1
|
Carton JD, de-la-Fuente I, Sevillano E, Jauregizar N, Quindós G, Eraso E, Guridi A. In Vitro Assessment of Fluconazole and Cyclosporine A Antifungal Activities: A Promising Drug Combination Against Different Candida Species. J Fungi (Basel) 2025; 11:133. [PMID: 39997427 DOI: 10.3390/jof11020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Invasive candidiasis is a common fungal infection associated with multiple risk factors, such as cancer, neutropenia, corticosteroid therapy, catheterization, and the use of broad-spectrum antibiotic treatment. Candida albicans is the predominant causative agent, although other Candida species have been emerging in the last years, together with a rise in a number of strains resistant to the currently available antifungal drugs, which poses a challenge when treating these infections. Drug repurposing and drug combinations are promising strategies for the treatment of invasive mycoses. In this study, we evaluated the effect of the combination of fluconazole (FLZ) and cyclosporine A (CsA) against 39 clinical isolates and reference strains of Candida. Two methods, the Loewe additivity model and Bliss independence model, were used to assess the antifungal activity of the drug combination according to CLSI and EUCAST guidelines. The results demonstrated a synergistic effect between fluconazole (FLZ) and cyclosporine A (CsA) against 15-17 Candida isolates, depending on the evaluation model used, including FLZ-resistant strains of C. albicans, C. glabrata, C. parapsilosis, and C. tropicalis. Notably, the combination significantly reduced the minimum inhibitory concentration (MIC) of FLZ in a substantial number of isolates, including those with resistance to FLZ. Additionally, time-kill curve studies confirmed the synergistic interaction, further validating the potential of this combination as an alternative therapeutic strategy for candidiasis treatment. These findings emphasize the importance of investigating innovative drug combinations to address the challenges posed by antifungal resistance and improve treatment options for invasive fungal infections.
Collapse
Affiliation(s)
- Juan Daniel Carton
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Iñigo de-la-Fuente
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Elena Sevillano
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Nerea Jauregizar
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Guillermo Quindós
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Biobizkaia, Basque Health Research, 48903 Barakaldo, Spain
| | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Andrea Guridi
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
2
|
Xiong J, Lu H, Jiang Y. Mechanisms of Azole Potentiation: Insights from Drug Repurposing Approaches. ACS Infect Dis 2025. [PMID: 39749640 DOI: 10.1021/acsinfecdis.4c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The emergence of azole resistance and tolerance in pathogenic fungi has emerged as a significant public health concern, emphasizing the urgency for innovative strategies to bolster the efficacy of azole-based treatments. Drug repurposing stands as a promising and practical avenue for advancing antifungal therapy, with the potential for swift clinical translation. This review offers a comprehensive overview of azole synergistic agents uncovered through drug repurposing strategies, alongside an in-depth exploration of the mechanisms by which these agents augment azole potency. Drawing from these mechanisms, we delineate strategies aimed at enhancing azole effectiveness, such as inhibiting efflux pumps to elevate azole concentrations within fungal cells, intensifying ergosterol synthesis inhibition, mitigating fungal cell resistance to azoles, and disrupting biological processes extending beyond ergosterol synthesis. This review is beneficial for the development of these potentiators, as it meticulously examines instances and provides nuanced discussions on the mechanisms underlying the progression of azole potentiators through drug repurposing strategies.
Collapse
Affiliation(s)
- Juan Xiong
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| |
Collapse
|
3
|
Sousa IS, Tavares LFS, Silva BA, Moreno DSA, Alviano CS, Santos ALS, Kneipp LF. Calcineurin activity in Fonsecaea pedrosoi: tacrolimus and cyclosporine A inhibited conidia growth, filamentation and showed synergism with itraconazole. Braz J Microbiol 2024; 55:3643-3654. [PMID: 39044105 PMCID: PMC11711851 DOI: 10.1007/s42770-024-01463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
Fonsecaea pedrosoi is a melanized fungus that causes chromoblastomycosis (CBM), a tropical neglected disease responsible for chronic and disability-related subcutaneous mycosis. Given the challenging nature of CBM treatment, the study of new targets and novel bioactive drugs capable of improving patient life quality is urgent. In the present work, we detected a calcineurin activity in F. pedrosoi conidial form, employing primarily colorimetric, immunoblotting and flow cytometry assays. Our findings reveal that the calcineurin activity of F. pedrosoi was stimulated by Ca2+/calmodulin, inhibited by EGTA and specific inhibitors, such as tacrolimus (FK506) and cyclosporine A (CsA), and proved to be insensitive to okadaic acid. In addition, FK506 and CsA were able to affect the cellular viability and the fungal proliferation. This effect was corroborated by transmission electron microscopy that showed both calcineurin inhibitors promoted profound changes in the ultrastructure of conidia, causing mainly cytoplasm condensation and intense vacuolization that are clear indication of cell death. Our data indicated that FK506 exhibited the highest effectiveness, with a minimum inhibitory concentration (MIC) of 3.12 mg/L, whereas CsA required 15.6 mg/L to inhibit 100% of conidial growth. Interestingly, when both were combined with itraconazole, they demonstrated anti-F. pedrosoi activity, exhibiting a synergistic effect. Moreover, the fungal filamentation was affected after treatment with both calcineurin inhibitors. These data corroborate with other calcineurin studies in fungal cells and open up further discussions aiming to establish the role of this enzyme as a potential target for antifungal therapy against CBM infections.
Collapse
Affiliation(s)
- Ingrid S Sousa
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil
| | - Lucilene F S Tavares
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil
| | - Bianca A Silva
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-901, Brazil
| | - Daniela S A Moreno
- Laboratório de Estrutura de Microrganismos, IMPG, UFRJ, Rio de Janeiro, 21941-902, Brazil
| | - Celuta S Alviano
- Laboratório de Estrutura de Microrganismos, IMPG, UFRJ, Rio de Janeiro, 21941-902, Brazil
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-901, Brazil
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, 21941-901, Brazil
| | - Lucimar F Kneipp
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil.
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, 21941-901, Brazil.
| |
Collapse
|
4
|
Martín V, de la Haba RR, López-Cornejo P, López-López M, Antonio Lebrón J, Bernal E, Baeza N, Ruiz S, José Ostos F, Merino-Bohorquez V, Chevalier S, Lesouhaitier O, Tahrioui A, José Montes F, Sánchez-Carrasco T, Luisa Moyá M. Synergistic antifungal activity against Candida albicans between voriconazole and cyclosporine a loaded in polymeric nanoparticles. Int J Pharm 2024; 664:124593. [PMID: 39168289 DOI: 10.1016/j.ijpharm.2024.124593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
The goal of this work is to investigate if the synergistic antifungal activity between cyclosporine A, CsA, and voriconazole, VRZ, increases when both drugs are encapsulated in a nanocarrier as compared when they are free. The preparation and characterization of blank and VRZ and CsA loaded polymeric based PLGA nanoparticles (PLGA, PLGA-PEG, and PLGA+PEG) was a necessary previous step. Using the more suitable NPs, those of PLGA, the antifungal susceptibility tests performed with VRZ-loaded PLGA NPs, show no significant increase of the antifungal activity in comparison to that of free VRZ. However, the synergistic behavior found for the (VRZ+CsA)-loaded PLGA NPs was fourfold stronger than that observed for the two free drugs together. On the other hand, the investigation into the suppression of C. albicans biofilm formation showed that blank PLGA NPs inhibit the biofilm formation at high NPs concentrations. However, a minor effect or even a slight biofilm increase formation was observed at low and moderate NPs concentrations. Therefore, the enhancement of the biofilm inhibition found for the three tested treatments (CsA alone, VRZ alone, and VRZ+CsA) when comparing free and encapsulated drugs, within the therapeutic window, can be attributed to the drug encapsulation approach. Indeed, polymeric PLGA NPs loaded with CsA, VRZ, or VRZ+CsA are more effective at inhibiting the C. albicans biofilm growth than their free counterparts.
Collapse
Affiliation(s)
- Victoria Martín
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| | - Rafael R de la Haba
- Departament of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, C/Profesor García González 2, Seville 41012, Spain
| | - Pilar López-Cornejo
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| | - Manuel López-López
- Department of Chemical Engineering, Physical Chemistry and Materials Science, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Avda. de las Fuerzas Armadas s/n, Huelva 21071, Spain
| | - José Antonio Lebrón
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| | - Eva Bernal
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| | - Natalia Baeza
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| | - Sara Ruiz
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| | - Francisco José Ostos
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| | - Vicente Merino-Bohorquez
- Department of Pharmacology, University of Seville, C/Profesor García González 2, Seville 41012, Spain
| | - Sylvie Chevalier
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR4312, Rouen F-76000, France
| | - Olivier Lesouhaitier
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR4312, Rouen F-76000, France
| | - Ali Tahrioui
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR4312, Rouen F-76000, France
| | - Francisco José Montes
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| | - Teresa Sánchez-Carrasco
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| | - María Luisa Moyá
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain.
| |
Collapse
|
5
|
Librais GMN, Jiang Y, Razzaq I, Brandl CJ, Shapiro RS, Lajoie P. Evolutionary diversity of the control of the azole response by Tra1 across yeast species. G3 (BETHESDA, MD.) 2024; 14:jkad250. [PMID: 37889998 PMCID: PMC10849324 DOI: 10.1093/g3journal/jkad250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/16/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Tra1 is an essential coactivator protein of the yeast SAGA and NuA4 acetyltransferase complexes that regulate gene expression through multiple mechanisms including the acetylation of histone proteins. Tra1 is a pseudokinase of the PIKK family characterized by a C-terminal PI3K domain with no known kinase activity. However, mutations of specific arginine residues to glutamine in the PI3K domains (an allele termed tra1Q3) result in reduced growth and increased sensitivity to multiple stresses. In the opportunistic fungal pathogen Candida albicans, the tra1Q3 allele reduces pathogenicity and increases sensitivity to the echinocandin antifungal drug caspofungin, which disrupts the fungal cell wall. Here, we found that compromised Tra1 function, in contrast to what is seen with caspofungin, increases tolerance to the azole class of antifungal drugs, which inhibits ergosterol synthesis. In C. albicans, tra1Q3 increases the expression of genes linked to azole resistance, such as ERG11 and CDR1. CDR1 encodes a multidrug ABC transporter associated with efflux of multiple xenobiotics, including azoles. Consequently, cells carrying tra1Q3 show reduced intracellular accumulation of fluconazole. In contrast, a tra1Q3 Saccharomyces cerevisiae strain displayed opposite phenotypes: decreased tolerance to azole, decreased expression of the efflux pump PDR5, and increased intracellular accumulation of fluconazole. Therefore, our data provide evidence that Tra1 differentially regulates the antifungal response across yeast species.
