphotericin B (AMB), fluconazole (FLU), itraconazole (ITZ), voriconazole (VOR), clotrimazole (CTZ), and farnesol was tested by the standard microdilution method. The combinations of farnesol with each antifungal were calculated based on the fractional inhibitory concentration index (FICI). Result: Candida glabrata was the predominant species (48.75%) isolated from vaginal discharges, followed by C. albicans (43.75%), C. parapsilosis (3.75%), a mixed infection of C. albicans and C. glabrata (2.5%) and C. albicans and C. parapsilosis (1%). C. albicans and C. glabrata isolates had lower susceptibility to FLU (31.4% and 23.0%, respectively) and CTZ (37.1% and 33.3%, respectively). Importantly, there was "synergism" between farnesol-FLU and farnesol-ITZ against C. albicans and C. parapsilosis (FICI = 0.5 and 0.35, respectively), reverting the original azole-resistant profile. Conclusion: These findings indicate that farnesol can revert the resistance profile of azole by enhancing the activity of FLU and ITZ in resistant Candida isolates, which is a clinically promising result.
Collapse
Affiliation(s)
- Fatemeh Nikoomanesh
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Mahsa Falahatinejad
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115111, Iran
| | - Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - André Luis Souza Dos Santos
- Department of General Microbiology, Microbiology Institute Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil
| | - Shahla Roudbar Mohammadi
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115111, Iran
| | - Mitra Rafiee
- Department of Immunology, School of Medicine, Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Célia Fortuna Rodrigues
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- TOXRUN-Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, 4585-116 Gandra PRD, Portugal
| | - Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| |
Collapse
|
42
|
Odongo EA, Mutai PC, Amugune BK, Mungai NN, Akinyi MO, Kimondo J. Evaluation of the antibacterial activity of selected Kenyan medicinal plant extract combinations against clinically important bacteria. BMC Complement Med Ther 2023; 23:100. [PMID: 37013533 PMCID: PMC10069043 DOI: 10.1186/s12906-023-03939-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Infectious diseases are a major global public health concern as antimicrobial resistance (AMR) currently accounts for more than 700,000 deaths per year worldwide. The emergence and spread of resistant bacterial pathogens remain a key challenge in antibacterial chemotherapy. This study aims to investigate the antibacterial activity of combined extracts of various Kenyan medicinal plants against selected microorganisms of medical significance. METHODS The antibacterial activity of various extract combinations of Aloe secundiflora, Toddalia asiatica, Senna didymobotrya and Camelia sinensis against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Methicillin Resistant Staphylococcus aureus was assessed using the agar well diffusion and the minimum inhibitory concentration in-vitro assays. The checkerboard method was used to evaluate the interactions between the various extract combinations. ANOVA test followed by Tukey's post hoc multiple comparison test was used to determine statistically significant differences in activity (P < 0.05). RESULTS At concentrations of 100 mg/ml (10,000 µg/well), the different combinations of the aqueous, methanol, dichloromethane and petroleum ether extracts of the selected Kenyan medicinal plants revealed diverse activity against all the test bacteria. The combination of methanolic C. sinensis and A. secundiflora was the most active against E. coli (14.17 ± 0.22 mm, diameter of zones of inhibition (DZI); MIC 2500 µg/well). The combination of methanolic C. sinensis and S. didymobotrya was the most active against S. aureus (16.43 ± 0.10 mm; MIC 1250 µg/well), K. pneumonia (14.93 ± 0.35 mm, DZI; MIC 1250 µg/well), P. aeruginosa (17.22 ± 0.41 mm, DZI; MIC 156.25 µg/well) and MRSA (19.91 ± 0.31 mm, DZI; MIC 1250 µg/well). The Minimum Inhibitory Concentration of the different plant extract combinations ranged from 10,000 µg/ well to 156.25 µg/well. The ANOVA test indicated statistically significant differences (P < 0.05) between single extracts and their combinations. The fractional inhibitory concentration indices (FICI) showed that the interactions were either synergistic (10.5%), additive (31.6%), indifferent (52.6%), or antagonistic (5.3%) for the selected combinations. CONCLUSION This study findings validate the ethnopractice of selectively combining medicinal plants in the management of some bacterial infections in traditional medicine.
