1
|
Wen AX, Herman C. Horizontal gene transfer and beyond: the delivery of biological matter by bacterial membrane vesicles to host and bacterial cells. Curr Opin Microbiol 2024; 81:102525. [PMID: 39190937 PMCID: PMC11444307 DOI: 10.1016/j.mib.2024.102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Membrane vesicles (MVs) are produced in all domains of life. In eukaryotes, extracellular vesicles have been shown to mediate the horizontal transfer of biological material between cells [1]. Therefore, bacterial MVs are also thought to mediate horizontal material transfer to host cells and other bacteria, especially in the context of cell stress. In this review, we discuss the mechanisms of bacterial MV production, evidence that their contents can be trafficked to host cells and other bacteria, and the biological relevance of horizontal material transfer by bacterial MVs.
Collapse
Affiliation(s)
- Alice X Wen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor College of Medicine Medical Scientist Training Program, Houston, TX 77030, USA; Robert and Janice McNair Foundation/ McNair Medical Institute M.D./Ph.D. Scholars program, Houston, TX 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Zhang H, Lin Y, Li S, Bi J, Zeng J, Mo C, Xu S, Jia B, Lu Y, Liu C, Liu Z. Effects of bacterial extracellular vesicles derived from oral and gastrointestinal pathogens on systemic diseases. Microbiol Res 2024; 285:127788. [PMID: 38833831 DOI: 10.1016/j.micres.2024.127788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024]
Abstract
Oral microbiota and gastrointestinal microbiota, the two largest microbiomes in the human body, are closely correlated and frequently interact through the oral-gut axis. Recent research has focused on the roles of these microbiomes in human health and diseases. Under normal conditions, probiotics and commensal bacteria can positively impact health. However, altered physiological states may induce dysbiosis, increasing the risk of pathogen colonization. Studies suggest that oral and gastrointestinal pathogens contribute not only to localized diseases at their respective colonized sites but also to the progression of systemic diseases. However, the mechanisms by which bacteria at these local sites are involved in systemic diseases remain elusive. In response to this gap, the focus has shifted to bacterial extracellular vesicles (BEVs), which act as mediators of communication between the microbiota and the host. Numerous studies have reported the targeted delivery of bacterial pathogenic substances from the oral cavity and the gastrointestinal tract to distant organs via BEVs. These pathogenic components subsequently elicit specific cellular responses in target organs, thereby mediating the progression of systemic diseases. This review aims to elucidate the extensive microbial communication via the oral-gut axis, summarize the types and biogenesis mechanisms of BEVs, and highlight the translocation pathways of oral and gastrointestinal BEVs in vivo, as well as the impacts of pathogens-derived BEVs on systemic diseases.
Collapse
Affiliation(s)
- Han Zhang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yunhe Lin
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Siwei Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiawei Zeng
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yu Lu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chengxia Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
3
|
Nie X, Li Q, Chen X, Onyango S, Xie J, Nie S. Bacterial extracellular vesicles: Vital contributors to physiology from bacteria to host. Microbiol Res 2024; 284:127733. [PMID: 38678680 DOI: 10.1016/j.micres.2024.127733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Bacterial extracellular vesicles (bEVs) represent spherical particles with diameters ranging from 20 to 400 nm filled with multiple parental bacteria-derived components, including proteins, nucleic acids, lipids, and other biomolecules. The production of bEVs facilitates bacteria interacting with their environment and exerting biological functions. It is increasingly evident that the bEVs play integral roles in both bacterial and host physiology, contributing to environmental adaptations to functioning as health promoters for their hosts. This review highlights the current state of knowledge on the composition, biogenesis, and diversity of bEVs and the mechanisms by which different bEVs elicit effects on bacterial physiology and host health. We posit that an in-depth exploration of the mechanistic aspects of bEVs activity is essential to elucidate their health-promoting effects on the host and may facilitate the translation of bEVs into applications as novel natural biological nanomaterials.
Collapse
Affiliation(s)
- Xinke Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiqiong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xinyang Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | | | - Junhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
4
|
Johnston EL, Guy-Von Stieglitz S, Zavan L, Cross J, Greening DW, Hill AF, Kaparakis-Liaskos M. The effect of altered pH growth conditions on the production, composition, and proteomes of Helicobacter pylori outer membrane vesicles. Proteomics 2024; 24:e2300269. [PMID: 37991474 DOI: 10.1002/pmic.202300269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 11/23/2023]
Abstract
Gram-negative bacteria release outer membrane vesicles (OMVs) that contain cargo derived from their parent bacteria. Helicobacter pylori is a Gram-negative human pathogen that produces urease to increase the pH of the surrounding environment to facilitate colonization of the gastric mucosa. However, the effect of acidic growth conditions on the production and composition of H. pylori OMVs is unknown. In this study, we examined the production, composition, and proteome of H. pylori OMVs produced during acidic and neutral pH growth conditions. H. pylori growth in acidic conditions reduced the quantity and size of OMVs produced. Additionally, OMVs produced during acidic growth conditions had increased protein, DNA, and RNA cargo compared to OMVs produced during neutral conditions. Proteomic analysis comparing the proteomes of OMVs to their parent bacteria demonstrated significant differences in the enrichment of beta-lactamases and outer membrane proteins between bacteria and OMVs, supporting that differing growth conditions impacts OMV composition. We also identified differences in the enrichment of proteins between OMVs produced during different pH growth conditions. Overall, our findings reveal that growth of H. pylori at different pH levels is a factor that alters OMV proteomes, which may affect their subsequent functions.
Collapse
Affiliation(s)
- Ella L Johnston
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
| | - Sebastian Guy-Von Stieglitz
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
| | - Lauren Zavan
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
| | - Jonathon Cross
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - David W Greening
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Andrew F Hill
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Maria Kaparakis-Liaskos
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
| |
Collapse
|
5
|
Jiang B, Huang J. Influences of bacterial extracellular vesicles on macrophage immune functions. Front Cell Infect Microbiol 2024; 14:1411196. [PMID: 38873097 PMCID: PMC11169721 DOI: 10.3389/fcimb.2024.1411196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Bacterial extracellular vesicles (EVs) are crucial mediators of information transfer between bacteria and host cells. Macrophages, as key effector cells in the innate immune system, have garnered widespread attention for their interactions with bacterial EVs. Increasing evidence indicates that bacterial EVs can be internalized by macrophages through multiple pathways, thereby influencing their immune functions. These functions include inflammatory responses, antimicrobial activity, antigen presentation, and programmed cell death. Therefore, this review summarizes current research on the interactions between bacterial EVs and macrophages. This will aid in the deeper understanding of immune modulation mediated by pathogenic microorganisms and provide a basis for developing novel antibacterial therapeutic strategies.
Collapse
Affiliation(s)
- Bowei Jiang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Junyun Huang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
6
|
Liu C, Yazdani N, Moran CS, Salomon C, Seneviratne CJ, Ivanovski S, Han P. Unveiling clinical applications of bacterial extracellular vesicles as natural nanomaterials in disease diagnosis and therapeutics. Acta Biomater 2024; 180:18-45. [PMID: 38641182 DOI: 10.1016/j.actbio.2024.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/03/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Bacterial extracellular vesicles (BEVs) are naturally occurring bioactive membrane-bound nanoparticles released by both gram-negative and gram-positive bacterial species, exhibiting a multifaceted role in mediating host-microbe interactions across various physiological conditions. Increasing evidence supports BEVs as essential mediators of cell-to-cell communicaiton, influencing bacterial pathogenicity, disease mechanisms, and modulating the host immune response. However, the extent to which these BEV-mediated actions can be leveraged to predict disease onset, guide treatment strategies, and determine clinical outcomes remains uncertain, particularly in terms of their clinical translation potentials. This review briefly describes BEV biogenesis and their internalisation by recipient cells and summarises methods for isolation and characterization, essential for understanding their composition and cargo. Further, it discusses the potential of biofluid-associated BEVs as biomarkers for various diseases, spanning both cancer and non-cancerous conditions. Following this, we outline the ongoing human clinical trials of using BEVs for vaccine development. In addition to disease diagnostics, this review explores the emerging research of using natural or engineered BEVs as smart nanomaterials for applications in anti-cancer therapy and bone regeneration. This discussion extends to key factors for unlocking the clinical potential of BEVs, such as standardization of BEV isolation and characterisation, as well as other hurdles in translating these findings to the clinical setting. We propose that addressing these hurdles through collaborative research efforts and well-designed clinical trials holds the key to fully harnessing the clinical potential of BEVs. As this field advances, this review suggests that BEV-based nanomedicine has the potential to revolutionize disease management, paving the way for innovative diagnosis, therapeutics, and personalized medicine approaches. STATEMENT OF SIGNIFICANCE: Extracellular vesicles (EVs) from both host cells and bacteria serve as multifunctional biomaterials and are emerging in the fields of biomedicine, bioengineering, and biomaterials. However, the majority of current studies focus on host-derived EVs, leaving a gap in comprehensive research on bacteria-derived EVs (BEVs). Although BEVs offer an attractive option as nanomaterials for drug delivery systems, their unique nanostructure and easy-to-modify functions make them a potential method for disease diagnosis and treatment as well as vaccine development. Our work among the pioneering studies investigating the potential of BEVs as natural nanobiomaterials plays a crucial role in both understanding the development of diseases and therapeutic interventions.
Collapse
Affiliation(s)
- Chun Liu
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia
| | - Negar Yazdani
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia
| | - Corey S Moran
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029 Australia
| | - Chaminda Jayampath Seneviratne
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia.
| | - Pingping Han
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia.
| |
Collapse
|
7
|
Jiang B, Lai Y, Xiao W, Zhong T, Liu F, Gong J, Huang J. Microbial extracellular vesicles contribute to antimicrobial resistance. PLoS Pathog 2024; 20:e1012143. [PMID: 38696356 PMCID: PMC11065233 DOI: 10.1371/journal.ppat.1012143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024] Open
Abstract
With the escalating global antimicrobial resistance crisis, there is an urgent need for innovative strategies against drug-resistant microbes. Accumulating evidence indicates microbial extracellular vesicles (EVs) contribute to antimicrobial resistance. Therefore, comprehensively elucidating the roles and mechanisms of microbial EVs in conferring resistance could provide new perspectives and avenues for novel antimicrobial approaches. In this review, we systematically examine current research on antimicrobial resistance involving bacterial, fungal, and parasitic EVs, delineating the mechanisms whereby microbial EVs promote resistance. Finally, we discuss the application of bacterial EVs in antimicrobial therapy.
