1
|
Taio F, Converti A, Lima ÁAND. Cyclodextrin Complexes for the Treatment of Chagas Disease: A Literature Review. Int J Mol Sci 2024; 25:9511. [PMID: 39273458 PMCID: PMC11395308 DOI: 10.3390/ijms25179511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Cyclodextrins are ring-shaped sugars used as additives in medications to improve solubility, stability, and sensory characteristics. Despite being widespread, Chagas disease is neglected because of the limitations of available medications. This study aims to review the compounds used in the formation of inclusion complexes for the treatment of Chagas disease, analyzing the incorporated compounds and advancements in related studies. The databases consulted include Scielo, Scopus, ScienceDirect, PubMed, LILACS, and Embase. The keywords used were "cyclodextrin AND Chagas AND disease" and "cyclodextrin complex against Trypanosoma cruzi". Additionally, a statistical analysis of studies on Chagas disease over the last five years was conducted, highlighting the importance of research in this area. This review focused on articles that emphasize how cyclodextrins can improve the bioavailability, therapeutic action, toxicity, and solubility of medications. Initially, 380 articles were identified with the keyword "cyclodextrin AND Chagas disease"; 356 were excluded for not being directly related to the topic, using the keyword "cyclodextrin complex against Trypanosoma cruzi". Over the last five years, a total of 13,075 studies on Chagas disease treatment were found in our literature analysis. The studies also showed interest in molecules derived from natural products and vegetable oils. Research on cyclodextrins, particularly in the context of Chagas disease treatment, has advanced significantly, with studies highlighting the efficacy of molecules in cyclodextrin complexes and indicating promising advances in disease treatment.
Collapse
Affiliation(s)
- Fabrice Taio
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, Genoa University, I-16145 Genoa, Italy
| | - Ádley Antonini Neves de Lima
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
| |
Collapse
|
2
|
Santos SS, Gonzaga RV, Scarim CB, Giarolla J, Primi MC, Chin CM, Ferreira EI. Drug/Lead Compound Hydroxymethylation as a Simple Approach to Enhance Pharmacodynamic and Pharmacokinetic Properties. Front Chem 2022; 9:734983. [PMID: 35237565 PMCID: PMC8883432 DOI: 10.3389/fchem.2021.734983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Hydroxymethylation is a simple chemical reaction, in which the introduction of the hydroxymethyl group can lead to physical–chemical property changes and offer several therapeutic advantages, contributing to the improved biological activity of drugs. There are many examples in the literature of the pharmaceutical, pharmacokinetic, and pharmacodynamic benefits, which the hydroxymethyl group can confer to drugs, prodrugs, drug metabolites, and other therapeutic compounds. It is worth noting that this group can enhance the drug’s interaction with the active site, and it can be employed as an intermediary in synthesizing other therapeutic agents. In addition, the hydroxymethyl derivative can result in more active compounds than the parent drug as well as increase the water solubility of poorly soluble drugs. Taking this into consideration, this review aims to discuss different applications of hydroxymethyl derived from biological agents and its influence on the pharmacological effects of drugs, prodrugs, active metabolites, and compounds of natural origin. Finally, we report a successful compound synthesized by our research group and used for the treatment of neglected diseases, which is created from the hydroxymethylation of its parent drug.
Collapse
Affiliation(s)
- Soraya S. Santos
- Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos Em Doenças Negligenciadas (LAPEN), Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo – USP, São Paulo, Brazil
| | - Rodrigo V. Gonzaga
- Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos Em Doenças Negligenciadas (LAPEN), Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo – USP, São Paulo, Brazil
| | - Cauê B. Scarim
- Laboratório de Pesquisa e Desenvolvimento de Fármacos (LAPDESF), Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual de São Paulo “Júlio de Mesquita Filho” (UNESP), Araraquara, Brazil
| | - Jeanine Giarolla
- Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos Em Doenças Negligenciadas (LAPEN), Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo – USP, São Paulo, Brazil
| | | | - Chung M. Chin
- Laboratório de Pesquisa e Desenvolvimento de Fármacos (LAPDESF), Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual de São Paulo “Júlio de Mesquita Filho” (UNESP), Araraquara, Brazil
- Centro de Pesquisa Avançada Em Medicina (CEPAM), Faculdade de Medicina, União Das Faculdades Dos Grande Lagos (UNILAGO), São José Do Rio Preto, Brazil
| | - Elizabeth I. Ferreira
- Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos Em Doenças Negligenciadas (LAPEN), Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo – USP, São Paulo, Brazil
