1
|
Hernández-Serda MA, Vázquez-Valadez VH, Aguirre-Vidal P, Markarian NM, Medina-Franco JL, Cardenas-Granados LA, Alarcón-López AY, Martínez-Soriano PA, Velázquez-Sánchez AM, Falfán-Valencia RE, Angeles E, Abrahamyan L. In Silico Identification of Potential Inhibitors of SARS-CoV-2 Main Protease (M pro). Pathogens 2024; 13:887. [PMID: 39452758 PMCID: PMC11510711 DOI: 10.3390/pathogens13100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
The ongoing Coronavirus Disease 19 (COVID-19) pandemic has had a profound impact on the global healthcare system. As the SARS-CoV-2 virus, responsible for this pandemic, continues to spread and develop mutations in its genetic material, new variants of interest (VOIs) and variants of concern (VOCs) are emerging. These outbreaks lead to a decrease in the efficacy of existing treatments such as vaccines or drugs, highlighting the urgency of new therapies for COVID-19. Therefore, in this study, we aimed to identify potential SARS-CoV-2 antivirals using a virtual screening protocol and molecular dynamics simulations. These techniques allowed us to predict the binding affinity of a database of compounds with the virus Mpro protein. This in silico approach enabled us to identify twenty-two chemical structures from a public database (QSAR Toolbox Ver 4.5 ) and ten promising molecules from our in-house database. The latter molecules possess advantageous qualities, such as two-step synthesis, cost-effectiveness, and long-lasting physical and chemical stability. Consequently, these molecules can be considered as promising alternatives to combat emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Manuel Alejandro Hernández-Serda
- Departamento de Ciencias Químicas FES Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Av. 1 de Mayo SN Cuautitlán Izcalli, Mexico City 54750, Mexico; (M.A.H.-S.); (A.Y.A.-L.); (P.A.M.-S.); (A.M.V.-S.); (E.A.)
| | - Víctor H. Vázquez-Valadez
- Departamento de Ciencias Biológicas FES Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Av. 1 de Mayo SN Cuautitlán Izcalli, Mexico City 54750, Mexico;
- QSAR Analytics S.A. de C.V. Coatepec 7, Cumbria, Cuautitlán Izcalli, Ciudad de México 54750, Mexico
| | - Pablo Aguirre-Vidal
- Laboratorio de Química Medicinal y Teórica FES Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Campo 1 Av. 1 de Mayo SN Cuautitlán Izcalli, Mexico City 54750, Mexico; (P.A.-V.); (L.A.C.-G.); (R.E.F.-V.)
| | - Nathan M. Markarian
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada;
- Faculté de Pharmacie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Av. Universidad 3000, Ciudad de México 04510, Mexico;
| | - Luis Alfonso Cardenas-Granados
- Laboratorio de Química Medicinal y Teórica FES Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Campo 1 Av. 1 de Mayo SN Cuautitlán Izcalli, Mexico City 54750, Mexico; (P.A.-V.); (L.A.C.-G.); (R.E.F.-V.)
| | - Aldo Yoshio Alarcón-López
- Departamento de Ciencias Químicas FES Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Av. 1 de Mayo SN Cuautitlán Izcalli, Mexico City 54750, Mexico; (M.A.H.-S.); (A.Y.A.-L.); (P.A.M.-S.); (A.M.V.-S.); (E.A.)
| | - Pablo A. Martínez-Soriano
- Departamento de Ciencias Químicas FES Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Av. 1 de Mayo SN Cuautitlán Izcalli, Mexico City 54750, Mexico; (M.A.H.-S.); (A.Y.A.-L.); (P.A.M.-S.); (A.M.V.-S.); (E.A.)
| | - Ana María Velázquez-Sánchez
- Departamento de Ciencias Químicas FES Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Av. 1 de Mayo SN Cuautitlán Izcalli, Mexico City 54750, Mexico; (M.A.H.-S.); (A.Y.A.-L.); (P.A.M.-S.); (A.M.V.-S.); (E.A.)
| | - Rodolfo E. Falfán-Valencia
- Laboratorio de Química Medicinal y Teórica FES Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Campo 1 Av. 1 de Mayo SN Cuautitlán Izcalli, Mexico City 54750, Mexico; (P.A.-V.); (L.A.C.-G.); (R.E.F.-V.)
| | - Enrique Angeles
- Departamento de Ciencias Químicas FES Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Av. 1 de Mayo SN Cuautitlán Izcalli, Mexico City 54750, Mexico; (M.A.H.-S.); (A.Y.A.-L.); (P.A.M.-S.); (A.M.V.-S.); (E.A.)
| | - Levon Abrahamyan
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| |
Collapse
|
2
|
He Q, Wei Y, Qian Y, Zhong M. Pathophysiological dynamics in the contact, coagulation, and complement systems during sepsis: Potential targets for nafamostat mesilate. JOURNAL OF INTENSIVE MEDICINE 2024; 4:453-467. [PMID: 39310056 PMCID: PMC11411436 DOI: 10.1016/j.jointm.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 09/25/2024]
Abstract
Sepsis is a life-threatening syndrome resulting from a dysregulated host response to infection. It is the primary cause of death in the intensive care unit, posing a substantial challenge to human health and medical resource allocation. The pathogenesis and pathophysiology of sepsis are complex. During its onset, pro-inflammatory and anti-inflammatory mechanisms engage in intricate interactions, possibly leading to hyperinflammation, immunosuppression, and long-term immune disease. Of all critical outcomes, hyperinflammation is the main cause of early death among patients with sepsis. Therefore, early suppression of hyperinflammation may improve the prognosis of these patients. Nafamostat mesilate is a serine protease inhibitor, which can inhibit the activation of the complement system, coagulation system, and contact system. In this review, we discuss the pathophysiological changes occurring in these systems during sepsis, and describe the possible targets of the serine protease inhibitor nafamostat mesilate in the treatment of this condition.
Collapse
Affiliation(s)
- Qiaolan He
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yilin Wei
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiqi Qian
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Moneshwaran S, Macrin D, Kanagathara N. An unprecedented global challenge, emerging trends and innovations in the fight against COVID-19: A comprehensive review. Int J Biol Macromol 2024; 267:131324. [PMID: 38574936 DOI: 10.1016/j.ijbiomac.2024.131324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 03/30/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a highly contagious and dangerous virus that caused the global COVID-19 pandemic in early 2020. It primarily affects the respiratory system, leading to severe illness and high rates of mortality worldwide. The virus enters the body by binding to a receptor called ACE2, which is present in specific cells of the lungs known as type 2 alveolar epithelial cells. Numerous studies have investigated the consequences of SARS-CoV-2 infection, revealing various impacts on the body. This review provides an overview of SARS-CoV-2, including its structure and how it infects cells. It also examines the different variants of concern, such as Alpha, Beta, Gamma, Delta, and the more recent Omicron variant, discussing their characteristics and the level of damage they cause. The usage of drugs to treat COVID-19 is another aspect that has been covered and compares the effectiveness and use of antiviral drugs in the treatment and its potential benefits in COVID-19 treatment. Furthermore, this review explores the consequences and abnormalities associated with SARS-CoV-2 infection, including its impact on various organs and systems in the body. And also discussing the different COVID-19 vaccines available and their effectiveness in preventing infection and reducing the severity of illness. The current review ensures the recent update of the COVID research with expert's knowledge, collection of numerous data from reliable sources and methodologies as well as update of findings based on reviews. This review also provided clear contextual explanations to aid the interpretation and application of the results. The main motto and limitation of this manuscript are to address the computational methods of drug discovery against the rapidly evolving SARS-CoV-2 virus, which has been discussed. Additionally, current computational approaches which are cost effective and can able to predict the therapeutic agents for the treatment against the virus have also been discussed.
Collapse
Affiliation(s)
- S Moneshwaran
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Chennai 602 105, India
| | - D Macrin
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Chennai 602 105, India
| | - N Kanagathara
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Chennai 602 105, India.
| |
Collapse
|
4
|
Ramachandran B, Nadeem A, Mohanprasanth A, Saravanan M. Prediction of deleterious non-synonymous SNPs of TMPRSS2 protein combined with Molecular Dynamics Simulations and free energy analysis to identify the potential peptide substrates against SARS-CoV-2. J Biomol Struct Dyn 2024:1-15. [PMID: 38592189 DOI: 10.1080/07391102.2024.2330710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/08/2024] [Indexed: 04/10/2024]
Abstract
Globally the SARS-CoV-2 viral infection demands for the new drugs, the TMPRSS2 target plays a vital role in facilitating the virus entry. The aim of the present study is to identify the potential peptide substrate from the Anti-viral database against TMPRSS2 of SARS-CoV-2. The compound screening and variation analysis were performed using molecular docking analysis and online tools such as PROVEAN and SNAP2 server, respectively. The re-docked crystal structure peptide substrate exhibits -128.151 kcal/mol whereas the RRKK peptide substrate shows -134.158 kcal/mol. Further, the selected compounds were proceeded with Molecular Dynamics Simulation, it explores the stability of the complex by revealing the hotspot residues (His296 and Ser441) were active for nucleophilic attack against TMPRSS2. The average Binding Free Energy values computed through MM/GBSA for RRKK, Camostat, and Crystal Structure were shown -69.9278 kcal/mol, -64.5983 kcal/mol, and -63.9755 kcal/mol, respectively against TMPRSS2. The 'rate of acylation' emerges as an indicator for RRKK's efficacy, it maintains the distance of 3.2 Å with Ser441 resembles, whilst its -NH backbone stabilizes at 2.5 Å 'Michaelis Complex' which leads to prevent the entry of SARS-CoV-2 to human cells. The sequence variation analysis explores that the V160 and G6 substitutions are essential to emphasize the uncover possibilities for the ongoing drug discovery research. Therefore, the identified peptide substrate found to be potent against SARS-CoV-2 and these results will be valuable for ongoing drug discovery research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Balajee Ramachandran
- Structural and Computational Biology Lab, Department of Bioinformatics, Alagappa University, Science Block, Karaikudi, Tamil Nadu, India
- Department of Pharmacology, Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Aruchamy Mohanprasanth
- AMR & Nanotherapeutics Lab, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical, Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Muthupandian Saravanan
- AMR & Nanotherapeutics Lab, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical, Sciences (SIMATS), Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
Shahid M, Alaofi AL, Ahmad Ansari M, Fayaz Ahmad S, Alsuwayeh S, Taha E, Raish M. Utilizing sinapic acid as an inhibitory antiviral agent against MERS-CoV PLpro. Saudi Pharm J 2024; 32:101986. [PMID: 38487020 PMCID: PMC10937238 DOI: 10.1016/j.jsps.2024.101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
Concerns about the social and economic collapse, high mortality rates, and stress on the healthcare system are developing due to the coronavirus onslaught in the form of various species and their variants. In the recent past, infections brought on by coronaviruses severe acute respiratory syndrome coronaviruses (SARS-CoV and SARS-CoV-2) as well as middle east respiratory syndrome coronavirus (MERS-CoV) have been reported. There is a severe lack of medications to treat various coronavirus types including MERS-CoV which is hazard to public health due to its ability for pandemic spread by human-to-human transmission. Here, we utilized sinapic acid (SA) against papain-like protease (PLpro), a crucial enzyme involved in MERS-CoV replication, because phytomedicine derived from nature has less well-known negative effects. The thermal shift assay (TSA) was used in the current study to determine whether the drug interact with the recombinant MERS-CoV PLpro. Also, inhibition assay was conducted as the hydrolysis of fluorogenic peptide from the Z-RLRGG-AMC-peptide bond in the presence of SA to determine the level of inhibition of the MERS-CoV PLpro. To study the structural binding efficiency Autodock Vina was used to dock SA to the MERS-CoV PLpro and results were analyzed using PyMOL and Maestro Schrödinger programs. Our results show a convincing interaction between SA and the MERS protease, as SA reduced MERS-CoV PLpro in a dose-dependent way IC50 values of 68.58 μM (of SA). The TSA showed SA raised temperature of melting to 54.61 °C near IC50 and at approximately 2X IC50 concentration (111.5 μM) the Tm for SA + MERS-CoV PLpro was 59.72 °C. SA was docked to MERS-CoV PLpro to identify the binding site. SA bound to the blocking loop (BL2) region of MERS-CoV PLpro interacts with F268, E272, V275, and P249 residues of MERS-CoV PLpro. The effectiveness of protease inhibitors against MERS-CoV has been established and SA is already known for broad range biological activity including antiviral properties; it can be a suitable candidate for anti-MERS-CoV treatment.
