1
|
Kanesaka I, Manoharan-Basil SS, De Block T, Kenyon C, Morita M, Ito T, Yamane N, Kanayama AK, Kobayashi I. Antimicrobial susceptibility of commensal Neisseria species in the Japanese population. J Infect Chemother 2025; 31:102670. [PMID: 40021006 DOI: 10.1016/j.jiac.2025.102670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/05/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
OBJECTIVES We aimed to, for the first time, characterize the antimicrobial susceptibilities of commensal Neisseria species in the general population in Japan. In particular, we assessed if the tetracycline minimum inhibitory concentrations (MICs) of these isolates were changing over time and, given the recent interest in doxycycline post exposure prophylaxis (PEP), if the tetracycline MICs were associated with those of the other antimicrobials. METHODS Neisseria spp. were isolated from 1,679 patients visiting dental clinics in Japan between 2018-2023. The MICs of tetracycline, ceftriaxone, cefixime, penicillin, azithromycin and ciprofloxacin against Neisseria spp. were determined using agar dilution. Linear regression was used to assess if there was an association between MIC and the year the isolate was obtained from, controlling for species identity. RESULTS Neisseria spp. were detected in 424 of 1,679 individuals sampled. Of these, 417 (98.3%) isolates were identified as Neisseria subflava, and the remaining 7 (1.7%) as Neisseria mucosa. The median tetracycline MIC was 0.5mg/L (IQR 0.5-1mg/L). The MICs of penicillin, cefixime, ceftriaxone and ciprofloxacin were lower in N. mucosa than in N. subflava. The tetracycline MICs of Neisseria spp. were positively correlated with penicillin, azithromycin and ciprofloxacin. No significant correlations were found with cefixime or ceftriaxone. CONCLUSIONS Our results suggest that despite the overall decline in antimicrobial use in Japan, MICs for several antimicrobials have increased over time. In particular, the MIC of tetracycline tends to be high in Japan. These results suggest the need to include surveillance of tetracycline MICs of commensal Neisseria spp. in doxycycline PEP implementation studies.
Collapse
Affiliation(s)
- Izumo Kanesaka
- STI unit, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000 Antwerp, Belgium; Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo 143-0015, Japan.
| | - Sheeba Santhini Manoharan-Basil
- STI unit, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000 Antwerp, Belgium
| | - Tessa De Block
- STI unit, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000 Antwerp, Belgium
| | - Chris Kenyon
- STI unit, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000 Antwerp, Belgium; University of Cape Town, Rondebosch, Cape Town, 7700 South Africa
| | - Masahiro Morita
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo 143-0015, Japan
| | - Takamitsu Ito
- Higashiosaka City Medical Center, 3-4-5, Nishiiwata, Higashiosaka-shi, Osaka 578-8588, Japan
| | - Natsue Yamane
- Natsu Dental Clinic, 4-31-10, Ikegami, Ota-ku, Tokyo 146-0082, Japan
| | - Akiko Katsuse Kanayama
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo 143-0015, Japan
| | - Intetsu Kobayashi
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo 143-0015, Japan
| |
Collapse
|
2
|
Marshall HS, Molina JM, Berlaimont V, Mulgirigama A, Sohn WY, Berçot B, Bobde S. Management and prevention of Neisseria meningitidis and Neisseria gonorrhoeae infections in the context of evolving antimicrobial resistance trends. Eur J Clin Microbiol Infect Dis 2025; 44:233-250. [PMID: 39601904 PMCID: PMC11754362 DOI: 10.1007/s10096-024-04968-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
PURPOSE To describe the relationships between Neisseria meningitidis (NM) and Neisseria gonorrhoeae (NG) at genetic, population, and individual levels; to review historical trends in antimicrobial resistance (AMR); to review the treatment and preventive landscapes and explore their potential impact on AMR. METHODS A narrative literature search was conducted in PubMed, with searches restricted to 2003-2023 and additional articles included based on expertise. RESULTS NM and NG are closely related bacterial pathogens causing invasive meningococcal disease (IMD) and gonorrhea, respectively. NM can currently be treated with most antibiotics and generally has a wild-type susceptibility profile, whereas NG is increasingly resistant even in the first line of treatment. These pathogens share 80-90% genetic identity and can asymptomatically cohabit the pharynx. While AMR has historically been rare for NM, recent reports show this to be an emerging clinical concern. Extensively drug-resistant NG are reported globally, with data available from 73 countries, and can lead to treatment failure. Importantly, Neisseria commensals within the normal microbiota in the pharynx can act as a genetic reservoir of resistance to extended-spectrum cephalosporins. Novel oral antibiotics are urgently needed to treat a growing threat from antibiotic-resistant NG, recognized as a major global concern to public health by the World Health Organization. Numerous vaccines are available to prevent IMD, but none are approved for gonorrhea. Research to identify suitable candidates is ongoing. CONCLUSION Holistic management of AMR in IMD and gonorrhea should couple judicious use of existing antibiotics, optimization of vaccination programs, and development of novel antibiotics and vaccines.
Collapse
Affiliation(s)
- Helen S Marshall
- Vaccinology and Immunology Research Trials Unit, Women's and Children's Health Network and Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Jean-Michel Molina
- Université Paris Cité, INSERM UMR 944, Paris, France
- Department of Infectious Diseases, Saint-Louis and Lariboisière Hospitals, APHP, Paris, France
| | | | | | | | - Béatrice Berçot
- Université Paris Cité, INSERM1137, IAME, Paris, France
- Department of Bacteriology, French National Reference of Bacterial STI, Saint-Louis and Lariboisière Hospitals, APHP, Paris, France
| | | |
Collapse
|
3
|
Rodriguez E, Tzeng YL, Berry I, Howie R, McNamara L, Stephens DS. Progression of antibiotic resistance in Neisseria meningitidis. Clin Microbiol Rev 2025:e0021524. [PMID: 39887238 DOI: 10.1128/cmr.00215-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
SUMMARYThe human pathogen Neisseria meningitidis (Nm) is the causative agent of invasive meningococcal disease (IMD), usually presenting as meningitis, bacteremia, or sepsis. Unlike Neisseria gonorrhoeae, antibiotic resistance in Nm has developed slowly. However, in the last two decades and with the reemergence of IMD following the COVID-19 pandemic, antibiotic-resistant Nm isolates, especially to penicillin and fluoroquinolones, have progressively increased. Recent worldwide studies of penicillin intermediate and resistant Nm isolates and the PubMLST global database reveal a notable increase in fully penicillin-resistant isolates since 2016, mediated by mosaic penA alleles or the β-lactamase genes blaROB-1 and blaTEM-1. Fluoroquinolone-resistant isolates, mediated by gyrA mutations, have increased since 2005. Also, while still exceptionally rare, four Nm isolates have been identified with third-generation cephalosporin-resistance since 2011. We review the emergence of antibiotic resistance determinants and lineages in Nm, the resistance to agents previously or currently used in treatment or chemoprophylaxis, and summarize updated treatment and prevention guidelines for IMD. Special populations (e.g., individuals on complement inhibitors) and antibiotic resistance in Nm urethritis isolates are also reviewed. The increasing number of resistant Nm isolates worldwide affects chemoprophylaxis and treatment options for IMD and emphasizes the need for enhanced global surveillance of antibiotic resistance in Nm.
Collapse
Affiliation(s)
- Emilio Rodriguez
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yih-Ling Tzeng
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Isha Berry
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Rebecca Howie
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lucy McNamara
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David S Stephens
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Robinson LR, McDevitt CJ, Regan MR, Quail SL, Wadsworth CB. In vitro evolution of ciprofloxacin resistance in Neisseria commensals and derived mutation population dynamics in natural Neisseria populations. FEMS Microbiol Lett 2025; 372:fnae107. [PMID: 39788725 PMCID: PMC11774118 DOI: 10.1093/femsle/fnae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/19/2024] [Accepted: 01/08/2025] [Indexed: 01/12/2025] Open
Abstract
Commensal Neisseria are members of a healthy human oropharyngeal microbiome; however, they also serve as a reservoir of antimicrobial resistance for their pathogenic relatives. Despite their known importance as sources of novel genetic variation for pathogens, we still do not understand the full suite of resistance mutations commensal species can harbor. Here, we use in vitro selection to assess the mutations that emerge in response to ciprofloxacin selection in commensal Neisseria by passaging four replicates of four different species in the presence of a selective antibiotic gradient for 20 days; then categorized derived mutations with whole genome sequencing. Ten out of sixteen selected cells lines across the four species evolved ciprofloxacin resistance (≥1 ug/ml); with resistance-contributing mutations primarily emerging in DNA gyrase subunit A and B (gyrA and gyrB), topoisomerase IV subunits C and E (parC and parE), and the multiple transferable efflux pump repressor (mtrR). Of note, these derived mutations appeared in the same loci responsible for ciprofloxacin-reduced susceptibility in the pathogenic Neisseria, suggesting conserved mechanisms of resistance across the genus. Additionally, we tested for zoliflodacin cross-resistance in evolved strain lines and found 6 lineages with elevated zoliflodacin minimum inhibitory concentrations. Finally, to interrogate the likelihood of experimentally derived mutations emerging and contributing to resistance in natural Neisseria, we used a population-based approach and identified GyrA 91I as a substitution circulating within commensal Neisseria populations and ParC 85C in a single gonococcal isolate. A small cluster of gonococcal isolates shared commensal alleles at parE, suggesting recent cross-species recombination events.
Collapse
Affiliation(s)
- Leah R Robinson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY 14623, USA
| | - Caroline J McDevitt
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY 14623, USA
| | - Molly R Regan
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY 14623, USA
| | - Sophie L Quail
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY 14623, USA
| | - Crista B Wadsworth
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY 14623, USA
| |
Collapse
|
5
|
Mikhari RL, Meiring S, de Gouveia L, Chan WY, Jolley KA, Van Tyne D, Harrison LH, Marjuki H, Ismail A, Quan V, Cohen C, Walaza S, von Gottberg A, du Plessis M. Genomic Diversity and Antimicrobial Susceptibility of Invasive Neisseria meningitidis in South Africa, 2016-2021. J Infect Dis 2024; 230:e1311-e1321. [PMID: 38687883 PMCID: PMC11646611 DOI: 10.1093/infdis/jiae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Invasive meningococcal isolates in South Africa have in previous years (<2008) been characterized by serogroup B, C, W, and Y lineages over time, with penicillin intermediate resistance (peni) at 6%. We describe the population structure and genomic markers of peni among invasive meningococcal isolates in South Africa, 2016-2021. METHODS Meningococcal isolates were collected through national, laboratory-based invasive meningococcal disease (IMD) surveillance. Phenotypic antimicrobial susceptibility testing and whole-genome sequencing were performed, and the mechanism of reduced penicillin susceptibility was assessed in silico. RESULTS Of 585 IMD cases reported during the study period, culture and PCR-based capsular group was determined for 477/585 (82%); and 241/477 (51%) were sequenced. Predominant serogroups included NmB (210/477; 44%), NmW (116/477; 24%), NmY (96/477; 20%), and NmC (48/477; 10%). Predominant clonal complexes (CC) were CC41/44 in NmB (27/113; 24%), CC11 in NmW (46/56; 82%), CC167 in NmY (23/44; 53%), and CC865 in NmC (9/24; 38%). Peni was detected in 16% (42/262) of isolates, and was due to the presence of a penA mosaic, with the majority harboring penA7, penA9, or penA14. CONCLUSIONS IMD lineages circulating in South Africa were consistent with those circulating prior to 2008; however, peni was higher than previously reported, and occurred in a variety of lineages.