Collapse
Affiliation(s)
- Elizabeth A Odongo
- Department of Pharmaceutical Chemistry, Pharmaceutics & Pharmacognosy, University of Nairobi, P.O. Box 19676-00202, Nairobi, Kenya.
- Department of Pharmacy, Kenya Methodist University, P.O. Box 19676-00202, Meru, Kenya.
| | - Peggoty C Mutai
- Department of Pharmaceutical Chemistry, Pharmaceutics & Pharmacognosy, University of Nairobi, P.O. Box 19676-00202, Nairobi, Kenya
| | - Beatrice K Amugune
- Department of Pharmaceutical Chemistry, Pharmaceutics & Pharmacognosy, University of Nairobi, P.O. Box 19676-00202, Nairobi, Kenya
| | - Nelly N Mungai
- Department of Pharmaceutical Chemistry, Pharmaceutics & Pharmacognosy, University of Nairobi, P.O. Box 19676-00202, Nairobi, Kenya
| | - Mary O Akinyi
- Department of Pharmacy, Kenya Methodist University, P.O. Box 19676-00202, Meru, Kenya
| | - Julia Kimondo
- Department of Pharmacognosy, Jomo Kenyatta University of Agriculture Technology, P.O. Box 62000- 00202, Nairobi, Kenya
| |
Collapse
|
43
|
Meletiadis J, Beredaki MI, Elefanti A, Pournaras S, Muller A. In Vitro–In Vivo Correlation of Posaconazole–Amphotericin B Combination against Candida albicans: In Vitro Interacting Concentrations Are Associated with In Vivo Free Drug Levels. J Fungi (Basel) 2023; 9:jof9040434. [PMID: 37108889 PMCID: PMC10146624 DOI: 10.3390/jof9040434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The in vitro/in vivo correlation of antifungal combination testing is necessary in order to assess the efficacy of combination regimens. We, therefore, attempted to correlate in vitro chequerboard testing of posaconazole (POS) and amphotericin B (AMB) with the in vivo outcome of combination therapy against experimental candidiasis in a neutropenic murine model. The AMB + POS combination was tested against a Candida albicans isolate. In vitro, a broth microdilution 8 × 12 chequerboard method with serial two-fold drug dilutions was used. In vivo, CD1 female neutropenic mice with experimental disseminated candidiasis were treated with i.p. AMB and p.o. POS alone and in combination at three effective doses (ED20, ED50 and ED80 corresponding to 20%, 50% and 80% of maximal effect, respectively). CFU/kidneys after 2 days were determined. The pharmacodynamic interactions were assessed based on Bliss independence interaction analysis. In vitro, a Bliss antagonism of −23% (−23% to −22%) was observed at 0.03–0.125 mg/L of AMB with 0.004–0.015 mg/L of POS, while a Bliss synergy of 27% (14%–58%) was observed at 0.008–0.03 mg/L of AMB with 0.000015–0.001 mg/L of POS. In vivo, Bliss synergy (13 ± 4%) was found when an AMB ED20 of 1 mg/kg was combined with all POS ED 0.2–0.9 mg/kg, while Bliss antagonism (35–83%) was found for the combinations of AMB ED50 2 mg/kg and ED80 3.2 mg/kg with POS ED80 of 0.9 mg/kg. Free drug serum levels of POS and AMB in in vivo synergistic and antagonistic combinations were correlated with the in vitro synergistic and antagonistic concentrations, respectively. Both synergistic and antagonistic interactions were found for the AMB + POS combination. POS compromised the efficacy of high effective AMB doses and enhanced low ineffective AMB doses. In vitro concentration-dependent interactions were correlated with in vivo dose-dependent interactions of the AMB + POS combination. In vivo interactions occurred at free drug serum levels close to in vitro interacting concentrations.