Collapse
Affiliation(s)
- Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed L. Alaofi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq Ahmad Ansari
- Department of Phamacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sheikh Fayaz Ahmad
- Department of Phamacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Saleh Alsuwayeh
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ehab Taha
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Eltayeb A, Al-Sarraj F, Alharbi M, Albiheyri R, Mattar E, Abu Zeid IM, Bouback TA, Bamagoos A, Aljohny BO, Uversky VN, Redwan EM. Overview of the SARS-CoV-2 nucleocapsid protein. Int J Biol Macromol 2024; 260:129523. [PMID: 38232879 DOI: 10.1016/j.ijbiomac.2024.129523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/19/2024]
Abstract
Since the emergence of SARS-CoV in 2003, researchers worldwide have been toiling away at deciphering this virus's biological intricacies. In line with other known coronaviruses, the nucleocapsid (N) protein is an important structural component of SARS-CoV. As a result, much emphasis has been placed on characterizing this protein. Independent research conducted by a variety of laboratories has clearly demonstrated the primary function of this protein, which is to encapsidate the viral genome. Furthermore, various accounts indicate that this particular protein disrupts diverse intracellular pathways. Such observations imply its vital role in regulating the virus as well. The opening segment of this review will expound upon these distinct characteristics succinctly exhibited by the N protein. Additionally, it has been suggested that the N protein possesses diagnostic and vaccine capabilities when dealing with SARS-CoV. In light of this fact, we will be reviewing some recent headway in the use cases for N protein toward clinical purposes within this article's concluding segments. This forward movement pertains to both developments of COVID-19-oriented therapeutic targets as well as diagnostic measures. The strides made by medical researchers offer encouragement, knowing they are heading toward a brighter future combating global pandemic situations such as these.
Collapse
Affiliation(s)
- Ahmed Eltayeb
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Faisal Al-Sarraj
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mona Alharbi
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ehab Mattar
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Isam M Abu Zeid
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, P.O. Box 80200, Jeddah, Saudi Arabia
| | - Thamer A Bouback
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, P.O. Box 80200, Jeddah, Saudi Arabia
| | - Atif Bamagoos
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Bassam O Aljohny
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Elrashdy M Redwan
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, 21934 Alexandria, Egypt.
| |
Collapse
|
7
|
Biswas S, Mita MA, Afrose S, Hasan MR, Shimu MSS, Zaman S, Saleh MA. An in silico approach to develop potential therapies against Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Heliyon 2024; 10:e25837. [PMID: 38379969 PMCID: PMC10877303 DOI: 10.1016/j.heliyon.2024.e25837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
A deadly respiratory disease Middle East Respiratory Syndrome (MERS) is caused by a perilous virus known as MERS-CoV, which has a severe impact on human health. Currently, there is no approved vaccine, prophylaxis, or antiviral therapeutics for preventing MERS-CoV infection. Due to its inexorable and integral role in the maturation and replication of the MERS-CoV virus, the 3C-like protease is unavoidly a viable therapeutic target. In this study, 2369 phytoconstituents were enlisted from Japanese medicinal plants, and these compounds were screened against 3C-like protease to identify feasible inhibitors. The best three compounds were identified as Kihadanin B, Robustaflavone, and 3-beta-O- (trans-p-Coumaroyl) maslinic acid, with binding energies of -9.8, -9.4, and -9.2 kcal/mol, respectively. The top three potential candidates interacted with several active site residues in the targeted protein, including Cys145, Met168, Glu169, Ala171, and Gln192. The best three compounds were assessed by in silico technique to determine their drug-likeness properties, and they exhibited the least harmful features and the greatest drug-like qualities. Various descriptors, such as solvent-accessible surface area, root-mean-square fluctuation, root-mean-square deviation, hydrogen bond, and radius of gyration, validated the stability and firmness of the protein-ligand complexes throughout the 100ns molecular dynamics simulation. Moreover, the top three compounds exhibited better binding energy along with better stability and firmness than the inhibitor (Nafamostat), which was further confirmed by the binding free energy calculation. Therefore, this computational investigation could aid in the development of efficient therapeutics for life-threatening MERS-CoV infections.
Collapse
Affiliation(s)
- Suvro Biswas
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mohasana Akter Mita
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Shamima Afrose
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md. Robiul Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | | | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md. Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
8
|
González-Paz L, Lossada C, Hurtado-León ML, Vera-Villalobos J, Paz JL, Marrero-Ponce Y, Martinez-Rios F, Alvarado Y. Biophysical Analysis of Potential Inhibitors of SARS-CoV-2 Cell Recognition and Their Effect on Viral Dynamics in Different Cell Types: A Computational Prediction from In Vitro Experimental Data. ACS OMEGA 2024; 9:8923-8939. [PMID: 38434903 PMCID: PMC10905729 DOI: 10.1021/acsomega.3c06968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/20/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Recent reports have suggested that the susceptibility of cells to SARS-CoV-2 infection can be influenced by various proteins that potentially act as receptors for the virus. To investigate this further, we conducted simulations of viral dynamics using different cellular systems (Vero E6, HeLa, HEK293, and CaLu3) in the presence and absence of drugs (anthelmintic, ARBs, anticoagulant, serine protease inhibitor, antimalarials, and NSAID) that have been shown to impact cellular recognition by the spike protein based on experimental data. Our simulations revealed that the susceptibility of the simulated cell systems to SARS-CoV-2 infection was similar across all tested systems. Notably, CaLu3 cells exhibited the highest susceptibility to SARS-CoV-2 infection, potentially due to the presence of receptors other than ACE2, which may account for a significant portion of the observed susceptibility. Throughout the study, all tested compounds showed thermodynamically favorable and stable binding to the spike protein. Among the tested compounds, the anticoagulant nafamostat demonstrated the most favorable characteristics in terms of thermodynamics, kinetics, theoretical antiviral activity, and potential safety (toxicity) in relation to SARS-CoV-2 spike protein-mediated infections in the tested cell lines. This study provides mathematical and bioinformatic models that can aid in the identification of optimal cell lines for compound evaluation and detection, particularly in studies focused on repurposed drugs and their mechanisms of action. It is important to note that these observations should be experimentally validated, and this research is expected to inspire future quantitative experiments.
Collapse
Affiliation(s)
- Lenin González-Paz
- Centro
de Biomedicina Molecular (CBM). Laboratorio de Biocomputación
(LB),Instituto Venezolano de Investigaciones
Científicas (IVIC),Maracaibo, Zulia 4001, República Bolivariana de Venezuela
| | - Carla Lossada
- Centro
de Biomedicina Molecular (CBM). Laboratorio de Biocomputación
(LB),Instituto Venezolano de Investigaciones
Científicas (IVIC),Maracaibo, Zulia 4001, República Bolivariana de Venezuela
| | - María Laura Hurtado-León
- Facultad
Experimental de Ciencias (FEC). Departamento de Biología. Laboratorio
de Genética y Biología Molecular (LGBM),Universidad del Zulia (LUZ),Maracaibo 4001, República Bolivariana de Venezuela
| | - Joan Vera-Villalobos
- Facultad
de Ciencias Naturales y Matemáticas, Departamento de Química
y Ciencias Ambientales, Laboratorio de Análisis Químico
Instrumental (LAQUINS), Escuela Superior
Politécnica del Litoral, Guayaquil EC090112, Ecuador
| | - José L. Paz
- Departamento
Académico de Química Inorgánica, Facultad de
Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos. Cercado de Lima, Lima 15081, Perú
| | - Yovani Marrero-Ponce
- Grupo
de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias
de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades
Médicas; e Instituto de Simulación Computacional (ISC-USFQ),
Diego de Robles y vía Interoceánica, Universidad San Francisco de Quito (USFQ), Quito, Pichincha 170157, Ecuador
| | - Felix Martinez-Rios
- Universidad
Panamericana. Facultad de Ingeniería. Augusto Rodin 498, Ciudad de México 03920, México
| | - Ysaías.
J. Alvarado
- Centro
de Biomedicina Molecular (CBM). Laboratorio de Química Biofísica
Teórica y Experimental (LQBTE),Instituto
Venezolano de Investigaciones Científicas (IVIC),Maracaibo, Zulia 4001, República Bolivariana
de Venezuela
| |
Collapse
|
9
|
Janin YL. On the origins of SARS-CoV-2 main protease inhibitors. RSC Med Chem 2024; 15:81-118. [PMID: 38283212 PMCID: PMC10809347 DOI: 10.1039/d3md00493g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 01/30/2024] Open
Abstract
In order to address the world-wide health challenge caused by the COVID-19 pandemic, the 3CL protease/SARS-CoV-2 main protease (SARS-CoV-2-Mpro) coded by its nsp5 gene became one of the biochemical targets for the design of antiviral drugs. In less than 3 years of research, 4 inhibitors of SARS-CoV-2-Mpro have actually been authorized for COVID-19 treatment (nirmatrelvir, ensitrelvir, leritrelvir and simnotrelvir) and more such as EDP-235, FB-2001 and STI-1558/Olgotrelvir or five undisclosed compounds (CDI-988, ASC11, ALG-097558, QLS1128 and H-10517) are undergoing clinical trials. This review is an attempt to picture this quite unprecedented medicinal chemistry feat and provide insights on how these cysteine protease inhibitors were discovered. Since many series of covalent SARS-CoV-2-Mpro inhibitors owe some of their origins to previous work on other proteases, we first provided a description of various inhibitors of cysteine-bearing human caspase-1 or cathepsin K, as well as inhibitors of serine proteases such as human dipeptidyl peptidase-4 or the hepatitis C protein complex NS3/4A. This is then followed by a description of the results of the approaches adopted (repurposing, structure-based and high throughput screening) to discover coronavirus main protease inhibitors.
Collapse
Affiliation(s)
- Yves L Janin
- Structure et Instabilité des Génomes (StrInG), Muséum National d'Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université 75005 Paris France
| |
Collapse
|
10
|
Sameni M, Mirmotalebisohi SA, Dadashkhan S, Ghani S, Abbasi M, Noori E, Zali H. COVID-19: A novel holistic systems biology approach to predict its molecular mechanisms (in vitro) and repurpose drugs. Daru 2023; 31:155-171. [PMID: 37597114 PMCID: PMC10624792 DOI: 10.1007/s40199-023-00471-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/13/2023] [Indexed: 08/21/2023] Open
Abstract
PURPOSE COVID-19 strangely kills some youth with no history of physical weakness, and in addition to the lungs, it may even directly harm other organs. Its complex mechanism has led to the loss of any significantly effective drug, and some patients with severe forms still die daily. Common methods for identifying disease mechanisms and drug design are often time-consuming or reductionist. Here, we use a novel holistic systems biology approach to predict its molecular mechanisms (in vitro), significant molecular relations with SARS, and repurpose drugs. METHODS We have utilized its relative phylogenic similarity to SARS. Using the available omics data for SARS and the fewer data for COVID-19 to decode the mechanisms and their significant relations, We applied the Cytoscape analyzer, MCODE, STRING, and DAVID tools to predict the topographically crucial molecules, clusters, protein interaction mappings, and functional analysis. We also applied a novel approach to identify the significant relations between the two infections using the Fischer exact test for MCODE clusters. We then constructed and analyzed a drug-gene network using PharmGKB and DrugBank (retrieved using the dgidb). RESULTS Some of the shared identified crucial molecules, BPs and pathways included Kaposi sarcoma-associated herpesvirus infection, Influenza A, and NOD-like receptor signaling pathways. Besides, our identified crucial molecules specific to host response against SARS-CoV-2 included FGA, BMP4, PRPF40A, and IFI16. CONCLUSION We also introduced seven new repurposed candidate drugs based on the drug-gene network analysis for the identified crucial molecules. Therefore, we suggest that our newly recommended repurposed drugs be further investigated in Vitro and in Vivo against COVID-19.