Collapse
Affiliation(s)
- Bowei Jiang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Yi Lai
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Wenhao Xiao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fengping Liu
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Junjie Gong
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Junyun Huang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
8
|
Wang X, Lee JC. Staphylococcus aureus membrane vesicles: an evolving story. Trends Microbiol 2024:S0966-842X(24)00088-X. [PMID: 38677977 PMCID: PMC11511790 DOI: 10.1016/j.tim.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024]
Abstract
Staphylococcus aureus is an important bacterial pathogen that causes a wide variety of human diseases in community and hospital settings. S. aureus employs a diverse array of virulence factors, both surface-associated and secreted, to promote colonization, infection, and immune evasion. Over the past decade, a growing body of research has shown that S. aureus generates extracellular membrane vesicles (MVs) that package a variety of bacterial components, many of which are virulence factors. In this review, we summarize recent advances in our understanding of S. aureus MVs and highlight their biogenesis, cargo, and potential role in the pathogenesis of staphylococcal infections. Lastly, we present some emerging questions in the field.
Collapse
Affiliation(s)
- Xiaogang Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA.
| | - Jean C Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
9
|
Zhang S, Yang N, Mao R, Hao Y, Teng D, Wang J. In Vitro/Vivo Mechanisms of Antibacterial Peptide NZ2114 against Staphylococcus pseudintermedius and Its Biofilms. Antibiotics (Basel) 2024; 13:341. [PMID: 38667017 PMCID: PMC11047522 DOI: 10.3390/antibiotics13040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Staphylococcus pseudintermedius is an opportunistic pathogen commonly found in canines, and has garnered escalating interest due to its potential for zoonotic transmission and increasing antimicrobial resistance. However, the excessive use of antibiotics and the characteristic of S. pseudintermedius forming biofilms make treatment challenging. In this study, the in vivo and in vitro antimicrobial activity and mechanisms of action of NZ2114, a plectasin-derived peptide, against S. pseudintermedius were investigated. NZ2114 exhibited potent antibacterial activity towards S. pseudintermedius (minimum inhibitory concentration, MIC = 0.23 μM) with a lower probability of inducing drug-resistant mutations and efficient bactericidal action, which was superior to those of mopirucin (MIC = 0.25-0.5 μM) and lincomycin (MIC = 4.34-69.41 μM). The results of electron microscopy and flow cytometry showed that NZ2114 disrupted S. pseudintermedius' cell membrane, resulting in cellular content leakage, cytoplasmic membrane shrinkage, and, eventually, cell death. The intracellular ROS activity and Alamar Blue detection showed that NZ2114 interferes with intracellular metabolic processes. In addition, NZ2114 effectively inhibits biofilm formation, and confocal laser scanning microscopy further revealed its antibacterial and anti-biofilm activity (biofilm thickness reduced to 6.90-17.70 μm). The in vivo therapy of NZ2114 in a mouse pyoderma model showed that it was better than lincomycin in effectively decreasing the number of skin bacteria, alleviating histological damage, and reducing the skin damage area. These results demonstrated that NZ2114 may be a promising antibacterial candidate against S. pseudintermedius infections.
Collapse
Affiliation(s)
- Shuang Zhang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
10
|
Li Q, Li J, He T, Ji X, Wei R, Yu M, Wang R. Sub-MIC Antibiotics Modulate Productions of Outer Membrane Vesicles in Tigecycline-Resistant Escherichia coli. Antibiotics (Basel) 2024; 13:276. [PMID: 38534711 DOI: 10.3390/antibiotics13030276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
Antimicrobial resistance (AMR) has been recognized as one of the most important crises affecting global human health in the 21st century. Tigecycline is one of the last resort antibiotics for treating severe infections caused by multi-drug resistant Enterobacteriaceae. However, the mobile resistance gene tet(X4), which could mediate high-level tigecycline resistance, was discovered in 2019. The outer membrane vesicle (OMV) has been recognized as a new route for horizontal gene transfer; antimicrobial resistant bacteria also have the ability to secret OMVs, while little is known about the impact of antibiotics on the secretion and characteristics of OMVs from tigecycline resistant bacteria till now. This study aimed to investigate the effects of antibiotics on the production and traits of a tigecycline resistant Escherichia coli strain of 47EC. The results showed that sub-inhibitory (1/2 MIC or 1/4 MIC) concentrations of gentamicin, meropenem, ceftazidime, chloramphenicol, tigecycline, ciprofloxacin, polymycin, rifaximin and mitomycin C could significantly increase the secretion of OMVs (0.713 ± 0.05~6.333 ± 0.15 mg/mL) from E. coli 47EC compared to the respective untreated control (0.709 ± 0.03 mg/mL). In addition, the particle sizes of OMVs were generally larger, and the zeta potential were lower in the antibiotics-treated groups than those of the antibiotic-free group. The copy numbers of the tigecycline resistance gene of tet(X4) in the OMVs of most antimicrobial-treated groups were higher than that of the control group. Moreover, transcriptome analysis on ciprofloxacin-treated E. coli 47EC indicated that the SOS response and prophage activation might participate in the ciprofloxacin-induced OMV formation. In conclusion, the clinical application of antibiotics in treating bacterial infections, especially multi-drug resistant bacteria, might lead to the increased secretion of bacterial OMVs and the enrichment of antimicrobial-resistant genes in the OMVs.
Collapse
Affiliation(s)
- Qianru Li
- School of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Agro-Product Safety Risk Evaluation (Nanjing) of Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jun Li
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Agro-Product Safety Risk Evaluation (Nanjing) of Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Tao He
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Agro-Product Safety Risk Evaluation (Nanjing) of Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xing Ji
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Agro-Product Safety Risk Evaluation (Nanjing) of Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ruicheng Wei
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Agro-Product Safety Risk Evaluation (Nanjing) of Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Meiling Yu
- School of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Ran Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Agro-Product Safety Risk Evaluation (Nanjing) of Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
11
|
Sangiorgio G, Nicitra E, Bivona D, Bonomo C, Bonacci P, Santagati M, Musso N, Bongiorno D, Stefani S. Interactions of Gram-Positive Bacterial Membrane Vesicles and Hosts: Updates and Future Directions. Int J Mol Sci 2024; 25:2904. [PMID: 38474151 DOI: 10.3390/ijms25052904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayers derived from cell membranes, released by both eukaryotic cells and bacteria into the extracellular environment. During production, EVs carry proteins, nucleic acids, and various compounds, which are then released. While Gram-positive bacteria were traditionally thought incapable of producing EVs due to their thick peptidoglycan cell walls, recent studies on membrane vesicles (MVs) in Gram-positive bacteria have revealed their significant role in bacterial physiology and disease progression. This review explores the current understanding of MVs in Gram-positive bacteria, including the characterization of their content and functions, as well as their interactions with host and bacterial cells. It offers a fresh perspective to enhance our comprehension of Gram-positive bacterial EVs.
Collapse
Affiliation(s)
- Giuseppe Sangiorgio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Emanuele Nicitra
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Dalida Bivona
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Carmelo Bonomo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Paolo Bonacci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Maria Santagati
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Dafne Bongiorno
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| |
Collapse
|
12
|
Roehrig C, Huemer M, Lorgé D, Arn F, Heinrich N, Selvakumar L, Gasser L, Hauswirth P, Chang CC, Schweizer TA, Eichenseher F, Lehmann S, Zinkernagel AS, Schmelcher M. MEndoB, a chimeric lysin featuring a novel domain architecture and superior activity for the treatment of staphylococcal infections. mBio 2024; 15:e0254023. [PMID: 38275913 PMCID: PMC10865858 DOI: 10.1128/mbio.02540-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Bacterial infections are a growing global healthcare concern, as an estimated annual 4.95 million deaths are associated with antimicrobial resistance (AMR). Methicillin-resistant Staphylococcus aureus is one of the deadliest pathogens and a high-priority pathogen according to the World Health Organization. Peptidoglycan hydrolases (PGHs) of phage origin have been postulated as a new class of antimicrobials for the treatment of bacterial infections, with a novel mechanism of action and no known resistances. The modular architecture of PGHs permits the creation of chimeric PGH libraries. In this study, the chimeric enzyme MEndoB was selected from a library of staphylococcal PGHs based on its rapid and sustained activity against staphylococci in human serum. The benefit of the presented screening approach was illustrated by the superiority of MEndoB in a head-to-head comparison with other PGHs intended for use against staphylococcal bacteremia. MEndoB displayed synergy with antibiotics and rapid killing in human whole blood with complete inhibition of re-growth over 24 h at low doses. Successful treatment of S. aureus-infected zebrafish larvae with MEndoB provided evidence for its in vivo effectiveness. This was further confirmed in a lethal systemic mouse infection model in which MEndoB significantly reduced S. aureus loads and tumor necrosis factor alpha levels in blood in a dose-dependent manner, which led to increased survival of the animals. Thus, the thorough lead candidate selection of MEndoB resulted in an outstanding second-generation PGH with in vitro, ex vivo, and in vivo results supporting further development.IMPORTANCEOne of the most pressing challenges of our era is the rising occurrence of bacteria that are resistant to antibiotics. Staphylococci are prominent pathogens in humans, which have developed multiple strategies to evade the effects of antibiotics. Infections caused by these bacteria have resulted in a high burden on the health care system and a significant loss of lives. In this study, we have successfully engineered lytic enzymes that exhibit an extraordinary ability to eradicate staphylococci. Our findings substantiate the importance of meticulous lead candidate selection to identify therapeutically promising peptidoglycan hydrolases with unprecedented activity. Hence, they offer a promising new avenue for treating staphylococcal infections.
Collapse
Affiliation(s)
- Christian Roehrig
- Micreos Pharmaceuticals AG, Baar, Zug, Switzerland
- Micreos GmbH, Wädenswil, Zurich, Switzerland
| | | | | | | | | | | | - Lynn Gasser
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences (ZHAW), Wädenswil, Zurich, Switzerland
| | - Patrick Hauswirth
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences (ZHAW), Wädenswil, Zurich, Switzerland
| | - Chun-Chi Chang
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tiziano A. Schweizer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Steffi Lehmann
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences (ZHAW), Wädenswil, Zurich, Switzerland
| | - Annelies S. Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
13
|
Goh S, Inal J. Membrane Vesicles of Clostridioides difficile and Other Clostridial Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:315-327. [PMID: 38175481 DOI: 10.1007/978-3-031-42108-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Membrane vesicles are secreted by growing bacterial cells and are important components of the bacterial secretome, with a role in delivering effector molecules that ultimately enable bacterial survival. Membrane vesicles of Clostridioides difficile likely contribute to pathogenicity and is a new area of research on which there is currently very limited information. This chapter summarizes the current knowledge on membrane vesicle formation, content, methods of characterization and functions in Clostridia and model Gram-positive species.