Collapse
Affiliation(s)
- Rito L Mikhari
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Susan Meiring
- Division of Public Health Surveillance and Response, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Linda de Gouveia
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Wai Yin Chan
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, South Africa
- Wits Diagnostic Innovative Hub, Faculty of Health Science, University of the Witwatesrand, Johannesburg, South Africa
| | - Keith A Jolley
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lee H Harrison
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Henju Marjuki
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering, and Agriculture, University of Venda, Thohoyandou, South Africa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Vanessa Quan
- Division of Public Health Surveillance and Response, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Cheryl Cohen
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sibongile Walaza
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mignon du Plessis
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Birhanu A, Amare A, Tigabie M, Bitew G, Cherkos T, Getaneh E, Moges F. Asymptomatic nasopharyngeal carriage of multidrug resistant bacteria among children at University of Gondar Hospital Northwest Ethiopia Revealing Hidden Health Risks. Sci Rep 2024; 14:28994. [PMID: 39578492 PMCID: PMC11584812 DOI: 10.1038/s41598-024-77527-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
Gram-negative bacteria in the nasopharynx can eventually invade bacteria-limited sites and cause serious illnesses such as meningitis, otitis media, and pneumonia. However, data related to the carriage of these bacteria in children attending outpatient departments in the study area are limited. To assess nasopharyngeal carriage, antibiotic susceptibility patterns, and associated factors of gram-negative bacteria among children attending the outpatient department at the University of Gondar Comprehensive Specialized Hospital, Northwest Ethiopia. A hospital-based cross-sectional study was conducted from September 1, 2023, to December 30, 2023. A total of 385 children aged 3 to 14 years were enrolled using a systematic random sampling technique. Sociodemographic and clinical data were collected using a semistructured questionnaire. A total of 385 nasopharyngeal samples were collected using a sterile specimen collection nasopharyngeal swab, transported using Amie's transport medium, and subsequently inoculated on chocolate agar, blood agar, modified thayer martin agar, and MacConkey agar plates. Bacterial species were identified by colony morphology, Gram staining, and biochemical tests such as oxidase tests, satellitism tests, and carbohydrate utilization tests. An antibiotic susceptibility test was performed using the Kirby-Bauer and modified Kirby-Bauer methods on Mueller-Hinton agar plates. The data were entered into Epi-Data version 4.6.0.6 and exported to SPSS version 25 for analysis. The adjusted odds ratio at a 95% confidence interval with a P value of < 0.05 in the binary logistic regression model was considered to indicate statistical significance. The overall nasopharyngeal carriage of gram-negative bacteria was 146 (37.9%) (95% CI: 33.2-42.9). Among these, nonfastidious gram-negative bacteria represented 45 (11.7%), followed by M. catarrhalis 41 (10.6%), N. meningitidis 34 (8.8%), and H. influenzae 26 (6.8%). The isolates exhibited high resistance to tetracycline (85; 75.9%), trimethoprim-sulfamethoxazole (105; 71.9%), ampicillin (76; 67.9%), and amoxicillin/clavulanic acid (60; 69.8%) but high susceptibility to meropenem (122; 83.6%), gentamicin (73; 84.9%), and minocycline (87; 72.5%). There were 99 total multidrug-resistant strains (67.8%, 95% CI: 59.7-75.0). Male sex (AOR = 1.785, 95% CI: 1.102-2.892, P = 0.019), smoking (AOR = 2.675, 95% CI: 1.149-6.230, P = 0.022), and large family size (≥ 5) (AOR = 1.857, 95% CI: 1.140-3.023, P = 0.013) were risk factors for nasopharyngeal colonization. Increased nasopharyngeal colonization of multidrug-resistant gram-negative isolates was observed in this study. Gentamicin, minocycline, and meropenem were the most effective antibiotics for the tested isolates. Bacterial colonization increased with increasing family size, smoking status, and male sex. Therefore, a definitive diagnosis in the outpatient pediatric department should be based on culture and susceptibility test results.
Collapse
Affiliation(s)
- Abebe Birhanu
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
| | - Azanaw Amare
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mitkie Tigabie
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Getachew Bitew
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tena Cherkos
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Eden Getaneh
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Feleke Moges
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
7
|
Shan X, Chen S, Bai A, Shi Y, Song X, Yin X, Duan C, Tang J, Xia X, Liu L, Zhu B. Dynamic pharyngeal carriage of Neisseria species in healthy population. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 125:105684. [PMID: 39454929 DOI: 10.1016/j.meegid.2024.105684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Considering the significant role of commensal Neisseria carried in the pharynx on the variation of N.meningitidis and the acquisition of its resistance genes, understanding the true Neisseria population colonizing the human pharynx is of great significance. In this study, we carried out a five-month continuous survey of oropharyngeal carriage in a certain healthy population to reveal the long-term carriage status of different Neisseria species. Totally, 419 Neisseria strains were isolated from 203 out of 205 pharyngeal swabs of 49 participants. Using combined methods (MALDI-TOF-MS, rplF sequencing and genome sequencing), the isolates were identified as N.subflava (n = 290), N.mucosa (n = 52), N.oralis (n = 8), N.elongata group (n = 6) and non-species-confirmed (n = 63). N.subflava was isolated from all individuals and 168 swabs (81.95 %). N.mucosa, N.oralis, N.elongata and non-species-confirmed were isolated from 25 (45), 6 (7), 4 (5) and 20 (53) individuals (swabs) respectively. It was common that multiple Neisseria spp. or multiple clones of one species were isolated from a single sample. An identical strain could be isolated frequently from a single person within five months. These results indicate that Neisseria spp. and N.subflava are ubiquitous in human pharynx and both have diverse population; we should pay more attention to them when studying N.meningitidis or other respiratory pathogens; robust and handy method for identifying Neisseria species remains to be developed.
Collapse
Affiliation(s)
- Xiaoying Shan
- Jinan Center for Disease Control and Prevention, Jinan City, Shandong Province, PR China
| | - Shuang Chen
- Changchun University of Chinese Medicine, Changchun City, Jilin Province, PR China
| | - Aiying Bai
- Jinan Center for Disease Control and Prevention, Jinan City, Shandong Province, PR China
| | - Yuwen Shi
- Jinan Center for Disease Control and Prevention, Jinan City, Shandong Province, PR China
| | - Xuanli Song
- Jinan Center for Disease Control and Prevention, Jinan City, Shandong Province, PR China
| | - Xiaoyu Yin
- Jinan Center for Disease Control and Prevention, Jinan City, Shandong Province, PR China
| | - Chunhong Duan
- Children's Hospital Affiliated to Shandong University, Jinan City, Shandong Province, PR China
| | - Jinglei Tang
- Laiwu District Center for Disease Control and Prevention, Jinan City, Shandong Province, PR China
| | - Xian Xia
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi City, Hubei Province, PR China
| | - Lanzheng Liu
- Jinan Center for Disease Control and Prevention, Jinan City, Shandong Province, PR China.
| | - Bingqing Zhu
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi City, Hubei Province, PR China.
| |
Collapse
|
8
|
Slavinska A, Kowalczyk M, Kirkliauskienė A, Vizuje G, Siedlecki P, Bikulčienė J, Tamošiūnienė K, Petrutienė A, Kuisiene N. Genetic characterization of Neisseria meningitidis isolates recovered from patients with invasive meningococcal disease in Lithuania. Front Cell Infect Microbiol 2024; 14:1432197. [PMID: 39469455 PMCID: PMC11513629 DOI: 10.3389/fcimb.2024.1432197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Neisseria meningitidis is a gram-negative bacterium responsible for life-threatening invasive infections known as invasive meningococcal disease and is associated with high fatality rates and serious lifelong disabilities among survivors. Methods This study aimed to characterize N. meningitidis isolates cultured from blood and cerebrospinal fluid collected between 2009 and 2021 in Lithuania, assess their genomic relationships with European strains, and evaluate the possibility of using a cost-effective method for strain characterization, thus improving the national molecular surveillance of invasive meningococcal disease. In total, 321 N. meningitidis isolates were collected and analyzed using multilocus restriction typing (MLRT). Amplification of the penA gene and restriction fragment length polymorphism analysis were performed to identify the modified penA genes. Based on the MLRT genotyping results, we selected 10 strains for additional analysis using whole-genome sequencing. The sequenced genomes were incorporated into a dataset of publicly available N. meningitidis genomes to evaluate genomic diversity and establish phylogenetic relationships within the Lithuanian and European circulating strains. Results We identified 83 different strains using MLRT genotyping. Genomic diversity of N. meningitidis genomes analysed revealed 21 different sequence types (STs) circulating in Lithuania. Among these, ST34 was the most prevalent. Notably, three isolates displayed unique combinations of seven housekeeping genes and were identified as novel STs: ST16969, ST16901, and ST16959. The analyzed strains were found to possess virulence factors not commonly found in N. meningitidis. Six distinct penA profiles were identified, each with different frequencies. In the present study, we also identified N. meningitidis strains with new penA, NEIS0123, NEIS1320, NEIS1525, NEIS1600, and NEIS1753 loci variants. In our study, using the cgMLST scheme, Minimum Spanning Tree (MST) analysis did not identify significant geographic relationships between Lithuanian N. meningitidis isolates and strains from Europe. Discussion Discussion: To our knowledge, this is the first study to employ whole genome sequencing (WGS) method for a comprehensive genetic characterization of invasive N. meningitidis isolates from Lithuania. This approach provides a more detailed and precise analysis of genomic relationships and diversity compared to prior studies relying on traditional molecular typing methods and antigen analysis.