Collapse
Affiliation(s)
| | - Yuwei Jiang
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Iqra Razzaq
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| |
Collapse
|
6
|
Vanzolini T, Magnani M. Old and new strategies in therapy and diagnosis against fungal infections. Appl Microbiol Biotechnol 2024; 108:147. [PMID: 38240822 PMCID: PMC10799149 DOI: 10.1007/s00253-023-12884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024]
Abstract
Fungal infections represent a serious global health threat. The new emerging pathogens and the spread of different forms of resistance are now hardly challenging the tools available in therapy and diagnostics. With the commonly used diagnoses, fungal identification is often slow and inaccurate, and, on the other hand, some drugs currently used as treatments are significantly affected by the decrease in susceptibility. Herein, the antifungal arsenal is critically summarized. Besides describing the old approaches and their mechanisms, advantages, and limitations, the focus is dedicated to innovative strategies which are designed, identified, and developed to take advantage of the discrepancies between fungal and host cells. Relevant pathways and their role in survival and virulence are discussed as their suitability as sources of antifungal targets. In a similar way, molecules with antifungal activity are reported as potential agents/precursors of the next generation of antimycotics. Particular attention was devoted to biotechnological entities, to their novelty and reliability, to drug repurposing and restoration, and to combinatorial applications yielding significant improvements in efficacy. KEY POINTS: • New antifungal agents and targets are needed to limit fungal morbidity and mortality. • Therapeutics and diagnostics suffer of delays in innovation and lack of targets. • Biologics, drug repurposing and combinations are the future of antifungal treatments.
Collapse
Affiliation(s)
- Tania Vanzolini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, PU, Italy.
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, PU, Italy
| |
Collapse
|
7
|
Massey J, Zarnowski R, Andes D. Role of the extracellular matrix in Candida biofilm antifungal resistance. FEMS Microbiol Rev 2023; 47:fuad059. [PMID: 37816666 DOI: 10.1093/femsre/fuad059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/17/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023] Open
Abstract
Clinical infection due to Candida species frequently involve growth in biofilm communities. Recalcitrance despite antifungal therapy leads to disease persistence associated with high morbidity and mortality. Candida possesses several tools allowing evasion of antifungal effects. Among these, protection of biofilm cells via encasement by the extracellular matrix is responsible for a majority drug resistance phenotype. The Candida matrix composition is complex and includes a mannan-glucan complex linked to antifungal drug sequestration. This mechanism of resistance is conserved across the Candida genus and impacts each of the available antifungal drug classes. The exosome pathway is responsible for delivery and assembly of much of the Candida extracellular matrix as functional vesicle protein and polysaccharide cargo. Investigations demonstrate the vesicle matrix delivery pathway is a useful fungal biofilm drug target. Further elucidation of the vesicle pathway, as well as understanding the roles of biofilm driven cargo may provide additional targets to aid the diagnosis, prevention, and treatment of Candida biofilms.
Collapse
Affiliation(s)
- Justin Massey
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave Madison WI 53705, Madison
| | - Robert Zarnowski
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave Madison WI 53705, Madison
| | - David Andes
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave Madison WI 53705, Madison
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1685 Highland Ave Madison WI 53705, Madison
| |
Collapse
|
8
|
Bonincontro G, Scuderi SA, Marino A, Simonetti G. Synergistic Effect of Plant Compounds in Combination with Conventional Antimicrobials against Biofilm of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida spp. Pharmaceuticals (Basel) 2023; 16:1531. [PMID: 38004397 PMCID: PMC10675371 DOI: 10.3390/ph16111531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Bacterial and fungal biofilm has increased antibiotic resistance and plays an essential role in many persistent diseases. Biofilm-associated chronic infections are difficult to treat and reduce the efficacy of medical devices. This global problem has prompted extensive research to find alternative strategies to fight microbial chronic infections. Plant bioactive metabolites with antibiofilm activity are known to be potential resources to alleviate this problem. The phytochemical screening of some medicinal plants showed different active groups, such as stilbenes, tannins, alkaloids, terpenes, polyphenolics, flavonoids, lignans, quinones, and coumarins. Synergistic effects can be observed in the interaction between plant compounds and conventional drugs. This review analyses and summarises the current knowledge on the synergistic effects of plant metabolites in combination with conventional antimicrobials against biofilms of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. The synergism of conventional antimicrobials with plant compounds can modify and inhibit the mechanisms of acquired resistance, reduce undesirable effects, and obtain an appropriate therapeutic effect at lower doses. A deeper knowledge of these combinations and of their possible antibiofilm targets is needed to develop next-generation novel antimicrobials and/or improve current antimicrobials to fight drug-resistant infections attributed to biofilm.
Collapse
Affiliation(s)
- Graziana Bonincontro
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Roma, Italy;
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98100 Messina, Italy;
| | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98100 Messina, Italy;
| | - Giovanna Simonetti
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Roma, Italy;
| |
Collapse
|
9
|
Abstract
Fungal infections are rising, with over 1.5 billion cases and more than 1 million deaths recorded each year. Among these, Candida infections are frequent in at-risk populations and the rapid development of drug resistance and tolerance contributes to their clinical persistence. Few antifungal drugs are available, and their efficacy is declining due to the environmental overuse and the expansion of multidrug-resistant species. One way to prolong their utility is by applying them in combination therapy. Here, we highlight recently described azole potentiators belonging to different categories: natural, repurposed, or novel compounds. We showcase examples of molecules and discuss their identified or proposed mode of action. We also emphasise the challenges in azole potentiator development, compounded by the lack of animal testing, the overreliance on Candida albicans and Candida auris, as well as the limited understanding of compound efficacy.
Collapse
Affiliation(s)
| | - Iuliana V. Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| |
Collapse
|
10
|
Jain T, Mishra P, Kumar S, Panda G, Banerjee D. Molecular dissection studies of TAC1, a transcription activator of Candida drug resistance genes of the human pathogenic fungus Candida albicans. Front Microbiol 2023; 14:994873. [PMID: 37502396 PMCID: PMC10370356 DOI: 10.3389/fmicb.2023.994873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 06/06/2023] [Indexed: 07/29/2023] Open
Abstract
The up-regulation of ABC transporters Cdr1p and Cdr2p that efflux antifungal azole drugs are a leading cause of Multi-Drug Resistance (MDR) in the white fungus Candida albicans. C. albicans was reported to infect patients following the recent Covid-19 pandemic after they were given steroids for recovery. Previously, the TAC1 gene was identified as the transcriptional activator of Candida drug resistance genes (CDR1 and CDR2) and has no known human homologs. This makes it a good target for the development of novel antifungals. We, therefore, carried out the molecular dissection study of TAC1 to understand the functional regulation of the ABC transporter genes (CDR1 and CDR2) under its control. The N-terminal DNA Binding Domain (DBD) of Tac1p interacts with the Drug Responsive Element (DRE) present in the upstream promoter region of CDR1 and CDR2 genes of C. albicans. The interaction between DBD and DRE recruits Tac1p to the promoter of CDR genes. The C-terminal Acidic Activation Domain (AAD) of Tac1p interacts with the TATA box Binding Protein (TBP) and thus recruits TBP to the TATA box of CDR1 and CDR2 genes. Taking a cue from a previous study involving a TAC1 deletion strain that suggested that Tac1p acts as a xenobiotic receptor, in this study, we identified that the Middle Homology Region (MHR) of Tac1p acts as a probable xenobiotic binding domain (XBD) which plays an important role in Candida drug resistance. In addition, we studied the role of Tac1p in the regulation of some lipid profiling genes and stress response genes since they also contain the DRE consensus sequence and found that some of them can respond to xenobiotic stimuli.
Collapse
Affiliation(s)
- Tushar Jain
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Lucknow, Uttar Pradesh, India
- CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Pankaj Mishra
- CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sushil Kumar
- CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Gautam Panda
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Lucknow, Uttar Pradesh, India
- CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Dibyendu Banerjee
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Lucknow, Uttar Pradesh, India
- CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
11
|
Zhu P, Li Y, Guo T, Liu S, Tancer RJ, Hu C, Zhao C, Xue C, Liao G. New antifungal strategies: drug combination and co-delivery. Adv Drug Deliv Rev 2023; 198:114874. [PMID: 37211279 DOI: 10.1016/j.addr.2023.114874] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
The growing occurrence of invasive fungal infections and the mounting rates of drug resistance constitute a significant menace to human health. Antifungal drug combinations have garnered substantial interest for their potential to improve therapeutic efficacy, reduce drug doses, reverse, or ameliorate drug resistance. A thorough understanding of the molecular mechanisms underlying antifungal drug resistance and drug combination is key to developing new drug combinations. Here we discuss the mechanisms of antifungal drug resistance and elucidate how to discover potent drug combinations to surmount resistance. We also examine the challenges encountered in developing such combinations and discuss prospects, including advanced drug delivery strategies.
Collapse
Affiliation(s)
- Ping Zhu
- State Key Laboratory of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400700, China
| | - Yan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Ting Guo
- State Key Laboratory of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400700, China
| | - Simei Liu
- Department of Traditional Chinese Medicine, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, China; Institute of Pharmacology and Toxicology, Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Robert J Tancer
- Public Health Research Institute and Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Changhua Hu
- State Key Laboratory of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400700, China
| | - Chengzhi Zhao
- Chongqing Health Center for Women and Children, Chongqing, 400700, PR China.
| | - Chaoyang Xue
- Public Health Research Institute and Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Guojian Liao
- State Key Laboratory of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400700, China.
| |
Collapse
|
12
|
Kaur J, Nobile CJ. Antifungal drug-resistance mechanisms in Candida biofilms. Curr Opin Microbiol 2023; 71:102237. [PMID: 36436326 PMCID: PMC11569868 DOI: 10.1016/j.mib.2022.102237] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022]
Abstract
Infections caused by the Candida species of human fungal pathogens are a significant medical problem because they can disseminate to nearly every organ of the body. In addition, there are only a few classes of antifungal drugs available to treat patients with invasive fungal infections. Candida infections that are associated with biofilms can withstand much higher concentrations of antifungal drugs compared with infections caused by planktonic cells, thus making biofilm infections particularly challenging to treat. Candida albicans is among the most prevalent fungal species of the human microbiota, asymptomatically colonizing several niches of the body, including the gastrointestinal tract, genitourinary tract, mouth, and skin. Immunocompromised health conditions, dysbiosis of the microbiota, or environmental changes, however, can lead to C. albicans overgrowth, causing infections that range from superficial mucosal infections to severe hematogenously disseminated infections. Here, we review the current knowledge of antifungal drug-resistance mechanisms occurring in Candida biofilms.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, USA; Health Sciences Research Institute, University of California Merced, Merced, CA, USA.
| |
Collapse
|
13
|
Andes DR, Nett JE. Analysis of Candida Antifungal Resistance Using Animal Infection Models. Methods Mol Biol 2023; 2658:225-238. [PMID: 37024706 PMCID: PMC11577834 DOI: 10.1007/978-1-0716-3155-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Candida frequently produces three general disease states, including mucosal candidiasis, disseminated candidiasis, and biofilm infection (which can be present with either of the other disease states). Antifungal drug resistance is intrinsic to biofilm growth and has emerged in other disease states. Mechanistic studies have uncovered the genetic pathways governing resistance to a number of antifungal agents. However, analyzing the clinical relevance of distinct mechanisms is fundamental for broadening our knowledge of antifungal drug resistance and for delineating the potential impact of targeting these pathways medically. Also, as drug-resistant strains and biofilms represent important nosocomial problems, preclinical animal models to assess the activity of novel antifungals are of great interest. Here we describe two rodent models that mimic the most common biofilm device and disseminated candidiasis states in patients. The model systems incorporate the anatomical site, immune components, and antifungal exposures relevant for the study of antifungal resistance. The models can be used to analyze mutant strains, assess the extent of drug resistance, examine biofilm formation, test new antimicrobials, and help determine drug exposures that may be linked with clinical failure.