Collapse
Affiliation(s)
- Shan Goh
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK.
| | - Jameel Inal
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
- School of Human Sciences, London Metropolitan University, London, UK
| |
Collapse
|
14
|
Olovo CV, Wiredu Ocansey DK, Ji Y, Huang X, Xu M. Bacterial membrane vesicles in the pathogenesis and treatment of inflammatory bowel disease. Gut Microbes 2024; 16:2341670. [PMID: 38666762 PMCID: PMC11057571 DOI: 10.1080/19490976.2024.2341670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and debilitating condition of relapsing and remitting inflammation in the gastrointestinal tract. Conventional therapeutic approaches for IBD have shown limited efficacy and detrimental side effects, leading to the quest for novel and effective treatment options for the disease. Bacterial membrane vesicles (MVs) are nanosized lipid particles secreted by lysis or blebbing processes from both Gram-negative and Gram-positive bacteria. These vesicles, known to carry bioactive components, are facsimiles of the parent bacterium and have been implicated in the onset and progression, as well as in the amelioration of IBD. This review discusses the overview of MVs and their impact in the pathogenesis, diagnosis, and treatment of IBD. We further discuss the technical challenges facing this research area and possible research questions addressing these challenges. We summarize recent advances in the diverse relationship between IBD and MVs, and the application of this knowledge as a viable and potent therapeutic strategy for IBD.
Collapse
Affiliation(s)
- Chinasa Valerie Olovo
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ying Ji
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinxiang Huang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
15
|
Verbunt J, Jocken J, Blaak E, Savelkoul P, Stassen F. Gut-bacteria derived membrane vesicles and host metabolic health: a narrative review. Gut Microbes 2024; 16:2359515. [PMID: 38808455 PMCID: PMC11141482 DOI: 10.1080/19490976.2024.2359515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
The intestinal microbiota, consisting of an estimated 10^10-10^11 organisms, regulate physiological processes involved in digestion, metabolism, and immunity. Surprisingly, these intestinal microorganisms have been found to influence tissues that are not directly in contact with the gut, such as adipose tissue, the liver, skeletal muscle, and the brain. This interaction takes place even when intestinal barrier function is uncompromised. An increasing body of evidence suggests that bacterial membrane vesicles (bMVs), in addition to bacterial metabolites such as short-chain fatty acids, are able to mediate effects of the microbiota on these host tissues. The ability of bMVs to dissipate from the intestinal lumen into systemic circulation hereby facilitates the transport and presentation of bacterial components and metabolites to host organs. Importantly, there are indications that the interaction between bMVs and tissues or immune cells may play a role in the etiology of (chronic metabolic) disease. For example, the gut-derived bMV-mediated induction of insulin resistance in skeletal muscle cells and pro-inflammatory signaling by adipocytes possibly underlies diseases such as type 2 diabetes and obesity. Here, we review the current knowledge on bMVs in the microbiota's effects on host energy/substrate metabolism with a focus on etiological roles in the onset and progression of metabolic disease. We furthermore illustrate that vesicle production by bacterial microbiota could potentially be modulated through lifestyle intervention to improve host metabolism.
Collapse
Affiliation(s)
- Jari Verbunt
- Department of Medical Microbiology, Infectious Diseases & Infection Prevention, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Johan Jocken
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ellen Blaak
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Paul Savelkoul
- Department of Medical Microbiology, Infectious Diseases & Infection Prevention, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Frank Stassen
- Department of Medical Microbiology, Infectious Diseases & Infection Prevention, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
16
|
Wang X, Uppu DSSM, Dickey SW, Burgin DJ, Otto M, Lee JC. Staphylococcus aureus delta toxin modulates both extracellular membrane vesicle biogenesis and amyloid formation. mBio 2023; 14:e0174823. [PMID: 37795985 PMCID: PMC10653798 DOI: 10.1128/mbio.01748-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/15/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Extracellular membrane vesicles (MVs) produced by Staphylococcus aureus in planktonic cultures encapsulate a diverse cargo of bacterial proteins, nucleic acids, and glycopolymers that are protected from destruction by external factors. δ-toxin, a member of the phenol soluble modulin family, was shown to be critical for MV biogenesis. Amyloid fibrils co-purified with MVs generated by virulent, community-acquired S. aureus strains, and fibril formation was dependent on expression of the S. aureus δ-toxin gene (hld). Mass spectrometry data confirmed that the amyloid fibrils were comprised of δ-toxin. Although S. aureus MVs were produced in vivo in a localized murine infection model, amyloid fibrils were not observed in the in vivo setting. Our findings provide critical insights into staphylococcal factors involved in MV biogenesis and amyloid formation.
Collapse
Affiliation(s)
- Xiaogang Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Divakara SSM Uppu
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Seth W. Dickey
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine,University of Maryland, Bethesda, Maryland, USA
| | - Dylan J. Burgin
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Jean C. Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Sun D, Chen P, Xi Y, Sheng J. From trash to treasure: the role of bacterial extracellular vesicles in gut health and disease. Front Immunol 2023; 14:1274295. [PMID: 37841244 PMCID: PMC10570811 DOI: 10.3389/fimmu.2023.1274295] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Bacterial extracellular vesicles (BEVs) have emerged as critical factors involved in gut health regulation, transcending their traditional roles as byproducts of bacterial metabolism. These vesicles function as cargo carriers and contribute to various aspects of intestinal homeostasis, including microbial balance, antimicrobial peptide secretion, physical barrier integrity, and immune system activation. Therefore, any imbalance in BEV production can cause several gut-related issues including intestinal infection, inflammatory bowel disease, metabolic dysregulation, and even cancer. BEVs derived from beneficial or commensal bacteria can act as potent immune regulators and have been implicated in maintaining gut health. They also show promise for future clinical applications in vaccine development and tumor immunotherapy. This review examines the multifaceted role of BEVs in gut health and disease, and also delves into future research directions and potential applications.
Collapse
Affiliation(s)
- Desen Sun
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Pan Chen
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Yang Xi
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Jinghao Sheng
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Kaisanlahti A, Salmi S, Kumpula S, Amatya SB, Turunen J, Tejesvi M, Byts N, Tapiainen T, Reunanen J. Bacterial extracellular vesicles - brain invaders? A systematic review. Front Mol Neurosci 2023; 16:1227655. [PMID: 37781094 PMCID: PMC10537964 DOI: 10.3389/fnmol.2023.1227655] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Knowledge on the human gut microbiota in health and disease continues to rapidly expand. In recent years, changes in the gut microbiota composition have been reported as a part of the pathology in numerous neurodegenerative diseases. Bacterial extracellular vesicles (EVs) have been suggested as a novel mechanism for the crosstalk between the brain and gut microbiota, physiologically connecting the observed changes in the brain to gut microbiota dysbiosis. Methods Publications reporting findings on bacterial EVs passage through the blood-brain barrier were identified in PubMed and Scopus databases. Results The literature search yielded 138 non-duplicate publications, from which 113 records were excluded in title and abstract screening step. From 25 publications subjected to full-text screening, 8 were excluded. The resulting 17 publications were considered for the review. Discussion Bacterial EVs have been described with capability to cross the blood-brain barrier, but the mechanisms behind the crossing remain largely unknown. Importantly, very little data exists in this context on EVs secreted by the human gut microbiota. This systematic review summarizes the present evidence of bacterial EVs crossing the blood-brain barrier and highlights the importance of future research on gut microbiota-derived EVs in the context of gut-brain communication across the blood-brain barrier.
Collapse
Affiliation(s)
- Anna Kaisanlahti
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Sonja Salmi
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Sohvi Kumpula
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Sajeen Bahadur Amatya
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Jenni Turunen
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
| | - Mysore Tejesvi
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Ecology and Genetics, Faculty of Science, University of Oulu, Oulu, Finland
| | - Nadiya Byts
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Terhi Tapiainen
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Justus Reunanen
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
19
|
Gan Y, Zhao G, Wang Z, Zhang X, Wu MX, Lu M. Bacterial Membrane Vesicles: Physiological Roles, Infection Immunology, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301357. [PMID: 37357142 PMCID: PMC10477901 DOI: 10.1002/advs.202301357] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Indexed: 06/27/2023]
Abstract
Bacterial or fungal membrane vesicles, traditionally considered as microbial metabolic wastes, are secreted mainly from the outer membrane or cell membrane of microorganisms. However, recent studies have shown that these vesicles play essential roles in direct or indirect communications among microorganisms and between microorganisms and hosts. This review aims to provide an updated understanding of the physiological functions and emerging applications of bacterial membrane vesicles, with a focus on their biogenesis, mechanisms of adsorption and invasion into host cells, immune stimulatory effects, and roles in the much-concerned problem of bacterial resistance. Additionally, the potential applications of these vesicles as biomarkers, vaccine candidates, and drug delivery platforms are discussed.
Collapse
Affiliation(s)
- Yixiao Gan
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Gang Zhao
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| | - Zhicheng Wang
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - Mei X. Wu
- Wellman Center for PhotomedicineMassachusetts General HospitalDepartment of DermatologyHarvard Medical School, 50 Blossom StreetBostonMA02114USA
| | - Min Lu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| |
Collapse
|
20
|
Taitz JJ, Tan JK, Potier-Villette C, Ni D, King NJ, Nanan R, Macia L. Diet, commensal microbiota-derived extracellular vesicles, and host immunity. Eur J Immunol 2023; 53:e2250163. [PMID: 37137164 DOI: 10.1002/eji.202250163] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/04/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
The gut microbiota has co-evolved with its host, and commensal bacteria can influence both the host's immune development and function. Recently, a role has emerged for bacterial extracellular vesicles (BEVs) as potent immune modulators. BEVs are nanosized membrane vesicles produced by all bacteria, possessing the membrane characteristics of the originating bacterium and carrying an internal cargo that may include nucleic acid, proteins, lipids, and metabolites. Thus, BEVs possess multiple avenues for regulating immune processes, and have been implicated in allergic, autoimmune, and metabolic diseases. BEVs are biodistributed locally in the gut, and also systemically, and thus have the potential to affect both the local and systemic immune responses. The production of gut microbiota-derived BEVs is regulated by host factors such as diet and antibiotic usage. Specifically, all aspects of nutrition, including macronutrients (protein, carbohydrates, and fat), micronutrients (vitamins and minerals), and food additives (the antimicrobial sodium benzoate), can regulate BEV production. This review summarizes current knowledge of the powerful links between nutrition, antibiotics, gut microbiota-derived BEV, and their effects on immunity and disease development. It highlights the potential of targeting or utilizing gut microbiota-derived BEV as a therapeutic intervention.