- *Correspondence: Elizabeth I. Ferreira,
| |
Collapse
|
3
|
Scarim CB, Andrade CRD, Falcone R, Ambrozini LM, Senhorelli VI, Rosa JAD, Chin CM. Hydroxymethylnitrofurazone (NFOH) decreases parasitaemia, parasitism and tissue lesion caused by infection with the Bolivia Trypanosoma cruzi type I strain in Swiss and C57BL/6 mice. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
| | | | - Rossana Falcone
- Sao Paulo State University “Júlio de Mesquita Filho”, UNESP, Brazil
| | | | | | | | - Chung Man Chin
- Sao Paulo State University “Júlio de Mesquita Filho”, UNESP, Brazil
| |
Collapse
|
4
|
Davies C, Simonazzi A, Micheloud JF, Ragone PG, Cid AG, Negrette OS, Bermúdez JM, Parada LA. Benznidazole/Poloxamer 407 Solid Dispersion as a New Strategy to Improve the Treatment of Experimental Trypanosoma cruzi Infection. J Parasitol 2020; 106:323-333. [PMID: 32369594 DOI: 10.1645/19-80] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Benznidazole and nifurtimox are the only drugs specifically approved for the treatment of Chagas disease. Both compounds are given orally in tablets, but occasionally are ineffective and cause adverse effects. Benznidazole, the first-line treatment in many countries, is a compound with low solubility in water that is administered at high doses for long periods of time. To improve its solubility, we developed a new liquid formulation on the basis of solid dispersions (SD) using the amphiphilic polymer poloxamer 407. Herein we present data on its trypanocidal performance in mouse models of acute and chronic Trypanosoma cruzi infection. SD at doses of 60 or 15 mg/kg per day given with different administration schedules were compared with the commercial formulation (CF; 50 mg/kg per day) and vehicle. The SD performance was assessed by direct parasitemia, total anti-T. cruzi antibodies, and parasitic burden in tissues after 4 or 6 mo posttreatment. The efficacy of the SD was equivalent to the CF but without manifest side effects and hepatotoxicity. Considering our previous data on solubility, together with these on efficacy, this new liquid formulation represents a promising alternative for the treatment of Chagas disease, particularly in cases when dosing poses a challenge, as in infants.
Collapse
Affiliation(s)
- Carolina Davies
- Instituto de Patología Experimental, CONICET, Universidad Nacional de Salta. Av. Bolivia 5150, 4400, Salta, Argentina
| | - Analía Simonazzi
- Instituto de Investigaciones para la Industria Química, CONICET, Universidad Nacional de Salta. Av. Bolivia 5150, 4400, Salta, Argentina
| | - Juan Francisco Micheloud
- Grupo de Trabajo de Patología, Epidemiología e Investigación Diagnóstica, Área de Sanidad Animal-IIACS Leales/INTA-Salta, RN 68, km 172, Cerrillos, Salta, Argentina
| | - Paula Gabriela Ragone
- Instituto de Patología Experimental, CONICET, Universidad Nacional de Salta. Av. Bolivia 5150, 4400, Salta, Argentina
| | - Alicia Graciela Cid
- Instituto de Investigaciones para la Industria Química, CONICET, Universidad Nacional de Salta. Av. Bolivia 5150, 4400, Salta, Argentina
| | - Olga Sánchez Negrette
- Cátedra de Inmunología, Facultad de Ciencias Agrarias y Veterinarias, Universidad Católica de Salta. Castañares, 4400, Salta, Argentina
| | - José María Bermúdez
- Instituto de Investigaciones para la Industria Química, CONICET, Universidad Nacional de Salta. Av. Bolivia 5150, 4400, Salta, Argentina
| | - Luis Antonio Parada
- Instituto de Patología Experimental, CONICET, Universidad Nacional de Salta. Av. Bolivia 5150, 4400, Salta, Argentina
| |
Collapse
|
5
|
Francisco AF, Jayawardhana S, Olmo F, Lewis MD, Wilkinson SR, Taylor MC, Kelly JM. Challenges in Chagas Disease Drug Development. Molecules 2020; 25:E2799. [PMID: 32560454 PMCID: PMC7355550 DOI: 10.3390/molecules25122799] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/08/2023] Open
Abstract
The protozoan parasite Trypanosoma cruzi causes Chagas disease, an important public health problem throughout Latin America. Current therapeutic options are characterised by limited efficacy, long treatment regimens and frequent toxic side-effects. Advances in this area have been compromised by gaps in our knowledge of disease pathogenesis, parasite biology and drug activity. Nevertheless, several factors have come together to create a more optimistic scenario. Drug-based research has become more systematic, with increased collaborations between the academic and commercial sectors, often within the framework of not-for-profit consortia. High-throughput screening of compound libraries is being widely applied, and new technical advances are helping to streamline the drug development pipeline. In addition, drug repurposing and optimisation of current treatment regimens, informed by laboratory research, are providing a basis for new clinical trials. Here, we will provide an overview of the current status of Chagas disease drug development, highlight those areas where progress can be expected, and describe how fundamental research is helping to underpin the process.