Collapse
Affiliation(s)
- Marzieh Sameni
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadaf Dadashkhan
- Molecular Medicine Research Center, Universitätsklinikum Jena, Jena, Germany
| | - Sepideh Ghani
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Abbasi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Zhino-Gene Research Services Co., Tehran, Iran
| | - Effat Noori
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Reus P, Guthmann H, Uhlig N, Agbaria M, Issmail L, Eberlein V, Nordling-David MM, Jbara-Agbaria D, Ciesek S, Bojkova D, Cinatl J, Burger-Kentischer A, Rupp S, Zaliani A, Grunwald T, Gribbon P, Kannt A, Golomb G. Drug repurposing for the treatment of COVID-19: Targeting nafamostat to the lungs by a liposomal delivery system. J Control Release 2023; 364:654-671. [PMID: 37939853 DOI: 10.1016/j.jconrel.2023.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Despite tremendous global efforts since the beginning of the COVID-19 pandemic, still only a limited number of prophylactic and therapeutic options are available. Although vaccination is the most effective measure in preventing morbidity and mortality, there is a need for safe and effective post-infection treatment medication. In this study, we explored a pipeline of 21 potential candidates, examined in the Calu-3 cell line for their antiviral efficacy, for drug repurposing. Ralimetinib and nafamostat, clinically used drugs, have emerged as attractive candidates. Due to the inherent limitations of the selected drugs, we formulated targeted liposomes suitable for both systemic and intranasal administration. Non-targeted and targeted nafamostat liposomes (LipNaf) decorated with an Apolipoprotein B peptide (ApoB-P) as a specific lung-targeting ligand were successfully developed. The developed liposomal formulations of nafamostat were found to possess favorable physicochemical properties including nano size (119-147 nm), long-term stability of the normally rapidly degrading compound in aqueous solution, negligible leakage from the liposomes upon storage, and a neutral surface charge with low polydispersity index (PDI). Both nafamostat and ralimetinib liposomes showed good cellular uptake and lack of cytotoxicity, and non-targeted LipNaf demonstrated enhanced accumulation in the lungs following intranasal (IN) administration in non-infected mice. LipNaf retained its anti-SARS-CoV 2 activity in Calu 3 cells with only a modest decrease, exhibiting complete inhibition at concentrations >100 nM. IN, but not intraperitoneal (IP) treatment with targeted LipNaf resulted in a trend to reduced viral load in the lungs of K18-hACE2 mice compared to targeted empty Lip. Nevertheless, upon removal of outlier data, a statistically significant 1.9-fold reduction in viral load was achieved. This observation further highlights the importance of a targeted delivery into the respiratory tract. In summary, we were able to demonstrate a proof-of-concept of drug repurposing by liposomal formulations with anti-SARS-CoV-2 activity. The biodistribution and bioactivity studies with LipNaf suggest an IN or inhalation route of administration for optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Philipp Reus
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany; Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Paul-Ehrlich-Straße 40, 60596 Frankfurt am Main, Germany
| | - Hadar Guthmann
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nadja Uhlig
- Fraunhofer Institute for Cell Therapy und Immunology IZI, Perlickstrasse 1, 04103 Leipzig, Germany
| | - Majd Agbaria
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Leila Issmail
- Fraunhofer Institute for Cell Therapy und Immunology IZI, Perlickstrasse 1, 04103 Leipzig, Germany
| | - Valentina Eberlein
- Fraunhofer Institute for Cell Therapy und Immunology IZI, Perlickstrasse 1, 04103 Leipzig, Germany
| | - Mirjam M Nordling-David
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Doaa Jbara-Agbaria
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Sandra Ciesek
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Paul-Ehrlich-Straße 40, 60596 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Denisa Bojkova
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Paul-Ehrlich-Straße 40, 60596 Frankfurt am Main, Germany
| | - Jindrich Cinatl
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Paul-Ehrlich-Straße 40, 60596 Frankfurt am Main, Germany
| | - Anke Burger-Kentischer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Steffen Rupp
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy und Immunology IZI, Perlickstrasse 1, 04103 Leipzig, Germany
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Aimo Kannt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Fraunhofer Innovation Center TheraNova, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Institute for Clinical Pharmacology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| | - Gershon Golomb
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
12
|
Kushwaha ND, Mohan J, Kushwaha B, Ghazi T, Nwabuife JC, Koorbanally N, Chuturgoon AA. A comprehensive review on the global efforts on vaccines and repurposed drugs for combating COVID-19. Eur J Med Chem 2023; 260:115719. [PMID: 37597435 DOI: 10.1016/j.ejmech.2023.115719] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
The recently discovered coronavirus, known as SARS-CoV-2, is a highly contagious and potentially lethal viral infection that was declared a pandemic by the World Health Organization on March 11, 2020. Since the beginning of the pandemic, an unprecedented number of COVID-19 vaccine candidates have been investigated for their potential to manage the pandemic. Herein, we reviewed vaccine development and the associated research effort, both traditional and forward-looking, to demonstrate the advantages and disadvantages of their technology, in addition to their efficacy limitations against mutant SARS-CoV-2. Moreover, we report repurposed drug discovery, which mainly focuses on virus-based and host-based targets, as well as their inhibitors. SARS-CoV-2 targets include the main protease (Mpro), and RNA-dependent RNA-polymerase (RdRp), which are the most well-studied and conserved across coronaviruses, enabling the development of broad-spectrum inhibitors of these enzymes.
Collapse
Affiliation(s)
- Narva Deshwar Kushwaha
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
| | - Jivanka Mohan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Babita Kushwaha
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Joshua C Nwabuife
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Neil Koorbanally
- School of Chemistry, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
13
|
Seccia TM, Shagjaa T, Morpurgo M, Caroccia B, Sanga V, Faoro S, Venturini F, Iadicicco G, Lococo S, Mazzitelli M, Farnia F, Fioretto P, Kobayashi Y, Gregori D, Rossi GP. RAndomized Clinical Trial Of NAfamostat Mesylate, A Potent Transmembrane Protease Serine 2 (TMPRSS2) Inhibitor, in Patients with COVID-19 Pneumonia. J Clin Med 2023; 12:6618. [PMID: 37892756 PMCID: PMC10607860 DOI: 10.3390/jcm12206618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Even though SARS-CoV-2 was declared by WHO as constituting no longer a public health emergency, the development of effective treatments against SARS-CoV-2 infection remains a critical issue to prevent complications, particularly in fragile patients. The protease inhibitor nafamostat, currently used in Japan and Korea for pancreatitis, owing to its anticoagulant properties for disseminated intravascular coagulation (DIC), is appealing for the treatment of COVID-19 infection, because it potently inhibits the transmembrane protease serine 2 (TMPRSS2) that, after virus binding to ACE-2, allows virus entry into the cells and replication. Moreover, it could prevent the DIC and pulmonary embolism frequently associated with COVID-19 infection. The goal of the RAndomized Clinical Trial Of NAfamostat (RACONA) study, designed as a prospective randomized, double-blind placebo-controlled clinical trial, was to investigate the efficacy and safety of nafamostat mesylate (0.10 mg/kg/h iv for 7 days), on top of the optimal treatment, in COVID-19 hospitalized patients. We could screen 131 patients, but due to the predefined strict inclusion and exclusion criteria, only 15 could be randomized to group 1 (n = 7) or group 2 (n = 8). The results of an ad interim safety analysis showed similar overall trends for variables evaluating renal function, coagulation, and inflammation. No adverse events, including hyperkalemia, were found to be associated with nafamostat. Thus, the RACONA study showed a good safety profile of nafamostat, suggesting that it could be usefully used in COVID-19 hospitalized patients.
Collapse
Affiliation(s)
- Teresa Maria Seccia
- Internal Emergency Medicine Unit, Specialized Center for Blood Pressure Disorders-Regione Veneto, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (T.M.S.); (T.S.); (V.S.)
| | - Tungalagtamir Shagjaa
- Internal Emergency Medicine Unit, Specialized Center for Blood Pressure Disorders-Regione Veneto, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (T.M.S.); (T.S.); (V.S.)
| | - Margherita Morpurgo
- Department of Pharmaceutical & Pharmacological Sciences, University of Padua, 35131 Padua, Italy;
| | - Brasilina Caroccia
- Internal Emergency Medicine Unit, Specialized Center for Blood Pressure Disorders-Regione Veneto, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (T.M.S.); (T.S.); (V.S.)
| | - Viola Sanga
- Internal Emergency Medicine Unit, Specialized Center for Blood Pressure Disorders-Regione Veneto, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (T.M.S.); (T.S.); (V.S.)
| | - Sonia Faoro
- Pharmacy, University Hospital of Padua, 35126 Padua, Italy; (S.F.); (F.V.); (G.I.)
| | - Francesca Venturini
- Pharmacy, University Hospital of Padua, 35126 Padua, Italy; (S.F.); (F.V.); (G.I.)
| | - Girolama Iadicicco
- Pharmacy, University Hospital of Padua, 35126 Padua, Italy; (S.F.); (F.V.); (G.I.)
| | - Sara Lococo
- Pneumology, University Hospital of Padua, 35126 Padua, Italy;
| | - Maria Mazzitelli
- Infectious Diseases, University Hospital of Padua, 35126 Padua, Italy;
| | - Filippo Farnia
- Internal Medicine 3, University Hospital of Padua, 35128 Padua, Italy; (F.F.); (P.F.)
| | - Paola Fioretto
- Internal Medicine 3, University Hospital of Padua, 35128 Padua, Italy; (F.F.); (P.F.)
| | | | - Dario Gregori
- Biostatistics, Epidemiology and Public Health Unit, University of Padua, 35131 Padua, Italy;
| | - Gian Paolo Rossi
- Internal Emergency Medicine Unit, Specialized Center for Blood Pressure Disorders-Regione Veneto, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (T.M.S.); (T.S.); (V.S.)
| |
Collapse
|
14
|
Elkousy RH, Said ZNA, Ali MA, Kutkat O, Abu El Wafa SA. Anti-SARS-CoV-2 in vitro potential of castor oil plant ( Ricinus communis) leaf extract: in-silico virtual evidence. Z NATURFORSCH C 2023; 78:365-376. [PMID: 37401758 DOI: 10.1515/znc-2023-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
Ricinus communis L. is a medicinal plant that displays valuable pharmacological properties, including antioxidant, antimicrobial, analgesic, antibacterial, antiviral and anti-inflammatory properties. This study targeted to isolate and identify some constituents of R. communis leaves using ultra-performance liquid chromatography coupled with mass spectroscopy (UPLC-MS/MS) and different chromatographic techniques. In vitro anti-MERS and anti-SARS-CoV-2 activity for different fractions and for two pure isolated compounds, lupeol (RS) and ricinine (RS1) were evaluated using a plaque reduction assay with three different mechanisms and IC50 based on their cytotoxic concentration (CC50) from an MTT assay using Vero E6 cell line. Isolated phytoconstituents and remdesivir are assessed for in-silico anti-COVID-19 activity using molecular docking tools. The methylene chloride extract showed pronounced virucidal activity against SARS-CoV-2 (IC50 = 1.76 μg/ml). It was also shown that ricinine had superior potential activity against SARS-CoV-2, (IC50 = 2.5 μg/ml). Lupeol displayed the most potency against MERS, (IC50 = 5.28 μg/ml). Ricinine appeared to be the most biologically active compound. The study showed that R. communis and its isolated compounds have potential natural virucidal activity against SARS-COV-2; however, additional exploration is necessary and study for their in vivo activity.
Collapse
Affiliation(s)
- Rawah H Elkousy
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (for Girls), Al-Azhar University, P.O. Box 11651, Nasr City, Cairo, Egypt
| | - Zeinab N A Said
- Department of Medical Microbiology & Immunology, Faculty of Medicine (for Girls), Al-Azhar University, P.O. Box 11754, Nasr City, Cairo, Egypt
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, P.O. Box 12622, Giza, Egypt
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, P.O. Box 12622, Giza, Egypt
| | - Salwa A Abu El Wafa
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (for Girls), Al-Azhar University, P.O. Box 11651, Nasr City, Cairo, Egypt
| |
Collapse
|
15
|
Ali H, Naseem A, Siddiqui ZI. SARS-CoV-2 Syncytium under the Radar: Molecular Insights of the Spike-Induced Syncytia and Potential Strategies to Limit SARS-CoV-2 Replication. J Clin Med 2023; 12:6079. [PMID: 37763019 PMCID: PMC10531702 DOI: 10.3390/jcm12186079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
SARS-CoV-2 infection induces non-physiological syncytia when its spike fusogenic protein on the surface of the host cells interacts with the ACE2 receptor on adjacent cells. Spike-induced syncytia are beneficial for virus replication, transmission, and immune evasion, and contribute to the progression of COVID-19. In this review, we highlight the properties of viral fusion proteins, mainly the SARS-CoV-2 spike, and the involvement of the host factors in the fusion process. We also highlight the possible use of anti-fusogenic factors as an antiviral for the development of therapeutics against newly emerging SARS-CoV-2 variants and how the fusogenic property of the spike could be exploited for biomedical applications.
Collapse
Affiliation(s)
- Hashim Ali
- Department of Pathology, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, UK
| | - Asma Naseem
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1DZ, UK
| | - Zaheenul Islam Siddiqui
- Diabetes and Obesity Research Center, NYU Grossman Long Island School of Medicine, New York, NY 11501, USA
| |
Collapse
|
16
|
Rizka Nurcahyaningtyas H, Irene A, Tri Wibowo J, Yunovilsa Putra M, Yanuar A. Identification of potential Indonesian marine invertebrate bioactive compounds as TMPRSS2 and SARS-CoV-2 Omicron spike protein inhibitors through computational screening. ARAB J CHEM 2023; 16:104984. [PMID: 37234226 PMCID: PMC10186851 DOI: 10.1016/j.arabjc.2023.104984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
The coronavirus pandemic led to the announcement of a worldwide health emergency. The SARS-CoV-2 Omicron variant, which swiftly spread worldwide, has fueled existing challenges. Appropriate medication is necessary to avoid severe SARS-CoV-2 disease. The human TMPRSS2 and SARS-CoV-2 Omicron spike protein, which are required for viral entry into the host phase, were identified as the target proteins through computational screening. Structure-based virtual screening; molecular docking; absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis; and molecular dynamics simulation were the methods applied for TMPRSS2 and spike protein inhibitors. Bioactive marine invertebrates from Indonesia were employed as test ligands. Camostat and nafamostat (co-crystal) were utilized as reference ligands against TMPRSS2, whereas mefloquine was used as a reference ligand against spike protein. Following a molecular docking and dynamics simulation, we found that acanthomanzamine C has remarkable effectiveness against TMPRSS2 and spike protein. Compared to camostat (-8.25 kcal/mol), nafamostat (-6.52 kcal/mol), and mefloquine (-6.34 kcal/mol), acanthomanzamine C binds to TMPRSS2 and spike protein with binding energies of -9.75 kcal/mol and -9.19 kcal/mol, respectively. Furthermore, slight variances in the MD simulation demonstrated consistent binding to TMPRSS2 and spike protein after the initial 50 ns. These results are highly valuable in the search for a treatment for SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Alfrina Irene
- Faculty of Pharmacy Universitas Indonesia, Depok 16424, West Java, Indonesia
| | - Joko Tri Wibowo
- Research Center for Vaccine and Drug, National Research and Innovation Agency of Indonesia (BRIN), Cibinong, Indonesia
| | - Masteria Yunovilsa Putra
- Research Center for Vaccine and Drug, National Research and Innovation Agency of Indonesia (BRIN), Cibinong, Indonesia
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| | - Arry Yanuar
- Faculty of Pharmacy Universitas Indonesia, Depok 16424, West Java, Indonesia
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia
| |
Collapse
|
17
|
Zhang W, Ling L, Li J, Li Y, Liu Y. Coronavirus disease 2019 and acute cerebrovascular events: a comprehensive overview. Front Neurol 2023; 14:1216978. [PMID: 37448747 PMCID: PMC10337831 DOI: 10.3389/fneur.2023.1216978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Since the Corona Virus Disease 2019 (COVID-19) pandemic, there has been increasing evidence that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with acute cerebrovascular events such as cerebral infarction, cerebral hemorrhage, and cerebral venous thrombosis. Although the mechanism of cerebrovascular complications among COVID-19 patients has not been adequately elucidated, the hypercoagulable state, excessive inflammation and ACE-2-associated alterations in the renin-angiotensin-aldosterone system after SARS-CoV-2 infection probably play an essential role. In this overview, we discuss the possible mechanisms underlying the SARS-CoV-2 infection leading to acute cerebrovascular events and review the characteristics of COVID-19-related acute cerebrovascular events cases and treatment options available worldwide.