Collapse
|
14
|
Fan F, Liu Y, Liu Y, Lv R, Sun W, Ding W, Cai Y, Li W, Liu X, Qu W. Candida albicans biofilms: antifungal resistance, immune evasion, and emerging therapeutic strategies. Int J Antimicrob Agents 2022; 60:106673. [PMID: 36103915 DOI: 10.1016/j.ijantimicag.2022.106673] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/24/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
Candida albicans is a fungal pathogen that can form biofilms on medical devices and host tissue, resulting in serious, life-threatening infections. These fungal biofilms are inherently resistant to traditional antifungal therapies and the host immune system; therefore, biofilm-associated infections are a huge clinical challenge. This review summarizes the most important insights into C. albicans biofilm-associated antifungal drug resistance mechanisms and immune evasion strategies. In addtion, this review also discusses the strategies for antifungal drug use to combat these processes, providing further evidence for novel drugs research and clinical therapies.
Collapse
Affiliation(s)
- FangMei Fan
- Department of Laboratory Medicine, Guiyang Maternity & Child Health Hospital, Guiyang, 550003, China
| | - Yi Liu
- Department of Laboratory Medicine, Guiyang Maternity & Child Health Hospital, Guiyang, 550003, China
| | - YiQing Liu
- Department of Laboratory Medicine, Guiyang Maternity & Child Health Hospital, Guiyang, 550003, China
| | - RuiXue Lv
- Department of Laboratory Medicine, Guiyang Maternity & Child Health Hospital, Guiyang, 550003, China
| | - Wei Sun
- Department of Laboratory Medicine, Guiyang Maternity & Child Health Hospital, Guiyang, 550003, China
| | - WenJing Ding
- Department of Laboratory Medicine, Guiyang Maternity & Child Health Hospital, Guiyang, 550003, China
| | - YanXing Cai
- Department of Laboratory Medicine, Guiyang Maternity & Child Health Hospital, Guiyang, 550003, China
| | - WeiWei Li
- Department of Laboratory Medicine, Guiyang Maternity & Child Health Hospital, Guiyang, 550003, China
| | - Xing Liu
- Department of Laboratory Medicine, Guiyang Maternity & Child Health Hospital, Guiyang, 550003, China
| | - Wei Qu
- Department of Laboratory Medicine, Guiyang Maternity & Child Health Hospital, Guiyang, 550003, China.
| |
Collapse
|
15
|
Gómez AC, Lyons T, Mamat U, Yero D, Bravo M, Daura X, Elshafee O, Brunke S, Gahan CGM, O'Driscoll M, Gibert I, O'Sullivan TP. Synthesis and evaluation of novel furanones as biofilm inhibitors in opportunistic human pathogens. Eur J Med Chem 2022; 242:114678. [PMID: 36037789 DOI: 10.1016/j.ejmech.2022.114678] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022]
Abstract
Diseases caused by biofilm-forming pathogens are becoming increasingly prevalent and represent a major threat to human health. This trend has prompted a search for novel inhibitors of microbial biofilms which could, for example, be used to potentiate existing antibiotics. Naturally-occurring, halogenated furanones isolated from marine algae have proven to be effective biofilm inhibitors in several bacterial species. In this work, we report the synthesis of a library of novel furanones and their subsequent evaluation as biofilm inhibitors in several opportunistic human pathogens including S. enterica, S. aureus, E. coli, S. maltophilia, P. aeruginosa and C. albicans. A number of the most potent compounds were subjected to further analysis by confocal laser-scanning microscopy for their effects on P. aeruginosa and C. albicans biofilms individually, in addition to mixed polymicrobial biofilms. Lastly, we investigated the impact of a promising candidate on survival rates in vivo using a Galleria mellonella model.
Collapse
Affiliation(s)
- Andromeda-Celeste Gómez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Thérèse Lyons
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Uwe Mamat
- Cellular Microbiology, Research Center Borstel, Leibniz Lung Center, Parkallee 4a, 23845 Borstel, Germany
| | - Daniel Yero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Bravo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Osama Elshafee
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Cormac G M Gahan
- School of Pharmacy, University College Cork, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Michelle O'Driscoll
- School of Pharmacy, University College Cork, Cork, Ireland; School of Chemistry, University College Cork, Cork, Ireland; Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Isidre Gibert
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Timothy P O'Sullivan
- School of Pharmacy, University College Cork, Cork, Ireland; School of Chemistry, University College Cork, Cork, Ireland; Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland.
| |
Collapse
|
16
|
Revie NM, Iyer KR, Maxson ME, Zhang J, Yan S, Fernandes CM, Meyer KJ, Chen X, Skulska I, Fogal M, Sanchez H, Hossain S, Li S, Yashiroda Y, Hirano H, Yoshida M, Osada H, Boone C, Shapiro RS, Andes DR, Wright GD, Nodwell JR, Del Poeta M, Burke MD, Whitesell L, Robbins N, Cowen LE. Targeting fungal membrane homeostasis with imidazopyrazoindoles impairs azole resistance and biofilm formation. Nat Commun 2022; 13:3634. [PMID: 35752611 PMCID: PMC9233667 DOI: 10.1038/s41467-022-31308-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
Fungal infections cause more than 1.5 million deaths annually. With an increase in immune-deficient susceptible populations and the emergence of antifungal drug resistance, there is an urgent need for novel strategies to combat these life-threatening infections. Here, we use a combinatorial screening approach to identify an imidazopyrazoindole, NPD827, that synergizes with fluconazole against azole-sensitive and -resistant isolates of Candida albicans. NPD827 interacts with sterols, resulting in profound effects on fungal membrane homeostasis and induction of membrane-associated stress responses. The compound impairs virulence in a Caenorhabditis elegans model of candidiasis, blocks C. albicans filamentation in vitro, and prevents biofilm formation in a rat model of catheter infection by C. albicans. Collectively, this work identifies an imidazopyrazoindole scaffold with a non-protein-targeted mode of action that re-sensitizes the leading human fungal pathogen, C. albicans, to azole antifungals.
Collapse
Affiliation(s)
- Nicole M Revie
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Kali R Iyer
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michelle E Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jiabao Zhang
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Su Yan
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Caroline M Fernandes
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Kirsten J Meyer
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Xuefei Chen
- David Braley Centre for Antibiotics Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Iwona Skulska
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Meea Fogal
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Hiram Sanchez
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Saif Hossain
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sheena Li
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
| | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroyuki Hirano
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Department of Biotechnology, Graduate School of Agricultural Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Charles Boone
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - David R Andes
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Gerard D Wright
- David Braley Centre for Antibiotics Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
- Division of Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
- Veteran Administration Medical Center, Northport, NY, USA
| | - Martin D Burke
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, Roger Adams Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
Kane A, Carter DA. Augmenting Azoles with Drug Synergy to Expand the Antifungal Toolbox. Pharmaceuticals (Basel) 2022; 15:482. [PMID: 35455479 PMCID: PMC9027798 DOI: 10.3390/ph15040482] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/23/2022] Open
Abstract
Fungal infections impact the lives of at least 12 million people every year, killing over 1.5 million. Wide-spread use of fungicides and prophylactic antifungal therapy have driven resistance in many serious fungal pathogens, and there is an urgent need to expand the current antifungal arsenal. Recent research has focused on improving azoles, our most successful class of antifungals, by looking for synergistic interactions with secondary compounds. Synergists can co-operate with azoles by targeting steps in related pathways, or they may act on mechanisms related to resistance such as active efflux or on totally disparate pathways or processes. A variety of sources of potential synergists have been explored, including pre-existing antimicrobials, pharmaceuticals approved for other uses, bioactive natural compounds and phytochemicals, and novel synthetic compounds. Synergy can successfully widen the antifungal spectrum, decrease inhibitory dosages, reduce toxicity, and prevent the development of resistance. This review highlights the diversity of mechanisms that have been exploited for the purposes of azole synergy and demonstrates that synergy remains a promising approach for meeting the urgent need for novel antifungal strategies.
Collapse
Affiliation(s)
| | - Dee A. Carter
- School of Life and Environmental Sciences and Sydney ID, University of Sydney, Camperdown, NSW 2006, Australia;
| |
Collapse
|
18
|
Iyer KR, Robbins N, Cowen LE. The role of Candida albicans stress response pathways in antifungal tolerance and resistance. iScience 2022; 25:103953. [PMID: 35281744 PMCID: PMC8905312 DOI: 10.1016/j.isci.2022.103953] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human fungal pathogens are the causative agents of devastating diseases across the globe, and the increasing prevalence of drug resistance threatens to undermine the already limited treatment options. One prominent pathogen is the opportunistic fungus Candida albicans, which can cause both superficial and serious systemic infections in immunocompromised individuals. C. albicans antifungal drug resistance and antifungal tolerance are supported by diverse and expansive cellular stress response pathways. Some of the major players are the Ca2+-calmodulin-activated phosphatase calcineurin, the protein kinase C cell wall integrity pathway, and the molecular chaperone heat shock protein 90. Beyond these core signal transducers, several other enzymes and transcription factors have been implicated in both tolerance and resistance. Here, we highlight some of the major stress response pathways, key advances in identifying chemical matter to inhibit these pathways, and implications for C. albicans persistence in the host. Candida albicans can cause superficial and serious systemic infections in humans Stress response pathways regulate C. albicans antifungal resistance and tolerance Stress response regulators include calcineurin, Pkc1, Hsp90, and many others Stress response inhibitors could reduce the likelihood of fungi persisting in humans
Collapse
Affiliation(s)
- Kali R. Iyer
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1638, Toronto, ON M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1638, Toronto, ON M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1638, Toronto, ON M5G 1M1, Canada
- Corresponding author
| |
Collapse
|
19
|
Abstract
![]()
When used in combination
with azole antifungal drugs, cyclooxygenase
(COX) inhibitors such as ibuprofen improve antifungal efficacy. We
report the conjugation of a chiral antifungal azole pharmacophore
to COX inhibitors and the evaluation of activity of 24 hybrids. Hybrids
derived from ibuprofen and flurbiprofen were considerably more potent
than fluconazole and comparable to voriconazole against a panel of Candida species. The potencies of hybrids composed
of an S-configured azole pharmacophore were higher
than those with an R-configured pharmacophore. Tolerance,
defined as the ability of a subpopulation of cells to grow in the
presence of the drug, to the hybrids was lower than to fluconazole
and voriconazole. The hybrids were active against a mutant lacking
CYP51, the target of azole drugs, indicating that these agents act
via a dual mode of action. This study established that azole-COX inhibitor
hybrids are a novel class of potent antifungals with clinical potential.