Collapse
Affiliation(s)
- Jemma J Taitz
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jian K Tan
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Camille Potier-Villette
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Duan Ni
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Nicholas Jc King
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Ralph Nanan
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- Nepean Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Laurence Macia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Sydney Cytometry, University of Sydney and Centenary Institute, Sydney, NSW, Australia
| |
Collapse
|
21
|
Thapa HB, Ebenberger SP, Schild S. The Two Faces of Bacterial Membrane Vesicles: Pathophysiological Roles and Therapeutic Opportunities. Antibiotics (Basel) 2023; 12:1045. [PMID: 37370364 PMCID: PMC10295235 DOI: 10.3390/antibiotics12061045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial membrane vesicles (MVs) are nanosized lipid particles secreted by lysis or blebbing mechanisms from Gram-negative and -positive bacteria. It is becoming increasingly evident that MVs can promote antimicrobial resistance but also provide versatile opportunities for therapeutic exploitation. As non-living facsimiles of parent bacteria, MVs can carry multiple bioactive molecules such as proteins, lipids, nucleic acids, and metabolites, which enable them to participate in intra- and interspecific communication. Although energetically costly, the release of MVs seems beneficial for bacterial fitness, especially for pathogens. In this review, we briefly discuss the current understanding of diverse MV biogenesis routes affecting MV cargo. We comprehensively highlight the physiological functions of MVs derived from human pathogens covering in vivo adaptation, colonization fitness, and effector delivery. Emphasis is given to recent findings suggesting a vicious cycle of MV biogenesis, pathophysiological function, and antibiotic therapy. We also summarize potential therapeutical applications, such as immunotherapy, vaccination, targeted delivery, and antimicrobial potency, including their experimental validation. This comparative overview identifies common and unique strategies for MV modification used along diverse applications. Thus, the review summarizes timely aspects of MV biology in a so far unprecedented combination ranging from beneficial function for bacterial pathogen survival to future medical applications.
Collapse
Affiliation(s)
- Himadri B. Thapa
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stephan P. Ebenberger
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- Field of Excellence Biohealth, University of Graz, 8010 Graz, Austria
| |
Collapse
|
22
|
Yang J, Jia F, Qiao Y, Hai Z, Zhou X. Correlation between bacterial extracellular vesicles and antibiotics: A potentially antibacterial strategy. Microb Pathog 2023:106167. [PMID: 37224984 DOI: 10.1016/j.micpath.2023.106167] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
Bacterial extracellular vesicles (BEVs) are proteoliposome nanoparticles that are secreted by both Gram-negative (G-) and Gram-positive (G+) bacteria. BEVs have significant roles in various physiological processes of bacteria, including driving inflammatory responses, regulating bacterial pathogenesis, and promoting bacterial survival in diverse environments. Recently, there has been increasing interest in the use of BEVs as a potential solution to antibiotic resistance. BEVs have shown great promise as a new approach to antibiotics, as well as a drug-delivery tool in antimicrobial strategies. In this review, we provide a summary of recent scientific advances in BEVs and antibiotics, including BEV biogenesis, ability to kill bacteria, potential for delivering antibiotics, and their role in the development of vaccines or as immune adjuvants. We propose that BEVs provide a novel antimicrobial strategy that would be beneficial against the increasing threat of antibiotic resistance.
Collapse
Affiliation(s)
- Jiangliu Yang
- College of Life Science, Ningxia University, Yinchuan, 750021, China; Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Yinchuan, 750021, China
| | - Fang Jia
- Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot, 010058, China
| | - Yarui Qiao
- College of Life Science, Ningxia University, Yinchuan, 750021, China; Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Yinchuan, 750021, China
| | - Zhenzhen Hai
- College of Life Science, Ningxia University, Yinchuan, 750021, China; Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Yinchuan, 750021, China
| | - Xuezhang Zhou
- College of Life Science, Ningxia University, Yinchuan, 750021, China; Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Yinchuan, 750021, China.
| |
Collapse
|
23
|
Murugan R, Subramaniyan S, Priya S, Ragavendran C, Arasu MV, Al-Dhabi NA, Choi KC, Guru A, Arockiaraj J. Bacterial clearance and anti-inflammatory effect of Withaferin A against human pathogen of Staphylococcus aureus in infected zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106578. [PMID: 37244123 DOI: 10.1016/j.aquatox.2023.106578] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/06/2023] [Accepted: 05/03/2023] [Indexed: 05/29/2023]
Abstract
The emergence of antibiotic resistance is the most challenging factor for developing a proper drug to treat S. aureus infection. These bacterial pathogens can survive in fresh water and spread to various environments. Plant sources, especially pure compounds, are the material of interest amongst researchers for developing drugs of therapeutic value. Here, we report the bacterial clearance and anti-inflammatory potential of the plant compound Withaferin A, using the zebrafish infection model. The minimum inhibitory concentration of the Withaferin A was calculated as 80 µM against S. aureus. The DAPI/PI staining and scanning electron microscopy analysis showed the pore-forming mechanism of Withaferin A on the bacterial membrane. Along with the antibacterial activity, the results from the tube adherence test reveal the antibiofilm property of Withaferin A. In vivo studies were demonstrated to determine the effect of Withaferin A on survival, inflammatory response and behavioural changes during S. aureus infection. Staining zebrafish larvae with neutral red and Sudan black indicates a substantial decrease in the number of localized macrophages and neutrophils. The gene expression analysis showed the downregulation of inflammatory marker genes. Additionally, we observed the improvement in locomotory behaviour among Withaferin A treatment adult zebrafish. In conclusion, S. aureus can infect zebrafish and induces toxicological effect. In comparison, the results from in vitro and in vivo experiments suggest that Withaferin A can be used for synergistic antibacterial, antibiofilm and anti-inflammatory activity to treat infections due S. aureus.
Collapse
Affiliation(s)
- Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Chengalpattu District, Tamil Nadu 603 203, India
| | - Senthil Subramaniyan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Chengalpattu District, Tamil Nadu 603 203, India
| | - Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Chengalpattu District, Tamil Nadu 603 203, India
| | - Chinnasamy Ragavendran
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu 600 077, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si, Chungnam 330-801, Republic of Korea
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu 600 077, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Chengalpattu District, Tamil Nadu 603 203, India.
| |
Collapse
|
24
|
Tian CM, Yang MF, Xu HM, Zhu MZ, Zhang Y, Yao J, Wang LS, Liang YJ, Li DF. Emerging role of bacterial outer membrane vesicle in gastrointestinal tract. Gut Pathog 2023; 15:20. [PMID: 37106359 PMCID: PMC10133921 DOI: 10.1186/s13099-023-00543-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Bacteria form a highly complex ecosystem in the gastrointestinal (GI) tract. In recent years, mounting evidence has shown that bacteria can release nanoscale phospholipid bilayer particles that encapsulate nucleic acids, proteins, lipids, and other molecules. Extracellular vesicles (EVs) are secreted by microorganisms and can transport a variety of important factors, such as virulence factors, antibiotics, HGT, and defensive factors produced by host eukaryotic cells. In addition, these EVs are vital in facilitating communication between microbiota and the host. Therefore, bacterial EVs play a crucial role in maintaining the GI tract's health and proper functioning. In this review, we outlined the structure and composition of bacterial EVs. Additionally, we highlighted the critical role that bacterial EVs play in immune regulation and in maintaining the balance of the gut microbiota. To further elucidate progress in the field of intestinal research and to provide a reference for future EV studies, we also discussed the clinical and pharmacological potential of bacterial EVs, as well as the necessary efforts required to understand the mechanisms of interaction between bacterial EVs and gut pathogenesis.
Collapse
Affiliation(s)
- Cheng-Mei Tian
- Department of Emergency, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen, Guangdong, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), No.1017, Dongmen North Road, Luohu District, Shenzhen, 518020, People's Republic of China.
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), No.1017, Dongmen North Road, Luohu District, Shenzhen, 518020, People's Republic of China.
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, No.1080, Cuizu Road, Luohu District, Shenzhen, 518020, People's Republic of China.
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), No.1017, Dongmen North Road, Luohu District, Shenzhen, 518020, People's Republic of China.
| |
Collapse
|
25
|
Composition and functions of bacterial membrane vesicles. Nat Rev Microbiol 2023:10.1038/s41579-023-00875-5. [PMID: 36932221 DOI: 10.1038/s41579-023-00875-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 03/19/2023]
Abstract
Extracellular vesicles are produced by species across all domains of life, suggesting that vesiculation represents a fundamental principle of living matter. In Gram-negative bacteria, membrane vesicles (MVs) can originate either from blebs of the outer membrane or from endolysin-triggered explosive cell lysis, which is often induced by genotoxic stress. Although less is known about the mechanisms of vesiculation in Gram-positive and Gram-neutral bacteria, recent research has shown that both lysis and blebbing mechanisms also exist in these organisms. Evidence has accumulated over the past years that different biogenesis routes lead to distinct types of MV with varied structure and composition. In this Review, we discuss the different types of MV and their potential cargo packaging mechanisms. We summarize current knowledge regarding how MV composition determines their various functions including support of bacterial growth via the disposal of waste material, nutrient scavenging, export of bioactive molecules, DNA transfer, neutralization of phages, antibiotics and bactericidal functions, delivery of virulence factors and toxins to host cells and inflammatory and immunomodulatory effects. We also discuss the advantages of MV-mediated secretion compared with classic bacterial secretion systems and we introduce the concept of quantal secretion.
Collapse
|
26
|
Abstract
The microbial secretome modulates how the organism interacts with its environment. Included in the Staphylococcus aureus secretome are extracellular membrane vesicles (MVs) that consist of cytoplasmic and membrane proteins, as well as exoproteins, some cell wall-associated proteins, and glycopolymers. The extent to which MVs contribute to the diverse composition of the secretome is not understood. We performed a proteomic analysis of MVs purified from the S. aureus strain MRSA252 along with a similar analysis of the whole secretome (culture supernatant) before and after depletion of MVs. The MRSA252 secretome was comprised of 1,001 proteins, of which 667 were also present in MVs. Cell membrane-associated proteins and lipoteichoic acid in the culture supernatant were highly associated with MVs, followed by cytoplasmic and extracellular proteins. Few cell wall-associated proteins were contained in MVs, and capsular polysaccharides were found both in the secretome and MVs. When MVs were removed from the culture supernatant by ultracentrifugation, 54 of the secretome proteins were significantly depleted in abundance. Proteins packaged in MVs were characterized by an isoelectric point that was significantly higher than that of proteins excluded from MVs. Our data indicate that the generation of S. aureus MVs is a mechanism by which lipoteichoic acid, cytoplasmic, and cell membrane-associated proteins are released into the secretome. IMPORTANCE The secretome of Staphylococcus aureus includes soluble molecules and nano-sized extracellular membrane vesicles (MVs). The protein composition of both the secretome and MVs includes cytoplasmic and membrane proteins, as well as exoproteins, some cell wall-associated proteins, and glycopolymers. How the MV cargo differs from the protein composition of the secretome has not yet been addressed. Although the compositions of the secretome and MVs were strikingly similar, we identified 54 proteins that were specifically packaged in MVs. Proteins highly associated with MVs were characterized by their abundance in the secretome, an association with the bacterial membrane, and a basic isoelectric point. This study deepens our limited understanding about the contribution of MVs to the secretome of S. aureus.