Collapse
Affiliation(s)
- Wanzhou Zhang
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Li Ling
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Jie Li
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Yudi Li
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Yajie Liu
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
18
|
Saxena D, Batra L, Verma SK. Broad-Spectrum Antivirals against Multiple Human and Animal Coronaviruses Infection. Pathogens 2023; 12:823. [PMID: 37375513 DOI: 10.3390/pathogens12060823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Among the seven coronaviruses that infect humans, HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1 usually cause mild and common cold symptoms; however, infection with three coronaviruses, namely severe acute respiratory syndrome coronavirus [SARS-CoV], Middle East respiratory syndrome coronavirus [MERS-CoV], and the newly identified severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2], often results in respiratory distress, cytokine storm and multiorgan failure [...].
Collapse
Affiliation(s)
- Divyasha Saxena
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Lalit Batra
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Shailendra Kumar Verma
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, San Diego, CA 92037, USA
| |
Collapse
|
19
|
Raghav PK, Mann Z, Ahluwalia SK, Rajalingam R. Potential treatments of COVID-19: Drug repurposing and therapeutic interventions. J Pharmacol Sci 2023; 152:1-21. [PMID: 37059487 PMCID: PMC9930377 DOI: 10.1016/j.jphs.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The infection is caused when Spike-protein (S-protein) present on the surface of SARS-CoV-2 interacts with human cell surface receptor, Angiotensin-converting enzyme 2 (ACE2). This binding facilitates SARS-CoV-2 genome entry into the human cells, which in turn causes infection. Since the beginning of the pandemic, many different therapies have been developed to combat COVID-19, including treatment and prevention. This review is focused on the currently adapted and certain other potential therapies for COVID-19 treatment, which include drug repurposing, vaccines and drug-free therapies. The efficacy of various treatment options is constantly being tested through clinical trials and in vivo studies before they are made medically available to the public.
Collapse
Affiliation(s)
- Pawan Kumar Raghav
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
| | | | - Simran Kaur Ahluwalia
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh, India
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
20
|
Xia S, Xiao W, Zhu X, Liao S, Guo J, Zhou J, Xiao S, Fang P, Fang L. Porcine deltacoronavirus resists antibody neutralization through cell-to-cell transmission. Emerg Microbes Infect 2023; 12:2207688. [PMID: 37125733 DOI: 10.1080/22221751.2023.2207688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteric coronavirus that has been reported to infect a variety of animals and even humans. Cell-cell fusion has been identified as an alternative pathway for the cell-to-cell transmission of certain viruses, but the ability of PDCoV to exploit this transmission model, and the relevant mechanisms, have not been fully elucidated. Herein, we provide evidence that cell-to-cell transmission is the main mechanism supporting PDCoV spread in cell culture and that this efficient spread model is mediated by spike glycoprotein-driven cell-cell fusion. We found that PDCoV efficiently spread to non-susceptible cells via cell-to-cell transmission, and demonstrated that functional receptor porcine aminopeptidase N and cathepsins in endosomes are involved in the cell-to-cell transmission of PDCoV. Most importantly, compared with non-cell-to-cell infection, the cell-to-cell transmission of PDCoV was resistant to neutralizing antibodies and immune sera that potently neutralized free viruses. Taken together, our study revealed key characteristics of the cell-to-cell transmission of PDCoV and provided new insights into the mechanism of PDCoV infection.
Collapse
Affiliation(s)
- Sijin Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wenwen Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xuerui Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shusen Liao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jiahui Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Junwei Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
21
|
Pozzi C, Vanet A, Francesconi V, Tagliazucchi L, Tassone G, Venturelli A, Spyrakis F, Mazzorana M, Costi MP, Tonelli M. Antitarget, Anti-SARS-CoV-2 Leads, Drugs, and the Drug Discovery-Genetics Alliance Perspective. J Med Chem 2023; 66:3664-3702. [PMID: 36857133 PMCID: PMC10005815 DOI: 10.1021/acs.jmedchem.2c01229] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The most advanced antiviral molecules addressing major SARS-CoV-2 targets (Main protease, Spike protein, and RNA polymerase), compared with proteins of other human pathogenic coronaviruses, may have a short-lasting clinical efficacy. Accumulating knowledge on the mechanisms underlying the target structural basis, its mutational progression, and the related biological significance to virus replication allows envisaging the development of better-targeted therapies in the context of COVID-19 epidemic and future coronavirus outbreaks. The identification of evolutionary patterns based solely on sequence information analysis for those targets can provide meaningful insights into the molecular basis of host-pathogen interactions and adaptation, leading to drug resistance phenomena. Herein, we will explore how the study of observed and predicted mutations may offer valuable suggestions for the application of the so-called "synthetic lethal" strategy to SARS-CoV-2 Main protease and Spike protein. The synergy between genetics evidence and drug discovery may prioritize the development of novel long-lasting antiviral agents.
Collapse
Affiliation(s)
- Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy,
University of Siena, via Aldo Moro 2, 53100 Siena,
Italy
| | - Anne Vanet
- Université Paris Cité,
CNRS, Institut Jacques Monod, F-75013 Paris,
France
| | - Valeria Francesconi
- Department of Pharmacy, University of
Genoa, viale Benedetto XV n.3, 16132 Genoa, Italy
| | - Lorenzo Tagliazucchi
- Department of Life Science, University of
Modena and Reggio Emilia, via Campi 103, 41125 Modena,
Italy
- Doctorate School in Clinical and Experimental Medicine
(CEM), University of Modena and Reggio Emilia, Via Campi 287,
41125 Modena, Italy
| | - Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy,
University of Siena, via Aldo Moro 2, 53100 Siena,
Italy
| | - Alberto Venturelli
- Department of Life Science, University of
Modena and Reggio Emilia, via Campi 103, 41125 Modena,
Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology,
University of Turin, Via Giuria 9, 10125 Turin,
Italy
| | - Marco Mazzorana
- Diamond Light Source, Harwell Science and
Innovation Campus, Didcot, Oxfordshire OX11 0DE,
U.K.
| | - Maria P. Costi
- Department of Life Science, University of
Modena and Reggio Emilia, via Campi 103, 41125 Modena,
Italy
| | - Michele Tonelli
- Department of Pharmacy, University of
Genoa, viale Benedetto XV n.3, 16132 Genoa, Italy
| |
Collapse
|
22
|
Ghasemlou A, Uskoković V, Sefidbakht Y. Exploration of potential inhibitors for SARS-CoV-2 Mpro considering its mutants via structure-based drug design, molecular docking, MD simulations, MM/PBSA, and DFT calculations. Biotechnol Appl Biochem 2023; 70:439-457. [PMID: 35642754 DOI: 10.1002/bab.2369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/21/2022] [Indexed: 11/08/2022]
Abstract
The main protease (Mpro) of SARS-COV-2 plays a vital role in the viral life cycle and pathogenicity. Due to its specific attributes, this 3-chymotrypsin like protease can be a reliable target for the drug design to combat COVID-19. Since the advent of COVID-19, Mpro has undergone many mutations. Here, the impact of 10 mutations based on their frequency and five more based on their proximity to the active site was investigated. For comparison purposes, the docking process was also performed against the Mpros of SARS-COV and MERS-COV. Four inhibitors with the highest docking score (11b, α-ketoamide 13b, Nelfinavir, and PF-07321332) were selected for the structure-based ligand design via fragment replacement, and around 2000 new compounds were thus obtained. After the screening of these new compounds, the pharmacokinetic properties of the best ones were predicted. In the last step, comparative molecular dynamics (MD) simulations, molecular mechanics Poisson-Boltzmann surface area calculations (MM/PBSA), and density functional theory calculations were performed. Among the 2000 newly designed compounds, three of them (NE1, NE2, and NE3), which were obtained by modifications of Nelfinavir, showed the highest affinity against all the Mpro targets. Together, NE1 compound is the best candidate for follow-up Mpro inhibition and drug development studies.
Collapse
Affiliation(s)
| | - Vuk Uskoković
- TardigradeNano, LLC, Irvine, California, USA.,Department of Mechanical Engineering, San Diego State University, San Diego, California, USA
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
23
|
Tachoua W, Kabrine M, Mushtaq M, Selmi A, Ul-Haq Z. Highlights in TMPRSS2 inhibition mechanism with guanidine derivatives approved drugs for COVID-19 treatment. J Biomol Struct Dyn 2023; 41:12908-12922. [PMID: 36709428 DOI: 10.1080/07391102.2023.2169762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/11/2023] [Indexed: 01/30/2023]
Abstract
Transmembrane protease serine 2 (TMPRSS2) has been identified as a critical key for the entry of coronaviruses into human cells by cleaving and activating the spike protein of SARS-CoV-2. To block the TMPRSS2 function, 18 approved drugs, containing the guanidine group were tested against TMPRSS2's ectodomain (7MEQ). Among these drugs, Famotidine, Argatroban, Guanadrel and Guanethidine strongly binds with TMPRSS2 S1 pocket with estimated Fullfitness energies of -1847.12, -1630.87, -1605.81 and -1600.52 kcal/mol, respectively. A significant number of non-covalent interactions such as hydrogen bonding, hydrophobic and electrostatic interactions were detected in protein-ligand complexes. In addition, the ADMET analysis revealed a perfect concurrence with the aptitude of these drugs to be developed as an anti-SARS-CoV-2 therapeutics. Further, MD simulation and binding free energy calculations were performed to evaluate the dynamic behavior and stability of protein-ligand complexes. The results obtained herein highlight the enhanced stability and good binding affinities of the Argatroban and Famotidine towards the target protein, hence might act as new scaffolds for TMPRSS2 inhibition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wafa Tachoua
- Nature and Life Sciences department, University of Algiers Benyoucef Benkhedda, Algiers, Algeria
| | - Mohamed Kabrine
- Faculty of Biological Sciences, Cellular and Molecular Biology, University of Science and Technology Houari Boumediene, Algiers, Algeria
| | - Mamona Mushtaq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi, Pakistan
| | - Ahmed Selmi
- Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi, Pakistan
| |
Collapse
|
24
|
Wu W, Cheng Y, Zhou H, Sun C, Zhang S. The SARS-CoV-2 nucleocapsid protein: its role in the viral life cycle, structure and functions, and use as a potential target in the development of vaccines and diagnostics. Virol J 2023; 20:6. [PMID: 36627683 PMCID: PMC9831023 DOI: 10.1186/s12985-023-01968-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) continues to take a heavy toll on personal health, healthcare systems, and economies around the globe. Scientists are expending tremendous effort to develop diagnostic technologies for detecting positive infections within the shortest possible time, and vaccines and drugs specifically for the prevention and treatment of COVID-19 disease. At the same time, emerging novel variants have raised serious concerns about vaccine efficacy. The SARS-CoV-2 nucleocapsid (N) protein plays an important role in the coronavirus life cycle, and participates in various vital activities after virus invasion. It has attracted a large amount of attention for vaccine and drug development. Here, we summarize the latest research of the N protein, including its role in the SARS-CoV-2 life cycle, structure and function, and post-translational modifications in addition to its involvement in liquid-liquid phase separation (LLPS) and use as a basis for the development of vaccines and diagnostic techniques.
Collapse
Affiliation(s)
- Wenbing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Ying Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Hong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Changzhen Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
25
|
Characterization of SARS-CoV-2 Glycoprotein Using a Quantitative Cell-Cell Fusion System. Methods Mol Biol 2022; 2610:179-186. [PMID: 36534291 DOI: 10.1007/978-1-0716-2895-9_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Coronaviruses (CoVs) infect host cells through the fusion of viral and cellular membrane and may also spread to the neighboring uninfected cells from infected cells through cell-cell fusion. The viral spike (S) glycoproteins play an essential role in mediating membrane fusion. Here, we present a luciferase-based quantitative assay to measure the efficiency of cell-cell fusion mediated by the S protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This method applies to S proteins of the other coronaviruses and can be adapted to fusion proteins of other enveloped viruses.