Collapse
Affiliation(s)
- Rebecca Elias
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Pallabita Basu
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Micha Fridman
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
20
|
Subroto E, van Neer J, Valdes I, de Cock H. Growth of Aspergillus fumigatus in Biofilms in Comparison to Candida albicans. J Fungi (Basel) 2022; 8:48. [PMID: 35049988 PMCID: PMC8779434 DOI: 10.3390/jof8010048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022] Open
Abstract
Biofilm formation during infections with the opportunistic pathogen Aspergillus fumigatus can be very problematic in clinical settings, since it provides the fungal cells with a protective environment. Resistance against drug treatments, immune recognition as well as adaptation to the host environment allows fungal survival in the host. The exact molecular mechanisms behind most processes in the formation of biofilms are unclear. In general, the formation of biofilms can be categorized roughly in a few stages; adhesion, conidial germination and development of hyphae, biofilm maturation and cell dispersion. Fungi in biofilms can adapt to the in-host environment. These adaptations can occur on a level of phenotypic plasticity via gene regulation. However, also more substantial genetic changes of the genome can result in increased resistance and adaptation in the host, enhancing the survival chances of fungi in biofilms. Most research has focused on the development of biofilms. However, to tackle developing microbial resistance and adaptation in biofilms, more insight in mechanisms behind genetic adaptations is required to predict which defense mechanisms can be expected. This can be helpful in the development of novel and more targeted antifungal treatments to combat fungal infections.
Collapse
Affiliation(s)
| | | | | | - Hans de Cock
- Molecular Microbiology Laboratory, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (E.S.); (J.v.N.); (I.V.)
| |
Collapse
|
21
|
HAGIHARA KANAKO, HOSONAKA KOUSUKE, HOSHINO SHUHEI, IWATA KAZUKI, OGAWA NAOKI, SATOH RYOSUKE, TAKASAKI TERUAKI, MAEDA TAKUYA, SUGIURA REIKO. Ellagic Acid Combined with Tacrolimus Showed Synergistic Cell Growth Inhibition in Fission Yeast. Biocontrol Sci 2022; 27:31-39. [DOI: 10.4265/bio.27.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- KANAKO HAGIHARA
- Laboratory of Hygienic Science, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences
| | - KOUSUKE HOSONAKA
- Laboratory of Hygienic Science, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences
| | - SHUHEI HOSHINO
- Laboratory of Hygienic Science, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences
| | - KAZUKI IWATA
- Laboratory of Hygienic Science, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences
| | - NAOKI OGAWA
- Laboratory of Hygienic Science, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences
| | - RYOSUKE SATOH
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University
| | - TERUAKI TAKASAKI
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University
| | - TAKUYA MAEDA
- Laboratory of Hygienic Science, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences
| | - REIKO SUGIURA
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University
| |
Collapse
|
22
|
Ganan M, Lorentzen SB, Gaustad P, Sørlie M. Synergistic Antifungal Activity of Chito-Oligosaccharides and Commercial Antifungals on Biofilms of Clinical Candida Isolates. J Fungi (Basel) 2021; 7:718. [PMID: 34575756 PMCID: PMC8464920 DOI: 10.3390/jof7090718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/27/2021] [Indexed: 01/09/2023] Open
Abstract
The development of yeast biofilms is a major problem due to their increased antifungal resistance, which leads to persistent infections with severe clinical implications. The high antifungal activity of well-characterized chitosan polymers makes them potential alternatives for treating yeast biofilms. The activity of a chito-oligosaccharide with a depolymerization degree (DPn) of 32 (C32) and a fraction of acetylation (FA) of 0.15 on Candida sp. biofilms was studied. The results showed a concentration-dependent reduction in the number of viable cells present in C. albicans, C. glabrata, and C. guillermondii preformed biofilms in the presence of C32, especially on intermediate and mature biofilms. A significant decrease in the metabolic activity of yeast biofilms treated with C32 was also observed. The antifungals fluconazole (Flu) and miconazole (Mcz) decreased the number of viable cells in preformed early biofilms, but not in the intermediate or mature biofilms. Contrary to Flu or Mcz, C32 also reduced the formation of new biofilms. Interestingly, a synergistic effect on yeast biofilm was observed when C32 and Flu/Mcz were used in combination. C32 has the potential to become an alternative therapeutic agent against Candida biofilms alone or in combination with antifungal drugs and this will reduce the use of antifungals and decrease antifungal resistance.
Collapse
Affiliation(s)
- Monica Ganan
- Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), 1432 Aas, Norway; (M.G.); (S.B.L.)
- Department of Microbiology, Institute of Clinical Medicine, University of Oslo and Fürst Medical Laboratory, 0154 Oslo, Norway;
| | - Silje B. Lorentzen
- Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), 1432 Aas, Norway; (M.G.); (S.B.L.)
| | - Peter Gaustad
- Department of Microbiology, Institute of Clinical Medicine, University of Oslo and Fürst Medical Laboratory, 0154 Oslo, Norway;
| | - Morten Sørlie
- Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), 1432 Aas, Norway; (M.G.); (S.B.L.)
| |
Collapse
|
23
|
de Barros PP, Rossoni RD, Garcia MT, Kaminski VDL, Loures FV, Fuchs BB, Mylonakis E, Junqueira JC. The Anti-Biofilm Efficacy of Caffeic Acid Phenethyl Ester (CAPE) In Vitro and a Murine Model of Oral Candidiasis. Front Cell Infect Microbiol 2021; 11:700305. [PMID: 34408988 PMCID: PMC8366685 DOI: 10.3389/fcimb.2021.700305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
Candida albicans is the main fungal species associated with the development of oral candidiasis. Currently, therapeutic options for these infections are limited by the adverse effects of antifungal drugs and by the emergence of drug resistant strains. Thus, the development of new antifungal agents is needed for the prevention and treatment of oral Candida infections. Caffeic acid phenethyl ester (CAPE) is a natural compound from propolis polyphenolic groups that exhibits many pharmacological properties. In this study, we investigated whether CAPE can have antifungal and immunomodulatory effects on oral candidiasis. Preliminary tests to assess the antifungal activity of CAPE were performed using the Minimum Inhibitory Concentration (MIC) assay that demonstrated inhibition in a range from 16 to 32 μg/mL, confirming its antifungal activity on several C. albicans strains isolated from the oral cavity. Subsequently, we analyzed Candida spp biofilms formed in vitro, in which CAPE treatment at 5 x MIC caused a reduction of 68.5% in the total biomass and ~2.60 Log in the viable cell count (CFU/mL) in relation to the untreated biofilm (p<0.0001). Next, RNA was extracted from untreated and CAPE-treated biofilms and analyzed by real-time qPCR. A series of genes analyzed (ALS1, ECE1, EPA1, HWP1, YWP1, BCR1, BGR1, CPH1, EFG1, NDT80, ROB1, TEC1, UME6, SAP2, SAP5, PBL2, and LIP9) were downregulated by CAPE compared to the untreated control group (p<0.0001). In in vivo studies using Galleria mellonella, the treatment with CAPE prolonged survival of larvae infected by C. albicans by 44.5% (p < 0.05) and accompanied by a 2.07-fold increase in the number of hemocytes. Flow cytometry revealed the most prominent increases were in types P2 and P3 hemocytes, granular cells, which phagocytize pathogens. In addition, CAPE treatment decreased the fungal load in the hemolymph and stimulated the expression of antifungal peptide genes such as galiomicin and gallerimycin. The antifungal and immunomodulatory activities observed in G. mellonella were extended to a murine model of oral candidiasis, in which CAPE decreased the levels of C. albicans colonization (~2 log CFU/mL) in relation to the untreated control group. In addition, CAPE treatment significantly reduced pseudomembranous lesions, invasion of hyphae on epithelium surfaces, tissue damage and inflammatory infiltrate (p < 0.05). CAPE was also able to increase the expression of β-defensin 3 compared to the infected and untreated group by 3.91-fold (p < 0.0001). Taken together, these results show that CAPE has both antifungal and immunomodulatory effects, making it a promising natural antifungal agent for the treatment and prevention of candidiasis and shows impact to oral candidiasis.
Collapse
Affiliation(s)
- Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil.,Multicampi School of Medical Sciences, Federal University of Rio Grande do Norte (UFRN), Caico, Brazil
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Maíra Terra Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| | - Valéria de Lima Kaminski
- Applied Immunology Laboratory, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, Brazil
| | - Flávio Vieira Loures
- Applied Immunology Laboratory, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, Brazil
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, United States
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, United States
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, Brazil
| |
Collapse
|
24
|
Hebert J, Barr E, Magee C. Pacemaker-related Candida parapsilosis fungaemia in an immunosuppressed renal transplant recipient. BMJ Case Rep 2021; 14:14/7/e242917. [PMID: 34230047 PMCID: PMC8264575 DOI: 10.1136/bcr-2021-242917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Renal transplant recipients are at risk for opportunistic infections due to their immunosuppressed state. We describe the case of a 59-year-old renal transplant recipient who presented with sepsis and bilateral pulmonary emboli due to Candida parapsilosis She was treated with intravenous caspofungin and had a transoesophageal echocardiogram, which revealed vegetations on her pacemaker leads. She then underwent surgery to replace her pacemaker; however, her blood cultures remained positive for C. parapsilosis postoperatively. Her antifungal was switched to liposomal amphotericin B and flucytosine for 6 weeks, which yielded sterile blood cultures, and she was then initiated on lifelong fluconazole. Her recovery was complicated by tacrolimus toxicity 1 month after discharge due to fluconazole-induced CYP3A inhibition.
Collapse
Affiliation(s)
| | - Ellen Barr
- Nephrology Department, Beaumont Hospital, Dublin, Ireland
| | - Colm Magee
- Nephrology Department, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
25
|
Su S, Yan H, Min L, Wang H, Chen X, Shi J, Sun S. The antifungal activity of caspofungin in combination with antifungals or non-antifungals against Candida species in vitro and in clinical therapy. Expert Rev Anti Infect Ther 2021; 20:161-178. [PMID: 34128761 DOI: 10.1080/14787210.2021.1941868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: Candida species have been regarded as global health threats due to their ability to cause invasive infections. It is challenging to treat Candida bloodstream infections, which are associated with high mortality levels. Monotherapy with antifungals is sometimes not effective against severe Candida infections, and combination therapy is needed in clinical practice.Areas covered: This review was undertaken based on data from a PubMed search for English language reports published before March 2021 by using the terms 'caspofungin,' 'Candida species,' 'combination therapy,' 'antifungal effect,' and 'novel antifungal agent.'Expert opinion: Combination therapy is an empirical strategy for treating refractory Candida infections. Caspofungin has been recommended to treat candidaemia. Caspofungin in combination therapy has some applications, while the efficacy of combination therapy in the treatment of refractory Candida infections needs more study, such as randomized controlled trials. In addition, novel compounds or drugs with potential antifungal activities have been examined, and some of them exhibit synergistic interactions with caspofungin. Thus, the antifungal activity of caspofungin in combination with antifungals or non-antifungals against Candida species in vitro and in clinical therapy is summarized.