Collapse
|
27
|
Liu ZH, Wu QY, Xu F, Zhang X, Liao XB. Biofunction and clinical potential of extracellular vesicles from methicillin-resistant Staphylococcus aureus. Microbiol Res 2023; 266:127238. [DOI: 10.1016/j.micres.2022.127238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/22/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
28
|
Castillo-Romero KF, Santacruz A, González-Valdez J. Production and purification of bacterial membrane vesicles for biotechnology applications: Challenges and opportunities. Electrophoresis 2023; 44:107-124. [PMID: 36398478 DOI: 10.1002/elps.202200133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/17/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022]
Abstract
Bacterial membrane vesicles (BMVs) are bi-layered nanostructures derived from Gram-negative and Gram-positive bacteria. Among other pathophysiological roles, BMVs are critical messengers in intercellular communication. As a result, BMVs are emerging as a promising technology for the development of numerous therapeutic applications. Despite the remarkable progress in unveiling BMV biology and functions in recent years, their successful isolation and purification have been limited. Several challenges related to vesicle purity, yield, and scalability severely hamper the further development of BMVs for biotechnology and clinical applications. This review focuses on the current technologies and methodologies used in BMV production and purification, such as ultracentrifugation, density-gradient centrifugation, size-exclusion chromatography, ultrafiltration, and precipitation. We also discuss the current challenges related to BMV isolation, large-scale production, storage, and stability that limit their application. More importantly, the present work explains the most recent strategies proposed for overcoming those challenges. Finally, we summarize the ongoing applications of BMVs in the biotechnological field.
Collapse
Affiliation(s)
- Keshia F Castillo-Romero
- School of Engineering and Science, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León, Mexico
| | - Arlette Santacruz
- School of Engineering and Science, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León, Mexico
| | - José González-Valdez
- School of Engineering and Science, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León, Mexico
| |
Collapse
|
29
|
Spontaneous Prophage Induction Contributes to the Production of Membrane Vesicles by the Gram-Positive Bacterium Lacticaseibacillus casei BL23. mBio 2022; 13:e0237522. [PMID: 36200778 PMCID: PMC9600169 DOI: 10.1128/mbio.02375-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The formation of membrane vesicles (MVs) by Gram-positive bacteria has gained increasing attention over the last decade. Recently, models of vesicle formation have been proposed and involve the digestion of the cell wall by prophage-encoded or stress-induced peptidoglycan (PG) hydrolases and the inhibition of PG synthesis by β-lactam antibiotics. The impact of these mechanisms on vesicle formation is largely dependent on the strain and growth conditions. To date, no information on the production of vesicles by the lactobacilli family has been reported. Here, we aimed to characterize the MVs released by the Gram-positive bacteria Lacticaseibacillus casei BL23 and also investigated the mechanisms involved in vesicle formation. Using electron microscopy, we established that the size of the majority of L. casei BL23 vesicles ranged from 50 to 100 nm. Furthermore, we showed that the vesicles were released consistently throughout the growth of the bacteria in standard culture conditions. The protein composition of the vesicles released in the supernatant was identified and a significant number of prophage proteins was detected. Moreover, using a mutant strain harboring a defective PLE2 prophage, we were able to show that the spontaneous and mitomycin-triggered induction of the prophage PLE2 contribute to the production of MVs by L. casei BL23. Finally, we also demonstrated the influence of prophages on the membrane integrity of bacteria. Overall, our results suggest a key role of the prophage PLE2 in the production of MVs by L. casei BL23 in the absence or presence of genotoxic stress.
Collapse
|
30
|
Liu X, Xiao J, Wang S, Zhou J, Qin J, Jia Z, Wang Y, Wang Z, Zhang Y, Hao H. Research Progress on Bacterial Membrane Vesicles and Antibiotic Resistance. Int J Mol Sci 2022; 23:11553. [PMID: 36232856 PMCID: PMC9569563 DOI: 10.3390/ijms231911553] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
As a result of antibiotic overuse, bacterial antibiotic resistance has become a severe threat to worldwide public health. The development of more effective antimicrobial therapies and alternative antibiotic strategies is urgently required. The role played by bacterial membrane vesicles (BMVs) in antibiotic resistance has become a current focus of research. BMVs are nanoparticles derived from the membrane components of Gram-negative and Gram-positive bacteria and contain diverse components originating from the cell envelope and cytoplasm. Antibiotic stress stimulates the secretion of BMVs. BMVs promote and mediate antibiotic resistance by multiple mechanisms. BMVs have been investigated as conceptually new antibiotics and drug-delivery vehicles. In this article, we outline the research related to BMVs and antibiotic resistance as a reference for the intentional use of BMVs to combat antibiotic resistance.
Collapse
Affiliation(s)
- Xiaofei Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot 010020, China
| | - Jinyang Xiao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot 010020, China
| | - Shuming Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot 010020, China
| | - Jinxia Zhou
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot 010020, China
| | - Jiale Qin
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot 010020, China
| | - Zhibo Jia
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot 010020, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot 010020, China
| | - Zhigang Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot 010020, China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Huifang Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot 010020, China
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| |
Collapse
|
31
|
da Luz BSR, de Rezende Rodovalho V, Nicolas A, Chabelskaya S, Jardin J, Briard-Bion V, Le Loir Y, de Carvalho Azevedo VA, Guédon É. Impact of Environmental Conditions on the Protein Content of Staphylococcus aureus and Its Derived Extracellular Vesicles. Microorganisms 2022; 10:1808. [PMID: 36144410 PMCID: PMC9506334 DOI: 10.3390/microorganisms10091808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 12/03/2022] Open
Abstract
Staphylococcus aureus, a major opportunistic pathogen in humans, produces extracellular vesicles (EVs) that are involved in cellular communication, the delivery of virulence factors, and modulation of the host immune system response. However, to date, the impact of culture conditions on the physicochemical and functional properties of S. aureus EVs is still largely unexplored. Here, we use a proteomic approach to provide a complete protein characterization of S. aureus HG003, a NCTC8325 derivative strain and its derived EVs under four growth conditions: early- and late-stationary growth phases, and in the absence and presence of a sub-inhibitory concentration of vancomycin. The HG003 EV protein composition in terms of subcellular localization, COG and KEGG categories, as well as their relative abundance are modulated by the environment and differs from that of whole-cell (WC). Moreover, the environmental conditions that were tested had a more pronounced impact on the EV protein composition when compared to the WC, supporting the existence of mechanisms for the selective packing of EV cargo. This study provides the first general picture of the impact of different growth conditions in the proteome of S. aureus EVs and its producing-cells and paves the way for future studies to understand better S. aureus EV production, composition, and roles.
Collapse
Affiliation(s)
- Brenda Silva Rosa da Luz
- INRAE, Institut Agro, STLO, F-35000 Rennes, France
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Vinícius de Rezende Rodovalho
- INRAE, Institut Agro, STLO, F-35000 Rennes, France
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | | | - Svetlana Chabelskaya
- BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, Inserm 1230, University of Rennes 1, 35000 Rennes, France
| | | | | | - Yves Le Loir
- INRAE, Institut Agro, STLO, F-35000 Rennes, France
| | - Vasco Ariston de Carvalho Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Éric Guédon
- INRAE, Institut Agro, STLO, F-35000 Rennes, France
| |
Collapse
|
32
|
Wang Z, Li H, Zhou W, Lee J, Liu Z, An Z, Xu D, Mo H, Hu L, Zhou X. Ferrous sulfate-loaded hydrogel cures Staphylococcus aureus infection via facilitating a ferroptosis-like bacterial cell death in a mouse keratitis model. Biomaterials 2022; 290:121842. [DOI: 10.1016/j.biomaterials.2022.121842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/02/2022] [Accepted: 09/27/2022] [Indexed: 11/02/2022]
|
33
|
Long Q, Zheng P, Zheng X, Li W, Hua L, Yang Z, Huang W, Ma Y. Engineered bacterial membrane vesicles are promising carriers for vaccine design and tumor immunotherapy. Adv Drug Deliv Rev 2022; 186:114321. [PMID: 35533789 DOI: 10.1016/j.addr.2022.114321] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/18/2022] [Accepted: 04/30/2022] [Indexed: 02/06/2023]
Abstract
Bacterial membrane vesicles (BMVs) have emerged as novel and promising platforms for the development of vaccines and immunotherapeutic strategies against infectious and noninfectious diseases. The rich microbe-associated molecular patterns (MAMPs) and nanoscale membrane vesicle structure of BMVs make them highly immunogenic. In addition, BMVs can be endowed with more functions via genetic and chemical modifications. This article reviews the immunological characteristics and effects of BMVs, techniques for BMV production and modification, and the applications of BMVs as vaccines or vaccine carriers. In summary, given their versatile characteristics and immunomodulatory properties, BMVs can be used for clinical vaccine or immunotherapy applications.
Collapse
|
34
|
Li C, Wen R, Mu R, Chen X, Ma P, Gu K, Huang Z, Ju Z, Lei C, Tang Y, Wang H. Outer Membrane Vesicles of Avian PathogenicEscherichia coli Mediate the Horizontal Transmission of blaCTX-M-55. Pathogens 2022; 11:pathogens11040481. [PMID: 35456156 PMCID: PMC9025603 DOI: 10.3390/pathogens11040481] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/21/2022] Open
Abstract
The CTX-M-55 type extended-spectrum β-lactamase (ESBL) producing Enterobacteriaceae is increasing in prevalence worldwide without the transmission mechanism being fully clarified, which threatens public and livestock health. Outer membrane vesicles (OMVs) have been shown to mediate the gene horizontal transmission in some species. However, whether blaCTX-M-55 can be transmitted horizontally through OMVs in avian pathogenic Escherichia coli (APEC) has not been reported yet. To test this hypothesis, an ESBL-producing APEC was isolated and whole-genome sequencing (WGS) was performed to analyze the location of blaCTX-M-55. Ultracentrifugation and size exclusion chromatography was used to isolate and purify OMVs, and the transfer experiment of blaCTX-M-55 via OMVs was performed finally. Our results showed that the blaCTX-M-55 was located on an IncI2 plasmid. The number and diameter of OMVs secreted by ESBL-producing APEC treated with different antibiotics were significantly varied. The transfer experiment showed that the OMVs could mediate the horizontal transfer of blaCTX-M-55, and the frequency of gene transfer ranged from 10−5 to 10−6 CFU/mL with the highest frequency observed in the Enrofloxacin treatment group. These findings contribute to a better understanding of the antibiotics in promoting and disseminating resistance in the poultry industry and support the restrictions on the use of antibiotics in the poultry industry.