Collapse
Affiliation(s)
- Amanda F. Francisco
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| | - Shiromani Jayawardhana
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| | - Francisco Olmo
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| | - Michael D. Lewis
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| | - Shane R. Wilkinson
- School of Biological and Chemical Sciences, Queen Mary University of London Mile End Road, London E1 4NS, UK;
| | - Martin C. Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| | - John M. Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| |
Collapse
|
6
|
Santos SS, de Araújo RV, Giarolla J, Seoud OE, Ferreira EI. Searching for drugs for Chagas disease, leishmaniasis and schistosomiasis: a review. Int J Antimicrob Agents 2020; 55:105906. [PMID: 31987883 DOI: 10.1016/j.ijantimicag.2020.105906] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/16/2022]
Abstract
Chagas disease, leishmaniasis and schistosomiasis are neglected diseases (NDs) and are a considerable global challenge. Despite the huge number of people infected, NDs do not create interest from pharmaceutical companies because the associated revenue is generally low. Most of the research on these diseases has been conducted in academic institutions. The chemotherapeutic armamentarium for NDs is scarce and inefficient and better drugs are needed. Researchers have found some promising potential drug candidates using medicinal chemistry and computational approaches. Most of these compounds are synthetic but some are from natural sources or are semi-synthetic. Drug repurposing or repositioning has also been greatly stimulated for NDs. This review considers some potential drug candidates and provides details of their design, discovery and activity.
Collapse
Affiliation(s)
- Soraya Silva Santos
- Laboratory of Design and Synthesis of Chemotherapeutics Potentially Active in Neglected Diseases (LAPEN), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo-USP, Avenue Professor Lineu Prestes, 580-Building 13, São Paulo SP, 05508-900, Brazil
| | - Renan Vinicius de Araújo
- Laboratory of Design and Synthesis of Chemotherapeutics Potentially Active in Neglected Diseases (LAPEN), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo-USP, Avenue Professor Lineu Prestes, 580-Building 13, São Paulo SP, 05508-900, Brazil
| | - Jeanine Giarolla
- Laboratory of Design and Synthesis of Chemotherapeutics Potentially Active in Neglected Diseases (LAPEN), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo-USP, Avenue Professor Lineu Prestes, 580-Building 13, São Paulo SP, 05508-900, Brazil
| | - Omar El Seoud
- Laboratory of Design and Synthesis of Chemotherapeutics Potentially Active in Neglected Diseases (LAPEN), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo-USP, Avenue Professor Lineu Prestes, 580-Building 13, São Paulo SP, 05508-900, Brazil
| | - Elizabeth Igne Ferreira
- Laboratory of Design and Synthesis of Chemotherapeutics Potentially Active in Neglected Diseases (LAPEN), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo-USP, Avenue Professor Lineu Prestes, 580-Building 13, São Paulo SP, 05508-900, Brazil.
| |
Collapse
|
7
|
Molina I, Perin L, Aviles AS, de Abreu Vieira PM, da Silva Fonseca K, Cunha LM, Carneiro CM. The effect of benznidazole dose among the efficacy outcome in the murine animal model. A quantitative integration of the literature. Acta Trop 2020; 201:105218. [PMID: 31610148 DOI: 10.1016/j.actatropica.2019.105218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/06/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022]
Abstract
Despite more than 100 years since it was firstly described Chagas disease, only two drugs are available to treat Chagas disease: Nifurtimox launched by Bayer in 1965 and benznidazole launched by Roche in 1971. Drug discovery initiatives have been looking for new compounds as an alternative to these old drugs. Although new platforms have been used with the latest technologies, a critical step on that process still relies on the in vivo model. Unfortunately, to date, available animal models have limited predictive value and there is no standardization. With the aim to better understand the role of benznidazole, the current standard of care of Chagas disease, we performed this review. We intend to analyze the influence of the experimental design of the most used animal model, the murine model, in the assessment of the efficacy endpoint.
Collapse
Affiliation(s)
- Israel Molina
- Tropical Medicine Unit, Infectious Disease Department. PROSICS (International Health Program of the Catalan Health Institute), Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil.
| | - Luisa Perin
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Augusto Sao Aviles
- Tropical Medicine Unit, Infectious Disease Department. PROSICS (International Health Program of the Catalan Health Institute), Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paula Melo de Abreu Vieira
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil; Laboratório de Morfopatologia, Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Katia da Silva Fonseca
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Lucas Maciel Cunha
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Claudia M Carneiro
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| |
Collapse
|
8
|
Nitroheterocyclic derivatives: privileged scaffold for drug development against Chagas disease. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02453-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Assessing the Effectiveness of Curative Benznidazole Treatment in Preventing Chronic Cardiac Pathology in Experimental Models of Chagas Disease. Antimicrob Agents Chemother 2018; 62:AAC.00832-18. [PMID: 30082291 PMCID: PMC6153806 DOI: 10.1128/aac.00832-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/12/2018] [Indexed: 12/14/2022] Open
Abstract
Chagasic heart disease develops in 30% of those infected with the protozoan parasite Trypanosoma cruzi, but can take decades to become symptomatic. Because of this, it has been difficult to assess the extent to which antiparasitic therapy can prevent the development of pathology. We sought to address this question using experimental murine models, exploiting highly sensitive bioluminescent imaging to monitor curative efficacy. Mice were inoculated with bioluminescent parasites and then cured in either the acute or chronic stage of infection with benznidazole. At the experimental endpoint (5 to 6 months postinfection), heart tissue was removed and assessed for inflammation and fibrosis, two widely used markers of cardiac pathology. Infection of BALB/c and C3H/HeN mice with distinct T. cruzi lineages resulted in greatly increased myocardial collagen content at a group level, indicative of fibrotic pathology. When mice were cured by benznidazole in the acute stage, the development of pathology was completely blocked. However, if treatment was delayed until the chronic stage, cardiac fibrosis was observed in the BALB/c model, although the protective effect was maintained in the case of C3H/HeN mice. These experiments therefore demonstrate that curative benznidazole treatment early in murine T. cruzi infections can prevent the development of cardiac fibrosis. They also show that treatment during the chronic stage can block pathology but the effectiveness varies between infection models. If these findings are extendable to humans, it implies that widespread chemotherapeutic intervention targeted at early-stage infections could play a crucial role in reducing Chagas disease morbidity at a population level.