Collapse
Affiliation(s)
- Shan Su
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, People's Republic of China.,School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Haiying Yan
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, People's Republic of China
| | - Li Min
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, People's Republic of China
| | - Hongmei Wang
- Department of Pharmacy, Zibo Sixth People's Hospital, Zibo, Shandong, People's Republic of China
| | - Xueqi Chen
- School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Jinyi Shi
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, People's Republic of China
| | - Shujuan Sun
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, People's Republic of China.,Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, People's Republic of China
| |
Collapse
|
26
|
Drug repurposing strategies in the development of potential antifungal agents. Appl Microbiol Biotechnol 2021; 105:5259-5279. [PMID: 34151414 PMCID: PMC8214983 DOI: 10.1007/s00253-021-11407-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Abstract The morbidity and mortality caused by invasive fungal infections are increasing across the globe due to developments in transplant surgery, the use of immunosuppressive agents, and the emergence of drug-resistant fungal strains, which has led to a challenge in terms of treatment due to the limitations of three classes of drugs. Hence, it is imperative to establish effective strategies to identify and design new antifungal drugs. Drug repurposing is a potential way of expanding the application of existing drugs. Recently, various existing drugs have been shown to be useful in the prevention and treatment of invasive fungi. In this review, we summarize the currently used antifungal agents. In addition, the most up-to-date information on the effectiveness of existing drugs with antifungal activity is discussed. Moreover, the antifungal mechanisms of existing drugs are highlighted. These data will provide valuable knowledge to stimulate further investigation and clinical application in this field. Key points • Conventional antifungal agents have limitations due to the occurrence of drug-resistant strains. • Non-antifungal drugs act as antifungal agents in various ways toward different targets. • Non-antifungal drugs with antifungal activity are demonstrated as effective antifungal strategies.
Collapse
|
27
|
Ding L, Wang J, Cai S, Smyth H, Cui Z. Pulmonary biofilm-based chronic infections and inhaled treatment strategies. Int J Pharm 2021; 604:120768. [PMID: 34089796 DOI: 10.1016/j.ijpharm.2021.120768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Certain pulmonary diseases, such as cystic fibrosis (CF), non-CF bronchiectasis, chronic obstructive pulmonary disease, and ventilator-associated pneumonia, are usually accompanied by respiratory tract infections due to the physiological alteration of the lung immunological defenses. Recurrent infections may lead to chronic infection through the formation of biofilms. Chronic biofilm-based infections are challenging to treat using antimicrobial agents. Therefore, effective ways to eradicate biofilms and thus relieve respiratory tract infection require the development of efficacious agents for biofilm destruction, the design of delivery carriers with biofilm-targeting and/or penetrating abilities for these agents, and the direct delivery of them into the lung. This review provides an in-depth description of biofilm-based infections caused by pulmonary diseases and focuses on current existing agents that are administered by inhalation into the lung to treat biofilm, which include i) inhalable antimicrobial agents and their combinations, ii) non-antimicrobial adjuvants such as matrix-targeting enzymes, mannitol, glutathione, cyclosporin A, and iii) liposomal formulations of anti-biofilm agents. Finally, novel agents that have shown promise against pulmonary biofilms as well as traditional and new devices for pulmonary delivery of anti-biofilm agents into the lung are also discussed.
Collapse
Affiliation(s)
- Li Ding
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jieliang Wang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shihao Cai
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hugh Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
28
|
Şen Kaya S, Kiraz N, Bariş A, Turan D, Öz Y, Dağ İ, Aygün G. Effects of calcineurin inhibitors, cyclosporine A and tacrolimus (FK506), on the activity of antifungal drugs against Candida spp. J Med Microbiol 2021; 70. [PMID: 33915075 DOI: 10.1099/jmm.0.001354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. The simultaneous use of antifungals with immunosuppressive agents has become a necessity for patients taking immunosuppressive therapy. However, antifungal drugs are problematic because of their limited target.Hypothesis. Scientists have been searching for new antifungals and some compounds with at least additive effects on antifungals. Calcineurin inhibitors used as immunosuppressive agents also attract attention due to their antifungal property.Aim. To evaluate the activity of two calcineurin inhibitors alone and in combination with amphotericin B (AMB), caspofungin (CAS), itraconazole (ITR), voriconazole (VOR) and fluconazole (FLU).Methodology. MICs of AMB, CAS, ITR, VOR, FLU and cyclosporine A (CsA) and tacrolimus (TAC) as calcineurin inhibitors were evaluated by the broth microdilution method against Candida albicans (n=13), C. krusei (n=7) and C. glabrata (n=10). Checkerboard and time-kill methods were performed to investigate the activity of combining calcineurin inhibitors with antifungal drugs.Results. The lowest MIC values were detected with VOR for all Candida isolates tested. Although we did not detect any inhibition for CsA or TAC alone at concentrations tested in this study, the combinations of CAS with CsA showed the highest synergistic activity (36.7%) by the checkerboard method, and CAS with CsA and ITR with TAC combinations exhibited apparent synergistic interaction by the time-kill method. However, the combinations of both CsA and TAC with AMB resulted in antagonistic interactions, especially against C. krusei isolate in time-kill testing.Conclusion. Synergistic interactions in the combinations of TAC or CsA with antifungal drugs, except for AMB, in many concentrations was found to be promising in terms of the treatment of patients with fungal infections.
Collapse
Affiliation(s)
- Sümeyye Şen Kaya
- Department of Medical Microbiology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nuri Kiraz
- Department of Medical Microbiology, Faculty of Medicine, Namık Kemal University, Tekirdag, Turkey
| | - Ayşe Bariş
- Department of Microbiology, Şişli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Deniz Turan
- Department of Microbiology, Haydarpasa Hospital, Istanbul, Turkey
| | - Yasemin Öz
- Department of Medical Microbiology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - İlknur Dağ
- Vocational Health Services High School, Eskisehir Osmangazi University, Eskisehir, Turkey.,Central Research Laboratory Application and Research Center, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Gökhan Aygün
- Department of Medical Microbiology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
29
|
Li W, Shrivastava M, Lu H, Jiang Y. Calcium-calcineurin signaling pathway in Candida albicans: A potential drug target. Microbiol Res 2021; 249:126786. [PMID: 33989979 DOI: 10.1016/j.micres.2021.126786] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/26/2022]
Abstract
Increased morbidity and mortality of candidiasis are a notable threat to the immunocompromised patients. At present, the types of drugs available to treat C. albicans infection are relatively limited. Moreover, the emergence of antifungal drug resistance of C. albicans makes the treatment of C. albicans infection more difficult. The calcium-calcineurin signaling pathway plays a crucial role in the survival and pathogenicity of C. albicans and may act as a potential target against C. albicans. In this review, we summarized functions of the calcium-calcineurin signaling pathway in several biological processes, compared the differences of this signaling pathway between C. albicans and humans, and described anti-C. albicans activity of inhibitors of this signaling pathway. We believe that targeting the calcium-calcineurin signaling pathway is a promising strategy to cope with C. albicans infection.
Collapse
Affiliation(s)
- Wanqian Li
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Hui Lu
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
30
|
Atriwal T, Azeem K, Husain FM, Hussain A, Khan MN, Alajmi MF, Abid M. Mechanistic Understanding of Candida albicans Biofilm Formation and Approaches for Its Inhibition. Front Microbiol 2021; 12:638609. [PMID: 33995297 PMCID: PMC8121174 DOI: 10.3389/fmicb.2021.638609] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, the demand for novel antifungal therapies has increased several- folds due to its potential to treat severe biofilm-associated infections. Biofilms are made by the sessile microorganisms attached to the abiotic or biotic surfaces, enclosed in a matrix of exopolymeric substances. This results in new phenotypic characteristics and intrinsic resistance from both host immune response and antimicrobial drugs. Candida albicans biofilm is a complex association of hyphal cells that are associated with both abiotic and animal tissues. It is an invasive fungal infection and acts as an important virulent factor. The challenges linked with biofilm-associated diseases have urged scientists to uncover the factors responsible for the formation and maturation of biofilm. Several strategies have been developed that could be adopted to eradicate biofilm-associated infections. This article presents an overview of the role of C. albicans biofilm in its pathogenicity, challenges it poses and threats associated with its formation. Further, it discusses strategies that are currently available or under development targeting prostaglandins, quorum-sensing, changing surface properties of biomedical devices, natural scaffolds, and small molecule-based chemical approaches to combat the threat of C. albicans biofilm. This review also highlights the recent developments in finding ways to increase the penetration of drugs into the extracellular matrix of biofilm using different nanomaterials against C. albicans.
Collapse
Affiliation(s)
- Tanu Atriwal
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Kashish Azeem
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammed Nadeem Khan
- Department of Tashreehul Badan, Faculty of Unani Medicine, Aligarh Muslim University, Aligarh, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
31
|
Rao H, Choo S, Rajeswari Mahalingam SR, Adisuri DS, Madhavan P, Md. Akim A, Chong PP. Approaches for Mitigating Microbial Biofilm-Related Drug Resistance: A Focus on Micro- and Nanotechnologies. Molecules 2021; 26:1870. [PMID: 33810292 PMCID: PMC8036581 DOI: 10.3390/molecules26071870] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Biofilms play an essential role in chronic and healthcare-associated infections and are more resistant to antimicrobials compared to their planktonic counterparts due to their (1) physiological state, (2) cell density, (3) quorum sensing abilities, (4) presence of extracellular matrix, (5) upregulation of drug efflux pumps, (6) point mutation and overexpression of resistance genes, and (7) presence of persister cells. The genes involved and their implications in antimicrobial resistance are well defined for bacterial biofilms but are understudied in fungal biofilms. Potential therapeutics for biofilm mitigation that have been reported include (1) antimicrobial photodynamic therapy, (2) antimicrobial lock therapy, (3) antimicrobial peptides, (4) electrical methods, and (5) antimicrobial coatings. These approaches exhibit promising characteristics for addressing the impending crisis of antimicrobial resistance (AMR). Recently, advances in the micro- and nanotechnology field have propelled the development of novel biomaterials and approaches to combat biofilms either independently, in combination or as antimicrobial delivery systems. In this review, we will summarize the general principles of clinically important microbial biofilm formation with a focus on fungal biofilms. We will delve into the details of some novel micro- and nanotechnology approaches that have been developed to combat biofilms and the possibility of utilizing them in a clinical setting.