Collapse
Affiliation(s)
- Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 3015 CN Rotterdam, The Netherlands
| | - Maria-Ioanna Beredaki
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Antigoni Elefanti
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Spyros Pournaras
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Anouk Muller
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 3015 CN Rotterdam, The Netherlands
- Department of Medical Microbiology, Haaglanden Medisch Centrum, 2512 VA The Hague, The Netherlands
| |
Collapse
|
44
|
Karbowiak M, Szymański P, Zielińska D. Synergistic Effect of Combination of Various Microbial Hurdles in the Biopreservation of Meat and Meat Products—Systematic Review. Foods 2023; 12:foods12071430. [PMID: 37048251 PMCID: PMC10093799 DOI: 10.3390/foods12071430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The control of spoilage microorganisms and foodborne pathogens in meat and meat products is a challenge for food producers, which potentially can be overcome through the combined use of biopreservatives, in the form of a mix of various microbial hurdles. The objective of this work is to systematically review the available knowledge to reveal whether various microbial hurdles applied in combination can pose an effective decontamination strategy for meat and meat products. PubMed, Web of Science, and Scopus were utilized to identify and evaluate studies through February 2023. Search results yielded 45 articles that met the inclusion criteria. The most common meat biopreservatives were combinations of various starter cultures (24 studies), and the use of mixtures of non-starter protective cultures (13 studies). In addition, studies evaluating antimicrobial combinations of bacteriocins with other bacteriocins, BLIS (bacteriocin-like inhibitory substance), non-starter protective cultures, reuterin, and S-layer protein were included in the review (7 studies). In one study, a biopreservative mixture comprised antifungal protein PgAFP and protective cultures. The literature search revealed a positive effect, in most of the included studies, of the combination of various bacterial antimicrobials in inhibiting the growth of pathogenic and spoilage bacteria in meat products. The main advantages of the synergistic effect achieved were: (1) the induction of a stronger antimicrobial effect, (2) the extension of the spectrum of antibacterial action, and (3) the prevention of the regrowth of undesirable microorganisms. Although further research is required in this area, the combination of various microbial hurdles can pose a green and valuable biopreservation approach for maintaining the safety and quality of meat products.
Collapse
Affiliation(s)
- Marcelina Karbowiak
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159C St., (Building No. 32), 02-776 Warsaw, Poland;
| | - Piotr Szymański
- Department of Meat and Fat Technology, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 St., 02-532 Warsaw, Poland
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159C St., (Building No. 32), 02-776 Warsaw, Poland;
- Correspondence:
| |
Collapse
|
45
|
Darnowski MG, Lanosky TD, Paquette AR, Boddy CN. Armeniaspirol analogues disrupt the electrical potential (ΔΨ) of the proton motive force. Bioorg Med Chem Lett 2023; 84:129210. [PMID: 36858079 DOI: 10.1016/j.bmcl.2023.129210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
The armeniaspirol family of natural product antibiotics have been shown to inhibit the ATP-dependent proteases ClpXP and ClpYQ and disrupt membrane potential through shuttling of protons across the membrane. Herein we investigate their ability to disrupt the proton motive force (PMF). We show, using a voltage sensitive, that armeniaspiols disrupt the electrical membrane potential (ΔΨ) component of the PMF and not the transmembrane proton gradient (ΔpH). Using checkerboard assays, we confirm this by showing antagonism, with kanamycin, an antibiotic that required ΔΨ for penetration. By evaluating the antibiotic activity and disruption of the PMF by sixteen armeniaspirol analogs, we find that disruption of the PMF is necessary but not sufficient for antibiotic activity. Analogs that are potent disruptors of the PMF without possessing the ability to inhibit ClpXP and ClpYQ are not potent antibiotics. Thus we propose that the armeniaspirols utilize a dual mechanism of action where they disrupt PMF and inhibit the ATP-dependent proteases ClpXP and ClpYQ. This type of dual mechanism has been observed in other natural product-based antibiotics, most notably chelocardin.
Collapse
Affiliation(s)
- Michael G Darnowski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5 Canada
| | - Taylor D Lanosky
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5 Canada
| | - André R Paquette
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5 Canada
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5 Canada.