Collapse
|
10
|
Scarim CB, de Andrade CR, da Rosa JA, dos Santos JL, Chin CM. Hydroxymethylnitrofurazone treatment in indeterminate form of chronic Chagas disease: Reduced intensity of tissue parasitism and inflammation-A histopathological study. Int J Exp Pathol 2018; 99:236-248. [PMID: 30320480 PMCID: PMC6302791 DOI: 10.1111/iep.12289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 07/25/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
Hydroxymethylnitrofurazone (NFOH) is a nitrofurazone prodrug effective in vivo during acute infections, and it has less hepatotoxicity effect than the standard drug benznidazole (BZN) which has been used during short- and long-term treatment. In the present study, we induced the indeterminate form of Chagas disease in mice with a Y strain of Trypanosoma cruzi and analysed the histopathological data about the effects of NFOH and BZN on different tissues, including the heart, skeletal muscle, liver, kidney, colon, spleen and brain. After infection, BALB/c mice were treated with NFOH (150 mg/kg) and BZN (60 mg/kg) for 60 days and then submitted to immunosuppression using dexamethasone (5 mg/kg) for 14 days. Two trained analysts, as part of a blind evaluation, examined the results using serial sections of 3 mm diameter in two different moments. The results showed reactivation of the disease only in the infected nontreated group (POS). After treatment, amastigote nests were found in the heart, colon, liver and skeletal muscle in the POS group and in the heart and liver of the BZN group. Interestingly, amastigote nests were not found in the NFOH and NEG groups. The histopathological analysis showed fewer tissue lesions and parasite infiltrates in the NFOH group when compared with the BZN and POS groups. We have not observed any increase in the levels of hepatocellular injury biomarkers (AST/ALT) in the NFOH group. These in vivo studies show the potential for NFOH as an effective and safe compound useful as an anti-T. cruzi agent.
Collapse
Affiliation(s)
- Cauê B. Scarim
- São Paulo State University (UNESP)School of Pharmaceutical SciencesDepartment of Drugs and MedicinesLapdesf ‐ Laboratory of Research and Development of DrugsAraraquaraSão PauloBrazil
| | - Cleverton R. de Andrade
- São Paulo State University (UNESP)Faculty of DentistryDepartment of Physiology and PathologyAraraquaraSão PauloBrazil
| | - João A. da Rosa
- São Paulo State University (UNESP)School of Pharmaceutical SciencesDepartment of Biological SciencesAraraquaraSão PauloBrazil
| | - Jean L. dos Santos
- São Paulo State University (UNESP)School of Pharmaceutical SciencesDepartment of Drugs and MedicinesLapdesf ‐ Laboratory of Research and Development of DrugsAraraquaraSão PauloBrazil
| | - Chung M. Chin
- São Paulo State University (UNESP)School of Pharmaceutical SciencesDepartment of Drugs and MedicinesLapdesf ‐ Laboratory of Research and Development of DrugsAraraquaraSão PauloBrazil
| |
Collapse
|
11
|
Scarim CB, Jornada DH, Chelucci RC, de Almeida L, Dos Santos JL, Chung MC. Current advances in drug discovery for Chagas disease. Eur J Med Chem 2018; 155:824-838. [PMID: 30033393 DOI: 10.1016/j.ejmech.2018.06.040] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022]
Abstract
Chagas disease, also known as American trypanosomiasis, is one of the 17 neglected tropical diseases (NTDs) according to World Health Organization. It is estimated that 8-10 million people are infected worldwide, mainly in Latin America. Chagas disease is caused by the parasite Trypanosoma cruzi and is characterized by two phases: acute and chronic. The current therapy for Chagas disease is limited to drugs such as nifurtimox and benznidazole, which are effective in treating only the acute phase of the disease. In addition, several side effects ranging from hypersensitivity to bone marrow depression and peripheral polyneuropathy have been associated with these drugs. Therefore, the current challenge is to find new effective and safe drugs against this NTD. The aim of this review is to describe the advances in the medicinal chemistry of new anti-chagasic compounds reported in the literature in the last five years. We report promising prototypes for drug discovery identified through target-based and phenotype-based strategies and present some important targets for the development of new synthetic compounds.