Collapse
Affiliation(s)
- Anželika Slavinska
- Department of Microbiology and Biotechnology, Institute of Biosciences of Vilnius University Life Sciences Centre, Vilnius, Lithuania
| | - Magdalena Kowalczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnė Kirkliauskienė
- Faculty of Medicine, Institute of Biomedical Science, Vilnius University, Vilnius, Lithuania
| | - Greta Vizuje
- Microbiology Laboratory, Republican Vilnius University Hospital, Vilnius, Lithuania
| | - Paweł Siedlecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Kristina Tamošiūnienė
- Department of Microbiology and Biotechnology, Institute of Biosciences of Vilnius University Life Sciences Centre, Vilnius, Lithuania
| | - Aurelija Petrutienė
- Department of Clinical Investigations of the National Public Health Surveillance Laboratory, Vilnius, Lithuania
| | - Nomeda Kuisiene
- Department of Microbiology and Biotechnology, Institute of Biosciences of Vilnius University Life Sciences Centre, Vilnius, Lithuania
| |
Collapse
|
9
|
Abdellati S, Gestels Z, Laumen JGE, Van Dijck C, De Baetselier I, de Block T, Van den Bossche D, Vanbaelen T, Kanesaka I, Manoharan-Basil SS, Kenyon C. Antimicrobial susceptibility of commensal Neisseria spp. in parents and their children in Belgium: a cross-sectional survey. FEMS Microbiol Lett 2024; 371:fnae069. [PMID: 39210455 DOI: 10.1093/femsle/fnae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND commensal Neisseria species are part of the oropharyngeal microbiome and play an important role in nitrate reduction and protecting against colonization by pathogenic bacteria. They do, however, also serve as a reservoir of antimicrobial resistance. Little is known about the prevalence of these species in the general population, how this varies by age and how antimicrobial susceptibility varies between species. METHODS we assessed the prevalence and antimicrobial susceptibility of commensal Neisseria species in the parents (n = 38) and children (n = 50) of 35 families in Belgium. RESULTS various commensal Neisseria (n = 5) could be isolated from the participants. Most abundant were N. subflava and N. mucosa. Neisseria subflava was detected in 77 of 88 (87.5%) individuals and N. mucosa in 64 of 88 (72.7%). Neisseria mucosa was more prevalent in children [41/50 (82%)] than parents [23/38 (60.5%); P < .05], while N. bacilliformis was more prevalent in parents [7/36 (19.4%)] than children [2/50 (4%); P < .05]. Neisseria bacilliformis had high ceftriaxone minimum inhibitory concentrations (MICs; median MIC 0.5 mg/l; IQR 0.38-0.75). The ceftriaxone MICs of all Neisseria isolates were higher in the parents than in the children. This could be explained by a higher prevalence of N. bacilliformis in the parents. INTERPRETATION the N. bacilliformis isolates had uniformly high ceftriaxone MICs which warrant further investigation.
Collapse
Affiliation(s)
- Saïd Abdellati
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
| | - Zina Gestels
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
| | | | - Christophe Van Dijck
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
| | - Irith De Baetselier
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
| | - Tessa de Block
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
| | - Dorien Van den Bossche
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
| | - Thibaut Vanbaelen
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
| | - Izumo Kanesaka
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 3219, Japan
| | | | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
- University of Cape Town, Cape Town, 42145, South Africa
| |
Collapse
|
10
|
Takahashi H, Morita M, Kamiya H, Fukusumi M, Yasuda M, Sunagawa M, Nakamura-Miwa H, Ohama Y, Shimuta K, Ohnishi M, Saito R, Akeda Y. Emergence of ciprofloxacin- and penicillin-resistant Neisseria meningitidis isolates in Japan between 2003 and 2020 and its genetic features. Antimicrob Agents Chemother 2023; 67:e0074423. [PMID: 37874301 PMCID: PMC10648979 DOI: 10.1128/aac.00744-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/28/2023] [Indexed: 10/25/2023] Open
Abstract
Although we previously reported that some meningococcal isolates in Japan were resistant to penicillin (PCG) and ciprofloxacin (CIP), the antibiotic susceptibilities of Neisseria meningitidis isolates obtained in Japan remained unclear. In the present study, 290 N. meningitidis isolates in Japan between 2003 and 2020 were examined for the sensitivities to eight antibiotics (azithromycin, ceftriaxone, ciprofloxacin, chloramphenicol, meropenem, minocycline, penicillin, and rifampicin). All isolates were susceptible to chloramphenicol, ceftriaxone, meropenem, minocycline, and rifampicin while two were resistant to azithromycin. Penicillin- and ciprofloxacin-resistant and -intermediate isolates (PCGR, CIPR, PCGI and CIPI, respectively) were also identified. Based on our previous findings from whole genome sequence analysis, approximately 40% of PCGI were associated with ST-11026 and cc2057 meningococci, both of which were unique to Japan. Moreover, the majority of ST-11026 meningococci were CIPR or CIPI. Sensitivities to PCG and CIP were closely associated with genetic features, which indicated that, at least for Japanese meningococcal isolates, PCGR/I or CIPI/R would be less likely to be horizontally conferred from other neisserial genomes by transferring of the genes responsible (penA and gyrA genes, respectively), but rather that ancestral N. meningitidis strains conferring PCGR/I or CIPI/R phenotypes clonally disseminated in Japan.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masatomo Morita
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hajime Kamiya
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Munehisa Fukusumi
- Center for Field Epidemic Intelligence, Research and Professional Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mitsuru Yasuda
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University, Sapporo, Japan
| | - Masatomi Sunagawa
- Center for Field Epidemic Intelligence, Research and Professional Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Haruna Nakamura-Miwa
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuki Ohama
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken Shimuta
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryoichi Saito
- Department of Molecular Microbiology Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
11
|
Spiliopoulou I, Xirogianni A, Simantirakis S, Tzanakaki G. Meningococcal Antibiotic Resistance: Molecular Characterization of Isolates from Patients with Invasive Meningococcal Disease (IMD) in Greece. Antibiotics (Basel) 2023; 12:1136. [PMID: 37508232 PMCID: PMC10376615 DOI: 10.3390/antibiotics12071136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
For effective case management and chemoprophylaxis of Invasive Meningococcal Disease (IMD), prompt antibiotic treatment is required. N. meningitidis is usually susceptible to antibiotics, but reduced susceptibility to penicillin, ciprofloxacin, and rifampicin is increasing worldwide, jeopardizing patients' outcome. We assessed, phenotypically and genotypically, the antimicrobial resistance patterns of 192 strains isolated from IMD cases from all over Greece during 2010-2021. Antimicrobial susceptibility to penicillin, rifampicin, and ciprofloxacin was determined using the E-test. All isolates were genotyped by Multilocus Sequence Typing (MLST). penA, rpoB, and gyrA genes were amplified by PCR and sequenced. Of the 192 isolates, 37% (72/192) were penicillin-susceptible/had increased exposure, and 11% (21/192) were penicillin-resistant. Among those, 40 penA alleles were identified; penA1, penA27, and penA3 were highly associated with susceptibility to penicillin; penA14, penA25, and penA22 related to reduced susceptibility to penicillin, while penA9, penA910, and penA295 had resistance to penicillin. Two ciprofloxacin-resistant isolates harbored the gyrA346 allele, while one rifampicin-resistant isolate harbored the rpoB5 allele. Resistance to ciprofloxacin and rifampicin remains rare. As Greece is one of the countries with high antimicrobial resistance, continued monitoring of antibiotic resistance is important to ensure timely detection of emerging resistance for treatment and prevention guidelines.
Collapse
Affiliation(s)
- Ioanna Spiliopoulou
- National Meningitis Reference Laboratory, Department of Public Health Policy, School of Public Health, University of West Attica, 11521 Athens, Greece
- ECDC Fellowship Programme, Public Health Microbiology Path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), 16973 Solna, Sweden
- National Public Health Organization (NPHO), Central Public Health Laboratory, 16672 Attica, Greece
| | - Athanasia Xirogianni
- National Meningitis Reference Laboratory, Department of Public Health Policy, School of Public Health, University of West Attica, 11521 Athens, Greece
| | - Stelmos Simantirakis
- National Meningitis Reference Laboratory, Department of Public Health Policy, School of Public Health, University of West Attica, 11521 Athens, Greece
| | - Georgina Tzanakaki
- National Meningitis Reference Laboratory, Department of Public Health Policy, School of Public Health, University of West Attica, 11521 Athens, Greece
| |
Collapse
|
12
|
Ota Y, Okada R, Takahashi H, Saito R. A mismatch amplification mutation assay for specific detection of ciprofloxacin-resistant Neisseria meningitidis. J Infect Chemother 2023; 29:562-564. [PMID: 36758676 DOI: 10.1016/j.jiac.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Meningococcal chemoprophylaxis for people in close contact with patients with invasive meningococcal disease (IMD) is necessary for preventing the spread of Neisseria meningitidis. Ciprofloxacin (CIP) is commonly used to treat IMD. However, CIP-resistant N. meningitidis isolates have rapidly evolved worldwide; therefore, rapid and accurate detection of CIP-resistant N. meningitidis is essential. We developed a mismatch amplification mutation assay for identifying gyrA substitutions T91I and D95Y, associated with reduced CIP susceptibility, using two primer sets to detect these variants. Comparison with gyrA sequencing data showed complete congruency. This method enables reliable detection of CIP-resistant N. meningitidis, thus leading to efficient management and control of IMD infections.
Collapse
Affiliation(s)
- Yusuke Ota
- Department of Molecular Microbiology, Graduate School of Medicine and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Reina Okada
- Department of Molecular Microbiology, Graduate School of Medicine and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideyuki Takahashi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryoichi Saito
- Department of Molecular Microbiology, Graduate School of Medicine and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
13
|
Chen M, Shao Y, Luo J, Yuan L, Wang M, Chen M, Guo Q. Penicillin and Cefotaxime Resistance of Quinolone-Resistant Neisseria meningitidis Clonal Complex 4821, Shanghai, China, 1965-2020. Emerg Infect Dis 2023; 29:341-350. [PMID: 36692352 PMCID: PMC9881793 DOI: 10.3201/eid2902.221066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Clonal complex 4821 (CC4821) Neisseria meningitidis, usually resistant to quinolones but susceptible to penicillin and third-generation cephalosporins, is increasing worldwide. To characterize the penicillin-nonsusceptible (PenNS) meningococci, we analyzed 491 meningococci and 724 commensal Neisseria isolates in Shanghai, China, during 1965-2020. The PenNS proportion increased from 0.3% in 1965-1985 to 7.0% in 2005-2014 and to 33.3% in 2015-2020. Of the 26 PenNS meningococci, 11 (42.3%) belonged to the CC4821 cluster; all possessed mutations in penicillin-binding protein 2, mostly from commensal Neisseria. Genetic analyses and transformation identified potential donors of 6 penA alleles. Three PenNS meningococci were resistant to cefotaxime, 2 within the CC4821 cluster. With 96% of the PenNS meningococci beyond the coverage of scheduled vaccination and the cefotaxime-resistant isolates all from toddlers, quinolone-resistant CC4821 has acquired penicillin and cefotaxime resistance closely related to the internationally disseminated ceftriaxone-resistant gonococcal FC428 clone, posing a greater threat especially to young children.