| |
Collapse
|
46
|
Dhiman S, Ramirez D, Li Y, Kumar A, Arthur G, Schweizer F. Chimeric Tobramycin-Based Adjuvant TOB-TOB-CIP Potentiates Fluoroquinolone and β-Lactam Antibiotics against Multidrug-Resistant Pseudomonas aeruginosa. ACS Infect Dis 2023; 9:864-885. [PMID: 36917096 DOI: 10.1021/acsinfecdis.2c00549] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
According to the World Health Organization, antibiotic resistance is a global health threat. Of particular importance are infections caused by multidrug-resistant Gram-negative bacteria including Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa for which limited treatment options exist. Multiple and simultaneously occurring resistance mechanisms including outer membrane impermeability, overexpression of efflux pumps, antibiotic-modifying enzymes, and modification of genes and antibiotic targets have made antibiotic drug development more difficult against these pathogens. One strategy to cope with these challenges is the use of outer membrane permeabilizers that increase the intracellular concentration of antibiotics when used in combination. In some circumstances, this approach can rescue antibiotics from resistance or repurpose currently marketed antibiotics. Tobramycin-based hybrid antibiotic adjuvants that combine two outer membrane-active components have been previously shown to potentiate antibiotics by facilitating transit through the outer membrane, resulting in increased antibiotic accumulation within the cell. Herein, we extended the concept of tobramycin-based hybrid antibiotic adjuvants to tobramycin-based chimeras by engineering up to three different membrane-active antibiotic warheads such as tobramycin, 1-(1-naphthylmethyl)-piperazine, ciprofloxacin, and cyclam into a central 1,3,5-triazine scaffold. Chimera 4 (TOB-TOB-CIP) consistently synergized with ciprofloxacin, levofloxacin, and moxifloxacin against wild-type and fluoroquinolone-resistant P. aeruginosa. Moreover, the susceptibility breakpoints of ceftazidime, aztreonam, and imipenem were reached using the triple combination of chimera 4 with ceftazidime/avibactam, aztreonam/avibactam, and imipenem/relebactam, respectively, against β-lactamase-harboring P. aeruginosa. Our findings demonstrate that tobramycin-based chimeras form a novel class of antibiotic potentiators capable of restoring the activity of antibiotics against P. aeruginosa.
Collapse
Affiliation(s)
- Shiv Dhiman
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | - Danyel Ramirez
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | - Yanqi Li
- Department of Microbiology, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | - Gilbert Arthur
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg R3E 0J9, Manitoba, Canada
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| |
Collapse
|
47
|
Gloag ES, Khosravi Y, Masters JG, Wozniak DJ, Amorin Daep C, Stoodley P. A Combination of Zinc and Arginine Disrupt the Mechanical Integrity of Dental Biofilms. Microbiol Spectr 2023; 11:e0335122. [PMID: 36472465 PMCID: PMC9927089 DOI: 10.1128/spectrum.03351-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Mechanical cleaning remains the standard of care for maintaining oral hygiene. However, mechanical cleaning is often augmented with active therapeutics that further promote oral health. A dentifrice, consisting of the "Dual Zinc plus Arginine" (DZA) technology, was found to be effective at controlling bacteria using in vitro laboratory studies, translating to clinical efficacy to deliver plaque and gingivitis reduction benefits. Here, we used biophysical analyses and confocal laser scanning microscopy to understand how a DZA dentifrice impacted the mechanical properties of dental plaque biofilms and determine if changes to biofilm rheology enhanced the removal of dental plaque. Using both uniaxial mechanical indentation and an adapted rotating-disc rheometry assay, it was found that DZA treatment compromised biofilm mechanical integrity, resulting in the biofilm being more susceptible to removal by shear forces compared to treatment with either arginine or zinc alone. Confocal laser scanning microscopy revealed that DZA treatment reduced the amount of extracellular polymeric slime within the biofilm, likely accounting for the reduced mechanical properties. We propose a model where arginine facilitates the entry of zinc into the biofilm, resulting in additive effects of the two activities toward dental plaque biofilms. Together, our results support the use of a dentifrice containing Dual Zinc plus Arginine as part of daily oral hygiene regimens. IMPORTANCE Mechanical removal of dental plaque is augmented with therapeutic compounds to promote oral health. A dentifrice containing the ingredients zinc and arginine has shown efficacy at reducing dental plaque both in vitro and in vivo. However, how these active compounds interact together to facilitate dental plaque removal is unclear. Here, we used a combination of biophysical analyses and microscopy to demonstrate that combined treatment with zinc and arginine targets the matrix of dental plaque biofilms, which destabilized the mechanical integrity of these microbial communities, making them more susceptible to removal by shear forces.