Collapse
Affiliation(s)
- Chao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China; (C.L.); (R.W.); (X.C.); (P.M.); (K.G.); (Z.H.); (Z.J.); (C.L.); (Y.T.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Renqiao Wen
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China; (C.L.); (R.W.); (X.C.); (P.M.); (K.G.); (Z.H.); (Z.J.); (C.L.); (Y.T.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Rongrong Mu
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China;
| | - Xuan Chen
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China; (C.L.); (R.W.); (X.C.); (P.M.); (K.G.); (Z.H.); (Z.J.); (C.L.); (Y.T.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Peng Ma
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China; (C.L.); (R.W.); (X.C.); (P.M.); (K.G.); (Z.H.); (Z.J.); (C.L.); (Y.T.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Kui Gu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China; (C.L.); (R.W.); (X.C.); (P.M.); (K.G.); (Z.H.); (Z.J.); (C.L.); (Y.T.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Zheren Huang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China; (C.L.); (R.W.); (X.C.); (P.M.); (K.G.); (Z.H.); (Z.J.); (C.L.); (Y.T.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Zijing Ju
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China; (C.L.); (R.W.); (X.C.); (P.M.); (K.G.); (Z.H.); (Z.J.); (C.L.); (Y.T.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China; (C.L.); (R.W.); (X.C.); (P.M.); (K.G.); (Z.H.); (Z.J.); (C.L.); (Y.T.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Yizhi Tang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China; (C.L.); (R.W.); (X.C.); (P.M.); (K.G.); (Z.H.); (Z.J.); (C.L.); (Y.T.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China; (C.L.); (R.W.); (X.C.); (P.M.); (K.G.); (Z.H.); (Z.J.); (C.L.); (Y.T.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
- Correspondence: ; Tel./Fax: +86-028-8547-1599
| |
Collapse
|
35
|
Application of Nanomaterials in the Prevention, Detection, and Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA). Pharmaceutics 2022; 14:pharmaceutics14040805. [PMID: 35456638 PMCID: PMC9030647 DOI: 10.3390/pharmaceutics14040805] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 01/27/2023] Open
Abstract
Due to differences in geographic surveillance systems, chemical sanitization practices, and antibiotic stewardship (AS) implementation employed during the COVID-19 pandemic, many experts have expressed concerns regarding a future surge in global antimicrobial resistance (AMR). A potential beneficiary of these differences is the Gram-positive bacteria MRSA. MRSA is a bacterial pathogen with a high potential for mutational resistance, allowing it to engage various AMR mechanisms circumventing conventional antibiotic therapies and the host’s immune response. Coupled with a lack of novel FDA-approved antibiotics reaching the clinic, the onus is on researchers to develop alternative treatment tools to mitigate against an increase in pathogenic resistance. Mitigation strategies can take the form of synthetic or biomimetic nanomaterials/vesicles employed in vaccines, rapid diagnostics, antibiotic delivery, and nanotherapeutics. This review seeks to discuss the current potential of the aforementioned nanomaterials in detecting and treating MRSA.
Collapse
|
36
|
Liu Y, Tempelaars MH, Boeren S, Alexeeva S, Smid EJ, Abee T. Extracellular vesicle formation in Lactococcus lactis is stimulated by prophage-encoded holin-lysin system. Microb Biotechnol 2022; 15:1281-1295. [PMID: 35229476 PMCID: PMC8966010 DOI: 10.1111/1751-7915.13972] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/12/2021] [Accepted: 11/01/2021] [Indexed: 12/25/2022] Open
Abstract
Gram-positive bacterial extracellular membrane vesicles (EVs) have been drawing more attention in recent years. However, mechanistic insights are still lacking on how EVs are released through the cell walls in Gram-positive bacteria. In this study, we characterized underlying mechanisms of EV production and provide evidence for a role of prophage activation in EV release using the Gram-positive bacterium Lactococcus lactis as a model. By applying a standard EV isolation procedure, we observed the presence of EVs in the culture supernatant of a lysogenic L. lactis strain FM-YL11, for which the prophage-inducing condition led to an over 10-fold increase in EV production in comparison with the non-inducing condition. In contrast, the prophage-encoded holin-lysin knockout mutant YL11ΔHLH and the prophage-cured mutant FM-YL12 produced constantly low levels of EVs. Under the prophage-inducing condition, FM-YL11 did not show massive cell lysis. Defective phage particles were found to be released in and associated with holin-lysin-induced EVs from FM-YL11, as demonstrated by transmission electron microscopic images, flow cytometry and proteomics analysis. Findings from this study further generalized the EV-producing phenotype to Gram-positive L. lactis, and provide additional insights into the EV production mechanism involving prophage-encoded holin-lysin system. The knowledge on bacterial EV production can be applied to all Gram-positive bacteria and other lactic acid bacteria with important roles in fermentations and probiotic formulations, to enable desired release and delivery of cellular components with nutritional values or probiotic effects.
Collapse
Affiliation(s)
- Yue Liu
- Food MicrobiologyWageningen University and ResearchP.O. Box 17Wageningen6700 AAthe Netherlands
| | - Marcel H. Tempelaars
- Food MicrobiologyWageningen University and ResearchP.O. Box 17Wageningen6700 AAthe Netherlands
| | - Sjef Boeren
- Laboratory of BiochemistryWageningen University and ResearchWageningenthe Netherlands
| | - Svetlana Alexeeva
- Food MicrobiologyWageningen University and ResearchP.O. Box 17Wageningen6700 AAthe Netherlands
| | - Eddy J. Smid
- Food MicrobiologyWageningen University and ResearchP.O. Box 17Wageningen6700 AAthe Netherlands
| | - Tjakko Abee
- Food MicrobiologyWageningen University and ResearchP.O. Box 17Wageningen6700 AAthe Netherlands
| |
Collapse
|
37
|
Effects of Growth Stage on the Characterization of Enterotoxin A-Producing Staphylococcus aureus‐Derived Membrane vesicles. Microorganisms 2022; 10:microorganisms10030574. [PMID: 35336149 PMCID: PMC8948643 DOI: 10.3390/microorganisms10030574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
Virulence factors, such as staphylococcal enterotoxin A (SEA), are contained within membrane vesicles (MVs) in the cell membrane of Staphylococcus aureus. In this study, the effects of the growth stage on quantitative and qualitative changes in the components contained in the MVs of S. aureus SEA-producing strains were examined. Changes in the expression levels of S. aureus genes were examined at each growth stage; phenol-soluble modulin (PSM) gene reached a maximum after 8 h, and the expression of cell membrane-related genes was decreased after 6 h. Based on these gene expression patterns, MVs were prepared at 6, 17, and 24 h. The particle size of MVs did not change depending on the growth stage. MVs prepared after culture for 17 h maintained their particle size when stored at 23 °C. The amount of SEA in the culture supernatant and MVs were not correlated. Bifunctional autolysin, a protein involved in cell wall biosynthesis/degradation, was increased in MVs at 17 h. The expression pattern of inflammation-related genes in human adult low calcium high temperature (HaCaT) cells induced by MVs was different for each growth stage. The inclusion components of S. aureus-derived MVs are selective, depend on the stage of growth, and may play an important role in toxicity.
Collapse
|
38
|
Villageliu DN, Samuelson DR. The Role of Bacterial Membrane Vesicles in Human Health and Disease. Front Microbiol 2022; 13:828704. [PMID: 35300484 PMCID: PMC8923303 DOI: 10.3389/fmicb.2022.828704] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial membrane vesicles (MVs) are nanoparticles derived from the membrane components of bacteria that transport microbial derived substances. MVs are ubiquitous across a variety of terrestrial and marine environments and vary widely in their composition and function. Membrane vesicle functional diversity is staggering: MVs facilitate intercellular communication by delivering quorum signals, genetic information, and small molecules active against a variety of receptors. MVs can deliver destructive virulence factors, alter the composition of the microbiota, take part in the formation of biofilms, assist in the uptake of nutrients, and serve as a chemical waste removal system for bacteria. MVs also facilitate host-microbe interactions including communication. Released in mass, MVs overwhelm the host immune system and injure host tissues; however, there is also evidence that vesicles may take part in processes which promote host health. This review will examine the ascribed functions of MVs within the context of human health and disease.
Collapse
Affiliation(s)
| | - Derrick R. Samuelson
- Division of Pulmonary, Critical Care, and Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
39
|
Lee AR, Park SB, Kim SW, Jung JW, Chun JH, Kim J, Kim YR, Lazarte JMS, Jang HB, Thompson KD, Jung M, Ha MW, Jung TS. Membrane vesicles (MVs) from antibiotic-resistant Staphylococcus aureus transfer antibiotic-resistance to antibiotic-susceptible Escherichia coli. J Appl Microbiol 2022; 132:2746-2759. [PMID: 35019198 PMCID: PMC9306644 DOI: 10.1111/jam.15449] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 11/03/2022]
Abstract
AIM Bacteria naturally produce membrane vesicles (MVs), which have been shown to contribute to the spread of multi-drug resistant bacteria (MDR) by delivering antibiotic-resistant substances to antibiotic-susceptible bacteria. Here, we aim to show that MVs from Gram-positive bacteria are capable of transferring β-lactam antibiotic-resistant substances to antibiotic-sensitive Gram-negative bacteria. MATERIALS AND METHODS MVs were collected from a methicillin-resistant strain of Staphylococcus aureus (MRSA) and vesicle-mediated fusion with antimicrobial-sensitive Escherichia coli (RC85). It was performed by exposing the bacteria to the MVs to develop antimicrobial-resistant E. coli (RC85-T). RESULTS The RC85-T exhibited a higher resistance to β-lactam antibiotics compared to the parent strain. Although the secretion rates of the MVs from RC85-T and the parent strain were nearly equal, the β-lactamase activity of the MVs from RC85-T was 12-times higher than that of MVs from the parent strain, based on equivalent protein concentrations. Moreover, MVs secreted by RC85-T were able to protect β-lactam-susceptible E. coli from β-lactam antibiotic-induced growth inhibition in a dose-dependent manner. CONCLUSION MVs play a role in transferring substances from Gram-positive to Gram-negative bacteria, shown by the release of MVs from RC85-T that were able to protect β-lactam-susceptible bacteria from β-lactam antibiotics. SIGNIFICANCE AND IMPACT OF STUDY MVs are involved in the emergence of antibiotic resistant strains in a mixed bacterial culture, helping us to understand how the spread of multidrug resistant bacteria could be reduced.