Collapse
|
14
|
Belachew T, Assefa M, Tefera Z, Fenta A, Biset S. Colonization Rate and Associated Factors of Non-Pathogenic Neisseria Species, and Moraxella catarrhalis Among Healthy School Children in Gondar, Northwest Ethiopia. Infect Drug Resist 2023; 16:369-378. [PMID: 36714354 PMCID: PMC9879043 DOI: 10.2147/idr.s395343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/11/2023] [Indexed: 01/23/2023] Open
Abstract
Background Although commensal Neisseria species inhabiting mucosal surfaces in the upper respiratory tract (URT) are rarely associated with infections, their presence in the area has been linked to the development of immunity against N. meningitidis and the source of antibiotic resistance determinants in pathogenic species. M. catarrhalis in the oropharynx of children is also a predisposing factor for otitis media. As a result, determining the oropharyngeal carriage rate of these commensal species and associated factors among healthy schoolchildren is substantial. Materials and Methods This community-based cross-sectional study was conducted in Gondar, Northwest Ethiopia, from January to April 2019. A multi-stage and simple random sampling technique were used to select schools and participants, respectively. A total of 524 oropharyngeal swabs were collected using cotton swabs. Modified Thayer-Martin media was used for primary bacterial isolation, and battery of biochemical tests was performed to identify species. For frequencies, descriptive statistics were computed and the logistic regression model was used to see the relationship between dependent and independent variables. Results A total of 524 healthy schoolchildren with a mean age of 12.2 ± 2.74 years participated in this study. The overall oropharyngeal carriage rate was 21.8% (114/524). Of these, N. meningitidis, N. lactamica, N. sicca, and M. catarrhalis were identified in 53 (46.5%), 14 (12.3%), 11 (9.6%), and 36 (31.6%) children, respectively. The culture positivity rate was higher at a younger age, which was 8.1%, 11.3%, and 14.9% in ages between 15-18, 11-14, and 7-10, respectively. The oropharyngeal carriage was significantly associated with the number of students per class (>40). Conclusion There is a higher proportion of carriers of commensal N. lactamica and M. catarrhalis in Gondar town schoolchildren. The oropharyngeal carriage rate was associated with a crowded classroom. The characterization of non-pathogenic Neisseria species and M. catarrhalis in the study area can support the diagnosis of patients suspected of having N. meningitis infections.
Collapse
Affiliation(s)
- Teshome Belachew
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Muluneh Assefa
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | | | | | - Sirak Biset
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia,Correspondence: Sirak Biset, Tel +251-911-598-568, Email
| |
Collapse
|
15
|
Shariati A, Arshadi M, Khosrojerdi MA, Abedinzadeh M, Ganjalishahi M, Maleki A, Heidary M, Khoshnood S. The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic. Front Public Health 2022; 10:1025633. [PMID: 36620240 PMCID: PMC9815622 DOI: 10.3389/fpubh.2022.1025633] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
For around three decades, the fluoroquinolone (FQ) antibiotic ciprofloxacin has been used to treat a range of diseases, including chronic otorrhea, endocarditis, lower respiratory tract, gastrointestinal, skin and soft tissue, and urinary tract infections. Ciprofloxacin's main mode of action is to stop DNA replication by blocking the A subunit of DNA gyrase and having an extra impact on the substances in cell walls. Available in intravenous and oral formulations, ciprofloxacin reaches therapeutic concentrations in the majority of tissues and bodily fluids with a low possibility for side effects. Despite the outstanding qualities of this antibiotic, Salmonella typhi, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa have all shown an increase in ciprofloxacin resistance over time. The rise of infections that are resistant to ciprofloxacin shows that new pharmacological synergisms and derivatives are required. To this end, ciprofloxacin may be more effective against the biofilm community of microorganisms and multi-drug resistant isolates when combined with a variety of antibacterial agents, such as antibiotics from various classes, nanoparticles, natural products, bacteriophages, and photodynamic therapy. This review focuses on the resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing its efficacy.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Maniya Arshadi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mostafa Abedinzadeh
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mahsa Ganjalishahi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran,Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran,*Correspondence: Mohsen Heidary
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran,Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran,Saeed Khoshnood
| |
Collapse
|
16
|
Ciprofloxacin Concentrations 1/1000th the MIC Can Select for Antimicrobial Resistance in N. gonorrhoeae—Important Implications for Maximum Residue Limits in Food. Antibiotics (Basel) 2022; 11:antibiotics11101430. [PMID: 36290088 PMCID: PMC9598464 DOI: 10.3390/antibiotics11101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Concentrations of fluoroquinolones up to 200-fold lower than the minimal inhibitory concentration (MIC) have been shown to be able to select for antimicrobial resistance in E. coli and Salmonella spp. (the minimum selection concentration—MSC). We hypothesized that the low concentrations of quinolones found in meat may play a role in the genesis of quinolone resistance in Neisseria gonorrhoeae. We aimed to (i) establish the ciprofloxacin MSC for N. gonorrhoeae and (ii) assess if, at the ecological level, the prevalence of gonococcal ciprofloxacin resistance is associated with the concentration of quinolones used in food animal production, which is an important determinant of long-term low-dose exposure to ciprofloxacin in humans. Methods: (i) To assess if subinhibitory ciprofloxacin concentrations could select for de novo generated resistant mutants, a susceptible WHO-P N. gonorrhoeae isolate was serially passaged at 1, 1:10, 1:100 and 1:1000 of the ciprofloxacin MIC of WHO-P (0.004 mg/L) on GC agar plates. (ii) Spearman’s correlation was used to assess the association between the prevalence of ciprofloxacin resistance in N. gonorrhoeae and quinolone use for animals and quinolone consumption by humans. Results: Ciprofloxacin concentrations as low as 0.004 µg/L (1/1000 of the MIC of WHO-P) were able to select for ciprofloxacin resistance. The prevalence of ciprofloxacin resistance in N. gonorrhoeae was positively associated with quinolone use for food animals (ρ = 0.47; p = 0.004; N = 34). Conclusion: Further individual level research is required to assess if low doses of ciprofloxacin from ingested foodstuffs are able to select for ciprofloxacin resistance in bacteria colonizing humans and other species.
Collapse
|
17
|
Canary in the Coal Mine: How Resistance Surveillance in Commensals Could Help Curb the Spread of AMR in Pathogenic Neisseria. mBio 2022; 13:e0199122. [PMID: 36154280 DOI: 10.1128/mbio.01991-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance (AMR) is widespread within Neisseria gonorrhoeae populations. Recent work has highlighted the importance of commensal Neisseria (cN) as a source of AMR for their pathogenic relatives through horizontal gene transfer (HGT) of AMR alleles, such as mosaic penicillin binding protein 2 (penA), multiple transferable efflux pump (mtr), and DNA gyrase subunit A (gyrA) which impact beta-lactam, azithromycin, and ciprofloxacin susceptibility, respectively. However, nonpathogenic commensal species are rarely characterized. Here, we propose that surveillance of the universally carried commensal Neisseria may play the role of the "canary in the coal mine," and reveal circulating known and novel antimicrobial resistance determinants transferable to pathogenic Neisseria. We summarize the current understanding of commensal Neisseria as an AMR reservoir, and call to increase research on commensal Neisseria species, through expanding established gonococcal surveillance programs to include the collection, isolation, antimicrobial resistance phenotyping, and whole-genome sequencing (WGS) of commensal isolates. This will help combat AMR in the pathogenic Neisseria by: (i) determining the contemporary AMR profile of commensal Neisseria, (ii) correlating AMR phenotypes with known and novel genetic determinants, (iii) qualifying and quantifying horizontal gene transfer (HGT) for AMR determinants, and (iv) expanding commensal Neisseria genomic databases, perhaps leading to the identification of new drug and vaccine targets. The proposed modification to established Neisseria collection protocols could transform our ability to address AMR N. gonorrhoeae, while requiring minor modifications to current surveillance practices. IMPORTANCE Contemporary increases in the prevalence of antimicrobial resistance (AMR) in Neisseria gonorrhoeae populations is a direct threat to global public health and the effective treatment of gonorrhea. Substantial effort and financial support are being spent on identifying resistance mechanisms circulating within the gonococcal population. However, these surveys often overlook a known source of resistance for gonococci-the commensal Neisseria. Commensal Neisseria and pathogenic Neisseria frequently share DNA through horizontal gene transfer, which has played a large role in rendering antibiotic therapies ineffective in pathogenic Neisseria populations. Here, we propose the expansion of established gonococcal surveillance programs to integrate a collection, AMR profiling, and genomic sequencing pipeline for commensal species. This proposed expansion will enhance the field's ability to identify resistance in and from nonpathogenic reservoirs and anticipate AMR trends in pathogenic Neisseria.
Collapse
|
18
|
Chen H, Li M, Tu S, Zhang X, Wang X, Zhang Y, Zhao C, Guo Y, Wang H. Metagenomic data from cerebrospinal fluid permits tracing the origin and spread of Neisseria meningitidis CC4821 in China. Commun Biol 2022; 5:839. [PMID: 35982241 PMCID: PMC9388655 DOI: 10.1038/s42003-022-03792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/03/2022] [Indexed: 12/04/2022] Open
Abstract
Metagenomic next-generation sequencing (mNGS) is useful for difficult to cultivate pathogens. Here, we use cerebrospinal fluid mNGS to diagnose invasive meningococcal disease. The complete genome sequences of Neisseria meningitidis were assembled using N. meningitidis of ST4821-serotype C isolated from four patients. To investigate the phylogeny, 165 CC4821 N. meningitidis genomes from 1972 to 2017 were also included. The core genome accumulated variation at a rate of 4.84×10−8 substitutions/nucleotide site/year. CC4821 differentiated into four sub-lineages during evolution (A, B, C, and D). While evolving from sub-lineage A (early stage) to sub-lineage D (late stage), the ST and CC4821 serotype converged into the ST4821-serotype C clone. Most strains of sub-lineage D were isolated from invasive meningococcal disease, with increasing resistance to quinolones. Phylogeographic analysis suggests that CC4821 has spread across 14 countries. Thus, the selective pressure of quinolones may cause CC4821 to converge evolutionarily, making it more invasive and facilitating its spread. Metagenomic data from cerebrospinal fluid was used to genotype Neisseria meningitidis in patients with invasive meningococcal disease and trace the origin of the pathobiont, providing a phylogeographic analysis of the strain’s evolution in China and its global spread.
Collapse
Affiliation(s)
- Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| | - Mei Li
- Department of Clinical Laboratory, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Shangyu Tu
- Department of Clinical Medicine, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Xiaoyang Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xiaojuan Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yawei Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Chunjiang Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yinghui Guo
- Department of Clinical Laboratory, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, China.
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
19
|
Ota Y, Okada R, Takahashi H, Saito R. Molecular detection of fluoroquinolone-resistant Neisseria meningitidis by using mismatched PCR-restriction fragment length polymorphism technique. Front Cell Infect Microbiol 2022; 12:911911. [PMID: 35982783 PMCID: PMC9378782 DOI: 10.3389/fcimb.2022.911911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Ciprofloxacin (CIP) is a commonly used antibiotic for meningococcal chemoprophylaxis, and the mutations in the quinolone resistance-determining region of gyrA are associated with CIP-resistant Neisseria meningitidis. Here, we established a mismatched PCR-restriction fragment length polymorphism (RFLP) assay to detect a mutation at codon 91 of gyrA, followed by high-level CIP-resistant meningococci. We designed PCR-RFLP primers to detect the T91I mutation in gyrA by introducing an artificial AciI cleavage site. This assay was performed using 26 N. meningitidis strains whose gyrA sequences have been characterized. The amplified 160 bp PCR product from gyrA was digested into three fragments (80, 66, and 14 bp) when there was no mutation, or two fragments (146 and 14 bp) when there was a mutation at codon 91. A correlation was observed between the mismatched PCR-RFLP assay and gyrA sequencing. This rapid, simple, and accurate assay has the potential to detect CIP-resistant N. meningitidis in clinical microbiology laboratories, contributing to the appropriate antibiotic selection for meningococcal chemoprophylaxis, will help maintain an effective treatment for close contacts of IMD patients, and prevent the spread of CIP-resistant N. meningitidis.