Collapse
Affiliation(s)
- Erin S. Gloag
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Yalda Khosravi
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - James G. Masters
- Colgate-Palmolive Technology Center, Piscataway, New Jersey, USA
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | | | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Department of Orthopaedics, The Ohio State University, Columbus, Ohio, USA
- National Biofilm Innovation Centre (NBIC), University of Southampton, Southampton, United Kingdom
- National Centre for Advanced Tribology at Southampton (nCATS), Mechanical Engineering, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
48
|
Onyedibe KI, Nemeth AM, Dayal N, Smith RD, Lamptey J, Ernst RK, Melander RJ, Melander C, Sintim HO. Re-sensitization of Multidrug-Resistant and Colistin-Resistant Gram-Negative Bacteria to Colistin by Povarov/Doebner-Derived Compounds. ACS Infect Dis 2023; 9:283-295. [PMID: 36651182 PMCID: PMC10547215 DOI: 10.1021/acsinfecdis.2c00417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Colistin, typically viewed as the antibiotic of last resort to treat infections caused by multidrug-resistant (MDR) Gram-negative bacteria, had fallen out of favor due to toxicity issues. The recent increase in clinical usage of colistin has resulted in colistin-resistant isolates becoming more common. To counter this threat, we have investigated previously reported compounds, HSD07 and HSD17, and developed 13 compounds with more desirable drug-like properties for colistin sensitization against 16 colistin-resistant bacterial strains, three of which harbor the plasmid-borne mobile colistin resistance (mcr-1). Lead compound HSD1624, which has a lower LogDpH7.4 (2.46) compared to HSD07 (>5.58), reduces the minimum inhibitory concentration (MIC) of colistin against Pseudomonas aeruginosa strain TRPA161 to 0.03 μg/mL from 1024 μg/mL (34,000-fold reduction). Checkerboard assays revealed that HSD1624 and analogues are also synergistic with colistin against colistin-resistant strains of Escherichia coli, Acinetobacter baumannii, and Klebsiella pneumoniae. Preliminary mechanism of action studies indicate that HSD1624 exerts its action differently depending on the bacterial species. Time-kill studies suggested that HSD1624 in combination with 0.5 μg/mL colistin was bactericidal to extended-spectrum beta-lactamase (ESBL)-producing E. coli, as well as to E. coli harboring mcr-1, while against P. aeruginosa TRPA161, the combination was bacteriostatic. Mechanistically, HSD1624 increased membrane permeability in K. pneumoniae harboring a plasmid containing the mcr-1 gene but did not increase radical oxygen species (ROS), while a combination of 15 μM HSD1624 and 0.5 μg/mL colistin significantly increased ROS in P. aeruginosa TRPA161. HSD1624 was not toxic to mammalian red blood cells (up to 226 μM).
Collapse
Affiliation(s)
- Kenneth I Onyedibe
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
- Center for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana47906, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, Indiana47906, United States
| | - Ansley M Nemeth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Neetu Dayal
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
- Center for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana47906, United States
| | - Richard D Smith
- Department of Microbial Pathogenesis, University of Maryland-Baltimore, Baltimore, Maryland21201, United States
| | - Jones Lamptey
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
- Center for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana47906, United States
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland-Baltimore, Baltimore, Maryland21201, United States
| | - Roberta J Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Herman O Sintim
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
- Center for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana47906, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, Indiana47906, United States
| |
Collapse
|
49
|
Du RL, Chow HY, Chen YW, Chan PH, Daniel RA, Wong KY. Gossypol acetate: A natural polyphenol derivative with antimicrobial activities against the essential cell division protein FtsZ. Front Microbiol 2023; 13:1080308. [PMID: 36713210 PMCID: PMC9878342 DOI: 10.3389/fmicb.2022.1080308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Antimicrobial resistance has attracted worldwide attention and remains an urgent issue to resolve. Discovery of novel compounds is regarded as one way to circumvent the development of resistance and increase the available treatment options. Gossypol is a natural polyphenolic aldehyde, and it has attracted increasing attention as a possible antibacterial drug. In this paper, we studied the antimicrobial properties (minimum inhibitory concentrations) of gossypol acetate against both Gram-positive and Gram-negative bacteria strains and dig up targets of gossypol acetate using in vitro assays, including studying its effects on functions (GTPase activity and polymerization) of Filamenting temperature sensitive mutant Z (FtsZ) and its interactions with FtsZ using isothermal titration calorimetry (ITC), and in vivo assays, including visualization of cell morphologies and proteins localizations using a microscope. Lastly, Bacterial membrane permeability changes were studied, and the cytotoxicity of gossypol acetate was determined. We also estimated the interactions of gossypol acetate with the promising target. We found that gossypol acetate can inhibit the growth of Gram-positive bacteria such as the model organism Bacillus subtilis and the pathogen Staphylococcus aureus [both methicillin-sensitive (MSSA) and methicillin-resistant (MRSA)]. In addition, gossypol acetate can also inhibit the growth of Gram-negative bacteria when the outer membrane is permeabilized by Polymyxin B nonapeptide (PMBN). Using a cell biological approach, we show that gossypol acetate affects cell division in bacteria by interfering with the assembly of the cell division FtsZ ring. Biochemical analysis shows that the GTPase activity of FtsZ was inhibited and polymerization of FtsZ was enhanced in vitro, consistent with the block to cell division in the bacteria tested. The binding mode of gossypol acetate in FtsZ was modeled using molecular docking and provides an understanding of the compound mode of action. The results point to gossypol (S2303) as a promising antimicrobial compound that inhibits cell division by affecting FtsZ polymerization and has potential to be developed into an effective antimicrobial drug by chemical modification to minimize its cytotoxic effects in eukaryotic cells that were identified in this work.