Collapse
Affiliation(s)
- Cauê Benito Scarim
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil.
| | - Daniela Hartmann Jornada
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil
| | - Rafael Consolin Chelucci
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil
| | - Leticia de Almeida
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, USP, Brazil
| | - Jean Leandro Dos Santos
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil
| | - Man Chin Chung
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil
| |
Collapse
|
12
|
Abstract
Chagas disease is caused by infection with the insect-transmitted protozoan Trypanosoma cruzi, and is the most important parasitic infection in Latin America. The current drugs, benznidazole and nifurtimox, are characterized by limited efficacy and toxic side-effects, and treatment failures are frequently observed. The urgent need for new therapeutic approaches is being met by a combined effort from the academic and commercial sectors, together with major input from not-for-profit drug development consortia. With the disappointing outcomes of recent clinical trials against chronic Chagas disease, it has become clear that an incomplete understanding of parasite biology and disease pathogenesis is impacting negatively on the development of more effective drugs. In addition, technical issues, including difficulties in establishing parasitological cure in both human patients and animal models, have greatly complicated the assessment of drug efficacy. Here, we outline the major questions that need to be addressed and discuss technical innovations that can be exploited to accelerate the drug development pipeline.
Collapse
|
13
|
Monteiro LM, Löbenberg R, Ferreira EI, Cotrim PC, Kanashiro E, Rocha M, Chung MC, Bou-Chacra N. Targeting Leishmania amazonensis amastigotes through macrophage internalisation of a hydroxymethylnitrofurazone nanostructured polymeric system. Int J Antimicrob Agents 2017; 50:88-92. [DOI: 10.1016/j.ijantimicag.2017.01.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 01/26/2017] [Accepted: 01/28/2017] [Indexed: 11/25/2022]
|
14
|
Francisco AF, Jayawardhana S, Lewis MD, White KL, Shackleford DM, Chen G, Saunders J, Osuna-Cabello M, Read KD, Charman SA, Chatelain E, Kelly JM. Nitroheterocyclic drugs cure experimental Trypanosoma cruzi infections more effectively in the chronic stage than in the acute stage. Sci Rep 2016; 6:35351. [PMID: 27748443 PMCID: PMC5066210 DOI: 10.1038/srep35351] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/28/2016] [Indexed: 01/08/2023] Open
Abstract
The insect-transmitted protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease, and infects 5-8 million people in Latin America. Chagas disease is characterised by an acute phase, which is partially resolved by the immune system, but then develops as a chronic life-long infection. There is a consensus that the front-line drugs benznidazole and nifurtimox are more effective against the acute stage in both clinical and experimental settings. However, confirmative studies have been restricted by difficulties in demonstrating sterile parasitological cure. Here, we describe a systematic study of nitroheterocyclic drug efficacy using highly sensitive bioluminescence imaging of murine infections. Unexpectedly, we find both drugs are more effective at curing chronic infections, judged by treatment duration and therapeutic dose. This was not associated with factors that differentially influence plasma drug concentrations in the two disease stages. We also observed that fexinidazole and fexinidazole sulfone are more effective than benznidazole and nifurtimox as curative treatments, particularly for acute stage infections, most likely as a result of the higher and more prolonged exposure of the sulfone derivative. If these findings are translatable to human patients, they will have important implications for treatment strategies.
Collapse
Affiliation(s)
- Amanda Fortes Francisco
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Shiromani Jayawardhana
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Michael D Lewis
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Karen L White
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville 3052, Australia
| | - David M Shackleford
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville 3052, Australia
| | - Gong Chen
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville 3052, Australia
| | - Jessica Saunders
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville 3052, Australia
| | - Maria Osuna-Cabello
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kevin D Read
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville 3052, Australia
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative (DNDi), 15 Chemin Louis-Dunant, 1202 Geneva, Switzerland
| | - John M Kelly
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
15
|
Bermudez J, Davies C, Simonazzi A, Pablo Real J, Palma S. Current drug therapy and pharmaceutical challenges for Chagas disease. Acta Trop 2016; 156:1-16. [PMID: 26747009 DOI: 10.1016/j.actatropica.2015.12.017] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/23/2015] [Accepted: 12/25/2015] [Indexed: 12/11/2022]
Abstract
One of the most significant health problems in the American continent in terms of human health, and socioeconomic impact is Chagas disease, caused by the protozoan parasite Trypanosoma cruzi. Infection was originally transmitted by reduviid insects, congenitally from mother to fetus, and by oral ingestion in sylvatic/rural environments, but blood transfusions, organ transplants, laboratory accidents, and sharing of contaminated syringes also contribute to modern day transmission. Likewise, Chagas disease used to be endemic from Northern Mexico to Argentina, but migrations have earned it global. The parasite has a complex life cycle, infecting different species, and invading a variety of cells - including muscle and nerve cells of the heart and gastrointestinal tract - in the mammalian host. Human infection outcome is a potentially fatal cardiomyopathy, and gastrointestinal tract lesions. In absence of a vaccine, vector control and treatment of patients are the only tools to control the disease. Unfortunately, the only drugs now available for Chagas' disease, Nifurtimox and Benznidazole, are relatively toxic for adult patients, and require prolonged administration. Benznidazole is the first choice for Chagas disease treatment due to its lower side effects than Nifurtimox. However, different strategies are being sought to overcome Benznidazole's toxicity including shorter or intermittent administration schedules-either alone or in combination with other drugs. In addition, a long list of compounds has shown trypanocidal activity, ranging from natural products to specially designed molecules, re-purposing drugs commercialized to treat other maladies, and homeopathy. In the present review, we will briefly summarize the upturns of current treatment of Chagas disease, discuss the increment on research and scientific publications about this topic, and give an overview of the state-of-the-art research aiming to produce an alternative medication to treat T. cruzi infection.