Collapse
Affiliation(s)
- Yusuke Ota
- Department of Molecular Microbiology, Graduate School of Medicine and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Reina Okada
- Department of Molecular Microbiology, Graduate School of Medicine and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideyuki Takahashi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryoichi Saito
- Department of Molecular Microbiology, Graduate School of Medicine and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
- *Correspondence: Ryoichi Saito,
| |
Collapse
|
20
|
Shao Y, Chen M, Luo J, Li D, Yuan L, Yang X, Wang M, Chen M, Guo Q. Serogroup Y Clonal Complex 23 Meningococcus in China Acquiring Penicillin Resistance from Commensal Neisseria lactamica Species. Antimicrob Agents Chemother 2022; 66:e0238321. [PMID: 35652645 PMCID: PMC9211434 DOI: 10.1128/aac.02383-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
Invasive meningococcal disease (IMD) due to serogroup Y Neisseria meningitidis (NmY) is rare in China; recently, an invasive NmY isolate, Nm512, was discovered in Shanghai with decreased susceptibility to penicillin (PenNS). Here, we investigated the epidemiology of NmY isolates in Shanghai and explored the potential commensal Neisseria lactamica donor of the PenNS NmY isolate. A total of 491 N. meningitidis and 724 commensal Neisseria spp. isolates were collected. Eleven NmY isolates were discovered from IMD (n = 1) and carriers (n = 10), including two PenNS isolates with five-key-mutation-harboring (F504L-A510V-I515V-H541N-I566V) penA genes. Five of the eight ST-175 complex (CC175) isolates had a genotype [Y:P1.5-1,2-2:F5-8:ST-175(CC175)] identical to that of the predominant invasive clone found in South Africa. Only one invasive NmY CC23 isolate (Nm512) was discovered; this isolate carried a novel PenNSpenA832 allele, which was identified in commensal N. lactamica isolates locally. Recombination analysis and transformation of the penA allele highlighted that N. meningitidis Nm512 may acquire resistance from its commensal donor; this was supported by the similar distribution of transformation-required DNA uptake sequence variants and the highly cognate receptor ComP between N. meningitidis and N. lactamica. In 2,309 NmY CC23 genomes from the PubMLST database, isolates with key-mutation-harboring penA genes comprised 12% and have been increasing since the 1990s, accompanied by recruitment of the blaROB-1 and/or quinolone resistance allele. Moreover, penA22 was predominant among genomes without key mutations in penA. These results strongly suggest that Nm512 is a descendant of the penA22-harboring CC23 isolate from Europe and acquired its penicillin resistance locally from commensal N. lactamica species by natural transformation.
Collapse
Affiliation(s)
- Youxing Shao
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission of the People’s Republic of China, Shanghai, People’s Republic of China
| | - Mingliang Chen
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People’s Republic of China
- Department of Microbiology, Shanghai Institutes of Preventive Medicine, Shanghai, People’s Republic of China
| | - Jiayuan Luo
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Dan Li
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Lingyue Yuan
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Xiaoying Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission of the People’s Republic of China, Shanghai, People’s Republic of China
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission of the People’s Republic of China, Shanghai, People’s Republic of China
| | - Min Chen
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Qinglan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission of the People’s Republic of China, Shanghai, People’s Republic of China
| |
Collapse
|
21
|
Potts CC, Rodriguez-Rivera LD, Retchless AC, Hu F, Marjuki H, Blain AE, McNamara LA, Wang X. Antimicrobial Susceptibility Survey of Invasive Neisseria meningitidis, United States 2012-2016. J Infect Dis 2022; 225:1871-1875. [PMID: 35266516 PMCID: PMC10985786 DOI: 10.1093/infdis/jiac046] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/08/2022] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Historically, antimicrobial resistance has been rare in US invasive meningococcal disease cases. METHODS Meningococcal isolates (n = 695) were collected through population-based surveillance, 2012-2016, and national surveillance, 2015-2016. Antimicrobial susceptibility was assessed by broth microdilution. Resistance mechanisms were characterized using whole-genome sequencing. RESULTS All isolates were susceptible to 6 antibiotics (cefotaxime, ceftriaxone, meropenem, rifampin, minocycline, and azithromycin). Approximately 25% were penicillin or ampicillin intermediate; among these, 79% contained mosaic penA gene mutations. Less than 1% of isolates were penicillin, ampicillin, ciprofloxacin, or levofloxacin resistant. CONCLUSIONS Penicillin- and ampicillin-intermediate isolates were common, but resistance to clinically relevant antibiotics remained rare.
Collapse
Affiliation(s)
- Caelin C. Potts
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lorraine D. Rodriguez-Rivera
- Weems Design Studio, Inc, Contractor assigned to Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- IHRC, Inc, Contractor assigned to Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Adam C. Retchless
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Fang Hu
- IHRC, Inc, Contractor assigned to Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Henju Marjuki
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amy E. Blain
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lucy A. McNamara
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Xin Wang
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
22
|
de Block T, González N, Abdellati S, Laumen JGE, Van Dijck C, De Baetselier I, Van den Bossche D, Manoharan-Basil SS, Kenyon C. Successful Intra- but Not Inter-species Recombination of msr(D) in Neisseria subflava. Front Microbiol 2022; 13:855482. [PMID: 35432273 PMCID: PMC9007320 DOI: 10.3389/fmicb.2022.855482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022] Open
Abstract
Resistance acquisition via natural transformation is a common process in the Neisseria genus. Transformation has played an important role in the emergence of resistance to many antimicrobials in Neisseria gonorrhoeae and Neisseria meningitidis. In a previous study, we found that currently circulating isolates of Neisseria subflava had acquired an msr(D) gene that has been found to result in macrolide resistance in other bacteria but never found in Neisseria species before. To determine if this resistance mechanism is transferable among Neisseria species, we assessed if we could transform the msr(D) gene into other commensal and pathogenic Neisseria under low dose azithromycin pressure. Intraspecies recombination in commensal N. subflava was confirmed with PCR and resulted in high-level macrolide resistance. Whole-genome sequencing of these transformed strains identified the complete uptake of the msr(D) integration fragment. Sequence analysis showed that a large fragment of DNA (5 and 12 kb) was transferred through a single horizontal gene transfer event. Furthermore, uptake of the msr(D) gene had no apparent fitness cost. Interspecies transformation of msr(D) from N. subflava to N. gonorrhoeae was, however, not successful.
Collapse
Affiliation(s)
- Tessa de Block
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Natalia González
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Saïd Abdellati
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jolein Gyonne Elise Laumen
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Christophe Van Dijck
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Irith De Baetselier
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
23
|
Vanbaelen T, Van Dijck C, Laumen J, Gonzalez N, De Baetselier I, Manoharan-Basil SS, De Block T, Kenyon C. Global epidemiology of antimicrobial resistance in commensal Neisseria species: A systematic review. Int J Med Microbiol 2022; 312:151551. [DOI: 10.1016/j.ijmm.2022.151551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
|
24
|
Manoharan-Basil SS, González N, Laumen JGE, Kenyon C. Horizontal Gene Transfer of Fluoroquinolone Resistance-Conferring Genes From Commensal Neisseria to Neisseria gonorrhoeae: A Global Phylogenetic Analysis of 20,047 Isolates. Front Microbiol 2022; 13:793612. [PMID: 35369513 PMCID: PMC8973304 DOI: 10.3389/fmicb.2022.793612] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/19/2022] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance in Neisseria gonorrhoeae is an important global health concern. The genetically related commensal Neisseria act as a reservoir of resistance genes, and horizontal gene transfer (HGT) has been shown to play an important role in the genesis of resistance to cephalosporins and macrolides in N. gonorrhoeae. In this study, we evaluated if there was evidence of HGT in the genes gyrA/gyrB and parC/parE responsible for fluoroquinolone resistance. Even though the role of gyrB and parE in quinolone resistance is unclear, the subunits gyrB and parE were included as zoliflodacin, a promising new drug to treat N. gonorrhoeae targets the gyrB subunit. We analyzed a collection of 20,047 isolates; 18,800 N. gonorrhoeae, 1,238 commensal Neisseria spp., and nine Neisseria meningitidis. Comparative genomic analyses identified HGT events in genes, gyrA, gyrB, parC, and parE. Recombination events were predicted in N. gonorrhoeae and Neisseria commensals. Neisseria lactamica, Neisseria macacae, and Neisseria mucosa were identified as likely progenitors of the HGT events in gyrA, gyrB, and parE, respectively.
Collapse
Affiliation(s)
- Sheeba Santhini Manoharan-Basil
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- *Correspondence: Sheeba Santhini Manoharan-Basil,
| | - Natalia González
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | | | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
25
|
Raisman JC, Fiore MA, Tomin L, Adjei JKO, Aswad VX, Chu J, Domondon CJ, Donahue BA, Masciotti CA, McGrath CG, Melita J, Podbielski PA, Schreiner MR, Trumpore LJ, Wengert PC, Wrightstone EA, Hudson AO, Wadsworth CB. Evolutionary paths to macrolide resistance in a Neisseria commensal converge on ribosomal genes through short sequence duplications. PLoS One 2022; 17:e0262370. [PMID: 35025928 PMCID: PMC8758062 DOI: 10.1371/journal.pone.0262370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/22/2021] [Indexed: 11/19/2022] Open
Abstract
Neisseria commensals are an indisputable source of resistance for their pathogenic relatives. However, the evolutionary paths commensal species take to reduced susceptibility in this genus have been relatively underexplored. Here, we leverage in vitro selection as a powerful screen to identify the genetic adaptations that produce azithromycin resistance (≥ 2 μg/mL) in the Neisseria commensal, N. elongata. Across multiple lineages (n = 7/16), we find mutations that reduce susceptibility to azithromycin converge on the locus encoding the 50S ribosomal L34 protein (rpmH) and the intergenic region proximal to the 30S ribosomal S3 protein (rpsC) through short tandem duplication events. Interestingly, one of the laboratory evolved mutations in rpmH is identical (7LKRTYQ12), and two nearly identical, to those recently reported to contribute to high-level azithromycin resistance in N. gonorrhoeae. Transformations into the ancestral N. elongata lineage confirmed the causality of both rpmH and rpsC mutations. Though most lineages inheriting duplications suffered in vitro fitness costs, one variant showed no growth defect, suggesting the possibility that it may be sustained in natural populations. Ultimately, studies like this will be critical for predicting commensal alleles that could rapidly disseminate into pathogen populations via allelic exchange across recombinogenic microbial genera.