Collapse
Affiliation(s)
- Ruo-Lan Du
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Ho-Yin Chow
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yu Wei Chen
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Pak-Ho Chan
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Richard A. Daniel
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom,Richard A. Daniel,
| | - Kwok-Yin Wong
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China,*Correspondence: Kwok-Yin Wong,
| |
Collapse
|
50
|
Najmi Z, Scalia AC, De Giglio E, Cometa S, Cochis A, Colasanto A, Locatelli M, Coisson JD, Iriti M, Vallone L, Rimondini L. Screening of Different Essential Oils Based on Their Physicochemical and Microbiological Properties to Preserve Red Fruits and Improve Their Shelf Life. Foods 2023; 12:foods12020332. [PMID: 36673424 PMCID: PMC9857945 DOI: 10.3390/foods12020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Strawberries and raspberries are susceptible to physiological and biological damage. Due to the consumer concern about using pesticides to control fruit rot, recent attention has been drawn to essential oils. Microbiological activity evaluations of different concentrations of tested EOs (cinnamon, clove, bergamot, rosemary and lemon; 10% DMSO-PBS solution was used as a diluent) against fruit rot fungal strains and a fruit-born human pathogen (Escherichia coli) indicated that the highest inhibition halos was found for pure cinnamon and clove oils; according to GC-MS analysis, these activities were due to the high level of the bioactive compounds cinnamaldehyde (54.5%) in cinnamon oil and eugenol (83%) in clove oil. Moreover, thermogravimetric evaluation showed they were thermally stable, with temperature peak of 232.0 °C for cinnamon and 200.6/234.9 °C for clove oils. Antibacterial activity evaluations of all tested EOs at concentrations from 5-50% (v/v) revealed a concentration of 10% (v/v) to be the minimum inhibitory concentration and minimum bactericidal concentration. The physicochemical analysis of fruits in an in vivo assay indicated that used filter papers doped with 10% (v/v) of cinnamon oil (stuck into the lids of plastic containers) were able to increase the total polyphenols and antioxidant activity in strawberries after four days, with it being easier to preserve strawberries than raspberries.
Collapse
Affiliation(s)
- Ziba Najmi
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases—CAAD, Università del Piemonte Orientale UPO, Corso Trieste 15/A, 28100 Novara, Italy
| | - Alessandro Calogero Scalia
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases—CAAD, Università del Piemonte Orientale UPO, Corso Trieste 15/A, 28100 Novara, Italy
| | - Elvira De Giglio
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy
- National Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Florence, Italy
| | | | - Andrea Cochis
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases—CAAD, Università del Piemonte Orientale UPO, Corso Trieste 15/A, 28100 Novara, Italy
| | - Antonio Colasanto
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Monica Locatelli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Jean Daniel Coisson
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Cesare Saldini 50, 20133 Milano, Italy
- Correspondence:
| | - Lisa Vallone
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy
| | - Lia Rimondini
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases—CAAD, Università del Piemonte Orientale UPO, Corso Trieste 15/A, 28100 Novara, Italy
| |
Collapse
|