Collapse
|
26
|
Bahl AS, Verma VK, Bhatia J, Arya DS. Integrating in silico and in vivo approach for investigating the role of polyherbal oil in prevention and treatment of COVID-19 infection. Chem Biol Interact 2022; 367:110179. [PMID: 36113631 PMCID: PMC9472470 DOI: 10.1016/j.cbi.2022.110179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022]
Abstract
Currently, there are no FDA approved antiviral drugs available to treat COVID-19 patients. Also, due to emergence of new SARS-CoV-2 variants, the protective efficacy of vaccines could be reduced, hence it is urgent to have alternative treatments for combating the SARS-CoV-2 infection. Since, there is a long-standing history of herbal medicine in the treatment of respiratory diseases. In the present study, we investigated two polyherbal oil blend viz. Sudarshan AV and Elixir AV (SAV and EAV) in inhibiting SARS-COV-2. From GC-MS analysis of polyherbal oils (SAV and EAV) a total of 11 active compounds were selected, on the basis of their abundance and activity. Further, from the molecular docking studies, we found an inhibitory effect of these compounds on viral envelope and membrane, spike proteins whilst an agonistic effect with human host receptor angiotensin-converting enzyme 2 (ACE2) implicating the crucial role of the individual compound in resistance of SARS-CoV-2. Since, the in-silico results suggest that polyherbal oil (SAV and EAV) contributes in preventing the entry of SARS-CoV-2 into the human body, we further investigated the efficacy of polyherbal formulated essential oil (FEO; SAV & EAV) in prevention and treatment of COVID-19 in hamster model. The male golden Syrian hamsters (n = 23) were divided into 5 groups i.e., Group 1: Control (n = 3); Group 2: Infected (n = 5); Group 3: Infected + Remdesivir (n = 5); Group 4: Infected + FEO (n = 5) and Group 5: Prophylactic FEO + Infected (n = 5). In both treatment and prophylactic groups, the FEO's significantly reduced the lung injury investigated histo-pathologically and viral load expression measured by real time PCR in comparison to infected hamsters. Furthermore, cytokines expression analysis clearly highlighted the efficacy of FEO's due to its anti-inflammatory activity and overall protection in treatment groups. In conclusion, the FEO (SAV & EAV) seem to be potent in both prevention and treatment of COVID-19 and related lung injury.
Collapse
Affiliation(s)
- Amul S Bahl
- Department of Research, Development and Innovation, God's Own Store LLP, Delhi, India.
| | - Vipin Kumar Verma
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jagriti Bhatia
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
27
|
Tanveer A, Akhtar B, Sharif A, Saleem U, Rasul A, Ahmad A, Jilani K. Pathogenic role of cytokines in COVID-19, its association with contributing co-morbidities and possible therapeutic regimens. Inflammopharmacology 2022; 30:1503-1516. [PMID: 35948809 PMCID: PMC9365214 DOI: 10.1007/s10787-022-01040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/15/2022]
Abstract
The Covid-19, a threatening pandemic, was originated from China in December 2019 and spread quickly to all over the world. The pathogenesis of coronavirus is linked with the disproportionate response of the immune system. This involves the systemic inflammatory reaction which is characterized by marked pro-inflammatory cytokine release commonly known as cytokine release storm (CRS). The pro inflammatory cytokines are involved in cascade of pulmonary inflammation, hyper coagulation and thrombosis which may be lethal for the individual. That's why, it is very important to have understanding of pro inflammatory cytokines and their pathological role in SARS-CoV-2. The pathogenesis of Covid is not the same in every individual, it can vary due to the presence of pre-existing comorbidities like suffering from already an inflammatory disease such as rheumatoid arthritis (RA), inflammatory bowel disease (IBD), chronic obstructive pulmonary disease (COPD), an immune-compromised patients suffering from Diabetes Mellitus (DM) and Tuberculosis (TB) are more vulnerable morbidity and complications following COVID-19. This review is particularly related to COVID-19 patients having comorbidity of other inflammatory diseases. We have discussed the brief pathogenesis of COVID-19 and cytokines release storm with reference to other co-morbidities including RA, IBD, COPD, DM and TB. The available therapeutic regimens for COVID-19 including cytokine inhibitors, anti-viral, anti-biotic, bronchodilators, JAK- inhibitors, immunomodulators and anti-fibrotic agents have also been discussed briefly. Moreover, newly emerging medicines in the clinical trials have also been discussed which are found to be effective in treating Covid-19.
Collapse
Affiliation(s)
- Ayesha Tanveer
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Bushra Akhtar
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
| | - Ali Sharif
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Aftab Ahmad
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
- Center of Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan
| | - Kashif Jilani
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
28
|
Hernández-Mitre MP, Tong SYC, Denholm JT, Dore GJ, Bowen AC, Lewin SR, Venkatesh B, Hills TE, McQuilten Z, Paterson DL, Morpeth SC, Roberts JA. Nafamostat Mesylate for Treatment of COVID-19 in Hospitalised Patients: A Structured, Narrative Review. Clin Pharmacokinet 2022; 61:1331-1343. [PMID: 36040613 PMCID: PMC9425784 DOI: 10.1007/s40262-022-01170-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2022] [Indexed: 01/06/2024]
Abstract
The search for clinically effective antivirals against the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is ongoing. Repurposing of drugs licensed for non-coronavirus disease 2019 (COVID-19) indications has been extensively investigated in laboratory models and in clinical studies with mixed results. Nafamostat mesylate (nafamostat) is a drug licensed in Japan and Korea for indications including acute pancreatitis and disseminated intravascular coagulation. It is available only for continuous intravenous infusion. In vitro human lung cell line studies with nafamostat demonstrate high antiviral potency against SARS-CoV-2 (half maximal inhibitory concentration [IC50] of 0.0022 µM [compared to remdesivir 1.3 µM]), ostensibly via inhibition of the cellular enzyme transmembrane protease serine 2 (TMPRSS2) preventing viral entry into human cells. In addition, the established antithrombotic activity is hypothesised to be advantageous given thrombosis-associated sequelae of COVID-19. Clinical reports to date are limited, but indicate a potential benefit of nafamostat in patients with moderate to severe COVID-19. In this review, we will explore the pre-clinical, pharmacokinetic and clinical outcome data presently available for nafamostat as a treatment for COVID-19. The recruitment to ongoing clinical trials is a priority to provide more robust data on the safety and efficacy of nafamostat as a treatment for COVID-19.
Collapse
Affiliation(s)
| | - Steven Y C Tong
- Victorian Infectious Disease Service, Royal Melbourne Hospital, Melbourne, VIC, Australia
- The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Menzies School of Health Research, Charles Darwin University, Casuarina, NT, Australia
| | - Justin T Denholm
- Victorian Infectious Disease Service, Royal Melbourne Hospital, Melbourne, VIC, Australia
- The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Gregory J Dore
- Kirby Institute, UNSW Sydney, New South Wales, Australia
| | - Asha C Bowen
- Department of Infectious Diseases, Perth Children's Hospital, Perth, WA, Australia
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, Australia
| | - Sharon R Lewin
- Victorian Infectious Disease Service, Royal Melbourne Hospital, Melbourne, VIC, Australia
- The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Balasubramanian Venkatesh
- Intensive Care, Princess Alexandra, and Wesley Hospital, The University of Queensland, Brisbane, QLD, Australia
- The George Institute for Global Health, UNSW Sydney, New South Wales, Australia
| | - Thomas E Hills
- Departments of Immunology and Infectious Diseases, Auckland District Health Broad, Auckland, New Zealand
- Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Zoe McQuilten
- Department of Epidemiology and Preventive Medicine, Monash University, Clayton, Australia
- Department of Haematology, Monash Health, Melbourne, Australia
| | - David L Paterson
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | | | - Jason A Roberts
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Departments of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| |
Collapse
|
29
|
Karimian A, Behjati M, Karimian M. Molecular mechanisms involved in anosmia induced by SARS-CoV-2, with a focus on the transmembrane serine protease TMPRSS2. Arch Virol 2022; 167:1931-1946. [PMID: 35939103 PMCID: PMC9358639 DOI: 10.1007/s00705-022-05545-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022]
Abstract
Since 2020, SARS-CoV-2 has caused a pandemic virus that has posed many challenges worldwide. Infection with this virus can result in a number of symptoms, one of which is anosmia. Olfactory dysfunction can be a temporary or long-term viral complication caused by a disorder of the olfactory neuroepithelium. Processes such as inflammation, apoptosis, and neuronal damage are involved in the development of SARS-CoV-2-induced anosmia. One of the receptors that play a key role in the entry of SARS-CoV-2 into the host cell is the transmembrane serine protease TMPRSS2, which facilitates this process by cleaving the viral S protein. The gene encoding TMPRSS2 is located on chromosome 21. It contains 15 exons and has many genetic variations, some of which increase the risk of disease. Delta strains have been shown to be more dependent on TMPRSS2 for cell entry than Omicron strains. Blockade of this receptor by serine protease inhibitors such as camostat and nafamostat can be helpful for treating SARS-CoV-2 symptoms, including anosmia. Proper understanding of the different functional aspects of this serine protease can help to overcome the therapeutic challenges of SARS-CoV-2 symptoms, including anosmia. In this review, we describe the cellular and molecular events involved in anosmia induced by SARS-CoV-2 with a focus on the function of the TMPRSS2 receptor.
Collapse
Affiliation(s)
- Ali Karimian
- Department of Otorhinolaryngology, School of Medicine, Kashan University of Medical Science, Kashan, Iran
| | - Mohaddeseh Behjati
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| |
Collapse
|
30
|
Tirado-Kulieva VA, Hernández-Martínez E, Choque-Rivera TJ. Phenolic compounds versus SARS-CoV-2: An update on the main findings against COVID-19. Heliyon 2022; 8:e10702. [PMID: 36157310 PMCID: PMC9484857 DOI: 10.1016/j.heliyon.2022.e10702] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/04/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 remains an international concern. Although there are drugs to fight it, new natural alternatives such as polyphenols are essential due to their antioxidant activity and high antiviral potential. In this context, this review reports the main findings on the effect of phenolic compounds (PCs) against SARS-CoV-2 virus. First, the proven activity of PCs against different human viruses is briefly detailed, which serves as a starting point to study their anti-COVID-19 potential. SARS-CoV-2 targets (its proteins) are defined. Findings from in silico, in vitro and in vivo studies of a wide variety of phenolic compounds are shown, emphasizing their mechanism of action, which is fundamental for drug design. Furthermore, clinical trials have demonstrated the effectiveness of PCs in the prevention and as a possible therapeutic management against COVID-19. The results were complemented with information on the influence of polyphenols in strengthening/modulating the immune system. It is recommended to investigate compounds such as vitamins, minerals, alkaloids, triterpenes and fatty acids, and their synergistic use with PCs, many of which have been successful against SARS-CoV-2. Based on findings on other viruses, synergistic evaluation of PCs with accepted drugs against COVID-19 is also suggested. Other recommendations and limitations are also shown, which is useful for professionals involved in the development of efficient, safe and low-cost therapeutic strategies based on plant matrices rich in PCs. To the authors' knowledge, this manuscript is the first to evaluate the relationship between the antiviral and immunomodulatory (including anti-inflammatory and antioxidant effects) activity of PCs and their underlying mechanisms in relation to the fight against COVID-19. It is also of interest for the general population to be informed about the importance of consuming foods rich in bioactive compounds for their health benefits.
Collapse
|
31
|
Li C, Zhou H, Guo L, Xie D, He H, Zhang H, Liu Y, Peng L, Zheng L, Lu W, Mei Y, Liu Z, Huang J, Wang M, Shu D, Ding L, Lang Y, Luo F, Wang J, Huang B, Huang P, Gao S, Chen J, Qian CN. Potential inhibitors for blocking the interaction of the coronavirus SARS-CoV-2 spike protein and its host cell receptor ACE2. J Transl Med 2022; 20:314. [PMID: 35836239 PMCID: PMC9281089 DOI: 10.1186/s12967-022-03501-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022] Open
Abstract
Background The outbreak of SARS-CoV-2 continues to pose a serious threat to human health and social. The ongoing pandemic of COVID-19 caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made a serious threat to public health and economic stability worldwide. Given the urgency of the situation, researchers are attempting to repurpose existing drugs for treating COVID-19. Methods We first established an anti-coronavirus drug screening platform based on the Homogeneous Time Resolved Fluorescence (HTRF) technology and the interaction between the coronavirus spike protein and its host receptor ACE2. Two compound libraries of 2,864 molecules were screened with this platform. Selected candidate compounds were validated by SARS-CoV-2_S pseudotyped lentivirus and ACE2-overexpressing cell system. Molecular docking was used to analyze the interaction between S protein and compounds. Results We identified three potential anti-coronavirus compounds: tannic acid (TA), TS-1276 (anthraquinone), and TS-984 (9-Methoxycanthin-6-one). Our in vitro validation experiments indicated that TS-984 strongly inhibits the interaction of the coronavirus S protein and the human cell ACE2 receptor. Additionally, tannic acid showed moderate inhibitory effect on the interaction of S protein and ACE2. Conclusion This platform is a rapid, sensitive, specific, and high throughput system, and available for screening large compound libraries. TS-984 is a potent blocker of the interaction between the S-protein and ACE2, which might have the potential to be developed into an effective anti-coronavirus drug. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03501-9.