Collapse
Affiliation(s)
- Jordan C. Raisman
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Michael A. Fiore
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Lucille Tomin
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Joseph K. O. Adjei
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Virginia X. Aswad
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Jonathan Chu
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Christina J. Domondon
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Ben A. Donahue
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Claudia A. Masciotti
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Connor G. McGrath
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Jo Melita
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Paul A. Podbielski
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Madelyn R. Schreiner
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Lauren J. Trumpore
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Peter C. Wengert
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Emalee A. Wrightstone
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - André O. Hudson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
| | - Crista B. Wadsworth
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
26
|
Laumen JGE, Abdellati S, Van Dijck C, Martiny D, De Baetselier I, Manoharan-Basil SS, Van den Bossche D, Kenyon C. A Novel Method to Assess Antimicrobial Susceptibility in Commensal Oropharyngeal Neisseria-A Pilot Study. Antibiotics (Basel) 2022; 11:100. [PMID: 35052976 PMCID: PMC8772996 DOI: 10.3390/antibiotics11010100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Commensal Neisseria provide a reservoir of resistance genes that can be transferred to the pathogens Neisseria gonorrhoeae and N. meningitidis in the human oropharynx. Surveillance programs are thus needed to monitor resistance in oropharyngeal commensal Neisseria, but currently the isolation and antimicrobial susceptibility testing of these commensals is laborious, complex and expensive. In addition, the posterior oropharyngeal/tonsillar swab, which is commonly used to sample oropharyngeal Neisseria, is poorly tolerated by many individuals. We evaluated an alternative non-invasive method to isolate oropharyngeal commensal Neisseria and to detect decreased susceptibility to azithromycin using selective media (LBVT.SNR) with and without azithromycin (2 µg/mL). In this pilot study, we compared paired posterior oropharyngeal/tonsillar swabs and oral rinse-and-gargle samples from 10 participants and demonstrated that a similar Neisseria species diversity and number of colonies were isolated from both sample types. Moreover, the proportion of Neisseria colonies that had a decreased susceptibility to azithromycin was similar in the rinse samples compared to the swabs. This pilot study has produced encouraging data that a simple protocol of oral rinse-and-gargle and culture on plates selective for commensal Neisseria with and without a target antimicrobial can be used as a surveillance tool to monitor antimicrobial susceptibility in commensal oropharyngeal Neisseria. Larger studies are required to validate these findings.
Collapse
Affiliation(s)
- Jolein Gyonne Elise Laumen
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (C.V.D.); (S.S.M.-B.); (C.K.)
- Laboratory of Medical Microbiology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Saïd Abdellati
- Clinical and Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.A.); (I.D.B.); (D.V.d.B.)
| | - Christophe Van Dijck
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (C.V.D.); (S.S.M.-B.); (C.K.)
- Laboratory of Medical Microbiology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Delphine Martiny
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles-Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles, 1000 Brussels, Belgium;
- Faculté de Médecine et Pharmacie, Université de Mons, 7000 Mons, Belgium
| | - Irith De Baetselier
- Clinical and Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.A.); (I.D.B.); (D.V.d.B.)
| | - Sheeba Santhini Manoharan-Basil
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (C.V.D.); (S.S.M.-B.); (C.K.)
| | - Dorien Van den Bossche
- Clinical and Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.A.); (I.D.B.); (D.V.d.B.)
| | - Chris Kenyon
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (C.V.D.); (S.S.M.-B.); (C.K.)
- Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
27
|
Laumen JGE, Van Dijck C, Abdellati S, De Baetselier I, Serrano G, Manoharan-Basil SS, Bottieau E, Martiny D, Kenyon C. Antimicrobial susceptibility of commensal Neisseria in a general population and men who have sex with men in Belgium. Sci Rep 2022; 12:9. [PMID: 34997050 PMCID: PMC8741786 DOI: 10.1038/s41598-021-03995-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/08/2021] [Indexed: 12/03/2022] Open
Abstract
Non-pathogenic Neisseria are a reservoir of antimicrobial resistance genes for pathogenic Neisseria meningitidis and Neisseria gonorrhoeae. Men who have sex with men (MSM) are at risk of co-colonization with resistant non-pathogenic and pathogenic Neisseria. We assessed if the antimicrobial susceptibility of non-pathogenic Neisseria among MSM differs from a general population and if antimicrobial exposure impacts susceptibility. We recruited 96 participants at our center in Belgium: 32 employees, 32 MSM who did not use antibiotics in the previous 6 months, and 32 MSM who did. Oropharyngeal Neisseria were cultured and identified with MALDI-TOF–MS. Minimum inhibitory concentrations for azithromycin, ceftriaxone and ciprofloxacin were determined using E-tests® and compared between groups with non-parametric tests. Non-pathogenic Neisseria from employees as well as MSM were remarkably resistant. Those from MSM were significantly less susceptible than employees to azithromycin and ciprofloxacin (p < 0.0001, p < 0.001), but not ceftriaxone (p = 0.3). Susceptibility did not differ significantly according to recent antimicrobial exposure in MSM. Surveilling antimicrobial susceptibility of non-pathogenic Neisseria may be a sensitive way to assess impact of antimicrobial exposure in a population. The high levels of antimicrobial resistance in this survey indicate that novel resistance determinants may be readily available for future transfer from non-pathogenic to pathogenic Neisseria.
Collapse
Affiliation(s)
- Jolein Gyonne Elise Laumen
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium.,Laboratory of Medical Microbiology, University of Antwerp, Wilrijk, Belgium
| | - Christophe Van Dijck
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium.,Laboratory of Medical Microbiology, University of Antwerp, Wilrijk, Belgium
| | - Saïd Abdellati
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Irith De Baetselier
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Gabriela Serrano
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles, Pôle Hospitalier Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Emmanuel Bottieau
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Delphine Martiny
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles, Pôle Hospitalier Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium.,Faculté de Médecine et Pharmacie, Université de Mons, Mons, Belgium
| | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155, 2000, Antwerp, Belgium. .,Department of Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
28
|
Manoharan-Basil SS, Gonzalez N, Kenyon C. Country-level association between antimicrobial consumption and resistance in Neisseria meningitidis: an ecological study. J Infect Public Health 2022; 15:293-296. [DOI: 10.1016/j.jiph.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/23/2021] [Accepted: 01/14/2022] [Indexed: 10/19/2022] Open
|
29
|
Willerton L, Lucidarme J, Walker A, Lekshmi A, Clark SA, Walsh L, Bai X, Lee-Jones L, Borrow R. Antibiotic resistance among invasive Neisseria meningitidis isolates in England, Wales and Northern Ireland (2010/11 to 2018/19). PLoS One 2021; 16:e0260677. [PMID: 34843604 PMCID: PMC8629238 DOI: 10.1371/journal.pone.0260677] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022] Open
Abstract
Invasive meningococcal disease (IMD), caused by Neisseria meningitidis, can have a fatality rate as high as 10%, even with appropriate treatment. In the UK, penicillin is administered to patients in primary care whilst third generation cephalosporins, cefotaxime and ceftriaxone, are administered in secondary care. The first-choice antibiotic for chemoprophylaxis of close contacts is ciprofloxacin, followed by rifampicin. Immunocompromised individuals are often recommended antibiotic chemoprophylaxis and vaccination due to a greater risk of IMD. Resistance to antibiotics among meningococci is relatively rare, however reduced susceptibility and resistance to penicillin are increasing globally. Resistance to third generation cephalosporins is seldom reported, however reduced susceptibility to both cefotaxime and ceftriaxone has been observed. Rifampicin resistance has been reported among meningococci, mainly following prophylaxis, and ciprofloxacin resistance, whilst uncommon, has also been reported across the globe. The Public Health England Meningococcal Reference Unit receives and characterises the majority of isolates from IMD cases in England, Wales and Northern Ireland. This study assessed the distribution of antibiotic resistance to penicillin, rifampicin, ciprofloxacin and cefotaxime among IMD isolates received at the MRU from 2010/11 to 2018/19 (n = 4,122). Out of the 4,122 IMD isolates, 113 were penicillin-resistant, five were ciprofloxacin-resistant, two were rifampicin-resistant, and one was cefotaxime-resistant. Penicillin resistance was due to altered penA alleles whilst rifampicin and ciprofloxacin resistance was due to altered rpoB and gyrA alleles, respectively. Cefotaxime resistance was observed in one isolate which had an altered penA allele containing additional mutations to those harboured by the penicillin-resistant isolates. This study identified several isolates with resistance to antibiotics used for current treatment and prophylaxis of IMD and highlights the need for continued surveillance of resistance among meningococci to ensure continued effective use.
Collapse
Affiliation(s)
- Laura Willerton
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Jay Lucidarme
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Andrew Walker
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Aiswarya Lekshmi
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Stephen A. Clark
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Lloyd Walsh
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Xilian Bai
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Lisa Lee-Jones
- Life Sciences Department, Manchester Metropolitan University, Manchester, United Kingdom
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| |
Collapse
|
30
|
Alderson MR, Arkwright PD, Bai X, Black S, Borrow R, Caugant DA, Dinleyici EC, Harrison LH, Lucidarme J, McNamara LA, Meiring S, Sáfadi MAP, Shao Z, Stephens DS, Taha MK, Vazquez J, Zhu B, Collaborators G. Surveillance and control of meningococcal disease in the COVID-19 era: A Global Meningococcal Initiative review. J Infect 2021; 84:289-296. [PMID: 34838594 PMCID: PMC8611823 DOI: 10.1016/j.jinf.2021.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/03/2022]
Abstract
This review article incorporates information from the 4th Global Meningococcal Initiative summit meeting. Since the introduction of stringent COVID-19 infection control and lockdown measures globally in 2020, there has been an impact on IMD prevalence, surveillance, and vaccination compliance. Incidence rates and associated mortality fell across various regions during 2020. A reduction in vaccine uptake during 2020 remains a concern globally. In addition, several Neisseria meningitidis clonal complexes, particularly CC4821 and CC11, continue to exhibit resistance to antibiotics, with resistance to ciprofloxacin or beta-lactams mainly linked to modifications of gyrA or penA alleles, respectively. Beta-lactamase acquisition was also reported through horizontal gene transfer (blaROB-1) involving other bacterial species. Despite the challenges over the past year, progress has also been made on meningococcal vaccine development, with several pentavalent (serogroups ABCWY and ACWYX) vaccines currently being studied in late-stage clinical trial programmes.