Collapse
|
16
|
Ekins S, Lage de Siqueira-Neto J, McCall LI, Sarker M, Yadav M, Ponder EL, Kallel EA, Kellar D, Chen S, Arkin M, Bunin BA, McKerrow JH, Talcott C. Machine Learning Models and Pathway Genome Data Base for Trypanosoma cruzi Drug Discovery. PLoS Negl Trop Dis 2015; 9:e0003878. [PMID: 26114876 PMCID: PMC4482694 DOI: 10.1371/journal.pntd.0003878] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/05/2015] [Indexed: 12/21/2022] Open
Abstract
Background Chagas disease is a neglected tropical disease (NTD) caused by the eukaryotic parasite Trypanosoma cruzi. The current clinical and preclinical pipeline for T. cruzi is extremely sparse and lacks drug target diversity. Methodology/Principal Findings In the present study we developed a computational approach that utilized data from several public whole-cell, phenotypic high throughput screens that have been completed for T. cruzi by the Broad Institute, including a single screen of over 300,000 molecules in the search for chemical probes as part of the NIH Molecular Libraries program. We have also compiled and curated relevant biological and chemical compound screening data including (i) compounds and biological activity data from the literature, (ii) high throughput screening datasets, and (iii) predicted metabolites of T. cruzi metabolic pathways. This information was used to help us identify compounds and their potential targets. We have constructed a Pathway Genome Data Base for T. cruzi. In addition, we have developed Bayesian machine learning models that were used to virtually screen libraries of compounds. Ninety-seven compounds were selected for in vitro testing, and 11 of these were found to have EC50 < 10μM. We progressed five compounds to an in vivo mouse efficacy model of Chagas disease and validated that the machine learning model could identify in vitro active compounds not in the training set, as well as known positive controls. The antimalarial pyronaridine possessed 85.2% efficacy in the acute Chagas mouse model. We have also proposed potential targets (for future verification) for this compound based on structural similarity to known compounds with targets in T. cruzi. Conclusions/ Significance We have demonstrated how combining chemoinformatics and bioinformatics for T. cruzi drug discovery can bring interesting in vivo active molecules to light that may have been overlooked. The approach we have taken is broadly applicable to other NTDs. Chagas disease is a neglected tropical disease (NTD) caused by the eukaryotic parasite Trypanosoma cruzi. The disease is endemic to Latin America but is increasingly found in North America and Europe, primarily through immigration, and the spread of this disease is bringing new attention to the need for novel, safe, and effective therapeutics to treat T. cruzi infection. We have used data from a phenotypic screen to build Bayesian models to predict anti-parasitic activity against T. cruzi in vitro. These models were used to score various small libraries of molecules. We selected less than 100 compounds for testing and found in vitro actives, some of which were tested in an in vivo efficacy model. We identified the antimalarial pyronaridine as having in vivo efficacy and provides us with a new starting point for further investigation and optimization.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborative Drug Discovery, Burlingame, California, United States of America
- Collaborations in Chemistry, Fuquay-Varina, North Carolina, United States of America
- * E-mail:
| | - Jair Lage de Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, California, United States of America
| | - Laura-Isobel McCall
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, California, United States of America
| | - Malabika Sarker
- SRI International, Menlo Park, California, United States of America
| | - Maneesh Yadav
- SRI International, Menlo Park, California, United States of America
| | - Elizabeth L. Ponder
- Chemistry, Engineering & Medicine for Human Health (ChEM-H), Stanford, California, United States of America
| | - E. Adam Kallel
- Collaborative Drug Discovery, Burlingame, California, United States of America
| | - Danielle Kellar
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - Steven Chen