Collapse
Affiliation(s)
- Changzhi Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | | | - Lingling Guo
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Dehuan Xie
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Huiping He
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Hong Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yixiu Liu
- Exploring Health, LLC., Guangzhou, 510663, China
| | - Lixia Peng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Lisheng Zheng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Wenhua Lu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yan Mei
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zhijie Liu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jie Huang
- Exploring Health, LLC., Guangzhou, 510663, China
| | - Mingdian Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ditian Shu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Liuyan Ding
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yanhong Lang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Feifei Luo
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jing Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Bijun Huang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Song Gao
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
| | - Jindong Chen
- Exploring Health, LLC., Guangzhou, 510663, China.
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China. .,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China. .,Guangzhou Concord Cancer Center, Guangzhou, 510555, China.
| |
Collapse
|
32
|
In silico discovery of multi-targeting inhibitors for the COVID-19 treatment by molecular docking, molecular dynamics simulation studies, and ADMET predictions. Struct Chem 2022. [DOI: 10.1007/s11224-022-01996-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Mishra A, Kaur U, Singh A. Fisetin 8-C-glucoside as entry inhibitor in SARS CoV-2 infection: molecular modelling study. J Biomol Struct Dyn 2022; 40:5128-5137. [PMID: 33382023 PMCID: PMC7784833 DOI: 10.1080/07391102.2020.1868335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/18/2020] [Indexed: 11/03/2022]
Abstract
Coronaviruses are RNA viruses that infect varied species including humans. TMPRSS2 is gateway for SARS CoV-2 entry into the host cell. It causes proteolytic activation of spike protein and discharge of the peptide into host cell. The TMPRSS2 inhibition could be one of the approaches to stop the viral entry, therefore, interaction pattern and binding energies for Fisetin and TMPRSS2 have been explored in the present study. TMPRSS2 peptide was used for homology modelling and then for further study. Molecular docking score and MMGBSA Binding energy of Fisetin was better than Nafamostat, a known inhibitor of TMPRSS2. Post docking MM-GBSA free energy for Fisetin and Nafamostat was -42.78 and -21.11 kcal/mol, respectively. Fisetin forms H bond with Val 25, His 41, Lys 42, Lys 45, Glu 44, Ser186. Nafamostat formed H bonds with Lys 85, Asp 90, Asp 203. RMSD plots of TMPRSS2, TMPRSS2-Fisetin and TMPRSS2-Nafamostat complex showed stable profile with very small fluctuation during entire simulation of 150 ns. Significant decrease in TMPRSS2-Fisetin and TMPRSS2-Nafamostat complex fluctuation occurred around His 41, Glu 44, Gly 136, Ser 186 in RMSF study. During simulation Fisetin interaction was observed with residues Val 25, His 41, Glu 44, Lys 45, Lys 87, Gly 136, Gln 183, Ser 186 likewise interaction of Nafamostat with Lys 85, Asp 90, Asn 163, Asp 203 and Ser 205. Post simulation MM-GBSA free energy was found to be -51.87 ± 4.3 and -48.23 ± 4.39 kcal/mol for TMPRSS2 with Fisetin and Nafamostat, respectively.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Upinder Kaur
- Department of Pharmacology, All India Institute of Medical Sciences, Gorakhpur, India
| | - Amit Singh
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
34
|
Fujioka Y, Kashiwagi S, Yoshida A, Satoh AO, Fujioka M, Amano M, Yamauchi Y, Ohba Y. A method for the generation of pseudovirus particles bearing SARS coronavirus spike protein in high yields. Cell Struct Funct 2022; 47:43-53. [PMID: 35491102 PMCID: PMC10511058 DOI: 10.1247/csf.21047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/19/2022] [Indexed: 12/17/2023] Open
Abstract
The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has threatened human health and the global economy. Development of additional vaccines and therapeutics is urgently required, but such development with live virus must be conducted with biosafety level 3 confinement. Pseudotyped viruses have been widely adopted for studies of virus entry and pharmaceutical development to overcome this restriction. Here we describe a modified protocol to generate vesicular stomatitis virus (VSV) pseudotyped with SARS-CoV or SARS-CoV-2 spike protein in high yield. We found that a large proportion of pseudovirions produced with the conventional transient expression system lacked coronavirus spike protein at their surface as a result of inhibition of parental VSV infection by overexpression of this protein. Establishment of stable cell lines with an optimal expression level of coronavirus spike protein allowed the efficient production of progeny pseudoviruses decorated with spike protein. This improved VSV pseudovirus production method should facilitate studies of coronavirus entry and development of antiviral agents.Key words: severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, pseudovirus, vesicular stomatitis virus (VSV), spike protein.
Collapse
Affiliation(s)
- Yoichiro Fujioka
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, N12W6, Kita-ku, Sapporo 060-8612, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, N15W7, Kita-ku, Sapporo 060-8638, Japan
| | - Sayaka Kashiwagi
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, N12W6, Kita-ku, Sapporo 060-8612, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, N15W7, Kita-ku, Sapporo 060-8638, Japan
| | - Aiko Yoshida
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, N12W6, Kita-ku, Sapporo 060-8612, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, N15W7, Kita-ku, Sapporo 060-8638, Japan
| | - Aya O. Satoh
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, N15W7, Kita-ku, Sapporo 060-8638, Japan
| | - Mari Fujioka
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, N15W7, Kita-ku, Sapporo 060-8638, Japan
| | - Maho Amano
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, N15W7, Kita-ku, Sapporo 060-8638, Japan
| | - Yohei Yamauchi
- AMED-CREST, Japan Agency for Medical Research and Development, N15W7, Kita-ku, Sapporo 060-8638, Japan
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, N12W6, Kita-ku, Sapporo 060-8612, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, N15W7, Kita-ku, Sapporo 060-8638, Japan
| |
Collapse
|
35
|
Metalloproteinase-Dependent and TMPRSS2-Independent Cell Surface Entry Pathway of SARS-CoV-2 Requires the Furin Cleavage Site and the S2 Domain of Spike Protein. mBio 2022; 13:e0051922. [PMID: 35708281 PMCID: PMC9426510 DOI: 10.1128/mbio.00519-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The ongoing global vaccination program to prevent SARS-CoV-2 infection, the causative agent of COVID-19, has had significant success. However, recently, virus variants that can evade the immunity in a host achieved through vaccination have emerged. Consequently, new therapeutic agents that can efficiently prevent infection from these new variants, and hence COVID-19 spread, are urgently required. To achieve this, extensive characterization of virus-host cell interactions to identify effective therapeutic targets is warranted. Here, we report a cell surface entry pathway of SARS-CoV-2 that exists in a cell type-dependent manner and is TMPRSS2 independent but sensitive to various broad-spectrum metalloproteinase inhibitors such as marimastat and prinomastat. Experiments with selective metalloproteinase inhibitors and gene-specific small interfering RNAS (siRNAs) revealed that a disintegrin and metalloproteinase 10 (ADAM10) is partially involved in the metalloproteinase pathway. Consistent with our finding that the pathway is unique to SARS-CoV-2 among highly pathogenic human coronaviruses, both the furin cleavage motif in the S1/S2 boundary and the S2 domain of SARS-CoV-2 spike protein are essential for metalloproteinase-dependent entry. In contrast, the two elements of SARS-CoV-2 independently contributed to TMPRSS2-dependent S2 priming. The metalloproteinase pathway is involved in SARS-CoV-2-induced syncytium formation and cytopathicity, leading us to theorize that it is also involved in the rapid spread of SARS-CoV-2 and the pathogenesis of COVID-19. Thus, targeting the metalloproteinase pathway in addition to the TMPRSS2 and endosomal pathways could be an effective strategy by which to cure COVID-19 in the future. IMPORTANCE To develop effective therapeutics against COVID-19, it is necessary to elucidate in detail the infection mechanism of the causative agent, SARS-CoV-2. SARS-CoV-2 binds to the cell surface receptor ACE2 via the spike protein, and then the spike protein is cleaved by host proteases to enable entry. Here, we found that the metalloproteinase-mediated pathway is important for SARS-CoV-2 infection in addition to the TMPRSS2-mediated pathway and the endosomal pathway. The metalloproteinase-mediated pathway requires both the prior cleavage of spike into two domains and a specific sequence in the second domain, S2, conditions met by SARS-CoV-2 but lacking in the related human coronavirus SARS-CoV. Besides the contribution of metalloproteinases to SARS-CoV-2 infection, inhibition of metalloproteinases was important in preventing cell death, which may cause organ damage. Our study provides new insights into the complex pathogenesis unique to COVID-19 and relevant to the development of effective therapies.
Collapse
|
36
|
Vankadari N, Ketavarapu V, Mitnala S, Vishnubotla R, Reddy DN, Ghosal D. Structure of Human TMPRSS2 in Complex with SARS-CoV-2 Spike Glycoprotein and Implications for Potential Therapeutics. J Phys Chem Lett 2022; 13:5324-5333. [PMID: 35675654 PMCID: PMC9195568 DOI: 10.1021/acs.jpclett.2c00967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/03/2022] [Indexed: 05/20/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 520 million people around the globe resulting in more than 6.2 million as of May 2022. Understanding the cell entry mechanism of SARS-CoV-2 and its entire repertoire is a high priority for developing improved therapeutics. The SARS-CoV-2 spike glycoprotein (S-protein) engages with host receptor ACE2 for adhesion and serine proteases furin and TMPRSS2 for proteolytic activation and subsequent entry. Recent studies have highlighted the molecular details of furin and S-protein interaction. However, the structural and molecular interplay between TMPRSS2 and S-protein remains enigmatic. Here, using biochemical, structural, computational, and molecular dynamics approaches, we investigated how TMPRSS2 recognizes and activates the S-protein to facilitate viral entry. First, we identified three potential TMPRSS2 cleavage sites in the S2 domain of S-protein (S2', T1, and T2) and reported the structure of TMPRSS2 with its individual catalytic triad. By employing computational modeling and structural analyses, we modeled the macromolecular structure of TMPRSS2 in complex with S-protein, which incited the mechanism of S-protein processing or cleavage for a new path of viral entry. On the basis of structure-guided drug screening, we also report the potential TMPRSS2 inhibitors and their structural interaction in blocking TMPRSS2 activity, which could impede the interaction with the spike protein. These findings reveal the role of TMPRSS2 in the activation of SARS-CoV-2 for its entry and insight into possible intervention strategies.
Collapse
Affiliation(s)
- Naveen Vankadari
- Monash
Biomedicine Discovery Institute,
Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Vijayasarathy Ketavarapu
- Institute
of Translational Research, Department of Genomics and Molecular Biology, Asian Institute of Gastroenterology, Gachibowli, Hyderabad 500032, Telangana, India
| | - Sasikala Mitnala
- Institute
of Translational Research, Department of Genomics and Molecular Biology, Asian Institute of Gastroenterology, Gachibowli, Hyderabad 500032, Telangana, India
| | - Ravikanth Vishnubotla
- Institute
of Translational Research, Department of Genomics and Molecular Biology, Asian Institute of Gastroenterology, Gachibowli, Hyderabad 500032, Telangana, India
| | - Duvvur Nageshwar Reddy
- Institute
of Translational Research, Department of Genomics and Molecular Biology, Asian Institute of Gastroenterology, Gachibowli, Hyderabad 500032, Telangana, India
| | - Debnath Ghosal
- Department
of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology
Institute, The University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
37
|
Bahadoram S, Keikhaei B, Bahadoram M, Mahmoudian-Sani MR, Hassanzadeh S, Saeedi-Boroujeni A, Alikhani K. [Bromhexine is a potential drug for COVID-19; From hypothesis to clinical trials]. Vopr Virusol 2022; 67:126-132. [PMID: 35521985 DOI: 10.36233/0507-4088-106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 11/05/2022]
Abstract
COVID-19 (novel coronavirus disease 2019), caused by the SARS-CoV-2 virus, has various clinical manifestations and several pathogenic pathways. Although several therapeutic options have been used to control COVID-19, none of these medications have been proven to be a definitive cure. Transmembrane serine protease 2 (TMPRSS2) is a protease that has a key role in the entry of SARS-CoV-2 into host cells. Following the binding of the viral spike (S) protein to the angiotensin-converting enzyme 2 (ACE2) receptors of the host cells, TMPRSS2 processes and activates the S protein on the epithelial cells. As a result, the membranes of the virus and host cell fuse. Bromhexine is a specific TMPRSS2 inhibitor that potentially inhibits the infectivity cycle of SARS-CoV-2. Moreover, several clinical trials are evaluating the efficacy of bromhexine in COVID-19 patients. The findings of these studies have shown that bromhexine is effective in improving the clinical outcomes of COVID-19 and has prophylactic effects by inhibiting TMPRSS2 and viral penetration into the host cells. Bromhexine alone cannot cure all of the symptoms of SARS-CoV-2 infection. However, it could be an effective addition to control and prevent the disease progression along with other drugs that are used to treat COVID-19. Further studies are required to investigate the efficacy of bromhexine in COVID-19.