Collapse
Affiliation(s)
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology & Inflammation, University of Manchester, Manchester, UK
| | - Xilian Bai
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - Steve Black
- Center for Global Health, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK.
| | - Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ener Cagri Dinleyici
- Eskisehir Osmangazi University Faculty of Medicine, Department of Pediatrics, Eskisehir, Turkey
| | - Lee H Harrison
- Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jay Lucidarme
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - Lucy A McNamara
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, CDC, USA
| | - Susan Meiring
- Division of Public Health Surveillance and Response, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Marco A P Sáfadi
- Department of Pediatrics, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Zhujun Shao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China. Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - David S Stephens
- Robert W Woodruff Health Sciences Center, Emory University, Atlanta, Georgia, USA
| | - Muhamed-Kheir Taha
- Institut Pasteur, National Reference Centre for Meningococci and Haemophilus influenzae, Paris, France
| | - Julio Vazquez
- National Centre of Microbiology, Institute of Health Carlos III, Madrid, Spain
| | - Bingqing Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China. Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Gmi Collaborators
- GMI Collaborators: Sotharith Bory, Suzana Bukovski, Josefina Carlos, Chien-Shun Chiou, Davor Culic, Trang Dai, Snezana Delic, Medeia Eloshvili, Tímea Erdos, Jelena Galajeva, Prakash Ghimire, Linda Glennie, Setyo Handryastuti, Jung Yeon Heo, Amy Jennison, Hajime Kamiya, Pavla Křížová,Tonnii Sia Loong Loong, Helen Marshall, Konstantin Mironov, Zuridin Nurmatov, Nina Dwi Putri, Senjuti Saha, James Sim, Anna Skoczyńska, Vinny Smith, Usa Thisyakorn, Thanh Phan Van, Lyazzat Yeraliyeva, Saber Yezli
| |
Collapse
|
31
|
Kanesaka I, Ohno A, Katsuse AK, Takahashi H, Kobayashi I. The emergence of the ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone by transfer of resistance from an oral Neisseria subflava reservoir of resistance. J Antimicrob Chemother 2021; 77:364-373. [PMID: 34747462 DOI: 10.1093/jac/dkab390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/05/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone was first discovered in Japan in 2015. OBJECTIVES We investigated the possibility of horizontal gene transfer from Neisseria subflava harbouring the mosaic-like PBP-2 in the emergence of the FC428 clone. We also analysed whether there were fitness costs associated with the sustained international dissemination of the clone. METHODS Sequencing of the penA gene in ceftriaxone-resistant N. subflava strains was performed. For transformation experiments between donor N. subflava and ciprofloxacin-resistant wild-type penA N. gonorrhoeae recipient, the full-length PCR amplification product of the penA gene, including DUS regions, was used as the donor DNA. Biological fitness of the transformants was measured by growth competition assays. The impact of QRDR and mtrR mutations, which have been reported as compensatory mutations, on fitness was also assessed. RESULTS The penA mosaic allele of the FC428 clone showed 100%, 91.8%, and 89.8% homology, respectively, with penA genes of three ceftriaxone-resistant N. subflava strains, No. 30, No. 9 and No. 14. Results were consistent with homologous recombination with the donated penA mosaic allele. In co-cultures with the parent strain, transformants showed comparable growth indicating that a gyrA mutation compensates for the fitness cost of mosaic penA alleles. CONCLUSIONS Our findings support the hypothesis that the FC428 clone was generated by transformation of the mosaic penA allele from oropharyngeal N. subflava to N. gonorrhoeae. Furthermore, it suggests that mutations in the gyrA QRDR region compensate for fitness costs and contribute to the continued transmission of the FC428 clone.
Collapse
Affiliation(s)
- Izumo Kanesaka
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo 143-0015, Japan
| | - Akira Ohno
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo 143-0015, Japan
| | - Akiko Kanayama Katsuse
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo 143-0015, Japan
| | - Hiroshi Takahashi
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo 143-0015, Japan
| | - Intetsu Kobayashi
- Department of Infection Control and Prevention, Faculty of Nursing, Toho University, 4-16-20, Omori-nishi, Ota-ku, Tokyo 143-0015, Japan
| |
Collapse
|
32
|
Kenyon C. Positive Association between the Use of Quinolones in Food Animals and the Prevalence of Fluoroquinolone Resistance in E. coli and K. pneumoniae, A. baumannii and P. aeruginosa: A Global Ecological Analysis. Antibiotics (Basel) 2021; 10:antibiotics10101193. [PMID: 34680775 PMCID: PMC8532820 DOI: 10.3390/antibiotics10101193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: It is unclear what underpins the large global variations in the prevalence of fluoroquinolone resistance in Gram-negative bacteria. We tested the hypothesis that different intensities in the use of quinolones for food-animals play a role. (2) Methods: We used Spearman’s correlation to assess if the country-level prevalence of fluoroquinolone resistance in human infections with Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa was correlated with the use of quinolones for food producing animals. Linear regression was used to assess the relative contributions of country-level quinolone consumption for food-animals and humans on fluoroquinolone resistance in these 4 species. (3) Results: The prevalence of fluoroquinolone resistance in each species was positively associated with quinolone use for food-producing animals (E. coli [ρ = 0.55; p < 0.001], K. pneumoniae [ρ = 0.58; p < 0.001]; A. baumanii [ρ = 0.54; p = 0.004]; P. aeruginosa [ρ = 0.48; p = 0.008]). Linear regression revealed that both quinolone consumption in humans and food animals were independently associated with fluoroquinolone resistance in E. coli and A. baumanii. (4) Conclusions: Besides the prudent use of quinolones in humans, reducing quinolone use in food-producing animals may help retard the spread of fluoroquinolone resistance in various Gram-negative bacterial species.
Collapse
Affiliation(s)
- Chris Kenyon
- HIV/STI Unit, Institute of Tropical Medicine, 2000 Antwerp, Belgium; ; Tel.: +32-3-2480796; Fax: +32-3-2480831
- Division of Infectious Diseases and HIV Medicine, University of Cape Town, Anzio Road, Cape Town 7700, South Africa
| |
Collapse
|
33
|
Chen M, Harrison OB, Bratcher HB, Bo Z, Jolley KA, Rodrigues CM, Bray JE, Guo Q, Zhang X, Chen M, Maiden MC. Evolution of Sequence Type 4821 Clonal Complex Hyperinvasive and Quinolone-Resistant Meningococci. Emerg Infect Dis 2021; 27:1110-1122. [PMID: 33754991 PMCID: PMC8007298 DOI: 10.3201/eid2704.203612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Expansion of quinolone-resistant Neisseria meningitidis clone ChinaCC4821-R1-C/B from sequence type (ST) 4821 clonal complex (CC4821) caused a serogroup shift from serogroup A to serogroup C invasive meningococcal disease (IMD) in China. To determine the relationship among globally distributed CC4821 meningococci, we analyzed whole-genome sequence data from 173 CC4821 meningococci isolated from 4 continents during 1972–2019. These meningococci clustered into 4 sublineages (1–4); sublineage 1 primarily comprised of IMD isolates (41/50, 82%). Most isolates from outside China (40/49, 81.6%) formed a distinct sublineage, the Europe–USA cluster, with the typical strain designation B:P1.17-6,23:F3-36:ST-3200(CC4821), harboring mutations in penicillin-binding protein 2. These data show that the quinolone-resistant clone ChinaCC4821-R1-C/B has expanded to other countries. The increasing distribution worldwide of serogroup B CC4821 raises the concern that CC4821 has the potential to cause a pandemic that would be challenging to control, despite indirect evidence that the Trumenba vaccine might afford some protection.
Collapse
|
34
|
Clark SA, Gray S, Finn A, Borrow R. Colistin Sensitivity and Factor H-Binding Protein Expression among Commensal Neisseria Species. mSphere 2021; 6:e0017521. [PMID: 34133203 PMCID: PMC8265630 DOI: 10.1128/msphere.00175-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/28/2021] [Indexed: 11/20/2022] Open
Abstract
Many bacterial carriage studies utilize colistin-containing media to select for Neisseria meningitidis among the diverse human pharyngeal milieu. These studies commonly report the isolation of Neisseria commensal species, with carriage rates of around 1% or less typically observed. Here, we describe the isolation of N. cinerea and N. polysaccharea from pharyngeal swabs using nonselective agar and confirm they are unable to grow on colistin-containing media. We also demonstrated colistin sensitivity among archived Neisseria commensal strains, including N. cinerea, N. polysaccharea, N. mucosa, and N. subflava. The distribution of lptA among these strains indicated that, while the phosphoethanolamine (PEA) transferase encoded by this gene confers colistin resistance, other mechanisms may lead to reduced susceptibility in some lptA-deficient strains. The majority of the N. cinerea and N. polysaccharea isolates expressed medium to very high levels of factor H-binding protein (fHbp), an important meningococcal vaccine antigen. Sequence analysis showed that the commensal fHbp peptide variants were similar in sequence to fHbp variants typically observed among invasive meningococci. Altogether, these results not only suggest that Neisseria commensal strains could be carried at much higher rates than previously reported but also raise questions about the impact of protein-based meningococcal vaccines on these unencapsulated commensals. IMPORTANCE This study highlights the need for further work to accurately determine the pharyngeal carriage prevalence of Neisseria commensal bacteria (e.g., N. cinerea and N. polysaccharea) among the general population. Previous studies have clearly demonstrated the suppressive effect these commensal species can have on meningococcal colonization, and so the carriage prevalence of these species could be an important factor in the spread of meningococci through the population. Furthermore, the surface expression of the meningococcal vaccine antigen factor H-binding protein by many of these commensal strains could have important implications for the use of fHbp-containing vaccines. Carriage of these commensal species may influence the immune response to these vaccines, or conversely, the immune response elicited by vaccination may induce clearance of these potentially important members of the pharyngeal niche.
Collapse
Affiliation(s)
- Stephen A. Clark
- Meningococcal Reference Unit (MRU), Public Health England (PHE), Manchester, United Kingdom
| | - Steve Gray
- Meningococcal Reference Unit (MRU), Public Health England (PHE), Manchester, United Kingdom
| | - Adam Finn
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Ray Borrow
- Meningococcal Reference Unit (MRU), Public Health England (PHE), Manchester, United Kingdom
| |
Collapse
|
35
|
Antimicrobial Resistance Profiles of Human Commensal Neisseria Species. Antibiotics (Basel) 2021; 10:antibiotics10050538. [PMID: 34066576 PMCID: PMC8148603 DOI: 10.3390/antibiotics10050538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
Pathogenic Neisseria gonorrhoeae causes the sexually transmitted infection gonorrhea. N. gonorrhoeae has evolved high levels of antimicrobial resistance (AR) leading to therapeutic failures even in dual-therapy treatment with azithromycin and ceftriaxone. AR mechanisms can be acquired by genetic transfer from closely related species, such as naturally competent commensal Neisseria species. At present, little is known about the antimicrobial resistance profiles of commensal Neisseria. Here, we characterized the phenotypic resistance profile of four commensal Neisseria species (N. lactamica, N. cinerea, N. mucosa, and N. elongata) against 10 commonly used antibiotics, and compared their profiles to 4 N. gonorrhoeae strains, using disk diffusion and minimal inhibitory concentration assays. Overall, we observed that 3 of the 4 commensals were more resistant to several antibiotics than pathogenic N. gonorrhoeae strains. Next, we compared publicly available protein sequences of known AR genes, including penicillin-binding-protein 2 (PBP2) from commensals and N. gonorrhoeae strains. We found mutations in PBP2 known to confer resistance in N. gonorrhoeae also present in commensal Neisseria sequences. Our results suggest that commensal Neisseria have unexplored antibiotic resistance gene pools that may be exchanged with pathogenic N. gonorrhoeae, possibly impairing drug development and clinical treatment.
Collapse
|
36
|
Kenyon C, Laumen J, Manoharan-Basil S. Choosing New Therapies for Gonorrhoea: We Need to Consider the Impact on the Pan- Neisseria Genome. A Viewpoint. Antibiotics (Basel) 2021; 10:515. [PMID: 34062856 PMCID: PMC8147325 DOI: 10.3390/antibiotics10050515] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
The development of new gonorrhoea treatment guidelines typically considers the resistance-inducing effect of the treatment only on Neisseria gonorrhoeae. Antimicrobial resistance in N. gonorrhoeae has, however, frequently first emerged in commensal Neisseria species and then been passed on to N. gonorrhoeae via transformation. This creates the rationale for considering the effect of gonococcal therapies on resistance in commensal Neisseria. We illustrate the benefits of this pan-Neisseria strategy by evaluating three contemporary treatment options for N. gonorrhoeae-ceftriaxone plus azithromycin, monotherapy with ceftriaxone and zoliflodacin.