Collapse
Affiliation(s)
- Ae Rin Lee
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, Republic of Korea, 52828
| | - Seong Bin Park
- Coastal Research Extension Center, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Si Won Kim
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, Republic of Korea, 52828
| | - Jae Wook Jung
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, Republic of Korea, 52828
| | - Jin Hong Chun
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, Republic of Korea, 52828
| | - Jaesung Kim
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, Republic of Korea, 52828
| | - Young Rim Kim
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, Republic of Korea, 52828
| | - Jassy Mary S Lazarte
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, Republic of Korea, 52828
| | - Ho Bin Jang
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea, 02841
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK
| | - Myunghwan Jung
- Department of Microbiology and Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Min Woo Ha
- College of Pharmacy, Jeju National University, Jeju, 63243, Republic of Korea
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, Republic of Korea, 52828.,Centre for Marine Bioproducts Development, Flinders University, Bedford Park, SA, 5042, Australia
| |
Collapse
|
40
|
Toyofuku M, Kikuchi Y, Taoka A. A Single Shot of Vesicles. Microbes Environ 2022; 37. [PMID: 36504177 PMCID: PMC10037094 DOI: 10.1264/jsme2.me22083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria communicate through signaling molecules that coordinate group behavior. Hydrophobic signals that do not diffuse in aqueous environments are used as signaling molecules by several bacteria. However, limited information is currently available on the mechanisms by which these molecules are transported between cells. Membrane vesicles (MVs) with diverse functions play important roles in the release and delivery of hydrophobic signaling molecules, leading to differences in the dynamics of signal transportation from those of free diffusion. Studies on Paracoccus denitrificans, which produces a hydrophobic long-chain N-acyl homoserine lactone (AHL), showed that signals were loaded into MVs at a concentration with the potential to trigger the quorum sensing (QS) response with a "single shot" to the cell. Furthermore, stimulating the formation of MVs increased the release of signals from the cell; therefore, a basic understanding of MV formation is important. Novel findings revealed the formation of MVs through different routes, resulting in the production of different types of MVs. Methods such as high-speed atomic force microscopy (AFM) phase imaging allow the physical properties of MVs to be analyzed at a nanometer resolution, revealing their heterogeneity. In this special minireview, we introduce the role of MVs in bacterial communication and highlight recent findings on MV formation and their physical heterogeneity by referring to our research. We hope that this minireview will provide basic information for understanding the functionality of MVs in ecological systems.
Collapse
Affiliation(s)
- Masanori Toyofuku
- Faculty of Life and Environmental Sciences, University of Tsukuba
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba
| | - Yousuke Kikuchi
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University
| | - Azuma Taoka
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University
- Institute of Science and Engineering, Kanazawa University
| |
Collapse
|
41
|
Gut Microbiota Extracellular Vesicles as Signaling Molecules Mediating Host-Microbiota Communications. Int J Mol Sci 2021; 22:ijms222313166. [PMID: 34884969 PMCID: PMC8658398 DOI: 10.3390/ijms222313166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Over the past decade, gut microbiota dysbiosis has been linked to many health disorders; however, the detailed mechanism of this correlation remains unclear. Gut microbiota can communicate with the host through immunological or metabolic signalling. Recently, microbiota-released extracellular vesicles (MEVs) have emerged as significant mediators in the intercellular signalling mechanism that could be an integral part of microbiota-host communications. MEVs are small membrane-bound vesicles that encase a broad spectrum of biologically active compounds (i.e., proteins, mRNA, miRNA, DNA, carbohydrates, and lipids), thus mediating the horizontal transfer of their cargo across intra- and intercellular space. In this study, we provide a comprehensive and in-depth discussion of the biogenesis of microbial-derived EVs, their classification and routes of production, as well as their role in inter-bacterial and inter-kingdom signaling.
Collapse
|
42
|
McMillan HM, Kuehn MJ. The extracellular vesicle generation paradox: a bacterial point of view. EMBO J 2021; 40:e108174. [PMID: 34636061 PMCID: PMC8561641 DOI: 10.15252/embj.2021108174] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/29/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022] Open
Abstract
All bacteria produce secreted vesicles that carry out a variety of important biological functions. These extracellular vesicles can improve adaptation and survival by relieving bacterial stress and eliminating toxic compounds, as well as by facilitating membrane remodeling and ameliorating inhospitable environments. However, vesicle production comes with a price. It is energetically costly and, in the case of colonizing pathogens, it elicits host immune responses, which reduce bacterial viability. This raises an interesting paradox regarding why bacteria produce vesicles and begs the question as to whether the benefits of producing vesicles outweigh their costs. In this review, we discuss the various advantages and disadvantages associated with Gram-negative and Gram-positive bacterial vesicle production and offer perspective on the ultimate score. We also highlight questions needed to advance the field in determining the role for vesicles in bacterial survival, interkingdom communication, and virulence.
Collapse
Affiliation(s)
- Hannah M McMillan
- Department of Molecular Genetics and MicrobiologyDuke UniversityDurhamNCUSA
| | - Meta J Kuehn
- Department of BiochemistryDuke UniversityDurhamNCUSA
| |
Collapse
|
43
|
Díaz‐Garrido N, Badia J, Baldomà L. Microbiota-derived extracellular vesicles in interkingdom communication in the gut. J Extracell Vesicles 2021; 10:e12161. [PMID: 34738337 PMCID: PMC8568775 DOI: 10.1002/jev2.12161] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
The intestine is fundamental in controlling human health. Intestinal epithelial and immune cells are continuously exposed to millions of microbes that greatly impact on intestinal epithelial barrier and immune function. This microbial community, known as gut microbiota, is now recognized as an important partner of the human being that actively contribute to essential functions of the intestine but also of distal organs. In the gut ecosystem, bidirectional microbiota-host communication does not involve direct cell contacts. Both microbiota and host-derived extracellular vesicles (EVs) are key players of such interkingdom crosstalk. There is now accumulating body of evidence that bacterial secreted vesicles mediate microbiota functions by transporting and delivering into host cells effector molecules that modulate host signalling pathways and cell processes. Consequently, vesicles released by the gut microbiota may have great influence on health and disease. Here we review current knowledge on microbiota EVs and specifically highlight their role in controlling host metabolism, intestinal barrier integrity and immune training.
Collapse
Affiliation(s)
- Natalia Díaz‐Garrido
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i FisiologiaFacultat de Farmàcia i Ciències de l'AlimentacióUniversitat de BarcelonaBarcelonaSpain
- Institut de Recerca Sant Joan de Déu (IRSJD)Institut de Biomedicina de la Universitat de Barcelona (IBUB)BarcelonaSpain
| | - Josefa Badia
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i FisiologiaFacultat de Farmàcia i Ciències de l'AlimentacióUniversitat de BarcelonaBarcelonaSpain
- Institut de Recerca Sant Joan de Déu (IRSJD)Institut de Biomedicina de la Universitat de Barcelona (IBUB)BarcelonaSpain
| | - Laura Baldomà
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i FisiologiaFacultat de Farmàcia i Ciències de l'AlimentacióUniversitat de BarcelonaBarcelonaSpain
- Institut de Recerca Sant Joan de Déu (IRSJD)Institut de Biomedicina de la Universitat de Barcelona (IBUB)BarcelonaSpain
| |
Collapse
|
44
|
Abstract
Lactococcus lactis strains residing in the microbial community of a complex dairy starter culture named “Ur” are hosts to prophages belonging to the family Siphoviridae. L. lactis strains (TIFN1 to TIFN7) showed detectable spontaneous phage production and release (109 to 1010 phage particles/ml) and up to 10-fold increases upon prophage induction, while in both cases we observed no obvious cell lysis typically described for the lytic life cycle of Siphoviridae phages. Intrigued by this phenomenon, we investigated the host-phage interaction using strain TIFN1 (harboring prophage proPhi1) as a representative. We confirmed that during the massive phage release, all bacterial cells remain viable. Further, by monitoring phage replication in vivo, using a green fluorescence protein reporter combined with flow cytometry, we demonstrated that the majority of the bacterial population (over 80%) is actively producing phage particles when induced with mitomycin C. The released tailless phage particles were found to be engulfed in lipid membranes, as evidenced by electron microscopy and lipid staining combined with chemical lipid analysis. Based on the collective observations, we propose a model of phage-host interaction in L. lactis TIFN1 where the phage particles are engulfed in membranes upon release, thereby leaving the producing host intact. Moreover, we discuss possible mechanisms of chronic, or nonlytic, release of LAB Siphoviridae phages and its impact on the bacterial host. IMPORTANCE In complex microbial consortia such as fermentation starters, bacteriophages can alter the dynamics and diversity of microbial communities. Bacteriophages infecting Lactococcus lactis are mostly studied for their detrimental impact on industrial dairy fermentation processes. In this study, we describe a novel form of phage-bacterium interaction in an L. lactis strain isolated from a complex dairy starter culture: when the prophages harbored in the L. lactis genome are activated, the phage particles are engulfed in lipid membranes upon release, leaving the producing host intact. Findings from this study provide additional insights into the diverse manners of phage-bacterium interactions and coevolution, which are essential for understanding the population dynamics in complex microbial communities like fermentation starters.
Collapse
|
45
|
Qiao L, Rao Y, Zhu K, Rao X, Zhou R. Engineered Remolding and Application of Bacterial Membrane Vesicles. Front Microbiol 2021; 12:729369. [PMID: 34690971 PMCID: PMC8532528 DOI: 10.3389/fmicb.2021.729369] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/31/2021] [Indexed: 11/14/2022] Open
Abstract
Bacterial membrane vesicles (MVs) are produced by both Gram-positive and Gram-negative bacteria during growth in vitro and in vivo. MVs are nanoscale vesicular structures with diameters ranging from 20 to 400 nm. MVs incorporate bacterial lipids, proteins, and often nucleic acids, and can effectively stimulate host immune response against bacterial infections. As vaccine candidates and drug delivery systems, MVs possess high biosafety owing to the lack of self-replication ability. However, wild-type bacterial strains have poor MV yield, and MVs from the wild-type strains may be harmful due to the carriage of toxic components, such as lipopolysaccharides, hemolysins, enzymes, etc. In this review, we summarize the genetic modification of vesicle-producing bacteria to reduce MV toxicity, enhance vesicle immunogenicity, and increase vesicle production. The engineered MVs exhibit broad applications in vaccine designs, vaccine delivery vesicles, and drug delivery systems.
Collapse
Affiliation(s)
- Li Qiao
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yifan Rao
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Keting Zhu
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| | - Renjie Zhou
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
46
|
Baeza N, Delgado L, Comas J, Mercade E. Phage-Mediated Explosive Cell Lysis Induces the Formation of a Different Type of O-IMV in Shewanella vesiculosa M7 T. Front Microbiol 2021; 12:713669. [PMID: 34690958 PMCID: PMC8529241 DOI: 10.3389/fmicb.2021.713669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Shewanella vesiculosa M7T is a cold-adapted Antarctic bacterium that has a great capacity to secrete membrane vesicles (MVs), making it a potentially excellent model for studying the vesiculation process. S. vesiculosa M7T undergoes a blebbing mechanism to produce different types of MVs, including outer membrane vesicles and outer-inner membrane vesicles (O-IMVs). More recently, other mechanisms have been considered that could lead to the formation of O-IMVs derived from prophage-mediated explosive cell lysis in other bacteria, but it is not clear if they are of the same type. The bacterial growth phase could also have a great impact on the type of MVs, although there are few studies on the subject. In this study, we used high-resolution flow cytometry, transmission electron microscopy, and cryo-electron microscopy (Cryo-EM) analysis to determine the amount and types of MVs S. vesiculosa M7T secreted during different growth phases. We show that MV secretion increases during the transition from the late exponential to the stationary phase. Moreover, prophage-mediated explosive cell lysis is activated in S. vesiculosa M7T, increasing the heterogeneity of both single- and double-layer MVs. The sequenced DNA fragments from the MVs covered the entire genome, confirming this explosive cell lysis mechanism. A different structure and biogenesis mechanisms for the explosive cell lysis-derived double-layered MVs was observed, and we propose to name them explosive O-IMVs, distinguishing them from the blebbing O-IMVs; their separation is a first step to elucidate their different functions. In our study, we used for the first time sorting by flow cytometry and Cryo-EM analyses to isolate bacterial MVs based on their nucleic acid content. Further improvements and implementation of bacterial MV separation techniques is essential to develop more in-depth knowledge of MVs.