Collapse
Affiliation(s)
- S Bahadoram
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences
| | - B Keikhaei
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences
| | - M Bahadoram
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences
| | - M-R Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences
| | - S Hassanzadeh
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences
| | - A Saeedi-Boroujeni
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences; Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences; Abadan University of Medical Sciences;ImmunologyToday, Universal Scientific Education and Research Network (USERN)
| | - K Alikhani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences
| |
Collapse
|
38
|
Niemeyer BF, Benam KH. Untapping host-targeting cross-protective efficacy of anticoagulants against SARS-CoV-2. Pharmacol Ther 2022; 233:108027. [PMID: 34718070 PMCID: PMC8552695 DOI: 10.1016/j.pharmthera.2021.108027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023]
Abstract
Responding quickly to emerging respiratory viruses, such as SARS-CoV-2 the causative agent of coronavirus disease 2019 (COVID-19) pandemic, is essential to stop uncontrolled spread of these pathogens and mitigate their socio-economic impact globally. This can be achieved through drug repurposing, which tackles inherent time- and resource-consuming processes associated with conventional drug discovery and development. In this review, we examine key preclinical and clinical therapeutic and prophylactic approaches that have been applied for treatment of SARS-CoV-2 infection. We break these strategies down into virus- versus host-targeting and discuss their reported efficacy, advantages, and disadvantages. Importantly, we highlight emerging evidence on application of host serine protease-inhibiting anticoagulants, such as nafamostat mesylate, as a potentially powerful therapy to inhibit virus activation and offer cross-protection against multiple strains of coronavirus, lower inflammatory response independent of its antiviral effect, and modulate clotting problems seen in COVID-19 pneumonia.
Collapse
Affiliation(s)
- Brian F Niemeyer
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kambez H Benam
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
39
|
Soma T, Fujii K, Yoshifuji A, Maruki T, Itoh K, Taniyama D, Kikuchi T, Hasegawa N, Nakamura M. Nafamostat mesylate monotherapy in patients with moderate COVID-19 : A single-center retrospective study. Jpn J Infect Dis 2022; 75:484-489. [DOI: 10.7883/yoken.jjid.2021.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tomomi Soma
- Department of Nephrology, Japan Community Health care Organization Saitama Medical Center, Japan
| | - Kentaro Fujii
- Department of Nephrology, Tokyo Saiseikai Central Hospital, Japan
| | - Ayumi Yoshifuji
- Department of Nephrology, Tokyo Saiseikai Central Hospital, Japan
| | - Taketomo Maruki
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Japan
| | - Kazuto Itoh
- Department of General Internal Medicine, Tokyo Saiseikai Central Hospital, Japan
| | | | - Takahide Kikuchi
- Department of Hematology, Tokyo Saiseikai Central Hospital, Japan
| | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Japan
| | - Morio Nakamura
- Department of Pulmonary Medicine, National Hospital Organization Kanagawa Hospital, Japan
| |
Collapse
|
40
|
Yan Y, Yang J, Xiao D, Yin J, Song M, Xu Y, Zhao L, Dai Q, Li Y, Wang C, Wang Z, Ren X, Yang X, Ni J, Liu M, Guo X, Li W, Chen X, Liu Z, Cao R, Zhong W. Nafamostat mesylate as a broad-spectrum candidate for the treatment of flavivirus infections by targeting envelope proteins. Antiviral Res 2022; 202:105325. [PMID: 35460703 DOI: 10.1016/j.antiviral.2022.105325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 01/24/2023]
Abstract
Epidemics caused by flaviviruses occur globally; however, no antiviral drugs treating flaviviruses infections have yet been developed. Nafamostat (NM) is a protease inhibitor approved for pancreatitis and anti-coagulation. The anti-flavivirus potential of NM has yet to be determined. Here, utilizing in vitro and in vivo infection assays, we present that NM effectively inhibits Zika virus (ZIKV) and other flaviviruses in vitro. NM inhibited the production of ZIKV viral RNA and proteins originating from Asia and African lineage in human-, mouse- and monkey-derived cell lines and the in vivo anti-ZIKV efficacy of NM was verified. Mode-of-action analysis using time-of-drug-addition assay, infectivity inhibition assay, surface plasmon resonance assay, and molecular docking revealed that NM interacted with viral particles and blocked the early stage of infection by targeting the domain III of ZIKV envelope protein. Analysing the anti-flavivirus effects of NM-related compounds suggested that the antiviral effect depended on the unique structure of NM. These findings suggest the potential use of NM as an anti-flavivirus candidate, and a novel drug design approach targeting the flavivirus envelope protein.
Collapse
Affiliation(s)
- Yunzheng Yan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jingjing Yang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China; School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Dian Xiao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jiye Yin
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Mengwen Song
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yijie Xu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Lei Zhao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Qingsong Dai
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yuexiang Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Cui Wang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhuang Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaofeng Ren
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiaotong Yang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jie Ni
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Miaomiao Liu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiaojia Guo
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Wei Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xingjuan Chen
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhiqiang Liu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
41
|
Sberna G, Biagi M, Marafini G, Nardacci R, Biava M, Colavita F, Piselli P, Miraldi E, D'Offizi G, Capobianchi MR, Amendola A. In vitro Evaluation of Antiviral Efficacy of a Standardized Hydroalcoholic Extract of Poplar Type Propolis Against SARS-CoV-2. Front Microbiol 2022; 13:799546. [PMID: 35350622 PMCID: PMC8958028 DOI: 10.3389/fmicb.2022.799546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/27/2022] [Indexed: 12/23/2022] Open
Abstract
Except for specific vaccines and monoclonal antibodies, effective prophylactic or post-exposure therapeutic treatments are currently limited for COVID-19. Propolis, a honeybee’s product, has been suggested as a potential candidate for treatment of COVID-19 for its immunomodulatory properties and for its powerful activity against various types of viruses, including common coronaviruses. However, direct evidence regarding the antiviral activities of this product still remains poorly documented. VERO E6 and CALU3 cell lines were infected with SARS-CoV-2 and cultured in the presence of 12.5 or 25 μg/ml of a standardized Hydroalcoholic Extract acronym (sHEP) of Eurasian poplar type propolis and analyzed for viral RNA transcription, for cell damage by optical and electron microscopy, and for virus infectivity by viral titration at 2, 24, 48, and 72 h post-infection. The three main components of sHEP, caffeic acid phenethyl ester, galangin, and pinocembrin, were tested for the antiviral power, either alone or in combination. On both cell lines, sHEP showed significant effects mainly on CALU3 up to 48 h, i.e., some protection from cytopathic effects and consistent reduction of infected cell number, fewer viral particles inside cellular vesicles, reduction of viral titration in supernatants, dramatic drop of N gene negative sense RNA synthesis, and lower concentration of E gene RNA in cell extracts. Interestingly, pre-treatment of cells with sHEP before virus inoculation induced these same effects described previously and was not able to block virus entry. When used in combination, the three main constituents of sHEP showed antiviral activity at the same levels of sHEP. sHEP has a remarkable ability to hinder the replication of SARS-CoV-2, to limit new cycles of infection, and to protect host cells against the cytopathic effect, albeit with rather variable results. However, sHEP do not block the virus entry into the cells. The antiviral activity observed with the three main components of sHEP used in combination highlights that the mechanism underlying the antiviral activity of sHEP is probably the result of a synergistic effect. These data add further emphasis on the possible therapeutic role of this special honeybee’s product as an adjuvant to official treatments of COVID-19 patients for its direct antiviral activity.
Collapse
Affiliation(s)
- Giuseppe Sberna
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marco Biagi
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Giovanni Marafini
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Roberta Nardacci
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.,Clinical Department, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Mirella Biava
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesca Colavita
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Pierluca Piselli
- Epidemiology Department, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Elisabetta Miraldi
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Gianpiero D'Offizi
- Clinical Department, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.,Saint Camillus International University of Health Sciences, Rome, Italy
| | - Maria Rosaria Capobianchi
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.,Saint Camillus International University of Health Sciences, Rome, Italy
| | - Alessandra Amendola
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
42
|
Charoute H, Elkarhat Z, Elkhattabi L, El Fahime E, Oukkache N, Rouba H, Barakat A. Computational screening of potential drugs against COVID-19 disease: the Neuropilin-1 receptor as molecular target. Virusdisease 2022; 33:23-31. [PMID: 35079600 PMCID: PMC8776366 DOI: 10.1007/s13337-021-00751-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 11/01/2021] [Indexed: 12/28/2022] Open
Abstract
The transmembrane receptor Neuropilin-1 (NRP-1) was reported to serve as a host cell entry factor for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of COVID-19 disease. Therefore, molecular compounds interfering with SARS-CoV-2 binding to NRP-1 seem to be potential candidates as new antiviral drugs. In this study, NRP-1 receptor was targeted using a library of 1167 compounds previously analyzed in COVID-19 related studies. The results show the effectiveness of Nafamostat, Y96, Selinexor, Ebastine and UGS, in binding to NRP-1 receptor, with docking scores lower than - 8.2 kcal/mol. These molecules interact with NRP-1 receptor key residues, which makes them promising drugs to pursue further biological assays to explore their potential use in the treatment of COVID-19. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-021-00751-x.
Collapse
Affiliation(s)
- Hicham Charoute
- Research Unit of Epidemiology, Biostatistics and Bioinformatics, 1, Place Louis Pasteur, Institut Pasteur du Maroc, 20360 Casablanca, Morocco
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Zouhair Elkarhat
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Lamiae Elkhattabi
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Elmostafa El Fahime
- Molecular Biology and Functional Genomics Platform, National Center for Scientific and Technical Research, Rabat, Morocco
| | - Naoual Oukkache
- Laboratory of Venoms and Toxins, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hassan Rouba
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Abdelhamid Barakat
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
43
|
Mantzourani C, Vasilakaki S, Gerogianni VE, Kokotos G. The discovery and development of transmembrane serine protease 2 (TMPRSS2) inhibitors as candidate drugs for the treatment of COVID-19. Expert Opin Drug Discov 2022; 17:231-246. [PMID: 35072549 PMCID: PMC8862169 DOI: 10.1080/17460441.2022.2029843] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused the devastating pandemic named coronavirus disease 2019 (COVID-19). Unfortunately, the discovery of antiviral agents to combat COVID-19 is still an unmet need. Transmembrane serine protease 2 (TMPRSS2) is an important mediator in viral infection and thus, TMPRRS2 inhibitors may be attractive agents for COVID-19 treatment. AREAS COVERED This review article discusses the role of TMPRSS2 in SARS-CoV-2 cell entry and summarizes the inhibitors of TMPRSS2 and their potential anti-SARS activity. Two known TMPRSS2 inhibitors, namely camostat and nafamostat, approved drugs for the treatment of pancreatitis, are under clinical trials as potential drugs against COVID-19. EXPERT OPINION Due to the lack of the crystal structure of TMPRSS2, homology models have been developed to study the interactions of known inhibitors, including repurposed drugs, with the enzyme. However, novel TMPRSS2 inhibitors have been identified through high-throughput screening, and appropriate assays studying their in vitro activity have been set up. The discovery of TMPRSS2's crystal structure will facilitate the rational design of novel inhibitors and in vivo studies and clinical trials will give a clear answer if TMPRSS2 inhibitors could be a new weapon against COVID-19.
Collapse
Affiliation(s)
- Christiana Mantzourani
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, Greece
| | - Sofia Vasilakaki
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, Greece
| | - Velisaria-Eleni Gerogianni
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, Greece
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
44
|
Gyebi GA, Adegunloye AP, Ibrahim IM, Ogunyemi OM, Afolabi SO, Ogunro OB. Prevention of SARS-CoV-2 cell entry: insight from in silico interaction of drug-like alkaloids with spike glycoprotein, human ACE2, and TMPRSS2. J Biomol Struct Dyn 2022; 40:2121-2145. [PMID: 33089728 PMCID: PMC7594191 DOI: 10.1080/07391102.2020.1835726] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/07/2020] [Indexed: 12/28/2022]
Abstract
COVID-19 is a respiratory disease caused by SARS-CoV-2, an enveloped positive sense RNA virus. The SARS-CoV-2 spike glycoprotein, human angiotensin-converting enzyme 2 (ACE2) and human transmembrane protease serine 2 (TMPRSS2) are essential for the host cell-mediated viral entry. Targeting these proteins represent viable options to stop the first stage of infection and transmission. Hence, 97 alkaloids from African medicinal plants with reported antiviral activity were evaluated for this purpose via in silico studies. These alkaloids were docked for their interactions with SARS-CoV-2 spike glycoprotein, ACE2, and TMPRSS2. Top 20 alkaloids with highest binding affinities were further screened for their interactions with spike glycoprotein of SARS-CoV and MERS-CoV, and with ACE2-SARS-CoV-2 receptor-binding domain complex (ACE2-RBD). The energy profiling, molecular dynamics simulation (MDS), binding free energy base on Molecular Mechanics/Generalized Born Surface Area (MMGBSA), clustering of MDS trajectories, and virtual physicochemical and pharmacokinetic screening of the best docked alkaloids were performed. Results revealed that more than 15 alkaloids interacted better than the reference compounds. 10-Hydroxyusambarensine and Cryptospirolepine were docked in a similar binding pattern to the S1-specificy pocket of TMPRSS2 as camostat (reference inhibitor). The strong binding affinities, stability of the alkaloid-protein complexes and amino acid interactions displayed by cryptospirolepine, 10-hydroxyusambarensine, and cryptoquindoline with important binding hotspots of the proteins suggest these alkaloids have the potential of altering the capacity of SARS-CoV-2 membrane mediated host cell entry. Further in vitro and in vivo evaluation of these "drug-like" alkaloids as potential inhibitors of coronavirus cell entry is proposed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gideon A. Gyebi
- Department of Biological Sciences, Salem University, Lokoja, Nigeria
| | | | - Ibrahim M. Ibrahim
- Faculty of Sciences, Department of Biophysics, Cairo University, Giza, Egypt
| | | | - Saheed O. Afolabi
- Faculty of Basic Medical Sciences, Department of Pharmacology and Therapeutics, University of Ilorin, Ilorin, Nigeria
| | - Olalekan B. Ogunro
- Department of Biological Sciences, KolaDaisi University, Ibadan, Nigeria
| |
Collapse
|
45
|
Significance of Immune Status of SARS-CoV-2 Infected Patients in Determining the Efficacy of Therapeutic Interventions. J Pers Med 2022; 12:jpm12030349. [PMID: 35330349 PMCID: PMC8955701 DOI: 10.3390/jpm12030349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is now being investigated for its distinctive patterns in the course of disease development which can be indicated with miscellaneous immune responses in infected individuals. Besides this series of investigations on the pathophysiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), significant fundamental immunological and physiological processes are indispensable to address clinical markers of COVID-19 disease and essential to identify or design effective therapeutics. Recent developments in the literature suggest that deficiency of type I interferon (IFN) in serum samples can be used to represent a severe progression of COVID-19 disease and can be used as the basis to develop combined immunotherapeutic strategies. Precise control over inflammatory response is a significant aspect of targeting viral infections. This account presents a brief review of the pathophysiological characteristics of the SARS-CoV-2 virus and the understanding of the immune status of infected patients. We further discuss the immune system’s interaction with the SARS-CoV-2 virus and their subsequent involvement of dysfunctional immune responses during the progression of the disease. Finally, we highlight some of the implications of the different approaches applicable in developing promising therapeutic interventions that redirect immunoregulation and viral infection.