Collapse
Affiliation(s)
- Harinash Rao
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Sulin Choo
- School of Biosciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
| | | | - Diajeng Sekar Adisuri
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Priya Madhavan
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Abdah Md. Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
| |
Collapse
|
32
|
Azole-triphenylphosphonium conjugates combat antifungal resistance and alleviate the development of drug-resistance. Bioorg Chem 2021; 110:104771. [PMID: 33714761 DOI: 10.1016/j.bioorg.2021.104771] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/05/2021] [Accepted: 02/21/2021] [Indexed: 11/24/2022]
Abstract
Azole antifungals are commonly used to treat fungal infections but have resulted in the occurrence of drug resistance. Therefore, developing azole derivatives (AZDs) that can both combat established drug-resistant fungal strains and evade drug resistance is of great importance. In this study, we synthesized a series of AZDs with a fluconazole (FLC) skeleton conjugated with a mitochondria-targeting triphenylphosphonium cation (TPP+). These AZDs displayed potent activity against both azole-sensitive and azole-resistant Candida strains without eliciting obvious resistance. Moreover, two representative AZDs, 20 and 25, exerted synergistic antifungal activity with Hsp90 inhibitors against C. albicans strains resistant to the combination treatment of FLC and Hsp90 inhibitors. AZD 25, which had minimal cytotoxicity, was effective in preventing C. albicans biofilm formation. Mechanistic investigation revealed that AZD 25 inhibited the biosynthesis of the fungal membrane component ergosterol and interfered with mitochondrial function. Our findings provide an alternative approach to address fungal resistance problems.
Collapse
|
33
|
Lu H, Shrivastava M, Whiteway M, Jiang Y. Candida albicans targets that potentially synergize with fluconazole. Crit Rev Microbiol 2021; 47:323-337. [PMID: 33587857 DOI: 10.1080/1040841x.2021.1884641] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluconazole has characteristics that make it widely used in the clinical treatment of C. albicans infections. However, fluconazole has only a fungistatic activity in C. albicans, therefore, in the long-term treatment of C. albicans infection with fluconazole, C. albicans has the potential to acquire fluconazole resistance. A promising approach to increase fluconazole's efficacy is identifying potential targets of drugs that can enhance the antifungal effect of fluconazole, or even make the drug fungicidal. In this review, we systematically provide a global overview of potential targets of drugs synergistic with fluconazole in C. albicans, identify new avenues for research on fluconazole potentiation, and highlight the promise of combinatorial strategies with fluconazole in combatting C. albicans infections.
Collapse
Affiliation(s)
- Hui Lu
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Juin C, Perrin F, Puy T, Bernard C, Mollichella ML, Girardot M, Costa D, Guillard J, Imbert C. Anti-biofilm activity of a semi-synthetic molecule obtained from resveratrol against Candida albicans biofilm. Med Mycol 2021; 58:530-542. [PMID: 31504755 DOI: 10.1093/mmy/myz087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/09/2019] [Accepted: 08/02/2019] [Indexed: 01/08/2023] Open
Abstract
Candida albicans can form biofilm on tissues and medical devices, becoming, in that case, less susceptible to antifungal agents. Treatment of candidiasis associated with the formation of C. albicans biofilms is restricted to echinocandins and lipid forms of amphotericin B. This study investigated the activity of micafungin and resveratrol modified molecule (EB487) against C. albicans biofilms. The anti-biofilm growth (Bgrowth) and anti-preformed biofilm (Bpreformed) activities of micafungin (0 to 3.94 μM) and EB487 (0 to 20.32 mM) were comparatively studied separately and combined, using XTT, flow cytometry and cell counts approaches. Concentrations causing 50% inhibition of the studied steps (IC50) were evaluated. When tested separately, IC50 Bgrowth was obtained for 4.8 mM and 0.13 μM of EB487 and micafungin respectively, and IC50 Bpreformed for 3.6 mM and 0.06 μM of EB487 and micafungin respectively. Micafungin used alone was not able to totally eradicate fungi. Micafungin combined with EB487 displayed synergistic activity (both anti-growth- and anti-preformed biofilm-activities). Optimal combination concentrations were EB487 (≤9.12 mM -strain ATCC 28367™ or ≤8.12 mM -strain CAI4-p), micafungin (≤0.05 μM for both) and caused a total eradication of fungi. Dose reduction indexes obtained using these concentrations were at least 9 (micafungin) and 3.2 (EB487) for both anti-biofilm growth- and anti-preformed biofilm-activities. Combinations indexes were consistently below one, demonstrating a synergistic relationship between micafungin and EB487 in these conditions. This study demonstrated the strong anti-biofilm activity of EB487 and highlighted its synergistic potential when combined with micafungin. EB487 is a promising semi-synthetic molecule with prophylactic and curative interests in fighting C. albicans biofilms.
Collapse
Affiliation(s)
- Camille Juin
- Université de Poitiers, Laboratoire Ecologie Biologie des Interactions, UMR CNRS 7267, 1 rue Michel Brunet TSA 51106 86073 Poitiers Cedex 9 France
| | - Flavie Perrin
- University of Poitiers, Institute of Chemistry, Materials and Naturals Resources of Poitiers, IC2MP, UMR CNRS 7285, University of Poitiers, 4 rue Michel Brunet TSA 51106 86073 Poitiers Cedex 9, France
| | - Thomas Puy
- Université de Poitiers, Laboratoire Ecologie Biologie des Interactions, UMR CNRS 7267, 1 rue Michel Brunet TSA 51106 86073 Poitiers Cedex 9 France
| | - Clément Bernard
- Université de Poitiers, Laboratoire Ecologie Biologie des Interactions, UMR CNRS 7267, 1 rue Michel Brunet TSA 51106 86073 Poitiers Cedex 9 France
| | - Marie Laure Mollichella
- Université de Poitiers, Laboratoire Ecologie Biologie des Interactions, UMR CNRS 7267, 1 rue Michel Brunet TSA 51106 86073 Poitiers Cedex 9 France
| | - Marion Girardot
- Université de Poitiers, Laboratoire Ecologie Biologie des Interactions, UMR CNRS 7267, 1 rue Michel Brunet TSA 51106 86073 Poitiers Cedex 9 France
| | - Damien Costa
- Université de Poitiers, Laboratoire Ecologie Biologie des Interactions, UMR CNRS 7267, 1 rue Michel Brunet TSA 51106 86073 Poitiers Cedex 9 France
| | - Jérôme Guillard
- University of Poitiers, Institute of Chemistry, Materials and Naturals Resources of Poitiers, IC2MP, UMR CNRS 7285, University of Poitiers, 4 rue Michel Brunet TSA 51106 86073 Poitiers Cedex 9, France
| | - Christine Imbert
- Université de Poitiers, Laboratoire Ecologie Biologie des Interactions, UMR CNRS 7267, 1 rue Michel Brunet TSA 51106 86073 Poitiers Cedex 9 France
| |
Collapse
|
35
|
A Screen for Small Molecules to Target Candida albicans Biofilms. J Fungi (Basel) 2020; 7:jof7010009. [PMID: 33375490 PMCID: PMC7824004 DOI: 10.3390/jof7010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/03/2022] Open
Abstract
The human fungal pathogen Candida albicans can form biofilms on biotic and abiotic surfaces, which are inherently resistant to antifungal drugs. We screened the Chembridge Small Molecule Diversity library containing 30,000 “drug-like” small molecules and identified 45 compounds that inhibited biofilm formation. These 45 compounds were then tested for their abilities to disrupt mature biofilms and for combinatorial interactions with fluconazole, amphotericin B, and caspofungin, the three antifungal drugs most commonly prescribed to treat Candida infections. In the end, we identified one compound that moderately disrupted biofilm formation on its own and four compounds that moderately inhibited biofilm formation and/or moderately disrupted mature biofilms only in combination with either caspofungin or fluconazole. No combinatorial interactions were observed between the compounds and amphotericin B. As members of a diversity library, the identified compounds contain “drug-like” chemical backbones, thus even seemingly “weak hits” could represent promising chemical starting points for the development and the optimization of new classes of therapeutics designed to target Candida biofilms.
Collapse
|
36
|
Tits J, Cammue BPA, Thevissen K. Combination Therapy to Treat Fungal Biofilm-Based Infections. Int J Mol Sci 2020; 21:ijms21228873. [PMID: 33238622 PMCID: PMC7700406 DOI: 10.3390/ijms21228873] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
An increasing number of people is affected by fungal biofilm-based infections, which are resistant to the majority of currently-used antifungal drugs. Such infections are often caused by species from the genera Candida, Aspergillus or Cryptococcus. Only a few antifungal drugs, including echinocandins and liposomal formulations of amphotericin B, are available to treat such biofilm-based fungal infections. This review discusses combination therapy as a novel antibiofilm strategy. More specifically, in vitro methods to discover new antibiofilm combinations will be discussed. Furthermore, an overview of the main modes of action of promising antibiofilm combination treatments will be provided as this knowledge may facilitate the optimization of existing antibiofilm combinations or the development of new ones with a similar mode of action.
Collapse
|
37
|
Feng W, Yang J, Ma Y, Xi Z, Ren Q, Wang S, Ning H. Aspirin and verapamil increase the sensitivity of Candida albicans to caspofungin under planktonic and biofilm conditions. J Glob Antimicrob Resist 2020; 24:32-39. [PMID: 33242673 DOI: 10.1016/j.jgar.2020.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/30/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES This study aimed to investigate the effects of caspofungin (CAS) combined with aspirin (ASP) or verapamil (VPL) on the sensitivity of Candida albicans under planktonic and biofilm conditions. METHODS A total of 39 C. albicans clinical strains were used to construct biofilms. Sensitivity to ASP or VPL combined with CAS was analysed by broth microdilution. MIC50 values were obtained and the fractional inhibitory concentration index (FICI) was calculated. Subsequently, C. albicans ZY22 was selected for time-growth curve analysis and strains ZY15 and ZY22 were used for time-kill curve analysis. RESULTS Under planktonic condition the MIC50 of CAS was 0.0313-8 μg/mL following treatment with CAS alone, whereas it decreased to 0.0313-4 μg/mL following CAS combined with ASP or VPL. Under biofilm condition the MIC50 of CAS was 0.125-16 μg/mL following treatment with CAS alone, whereas it decreased to 0.0625-16 μg/mL or 0.0625-8 μg/mL following CAS combined with ASP or VPL. FICI results showed synergistic interactions between CAS and ASP under planktonic and biofilm conditions in 17 and 16 strains, respectively. However, synergistic interactions between CAS and VPL under planktonic and biofilm conditions were observed in 19 and 23 strains, respectively. Additionally, 8000 μg/mL ASP or 8 μg/mL VPL combined with CAS had better inhibitory effects on C. albicans. CONCLUSION ASP and VPL may be a sensitiser for CAS, and the antifungal effects of CAS may be sensitised by 8000 μg/mL ASP or 8 μg/mL VPL against C. albicans under planktonic and biofilm conditions.