Collapse
Affiliation(s)
- Nicolás Baeza
- Secció de Microbiologia, Departament de Biologia, Sanitat i Medi Ambient, Universitat de Barcelona, Barcelona, Spain
| | - Lidia Delgado
- Crio-Microscòpia Electrònica, Centres Científics i Tecnològics, Universitat de Barcelona (CCiTUB), Barcelona, Spain
| | - Jaume Comas
- Citometria, Centres Científics i Tecnològics, Universitat de Barcelona (CCiTUB), Barcelona, Spain
| | - Elena Mercade
- Secció de Microbiologia, Departament de Biologia, Sanitat i Medi Ambient, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
47
|
Campoccia D, Montanaro L, Arciola CR. Tracing the origins of extracellular DNA in bacterial biofilms: story of death and predation to community benefit. BIOFOULING 2021; 37:1022-1039. [PMID: 34823431 DOI: 10.1080/08927014.2021.2002987] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Extracellular DNA (eDNA) is a macromolecule copiously found in various natural microenvironments, but its origin and significance still remain partly mysterious phenomena. Here, the multifaceted origins of eDNA in bacterial biofilms are explored. The release of eDNA can follow a suicidal programmed bacterial apoptosis or a fratricide-induced death, under the control of quorum sensing systems or triggered by specific stressors. eDNA can be released into the extracellular space or as a free macromolecule or enclosed within membrane vesicles or even through an explosion of bubbles. eDNA can also be derived from host tissue cells through bacterial cytolytic/proapoptotic toxins or stolen from neutrophil extracellular traps (NETs). eDNA can alternatively be produced by lysis-independent mechanisms. Sub-inhibitory doses of antibiotics, by killing a fraction of bacteria, result in stimulating the release of eDNA. Even phages appear to play a role in favoring eDNA release. Unveiling the origins of eDNA is critical to correctly address biofilm-associated infections.
Collapse
Affiliation(s)
- Davide Campoccia
- Laboratorio di Patologia delle Infezioni Associate all'Impianto, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Lucio Montanaro
- Laboratorio di Patologia delle Infezioni Associate all'Impianto, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Carla Renata Arciola
- Laboratorio di Patologia delle Infezioni Associate all'Impianto, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
48
|
Kumaraswamy M, Wiull K, Joshi B, Sakoulas G, Kousha A, Vaaje-Kolstad G, Johannessen M, Hegstad K, Nizet V, Askarian F. Bacterial Membrane-Derived Vesicles Attenuate Vancomycin Activity against Methicillin-Resistant Staphylococcus aureus. Microorganisms 2021; 9:microorganisms9102055. [PMID: 34683376 PMCID: PMC8539228 DOI: 10.3390/microorganisms9102055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/02/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has evolved numerous antimicrobial resistance mechanisms and is identified as a serious public health threat by the World Health Organization and U.S. Centers for Disease Control and Prevention. The glycopeptide vancomycin (VAN) remains a cornerstone of therapy for severe MRSA infections despite increasing reports of therapeutic failure in hospitalized patients with bacteremia or pneumonia. Recently, the role of released bacterial-derived membrane vesicles (MVs) in antibiotic resistance has garnered attention. Here we examined the effect of exogenous MRSA-derived MVs on VAN activity against MRSA in vitro, using minimum inhibitory concentration and checkerboard assays, and ex vivo, incorporating components of host innate immunity such as neutrophils and serum complement present in blood. Additionally, the proteome of MVs from VAN-exposed MRSA was characterized to determine if protein expression was altered. The presence of MVs increased the VAN MIC against MRSA to values where clinical failure is commonly observed. Furthermore, the presence of MVs increased survival of MRSA pre-treated with sub-MIC concentrations of VAN in whole blood and upon exposure to human neutrophils but not human serum. Unbiased proteomic analysis also showed an elevated expression of MV proteins associated with antibiotic resistance (e.g., marR) or proteins that are functionally linked to cell membrane/wall metabolism. Together, our findings indicate MRSA-derived MVs are capable of lowering susceptibility of the pathogen to VAN, whole-blood- and neutrophil-mediated killing, a new pharmacodynamic consideration for a drug increasingly linked to clinical treatment failures.
Collapse
Affiliation(s)
- Monika Kumaraswamy
- Infectious Diseases Section, VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Collaborative to Halt Antibiotic Resistant Microbes (CHARM), University of California San Diego, La Jolla, CA 92093, USA;
- Correspondence: (M.K.); (F.A.)
| | - Kamilla Wiull
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway; (K.W.); (G.V.-K.)
| | - Bishnu Joshi
- Research Group for Host-Microbe Interactions, UiT-The Arctic University of Norway, 9037 Tromsø, Norway; (B.J.); (M.J.); (K.H.)
| | - George Sakoulas
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (G.S.); (A.K.)
| | - Armin Kousha
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (G.S.); (A.K.)
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway; (K.W.); (G.V.-K.)
| | - Mona Johannessen
- Research Group for Host-Microbe Interactions, UiT-The Arctic University of Norway, 9037 Tromsø, Norway; (B.J.); (M.J.); (K.H.)
| | - Kristin Hegstad
- Research Group for Host-Microbe Interactions, UiT-The Arctic University of Norway, 9037 Tromsø, Norway; (B.J.); (M.J.); (K.H.)
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, University Hospital of North-Norway, 9038 Tromsø, Norway
| | - Victor Nizet
- Collaborative to Halt Antibiotic Resistant Microbes (CHARM), University of California San Diego, La Jolla, CA 92093, USA;
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (G.S.); (A.K.)
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Fatemeh Askarian
- Research Group for Host-Microbe Interactions, UiT-The Arctic University of Norway, 9037 Tromsø, Norway; (B.J.); (M.J.); (K.H.)
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (G.S.); (A.K.)
- Correspondence: (M.K.); (F.A.)
| |
Collapse
|
49
|
Bastos PAD, Wheeler R, Boneca IG. Uptake, recognition and responses to peptidoglycan in the mammalian host. FEMS Microbiol Rev 2021; 45:5902851. [PMID: 32897324 PMCID: PMC7794044 DOI: 10.1093/femsre/fuaa044] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Microbiota, and the plethora of signalling molecules that they generate, are a major driving force that underlies a striking range of inter-individual physioanatomic and behavioural consequences for the host organism. Among the bacterial effectors, one finds peptidoglycan, the major constituent of the bacterial cell surface. In the steady-state, fragments of peptidoglycan are constitutively liberated from bacterial members of the gut microbiota, cross the gut epithelial barrier and enter the host system. The fate of these peptidoglycan fragments, and the outcome for the host, depends on the molecular nature of the peptidoglycan, as well the cellular profile of the recipient tissue, mechanism of cell entry, the expression of specific processing and recognition mechanisms by the cell, and the local immune context. At the target level, physiological processes modulated by peptidoglycan are extremely diverse, ranging from immune activation to small molecule metabolism, autophagy and apoptosis. In this review, we bring together a fragmented body of literature on the kinetics and dynamics of peptidoglycan interactions with the mammalian host, explaining how peptidoglycan functions as a signalling molecule in the host under physiological conditions, how it disseminates within the host, and the cellular responses to peptidoglycan.
Collapse
Affiliation(s)
- Paulo A D Bastos
- Institut Pasteur, Biology and genetics of the bacterial cell wall Unit, 25-28 rue du Docteur Roux, Paris 75724, France; CNRS, UMR 2001 "Microbiologie intégrative et moléculaire", Paris 75015, France.,Université de Paris, Sorbonne Paris Cité, 12 rue de l'Ecole de Médecine, 75006, Paris, France
| | - Richard Wheeler
- Institut Pasteur, Biology and genetics of the bacterial cell wall Unit, 25-28 rue du Docteur Roux, Paris 75724, France; CNRS, UMR 2001 "Microbiologie intégrative et moléculaire", Paris 75015, France.,Tumour Immunology and Immunotherapy, Institut Gustave Roussy, 114 rue Edouard-Vaillant, Villejuif 94800, France; INSERM UMR 1015, Villejuif 94800, France
| | - Ivo G Boneca
- Institut Pasteur, Biology and genetics of the bacterial cell wall Unit, 25-28 rue du Docteur Roux, Paris 75724, France; CNRS, UMR 2001 "Microbiologie intégrative et moléculaire", Paris 75015, France
| |
Collapse
|
50
|
Brown HL, Clayton A, Stephens P. The role of bacterial extracellular vesicles in chronic wound infections: Current knowledge and future challenges. Wound Repair Regen 2021; 29:864-880. [PMID: 34132443 DOI: 10.1111/wrr.12949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022]
Abstract
Chronic wounds are a significant global problem with an increasing economic and patient welfare impact. How wounds move from an acute to chronic, non-healing, state is not well understood although it is likely that it is driven by a poorly regulated local inflammatory state. Opportunistic pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa are well known to stimulate a pro-inflammatory response and so their presence may further drive chronicity. Studies have demonstrated that host cell extracellular vesicles (hEVs), in particular exosomes, have multiple roles in both increasing and decreasing chronicity within wounds; however, the role of bacterial extracellular vesicles (bEVs) is still poorly understood. The aim of this review is to evaluate bEV biogenesis and function within chronic wound relevant bacterial species to determine what, if any, role bEVs may have in driving wound chronicity. We determine that bEVs drive chronicity by both increasing persistence of key pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa and stimulating a pro-inflammatory response by the host. Data also suggest that both bEVs and hEVs show therapeutic promise, providing vaccine candidates, decoy targets for bacterial toxins or modulating the bacterial species within chronic wound biofilms. Caution should, however, be used when interpreting findings to date as the bEV field is still in its infancy and as such lacks consistency in bEV isolation and characterization. It is of primary importance that this is addressed, allowing meaningful conclusions to be drawn and increasing reproducibility within the field.
Collapse
Affiliation(s)
- Helen L Brown
- School of Dentistry, Cardiff University, Cardiff, UK
| | - Aled Clayton
- Division of Cancer & Genetics, School of Medicine, Cardiff, UK
| | - Phil Stephens
- School of Dentistry, Cardiff University, Cardiff, UK
| |
Collapse
|