Collapse
Affiliation(s)
- Chris Kenyon
- HIV/STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (J.L.); (S.M.-B.)
- Division of Infectious Diseases and HIV Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town 7701, South Africa
- STI Reference Center, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Jolein Laumen
- HIV/STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (J.L.); (S.M.-B.)
| | - Sheeba Manoharan-Basil
- HIV/STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (J.L.); (S.M.-B.)
| |
Collapse
|
37
|
Potts CC, Retchless AC, McNamara LA, Marasini D, Reese N, Swint S, Hu F, Sharma S, Blain AE, Lonsway D, Karlsson M, Hariri S, Fox LM, Wang X. Acquisition of ciprofloxacin resistance among an expanding clade of β-lactamase positive, serogroup Y Neisseria meningitidis in the United States. Clin Infect Dis 2021; 73:1185-1193. [PMID: 33900407 DOI: 10.1093/cid/ciab358] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Penicillin and ciprofloxacin are important for invasive meningococcal disease (IMD) management and prevention. IMD cases caused by penicillin- and ciprofloxacin-resistant Neisseria meningitidis containing a ROB-1 β-lactamase gene (blaROB-1) and a mutated DNA gyrase gene (gyrA), have been recently reported in the USA. METHODS We examined 2097 meningococcal genomes collected through US population-based surveillance from January 2011-February 2020 to identify IMD cases caused by strains with blaROB-1 or gyrA-mediated resistance. Antimicrobial resistance was confirmed phenotypically. The US isolate genomes were compared to non-US isolate genomes containing blaROB-1. Interspecies transfer of ciprofloxacin resistance was assessed by comparing gyrA among Neisseria species. RESULTS Eleven penicillin- and ciprofloxacin-resistant isolates were identified after December 2018; all were serogroup Y, sequence type 3587, clonal complex (CC) 23, and contained blaROB-1 and a T91I-containing gyrA allele. An additional 22 penicillin-resistant, blaROB-1-containing US isolates with wild-type gyrA were identified from 2013-2020. All 33 blaROB-1-containing isolates formed a single clade, along with 12 blaROB-1-containing isolates from six other countries. Two-thirds of blaROB-1-containing US isolates were from Hispanic individuals. Twelve additional ciprofloxacin-resistant isolates with gyrA T91 mutations were identified. Ciprofloxacin-resistant isolates belonged to six CCs and contained 10 unique gyrA alleles; seven were similar or identical to alleles from N. lactamica or N. gonorrhoeae. CONCLUSIONS Recent IMD cases caused by a dual resistant serogroup Y suggest changing antimicrobial resistance patterns in the USA. The emerging dual-resistance is due to acquisition of ciprofloxacin resistance by β-lactamase-containing N. meningitidis. Routine antimicrobial resistance surveillance will effectively monitor resistance changes and spread.
Collapse
Affiliation(s)
- Caelin C Potts
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Adam C Retchless
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lucy A McNamara
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Daya Marasini
- Weems Design Studio, Inc., Contractor to Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Natashia Reese
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephanie Swint
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Fang Hu
- IHRC, Inc., Contractor to Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Shalabh Sharma
- IHRC, Inc., Contractor to Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Amy E Blain
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - David Lonsway
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Maria Karlsson
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Susan Hariri
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - LeAnne M Fox
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Xin Wang
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
38
|
Hamed MM, Mir FA, Elmagboul EBI, Al-Khal A, Maslamani MARSA, Deshmukh AS, Al-Romaihi HE, Janahi MAMS, Abid FB, Kashaf ASA, Sher G, Gupta VK, Wilson GJ, Kadalayi J, Doiphode SH. Molecular characteristics of Neisseria meningitidis in Qatar. Sci Rep 2021; 11:4812. [PMID: 33637840 PMCID: PMC7910605 DOI: 10.1038/s41598-021-84262-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/15/2021] [Indexed: 11/09/2022] Open
Abstract
The aim of the current study is to review the molecular characteristics of Neisseria meningitidis (N. meningitidis) in Hamad Medical Corporation, which is the provider of secondary and tertiary care in the state of Qatar. A total of 39 isolates of N. meningitidis from the period of 2013 to 2018 were revived and identified by Vitek, and susceptibility on the basis of the E test was retrieved from the patient's files. The revived isolates were subjected to multilocus sequence typing. The most common serogroup (19) of N. meningitidis was W135, of which 12 were isolated from blood and CSF. ST-11 was the most predominant ST clonal complex causing N. meningitidis cases (61.53%). Clonal complex ST-41/44 was the second most observed complex (3, 2 of which were related to serogroup B). The most frequent sequence type was 9596 (8 isolates). Determining the molecular pattern of N. meningitidis in Qatar is helpful for understanding the strains circulating in Qatar, and the study of the resistance trend of such strains may be very helpful for empirical treatment of future patients.
Collapse
|
39
|
Willerton L, Lucidarme J, Campbell H, Caugant DA, Claus H, Jacobsson S, Ladhani SN, Mölling P, Neri A, Stefanelli P, Taha MK, Vogel U, Borrow R. Geographically widespread invasive meningococcal disease caused by a ciprofloxacin resistant non-groupable strain of the ST-175 clonal complex. J Infect 2020; 81:575-584. [PMID: 32858070 DOI: 10.1016/j.jinf.2020.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/26/2020] [Accepted: 08/08/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Invasive meningococcal disease (IMD) caused by non-serogroupable (NG) strains mainly affects immunocompromised individuals. Reduced susceptibility to penicillin in meningococci is increasing in Europe but ciprofloxacin resistance remains rare. In 2019, three travel-related meningococcal disease cases caused by a ciprofloxacin-resistant NG strain were identified in England, leading Germany to report four additional IMD cases (2016 to 2019). We describe these and newly identified cases and characterise the strain responsible. METHODS Cases were identified as part of national surveillance and by analysing available genomes using PubMLST tools. RESULTS Of the cases identified in England in 2019, two geographically distinct cases developed conjunctivitis after returning from Mecca (Kingdom of Saudi Arabia) and a third linked case presented with IMD. Of the four cases from Germany, three occurred in asylum seekers - two familial and a further geographically distinct case. Further IMD cases were identified in Italy (n = 2; 2017-2018), Sweden (n = 1; 2016) and England (n = 1; 2015). A single ST-175 clonal complex (cc175) strain with genosubtype P1.22-11,15-25 was responsible. Decreased susceptibility to penicillin was widespread with three ciprofloxacin resistant subclusters. Constituent isolates were potentially covered by subcapsular vaccines. CONCLUSION This disease associated NG cc175 strain exhibits resistance to antibiotics commonly used to prevent IMD but is potentially covered by subcapsular (meningococcal B) vaccines.
Collapse
Affiliation(s)
- Laura Willerton
- Meningococcal Reference Unit, Public Health England, Manchester, UK.
| | - Jay Lucidarme
- Meningococcal Reference Unit, Public Health England, Manchester, UK
| | - Helen Campbell
- Immunisation and Countermeasures Division, Public Health England, London, UK
| | - Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Heike Claus
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Susanne Jacobsson
- National Reference Laboratory for Neisseria meningitidis, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Shamez N Ladhani
- Immunisation and Countermeasures Division, Public Health England, London, UK; Paediatric Infectious Diseases Research Group, St George's University of London, London, United Kingdom
| | - Paula Mölling
- National Reference Laboratory for Neisseria meningitidis, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Arianna Neri
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Muhamed-Kheir Taha
- Invasive Bacterial Infections Unit and WHO collaborating Centre for meningitis, Institut Pasteur, Paris, France
| | - Ulrich Vogel
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester, UK
| |
Collapse
|
40
|
Antimicrobial Resistance in Clinical Ureaplasma spp. and Mycoplasma hominis and Structural Mechanisms Underlying Quinolone Resistance. Antimicrob Agents Chemother 2020; 64:AAC.02560-19. [PMID: 32229497 DOI: 10.1128/aac.02560-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/24/2020] [Indexed: 12/11/2022] Open
Abstract
Antibiotic resistance is a global concern; however, data on antibiotic-resistant Ureaplasma spp. and Mycoplasma hominis are limited in comparison to similar data on other microbes. A total of 492 Ureaplasma spp. and 13 M. hominis strains obtained in Hangzhou, China, in 2018 were subjected to antimicrobial susceptibility testing for levofloxacin, moxifloxacin, erythromycin, clindamycin, and doxycycline using the broth microdilution method. The mechanisms underlying quinolone and macrolide resistance were determined. Meanwhile, a model of the topoisomerase IV complex bound to levofloxacin in wild-type Ureaplasma spp. was built to study the quinolone resistance mutations. For Ureaplasma spp., the levofloxacin, moxifloxacin, and erythromycin resistance rates were 84.69%, 51.44%, and 3.59% in U. parvum and 82.43%, 62.16%, and 5.40% in U. urealyticum, respectively. Of the 13 M. hominis strains, 11 were resistant to both levofloxacin and moxifloxacin, and five strains showed clindamycin resistance. ParC S83L was the most prevalent mutation in levofloxacin-resistant Ureaplasma strains, followed by ParE R448K. The two mutations GyrA S153L and ParC S91I were commonly identified in quinolone-resistant M. hominis A molecular dynamics-refined structure revealed that quinolone resistance-associated mutations inhibited the interaction and reduced affinity with gyrase or topoisomerase IV and quinolones. The novel mutations S21A in the L4 protein and G2654T and T2245C in 23S rRNA and the ermB gene were identified in erythromycin-resistant Ureaplasma spp. As fluoroquinolone resistance in Ureaplasma spp. and Mycoplasma hominis remains high in China, the rational use of antibiotics needs to be further enhanced.
Collapse
|
41
|
Kenyon C. To What Extent Should We Rely on Antibiotics to Reduce High Gonococcal Prevalence? Historical Insights from Mass-Meningococcal Campaigns. Pathogens 2020; 9:pathogens9020134. [PMID: 32085650 PMCID: PMC7168587 DOI: 10.3390/pathogens9020134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
In the absence of a vaccine, current antibiotic-dependent efforts to reduce the prevalence of Neisseria gonorrhoeae in high prevalence populations have been shown to result in extremely high levels of antibiotic consumption. No randomized controlled trials have been conducted to validate this strategy and an important concern of this approach is that it may induce antimicrobial resistance. To contribute to this debate, we assessed if mass treatment in the related species, Neisseria meningitidis, was associated with the emergence of antimicrobial resistance. To this end, we conducted a historical review of the effect of mass meningococcal treatment programmes on the prevalence of N. meningitidis and the emergence of antimicrobial resistance. We found evidence that mass treatment programmes were associated with the emergence of antimicrobial resistance.
Collapse
Affiliation(s)
- Chris Kenyon
- HIV/STI Unit, Institute of Tropical Medicine, 2000 Antwerp, Belgium; ; Tel.: +32-3-2480796; Fax: +32-3-2480831
- Division of Infectious Diseases and HIV Medicine, University of Cape Town, Anzio Road, Observatory 7700, South Africa
| |
Collapse
|