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Michelle Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Barry A. Bunin
- Collaborative Drug Discovery, Burlingame, California, United States of America
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, California, United States of America
| | - Carolyn Talcott
- SRI International, Menlo Park, California, United States of America
| |
Collapse
|
17
|
Keenan M, Chaplin JH. A New Era for Chagas Disease Drug Discovery? PROGRESS IN MEDICINAL CHEMISTRY 2015; 54:185-230. [DOI: 10.1016/bs.pmch.2014.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Identification of a new amide-containing thiazole as a drug candidate for treatment of Chagas' disease. Antimicrob Agents Chemother 2014; 59:1398-404. [PMID: 25512408 DOI: 10.1128/aac.03814-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the parasitic infection Chagas' disease was described over 100 years ago, even now there are not suitable drugs. The available drugs nifurtimox and benznidazole have limited efficacies and tolerances, with proven mutagenic effects. Attempting to find appropriate drugs to deal with this problem, here we report on the development and pharmacological characterization of new amide-containing thiazoles. In the present study, we evaluated the in vitro and in vivo effects of new candidates against Trypanosoma cruzi, the etiological agent of Chagas' disease. The lead amide-containing thiazole derivative had potent in vitro activity, an absence of both in vitro mutagenic and in vivo clastogenic effects, and excellent in vitro selectivity and in vivo tolerance. The compound suppressed parasitemia in mice, modifying the anti-T. cruzi antibodies like the reference drug, benznidazole, and displayed the lowest mortality among the tested drugs. The present evidence suggests that this compound is a promising anti-T. cruzi agent surpassing the lead optimization stage in drug development and leading to a candidate for preclinical study.
Collapse
|
19
|
Davies C, Dey N, Negrette OS, Parada LA, Basombrio MA, Garg NJ. Hepatotoxicity in mice of a novel anti-parasite drug candidate hydroxymethylnitrofurazone: a comparison with Benznidazole. PLoS Negl Trop Dis 2014; 8:e3231. [PMID: 25329323 PMCID: PMC4199569 DOI: 10.1371/journal.pntd.0003231] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 08/31/2014] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Treatment of Chagas disease, caused by Trypanosoma cruzi, relies on nifurtimox and benznidazole (BZL), which present side effects in adult patients, and natural resistance in some parasite strains. Hydroxymethylnitrofurazone (NFOH) is a new drug candidate with demonstrated trypanocidal activity; however, its safety is not known. METHODS HepG2 cells dose response to NFOH and BZL (5-100 µM) was assessed by measurement of ROS, DNA damage and survival. Swiss mice were treated with NFOH or BZL for short-term (ST, 21 d) or long-term (LT, 60 d) periods. Sera levels of cellular injury markers, liver inflammatory and oxidative stress, and fibrotic remodeling were monitored. RESULTS HepG2 cells exhibited mild stress, evidenced by increased ROS and DNA damage, in response to NFOH, while BZL at 100 µM concentration induced >33% cell death in 24 h. In mice, NFOH ST treatment resulted in mild-to-no increase in the liver injury biomarkers (GOT, GPT), and liver levels of inflammatory (myeloperoxidase, TNF-α), oxidative (lipid peroxides) and nitrosative (3-nitrotyrosine) stress. These stress responses in NFOH LT treated mice were normalized to control levels. BZL-treated mice exhibited a >5-fold increase in GOT, GPT and TNF-α (LT) and a 20-40% increase in liver levels of MPO activity (ST and LT) in comparison with NFOH-treated mice. The liver inflammatory infiltrate was noted in the order of BZL>vehicle≥NFOH and BZL>NFOH≥vehicle, respectively, after ST and LT treatments. Liver fibrotic remodeling, identified after ST treatment, was in the order of BZL>vehicle>NFOH; lipid deposits, indicative of mitochondrial dysfunction and in the order of NFOH>vehicle>BZL were evidenced after LT treatment. CONCLUSIONS NFOH induces mild ST hepatotoxicity that is normalized during LT treatment in mice. Our results suggest that additional studies to determine the efficacy and toxicity of NFOH are warranted.