Collapse
Affiliation(s)
- Wenli Feng
- Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan 030001, Shanxi, China.
| | - Jing Yang
- Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan 030001, Shanxi, China.
| | - Yan Ma
- Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan 030001, Shanxi, China
| | - Zhiqin Xi
- Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan 030001, Shanxi, China
| | - Qiao Ren
- Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan 030001, Shanxi, China
| | - Shaoyan Wang
- Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan 030001, Shanxi, China
| | - Huan Ning
- Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan 030001, Shanxi, China
| |
Collapse
|
38
|
Zheng Q, Zhang Y, Ren Y, Zhao Z, Hua S, Li J, Wang H, Ye C, Kim AD, Wang L, Chen W. Deep anterior lamellar keratoplasty with cross-linked acellular porcine corneal stroma to manage fungal keratitis. Xenotransplantation 2020; 28:e12655. [PMID: 33103812 DOI: 10.1111/xen.12655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/31/2020] [Accepted: 09/23/2020] [Indexed: 01/25/2023]
Abstract
PURPOSE To evaluate the effects of deep anterior lamellar keratoplasty (DALK) with cross-linked acellular porcine corneal stroma (APCS) and post-operative topical tacrolimus treatment in patients with fungal keratitis. METHODS This multicenter prospective study involved 25 cases of fungal keratitis that were treated by DALK with cross-linked APCSs and post-operative topical tacrolimus from December 2013 to November 2014 at the Wenzhou Eye Hospital and the Henan provincial Eye Hospital. Signs of post-operative inflammation, corneal reepithelialization, corneal neovascularization, and graft rejection were assessed, and best corrected visual acuity (BCVA), intraocular pressure (IOP), and APCS graft transparency were monitored for the 12-month follow-up period. RESULTS All 25 patients underwent DALK without Descemet's membrane perforation. Corneal epithelium recovered completely in 17 patients in the first week, and APCS grafts maintained transparency in 18 patients at 1-year follow-up. The mean BCVA significantly improved from 2.16 ± 0.32 (LogMAR) at baseline to 1.56 ± 0.70 at 1-week (P < .001), 0.95 ± 0.57 at 1-month (P < .001), and 0.70 ± 0.51 at 3-month follow-ups (P < .001). The BCVA kept stable at 6-month and 12-month follow-ups. Post-operative topical tacrolimus alleviated the ciliary injection, except in one case which acute stromal rejection occurred. One patient developed fungal reinfection and underwent penetrating keratoplasty. Graft rejection occurred in three patients. No case was noted with graft splitting, elevated IOP or tacrolimus intolerance. CONCLUSIONS DALK using cross-linked APCS combining topical tacrolimus treatment is safe and effective in managing fungal keratitis. It may ameliorate the shortage of corneal donation globally.
Collapse
Affiliation(s)
- Qinxiang Zheng
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Yueqin Zhang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yueping Ren
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Zelin Zhao
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Shanshan Hua
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Jinyang Li
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Haiou Wang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Cong Ye
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Andy D Kim
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand
| | - Liya Wang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Wei Chen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
39
|
Vahedi-Shahandashti R, Lass-Flörl C. Novel Antifungal Agents and Their Activity against Aspergillus Species. J Fungi (Basel) 2020; 6:E213. [PMID: 33050302 PMCID: PMC7711508 DOI: 10.3390/jof6040213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
There is a need for new antifungal agents, mainly due to increased incidence of invasive fungal infections (IFI), high frequency of associated morbidity and mortality and limitations of the current antifungal agents (e.g., toxicity, drug-drug interactions, and resistance). The clinically available antifungals for IFI are restricted to four main classes: polyenes, flucytosine, triazoles, and echinocandins. Several antifungals are hampered by multiple resistance mechanisms being present in fungi. Consequently, novel antifungal agents with new targets and modified chemical structures are required to combat fungal infections. This review will describe novel antifungals, with a focus on the Aspergillus species.
Collapse
Affiliation(s)
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
40
|
Liu Y, Ren H, Wang D, Zhang M, Sun S, Zhao Y. The synergistic antifungal effects of gypenosides combined with fluconazole against resistant Candida albicans via inhibiting the drug efflux and biofilm formation. Biomed Pharmacother 2020; 130:110580. [DOI: 10.1016/j.biopha.2020.110580] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/14/2020] [Accepted: 07/26/2020] [Indexed: 01/11/2023] Open
|
41
|
Lara HH, Lopez-Ribot JL. Inhibition of Mixed Biofilms of Candida albicans and Methicillin-Resistant Staphylococcus aureus by Positively Charged Silver Nanoparticles and Functionalized Silicone Elastomers. Pathogens 2020; 9:E784. [PMID: 32992727 PMCID: PMC7600790 DOI: 10.3390/pathogens9100784] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Both bacterial and fungal organisms display the ability to form biofilms; however, mixed bacterial/fungal biofilms are particularly difficult to control and eradicate. The opportunistic microbial pathogens Candida albicans and Staphylococcus aureus are among the most frequent causative agents of healthcare-acquired infections, and are often co-isolated forming mixed biofilms, especially from contaminated catheters. These mixed species biofilms display a high level of antibiotic resistance; thus, these infections are challenging to treat resulting in excess morbidity and mortality. In the absence of effective conventional antibiotic treatments, nanotechnology-based approaches represent a promising alternative for the treatment of highly recalcitrant polymicrobial biofilm infections. Our group has previously reported on the activity of pure positively charged silver nanoparticles synthesized by a novel microwave technique against single-species biofilms of C. albicans and S. aureus. Here, we have expanded our observations to demonstrate that that silver nanoparticles display dose-dependent activity against dual-species C. albicans/S. aureus biofilms. Moreover, the same nanoparticles were used to functionalize catheter materials, leading to the effective inhibition of the mixed fungal/bacterial biofilms. Overall, our results indicate the potent activity of silver nanoparticles against these cross-kingdom biofilms. More studies are warranted to examine the ability of functionalized catheters in the prevention of catheter-related bloodstream infections.
Collapse
Affiliation(s)
- Humberto H. Lara
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jose L. Lopez-Ribot
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
42
|
LeBlanc EV, Polvi EJ, Veri AO, Privé GG, Cowen LE. Structure-guided approaches to targeting stress responses in human fungal pathogens. J Biol Chem 2020; 295:14458-14472. [PMID: 32796038 DOI: 10.1074/jbc.rev120.013731] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/11/2020] [Indexed: 11/06/2022] Open
Abstract
Fungi inhabit extraordinarily diverse ecological niches, including the human body. Invasive fungal infections have a devastating impact on human health worldwide, killing ∼1.5 million individuals annually. The majority of these deaths are attributable to species of Candida, Cryptococcus, and Aspergillus Treating fungal infections is challenging, in part due to the emergence of resistance to our limited arsenal of antifungal agents, necessitating the development of novel therapeutic options. Whereas conventional antifungal strategies target proteins or cellular components essential for fungal growth, an attractive alternative strategy involves targeting proteins that regulate fungal virulence or antifungal drug resistance, such as regulators of fungal stress responses. Stress response networks enable fungi to adapt, grow, and cause disease in humans and include regulators that are highly conserved across eukaryotes as well as those that are fungal-specific. This review highlights recent developments in elucidating crystal structures of fungal stress response regulators and emphasizes how this knowledge can guide the design of fungal-selective inhibitors. We focus on the progress that has been made with highly conserved regulators, including the molecular chaperone Hsp90, the protein phosphatase calcineurin, and the small GTPase Ras1, as well as with divergent stress response regulators, including the cell wall kinase Yck2 and trehalose synthases. Exploring structures of these important fungal stress regulators will accelerate the design of selective antifungals that can be deployed to combat life-threatening fungal diseases.
Collapse
Affiliation(s)
- Emmanuelle V LeBlanc
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth J Polvi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Gilbert G Privé
- Departments of Medical Biophysics and Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Schwarz P, Schwarz PV, Felske-Zech H, Dannaoui E. In vitro interactions between isavuconazole and tacrolimus, cyclosporin A or sirolimus against Mucorales. J Antimicrob Chemother 2020; 74:1921-1927. [PMID: 30934052 DOI: 10.1093/jac/dkz102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES To evaluate the in vitro interactions of isavuconazole with immune suppressors (tacrolimus, cyclosporin A or sirolimus) against 30 Mucorales isolates belonging to the most common species responsible for mucormycosis in humans (Rhizopus arrhizus, Rhizopus delemar, Rhizopus microsporus, Lichtheimia corymbifera, Lichtheimia ramosa, Mucor circinelloides and Rhizomucor pusillus). METHODS In vitro interaction was evaluated by a microdilution chequerboard technique. RESULTS Combination of isavuconazole with tacrolimus, cyclosporin A or sirolimus, was synergistic for 50%, 46% and 7% of the isolates, respectively. Antagonistic interaction was observed for 4% of the isolates for the combination with cyclosporin A (one R. arrhizus isolate) and for 32% of the isolates for the combination with sirolimus (six R. arrhizus isolates and three R. pusillus isolates). CONCLUSIONS These in vitro data show that calcineurin inhibitors are more likely than inhibitors of the mTOR pathway to enhance the activity of isavuconazole against Mucorales. These in vitro results warrant further animal experiments.