Collapse
|
46
|
Reduction of Cell Fusion by Deletion in the Hypervariable Region of the Spike Protein of Mouse Hepatitis Virus. Viruses 2022; 14:v14020398. [PMID: 35215991 PMCID: PMC8876987 DOI: 10.3390/v14020398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 01/27/2023] Open
Abstract
Deletions in the spike gene of mouse hepatitis virus (MHV) produce several variants with diverse biological characteristics, highlighting the significance of the spike gene in viral pathogenesis. In this study, we characterized the JHM-X strain, which has a deletion in the hypervariable region (HVR) of the spike gene, compared with the cl-2 strain, which has a full spike gene. Cytopathic effects (CPEs) induced by the two strains revealed that the size of the CPE produced by cl-2 is much greater than that produced by JHM-X in delayed brain tumor (DBT) cells. Thus, this finding explains the greater fusion activity of cl-2 than JHM-X in cultured cells, and we speculate that the deletion region of the spike protein is involved in the fusion activity differences. In contrast with the fusion activity, a comparison of the virus growth kinetics revealed that the titer of JHM-X was approximately 100 times higher than that of cl-2. We found that the deletion region of the spike protein was involved in fusion activity differences, whereas cl-2 produced significantly higher luciferase activity than JHM-X upon similar expression levels of the spike protein. However, the reason behind the growth difference is still unknown. Overall, we discovered that deletion in the HVR of the spike gene could be involved in the fusion activity differences between the two strains.
Collapse
|
47
|
Ray R, Birangal SR, Fathima F, Bhat GV, Rao M, Shenoy GG. Repurposing of approved drugs and nutraceuticals to identify potential inhibitors of SARS-COV-2’s entry into human host cells: a structural analysis using induced-fit docking, MMGBSA and molecular dynamics simulation approach. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2021.2016741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rajdeep Ray
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sumit Raosaheb Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Fajeelath Fathima
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - G. Varadaraj Bhat
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - G. Gautham Shenoy
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
48
|
Niemeyer BF, Miller CM, Ledesma‐Feliciano C, Morrison JH, Jimenez‐Valdes R, Clifton C, Poeschla EM, Benam KH. Broad antiviral and anti-inflammatory efficacy of nafamostat against SARS-CoV-2 and seasonal coronaviruses in primary human bronchiolar epithelia. NANO SELECT 2022; 3:437-449. [PMID: 34541574 PMCID: PMC8441815 DOI: 10.1002/nano.202100123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Antiviral strategies that target host systems needed for SARS-CoV-2 replication and pathogenesis may have therapeutic potential and help mitigate resistance development. Here, we evaluate nafamostat mesylate, a potent broad-spectrum serine protease inhibitor that blocks host protease activation of the viral spike protein. SARS-CoV-2 is used to infect human polarized mucociliated primary bronchiolar epithelia reconstituted with cells derived from healthy donors, smokers and subjects with chronic obstructive pulmonary disease. Nafamostat markedly inhibits apical shedding of SARS-CoV-2 from all donors (log10 reduction). We also observe, for the first-time, anti-inflammatory effects of nafamostat on airway epithelia independent of its antiviral effects, suggesting a dual therapeutic advantage in the treatment of COVID-19. Nafamostat also exhibits antiviral properties against the seasonal human coronaviruses 229E and NL6. These findings suggest therapeutic promise for nafamostat in treating SARS-CoV-2 and other human coronaviruses.
Collapse
Affiliation(s)
- Brian F. Niemeyer
- Division of PulmonaryAllergy and Critical Care MedicineDepartment of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Caitlin M. Miller
- Division of Infectious DiseasesDepartment of MedicineAnschutz Medical CampusUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Carmen Ledesma‐Feliciano
- Division of Infectious DiseasesDepartment of MedicineAnschutz Medical CampusUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - James H. Morrison
- Division of Infectious DiseasesDepartment of MedicineAnschutz Medical CampusUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Rocio Jimenez‐Valdes
- Division of PulmonaryAllergy and Critical Care MedicineDepartment of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Clarissa Clifton
- Division of PulmonaryAllergy and Critical Care MedicineDepartment of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Eric M. Poeschla
- Division of Infectious DiseasesDepartment of MedicineAnschutz Medical CampusUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Kambez H. Benam
- Division of PulmonaryAllergy and Critical Care MedicineDepartment of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
- Vascular Medicine InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
49
|
Quinn TM, Gaughan EE, Bruce A, Antonelli J, O'Connor R, Li F, McNamara S, Koch O, MacKintosh C, Dockrell D, Walsh T, Blyth KG, Church C, Schwarze J, Boz C, Valanciute A, Burgess M, Emanuel P, Mills B, Rinaldi G, Hardisty G, Mills R, Findlay EG, Jabbal S, Duncan A, Plant S, Marshall ADL, Young I, Russell K, Scholefield E, Nimmo AF, Nazarov IB, Churchill GC, McCullagh JSO, Ebrahimi KH, Ferrett C, Templeton K, Rannard S, Owen A, Moore A, Finlayson K, Shankar-Hari M, Norrie J, Parker RA, Akram AR, Anthony DC, Dear JW, Hirani N, Dhaliwal K. Randomised controlled trial of intravenous nafamostat mesylate in COVID pneumonitis: Phase 1b/2a experimental study to investigate safety, Pharmacokinetics and Pharmacodynamics. EBioMedicine 2022; 76:103856. [PMID: 35152152 PMCID: PMC8831100 DOI: 10.1016/j.ebiom.2022.103856] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Many repurposed drugs have progressed rapidly to Phase 2 and 3 trials in COVID19 without characterisation of Pharmacokinetics /Pharmacodynamics including safety data. One such drug is nafamostat mesylate. METHODS We present the findings of a phase Ib/IIa open label, platform randomised controlled trial of intravenous nafamostat in hospitalised patients with confirmed COVID-19 pneumonitis. Patients were assigned randomly to standard of care (SoC), nafamostat or an alternative therapy. Nafamostat was administered as an intravenous infusion at a dose of 0.2 mg/kg/h for a maximum of seven days. The analysis population included those who received any dose of the trial drug and all patients randomised to SoC. The primary outcomes of our trial were the safety and tolerability of intravenous nafamostat as an add on therapy for patients hospitalised with COVID-19 pneumonitis. FINDINGS Data is reported from 42 patients, 21 of which were randomly assigned to receive intravenous nafamostat. 86% of nafamostat-treated patients experienced at least one AE compared to 57% of the SoC group. The nafamostat group were significantly more likely to experience at least one AE (posterior mean odds ratio 5.17, 95% credible interval (CI) 1.10 - 26.05) and developed significantly higher plasma creatinine levels (posterior mean difference 10.57 micromol/L, 95% CI 2.43-18.92). An average longer hospital stay was observed in nafamostat patients, alongside a lower rate of oxygen free days (rate ratio 0.55-95% CI 0.31-0.99, respectively). There were no other statistically significant differences in endpoints between nafamostat and SoC. PK data demonstrated that intravenous nafamostat was rapidly broken down to inactive metabolites. We observed no significant anticoagulant effects in thromboelastometry. INTERPRETATION In hospitalised patients with COVID-19, we did not observe evidence of anti-inflammatory, anticoagulant or antiviral activity with intravenous nafamostat, and there were additional adverse events. FUNDING DEFINE was funded by LifeArc (an independent medical research charity) under the STOPCOVID award to the University of Edinburgh. We also thank the Oxford University COVID-19 Research Response Fund (BRD00230).
Collapse
Affiliation(s)
- Tom M Quinn
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK; Royal Infirmary of Edinburgh, BioQuarter, Little France, Edinburgh
| | - Erin E Gaughan
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK; Royal Infirmary of Edinburgh, BioQuarter, Little France, Edinburgh
| | - Annya Bruce
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Jean Antonelli
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Richard O'Connor
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Feng Li
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Sarah McNamara
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Oliver Koch
- Regional Infectious Disease Unit, NHS Lothian, UK
| | | | - David Dockrell
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK; Regional Infectious Disease Unit, NHS Lothian, UK
| | - Timothy Walsh
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK; Royal Infirmary of Edinburgh, BioQuarter, Little France, Edinburgh
| | - Kevin G Blyth
- Institute of Cancer Sciences, University of Glasgow, UK
| | - Colin Church
- Department of Respiratory Medicine, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde Health Board, Glasgow, UK
| | - Jürgen Schwarze
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Cecilia Boz
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Asta Valanciute
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Matthew Burgess
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Philip Emanuel
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Bethany Mills
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Giulia Rinaldi
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Gareth Hardisty
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Ross Mills
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Emily Gwyer Findlay
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Sunny Jabbal
- Royal Infirmary of Edinburgh, BioQuarter, Little France, Edinburgh
| | | | - Sinéad Plant
- Regional Infectious Disease Unit, NHS Lothian, UK
| | - Adam D L Marshall
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK; Royal Infirmary of Edinburgh, BioQuarter, Little France, Edinburgh
| | - Irene Young
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Kay Russell
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Emma Scholefield
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Alastair F Nimmo
- Royal Infirmary of Edinburgh, BioQuarter, Little France, Edinburgh
| | - Islom B Nazarov
- Latus Therapeutics, Oxford, UK; Department of Pharmacology, University of Oxford, Oxford, UK
| | | | | | | | - Colin Ferrett
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Kate Templeton
- Royal Infirmary of Edinburgh, BioQuarter, Little France, Edinburgh
| | - Steve Rannard
- Centre of Excellence for Long-acting Therapeutics, Materials Innovation Factory and Department of Pharmacology and Therapeutics, University of Liverpool, UK
| | - Andrew Owen
- Centre of Excellence for Long-acting Therapeutics, Materials Innovation Factory and Department of Pharmacology and Therapeutics, University of Liverpool, UK
| | - Anne Moore
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Keith Finlayson
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Manu Shankar-Hari
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - John Norrie
- Centre for Cardiovascular Science, Queen's Medical Research Institute, Bioquarter, University of Edinburgh, Edinburgh, UK
| | - Richard A Parker
- Edinburgh Clinical Trials Unit (ECTU), Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Ahsan R Akram
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK; Royal Infirmary of Edinburgh, BioQuarter, Little France, Edinburgh
| | | | - James W Dear
- Royal Infirmary of Edinburgh, BioQuarter, Little France, Edinburgh,; Centre for Cardiovascular Science, Queen's Medical Research Institute, Bioquarter, University of Edinburgh, Edinburgh, UK
| | - Nik Hirani
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK; Royal Infirmary of Edinburgh, BioQuarter, Little France, Edinburgh
| | - Kevin Dhaliwal
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK; Royal Infirmary of Edinburgh, BioQuarter, Little France, Edinburgh,.
| |
Collapse
|
50
|
Wettstein L, Kirchhoff F, Münch J. The Transmembrane Protease TMPRSS2 as a Therapeutic Target for COVID-19 Treatment. Int J Mol Sci 2022; 23:1351. [PMID: 35163273 PMCID: PMC8836196 DOI: 10.3390/ijms23031351] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 01/25/2023] Open
Abstract
TMPRSS2 is a type II transmembrane protease with broad expression in epithelial cells of the respiratory and gastrointestinal tract, the prostate, and other organs. Although the physiological role of TMPRSS2 remains largely elusive, several endogenous substrates have been identified. TMPRSS2 serves as a major cofactor in SARS-CoV-2 entry, and primes glycoproteins of other respiratory viruses as well. Consequently, inhibiting TMPRSS2 activity is a promising strategy to block viral infection. In this review, we provide an overview of the role of TMPRSS2 in the entry processes of different respiratory viruses. We then review the different classes of TMPRSS2 inhibitors and their clinical development, with a focus on COVID-19 treatment.
Collapse
Affiliation(s)
| | | | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (L.W.); (F.K.)
| |
Collapse
|