Collapse
Affiliation(s)
- Carolina Davies
- Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Argentina
| | - Nilay Dey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Olga Sanchez Negrette
- Cátedra de Quimica Biológica, Facultad de Ciencias Exactas, Universidad Nacional de Salta, Argentina
| | - Luis Antonio Parada
- Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Argentina
| | - Miguel A. Basombrio
- Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Argentina
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Serafim EOP, Silva ATDAE, Moreno ADH, Vizioli EDO, Ferreira EI, Peccinini RG, Ribeiro ML, Chung MC. Pharmacokinetics of hydroxymethylnitrofurazone, a promising new prodrug for Chagas' disease treatment. Antimicrob Agents Chemother 2013; 57:6106-9. [PMID: 24080661 PMCID: PMC3837917 DOI: 10.1128/aac.02522-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 09/06/2013] [Indexed: 11/20/2022] Open
Abstract
Hydroxymethylnitrofurazone (NFOH) is a trypanocidal prodrug of nitrofurazone (NF), devoid of mutagenic toxicity. The purpose of this work was to study the chemical conversion of NFOH into NF in sodium acetate buffer (pH 1.2 and 7.4) and in human plasma and to determine preclinical pharmacokinetic parameters in rats. At pH 1.2, the NFOH was totally transformed into NF, the parent drug, after 48 h, while at pH 7.4, after the same period, the hydrolysis rate was 20%. In human plasma, 50% of NFOH was hydrolyzed after 24 h. In the investigation of kinetic disposition, the concentration of drug in serum versus time curve was used to calculate the pharmacokinetic parameters after a single-dose regimen. NFOH showed a time to maximum concentration of drug in serum (Tmax) as 1 h, suggesting faster absorption than NF (4 h). The most important results observed were the volume of distribution (V) of NFOH through the tissues, which showed a rate that is 20-fold higher (337.5 liters/kg of body weight) than that of NF (17.64 liters/kg), and the concentration of NF obtained by in vivo metabolism of NFOH, which was about four times lower (maximum concentration of drug in serum [Cmax] = 0.83 μg/ml; area under the concentration-time curve from 0 to 12 h [AUC0-12] = 5.683 μg/ml · h) than observed for administered NF (Cmax = 2.78 μg/ml; AUC0-12 = 54.49 μg/ml · h). These findings can explain the superior activity and lower toxicity of the prodrug NFOH in relation to its parent drug and confirm NFOH as a promising anti-Chagas' disease drug candidate.
Collapse
Affiliation(s)
- Eliana Ometto Pavan Serafim
- Lapdesf, Department of Drugs and Medicines, School of Pharmaceutical Sciences, University of São Paulo State, UNESP, Araraquara, SP, Brazil
- Department of Organic Chemistry, Chemical Institute, University of São Paulo State, UNESP, Araraquara, SP, Brazil
| | | | - Andréia de Haro Moreno
- Lapdesf, Department of Drugs and Medicines, School of Pharmaceutical Sciences, University of São Paulo State, UNESP, Araraquara, SP, Brazil
| | - Ednir de Oliveira Vizioli
- Lapdesf, Department of Drugs and Medicines, School of Pharmaceutical Sciences, University of São Paulo State, UNESP, Araraquara, SP, Brazil
| | - Elizabeth Igne Ferreira
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Rosângela Gonçalves Peccinini
- Department of Natural Drugs and Toxicology, School of Pharmaceutical Sciences, University of São Paulo State, UNESP, Araraquara, SP, Brazil
| | - Maria Lucia Ribeiro
- Department of Organic Chemistry, Chemical Institute, University of São Paulo State, UNESP, Araraquara, SP, Brazil
| | - Man Chin Chung
- Lapdesf, Department of Drugs and Medicines, School of Pharmaceutical Sciences, University of São Paulo State, UNESP, Araraquara, SP, Brazil
| |
Collapse
|
21
|
da Silva Santos S, Giarolla J, Pasqualoto KF, Ferreira EI. Molecular modelling as a tool for studying the disassembly of potentially leishmanicide-targeted dendrimer. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2013.774086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Design and exploratory data analysis of a second generation of dendrimer prodrugs potentially antichagasic and leishmanicide. Mol Divers 2013; 17:711-20. [DOI: 10.1007/s11030-013-9467-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/29/2013] [Indexed: 01/15/2023]
|
23
|
Gulin JEN, Eagleson MA, Postan M, Cutrullis RA, Freilij H, Bournissen FG, Petray PB, Altcheh J. Efficacy of voriconazole in a murine model of acute Trypanosoma cruzi infection. J Antimicrob Chemother 2012; 68:888-94. [PMID: 23212113 DOI: 10.1093/jac/dks478] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Antifungal triazole derivatives have been studied as possible alternatives for the treatment of Chagas' disease. Voriconazole has demonstrated in vitro activity against Trypanosoma cruzi, but its efficacy in vivo has not yet been tested. We aimed to determine the effect of voriconazole in a murine model of acute T. cruzi infection. METHODS Treatment efficacy was evaluated by comparing parasitaemia, mortality and organ involvement (by histological examination) of infected mice. RESULTS Treatment with voriconazole significantly lowered parasitaemia and mortality compared with controls, reduced the percentage of mice with amastigote nests in heart and skeletal muscle and moderately decreased myocardial inflammation. CONCLUSIONS Our findings support the potential of voriconazole for the treatment of acute Chagas' disease and motivate future animal studies using varying doses and treatment schemes. Further evaluation of voriconazole for clinical use in human Chagas' patients is warranted.
Collapse
Affiliation(s)
- J E N Gulin
- Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Giarolla J, Pasqualoto KFM, Rando DG, Zaim MH, Ferreira EI. Molecular modeling study on the disassembly of dendrimers designed as potential antichagasic and antileishmanial prodrugs. J Mol Model 2011; 18:2257-69. [DOI: 10.1007/s00894-011-1244-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 09/13/2011] [Indexed: 11/24/2022]
|