Collapse
Affiliation(s)
- Patrick Schwarz
- Department of Internal Medicine, Respiratory and Critical Care Medicine, University Hospital Marburg, Marburg, Germany.,Center for Invasive Mycoses and Antifungals, Philipps University Marburg, Marburg, Germany
| | - Petra V Schwarz
- Center for Invasive Mycoses and Antifungals, Philipps University Marburg, Marburg, Germany
| | - Heike Felske-Zech
- Department of Legal Medicine, University Hospital Gießen, Gießen, Germany
| | - Eric Dannaoui
- Université Paris Descartes, Faculté de Médecine, AP-HP, Hôpital Européen Georges Pompidou, Unité de Parasitologie-Mycologie, Paris, France.,Dynamyc Research Group (EA 7380), Paris Est Créteil University, Créteil, France
| |
Collapse
|
44
|
Lara HH, Ixtepan-Turrent L, Yacaman MJ, Lopez-Ribot J. Inhibition of Candida auris Biofilm Formation on Medical and Environmental Surfaces by Silver Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21183-21191. [PMID: 31944650 PMCID: PMC8243355 DOI: 10.1021/acsami.9b20708] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Candida auris is an emerging pathogenic fungus implicated in healthcare-associated outbreaks and causes bloodstream infections associated with high mortality rates. Biofilm formation represents one of the major pathogenetic traits associated with this microorganism. Unlike most other Candida species, C. auris has the ability to survive for weeks on different surfaces. Therefore, there is an urgent need to develop new effective control strategies to combat the threat of C. auris. Advances in nanotechnologies have emerged that carry significant potential impact against Candida biofilms. We obtained pure round silver nanoparticles (AgNPs) (1 to 3 nm in diameter) using a microwave-assisted synthetic approach. When tested against C. auris, our results indicated a potent inhibitory activity both on biofilm formation (half maximal inhibitory concentration (IC50) of 0.06 ppm) and against preformed biofilms (IC50 of 0.48 ppm). Scanning electron microscopy images of AgNP-treated biofilms showed cell wall damage mostly by disruption and distortion of the outer surface of the fungal cell wall. In subsequent experiments AgNPs were used to functionalize medical and environmental surfaces. Silicone elastomers functionalized with AgNPs demonstrated biofilm inhibition (>50%) at relatively low concentrations (2.3 to 0.28 ppm). Bandage dressings loaded with AgNPs inhibited growth of C. auris biofilms by more than 80% (2.3 to 0.017 ppm). Also, to demonstrate long-lasting protection, dressings loaded with AgNPs (0.036 ppm) were washed thoroughly with phosphate-buffered saline, maintaining protection against the C. auris growth from cycles 1 to 3 (>80% inhibition) and from cycles 4 to 6 (>50% inhibition). Our results demonstrate the dose-dependent activity of AgNPs against biofilms formed by C. auris on both medical (silicone elastomer) and environmental (bandage fibers) surfaces. The AgNPs-functionalized fibers retain the fungicidal effect even after repeated thorough washes. Overall these results point to the utility of silver nanoparticles to prevent and control infections caused by this emerging pathogenic fungus.
Collapse
Affiliation(s)
- Humberto H. Lara
- Department of Biology and South Texas Center for Emerging Infectious Diseases
| | - Liliana Ixtepan-Turrent
- Departamento de Ciencias Basicas, Division de Ciencia de la Salud, Universidad de Monterrey, San Pedro Garza García, Nuevo León 66238, México
| | - Miguel Jose Yacaman
- Department of Applied Physics and Materials Science, Northern Arizona University, 700 South Osborne Drive, Flagstaff, Arizona 86011, United States
| | - Jose Lopez-Ribot
- Department of Biology and South Texas Center for Emerging Infectious Diseases
| |
Collapse
|
45
|
Wambaugh MA, Denham ST, Ayala M, Brammer B, Stonhill MA, Brown JC. Synergistic and antagonistic drug interactions in the treatment of systemic fungal infections. eLife 2020; 9:54160. [PMID: 32367801 PMCID: PMC7200157 DOI: 10.7554/elife.54160] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Invasive fungal infections cause 1.6 million deaths annually, primarily in immunocompromised individuals. Mortality rates are as high as 90% due to limited treatments. The azole class antifungal, fluconazole, is widely available and has multi-species activity but only inhibits growth instead of killing fungal cells, necessitating long treatments. To improve treatment, we used our novel high-throughput method, the overlap2 method (O2M) to identify drugs that interact with fluconazole, either increasing or decreasing efficacy. We identified 40 molecules that act synergistically (amplify activity) and 19 molecules that act antagonistically (decrease efficacy) when combined with fluconazole. We found that critical frontline beta-lactam antibiotics antagonize fluconazole activity. A promising fluconazole-synergizing anticholinergic drug, dicyclomine, increases fungal cell permeability and inhibits nutrient intake when combined with fluconazole. In vivo, this combination doubled the time-to-endpoint of mice with Cryptococcus neoformans meningitis. Thus, our ability to rapidly identify synergistic and antagonistic drug interactions can potentially alter the patient outcomes. Individuals with weakened immune systems – such as recipients of organ transplants – can fall prey to illnesses caused by fungi that are harmless to most people. These infections are difficult to manage because few treatments exist to fight fungi, and many have severe side effects. Antifungal drugs usually slow the growth of fungi cells rather than kill them, which means that patients must remain under treatment for a long time, or even for life. One way to boost efficiency and combat resistant infections is to combine antifungal treatments with drugs that work in complementary ways: the drugs strengthen each other’s actions, and together they can potentially kill the fungus rather than slow its progression. However, not all drug combinations are helpful. In fact, certain drugs may interact in ways that make treatment less effective. This is particularly concerning because people with weakened immune systems often take many types of medications. Here, Wambaugh et al. harnessed a new high-throughput system to screen how 2,000 drugs (many of which already approved to treat other conditions) affected the efficiency of a common antifungal called fluconazole. This highlighted 19 drugs that made fluconazole less effective, some being antibiotics routinely used to treat patients with weakened immune systems. On the other hand, 40 drugs boosted the efficiency of fluconazole, including dicyclomine, a compound currently used to treat inflammatory bowel syndrome. In fact, pairing dicyclomine and fluconazole more than doubled the survival rate of mice with severe fungal infections. The combined treatment could target many species of harmful fungi, even those that had become resistant to fluconazole alone. The results by Wambaugh et al. point towards better treatments for individuals with serious fungal infections. Drugs already in circulation for other conditions could be used to boost the efficiency of fluconazole, while antibiotics that do not decrease the efficiency of this medication should be selected to treat at-risk patients.
Collapse
Affiliation(s)
- Morgan A Wambaugh
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, United States
| | - Steven T Denham
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, United States
| | - Magali Ayala
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, United States
| | - Brianna Brammer
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, United States
| | - Miekan A Stonhill
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, United States
| | - Jessica Cs Brown
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
46
|
de Mello TP, Silva LN, de Souza Ramos L, Frota HF, Branquinha MH, dos Santos ALS. Drug Repurposing Strategy against Fungal Biofilms. Curr Top Med Chem 2020. [DOI: 10.2174/156802662007200316142626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Thaís Pereira de Mello
- Laboratório de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laura Nunes Silva
- Laboratório de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lívia de Souza Ramos
- Laboratório de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heloísa Freire Frota
- Laboratório de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marta Helena Branquinha
- Laboratório de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luis Souza dos Santos
- Laboratório de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Fernández de Ullivarri M, Arbulu S, Garcia-Gutierrez E, Cotter PD. Antifungal Peptides as Therapeutic Agents. Front Cell Infect Microbiol 2020; 10:105. [PMID: 32257965 PMCID: PMC7089922 DOI: 10.3389/fcimb.2020.00105] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/27/2020] [Indexed: 12/17/2022] Open
Abstract
Fungi have been used since ancient times in food and beverage-making processes and, more recently, have been harnessed for the production of antibiotics and in processes of relevance to the bioeconomy. Moreover, they are starting to gain attention as a key component of the human microbiome. However, fungi are also responsible for human infections. The incidence of community-acquired and nosocomial fungal infections has increased considerably in recent decades. Antibiotic resistance development, the increasing number of immunodeficiency- and/or immunosuppression-related diseases and limited therapeutic options available are triggering the search for novel alternatives. These new antifungals should be less toxic for the host, with targeted or broader antimicrobial spectra (for diseases of known and unknown etiology, respectively) and modes of actions that limit the potential for the emergence of resistance among pathogenic fungi. Given these criteria, antimicrobial peptides with antifungal properties, i.e., antifungal peptides (AFPs), have emerged as powerful candidates due to their efficacy and high selectivity. In this review, we provide an overview of the bioactivity and classification of AFPs (natural and synthetic) as well as their mode of action and advantages over current antifungal drugs. Additionally, natural, heterologous and synthetic production of AFPs with a view to greater levels of exploitation is discussed. Finally, we evaluate the current and potential applications of these peptides, along with the future challenges relating to antifungal treatments.
Collapse
Affiliation(s)
- Miguel Fernández de Ullivarri
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
| | - Sara Arbulu
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
| | - Enriqueta Garcia-Gutierrez
- Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland.,Gut Microbes and Health, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
| |
Collapse
|
48
|
Abstract
Systemic fungal infections pose a serious clinical problem. Treatment options are limited, and antifungal drug resistance is increasing. In addition, a substantial proportion of patients do not respond to therapy despite being infected with fungi that are susceptible to the drug. The discordance between overall treatment outcome and low levels of clinical resistance may be attributable to antifungal drug tolerance. In this Review, we define and distinguish resistance and tolerance and discuss the current understanding of the molecular, genetic and physiological mechanisms that contribute to those phenomena. Distinguishing tolerance from resistance might provide important insights into the reasons for treatment failure in some settings.
Collapse
|
49
|
Abstract
Candida albicans has remained the main etiological agent of candidiasis, challenges clinicians with high mortality and morbidity. The emergence of resistance to antifungal drugs, toxicity and lower efficacy have all contributed to an urgent need to develop alternative drugs aiming at novel targets in C. albicans. Targeting the production of virulence factors, which are essential processes for infectious agents, represents an attractive substitute for the development of newer anti-infectives. The present review highlights the recent developments made in the understanding of the pathogenicity of C. albicans. Production of hydrolytic enzymes, morphogenesis and biofilm formation, along with their molecular and metabolic regulation in Candida are discussed with regard to the development of novel antipathogenic drugs against candidiasis. Over the last decade, candidiasis has remained a major problematic disease worldwide. In spite of the existence of many antifungal drugs, the treatment of such diseases has still remained unsuccessful due to drug inefficacy. Therefore, there is a need to discover antifungals with different modes of action, such as antipathogenic drugs against Candida albicans. Here, we describe how various types of virulence factors such as proteinase, phospholipase, hemolysin, adhesion, morphogenesis and biofilm formation, could be targeted to develop novel therapeutics. We can inhibit production of these virulence factors by controlling their molecular/metabolic regulation.
Collapse
|
50
|
Antibiotic saving effect of combination therapy through synergistic interactions between well-characterized chito-oligosaccharides and commercial antifungals against medically relevant yeasts. PLoS One 2019; 14:e0227098. [PMID: 31891619 PMCID: PMC6938310 DOI: 10.1371/journal.pone.0227098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/12/2019] [Indexed: 11/19/2022] Open
Abstract
Combination therapies can be a help to overcome resistance to current antifungals in humans. The combined activity of commercial antifungals and soluble and well-defined low molecular weight chitosan with average degrees of polymerization (DPn) of 17–62 (abbreviated C17 –C62) and fraction of acetylation (FA) of 0.15 against medically relevant yeast strains was studied. The minimal inhibitory concentration (MIC) of C32 varied greatly among strains, ranging from > 5000 μg mL-1 (Candida albicans and C. glabrata) to < 4.9 (C. tropicalis). A synergistic effect was observed between C32 and the different antifungals tested for most of the strains. Testing of several CHOS preparations indicated that the highest synergistic effects are obtained for fractions with a DPn in the 30–50 range. Pre-exposure to C32 enhanced the antifungal effect of fluconazole and amphotericin B. A concentration-dependent post-antifungal effect conserved even 24 h after C32 removal was observed. The combination of C32 and commercial antifungals together or as part of a sequential therapy opens new therapeutic perspectives for treating yeast infections in humans.
Collapse
|