1
|
Hardinger KL, Brennan DC. Cytomegalovirus Treatment in Solid Organ Transplantation: An Update on Current Approaches. Ann Pharmacother 2024; 58:1122-1133. [PMID: 38501850 DOI: 10.1177/10600280241237534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
OBJECTIVE The article reviews the safety and efficacy of treatments for cytomegalovirus (CMV) in solid organ transplantation. DATA SOURCES A literature review was conducted in PubMed, MEDLINE, and Clinicaltrials.gov from database inception through January 2024, using terms CMV, therapy, and solid organ transplantation. STUDY SELECTION AND DATA EXTRACTION Clinical trials, meta-analyses, cohort studies, case reports, and guidelines were included. Letters to the editor, reviews, and commentaries were excluded. DATA SYNTHESIS After abstract screening and full-text review of 728 citations for eligibility, 53 were included. Valganciclovir and intravenous ganciclovir are drugs of choice for CMV management and, until recently, the availability of alternative options has been restricted due to toxicity. For instance, foscarnet and cidofovir serve as second-line agents due to potential bone marrow and renal toxicity. In patients with refractory or resistant CMV, maribavir, a novel oral agent, has proven efficacy and a lower adverse effect profile. However, in refractory or resistant CMV, foscarnet and cidofovir are preferred in invasive disease (CMV gastritis, CMV retinitis, and CMV encephalitis), high viral loads, and inability to tolerate oral preparations. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE Consensus guidelines have not been revised since approval of novel antivirals in solid organ transplantation. Valganciclovir and ganciclovir remain drugs of choice for initial CMV therapy. Foscarnet, cidofovir, and maribavir are treatments for refractory or resistant-CMV. CONCLUSIONS Selection of CMV antiviral treatment should be determined by patient-specific factors, including severity of illness, resistant or refractory disease, dose-limiting adverse effects, and the preferred route of administration.
Collapse
Affiliation(s)
- Karen L Hardinger
- Division of Pharmacy Practice and Administration, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Daniel C Brennan
- Johns Hopkins Comprehensive Transplant Center, Baltimore, MD, USA
| |
Collapse
|
2
|
Zhu VZ, Horton MB, Haeusler GM, Yong MK. The emergence of letermovir and maribavir drug-resistant mutations: from clinical trials to real-world studies. Curr Opin Infect Dis 2024:00001432-990000000-00187. [PMID: 39331647 DOI: 10.1097/qco.0000000000001065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
PURPOSE OF REVIEW Cytomegalovirus (CMV) infection is associated with severe clinical disease and high morbidity in immunocompromised hosts. Letermovir and maribavir, are two recently developed antiviral drugs used in the prevention and treatment of resistant and refractory CMV. Following the publication of landmark randomized trials and increased use, both clinical trial data and real-world experience has reported the development of antiviral drug resistance. The aim of this review was to comprehensively review the published literature on letermovir and maribavir drug resistance and to describe the clinical scenarios in which they may emerge. RECENT FINDINGS For letermovir, the most frequently detected resistance mutations occur in the UL56 gene (C325Y/W/F) and confer total resistance. Maribavir resistance mutations most often occur in the UL97 gene and resistance-associated variants (RAVs) T409M, H411Y, C480F have all been detected. The clinical context in which letermovir and maribavir resistance occurs include high viral loads at initiation, intensified immunosuppression, subtherapeutic drug exposure because of poor adherence, drug interactions, and inadequate central nervous system (CNS) penetration. Emergence of resistance mutations generally occurs within the first 3 months of initiation. SUMMARY The detection of letermovir and maribavir resistance mutations highlights an ongoing clinical challenge in the management of CMV.
Collapse
Affiliation(s)
- Violet Z Zhu
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville
| | - Miles B Horton
- Immunology Division, Walter & Eliza Hall Institute of Medical Research, Melbourne
- Department of Medical Biology, The University of Melbourne
| | - Gabrielle M Haeusler
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville
- Department of Infectious Diseases, The Royal Children's Hospital Melbourne
- Clinical Infections, Murdoch Childrens Research Institute
| | - Michelle K Yong
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
3
|
Charles OJ, Venturini C, Goldstein RA, Breuer J. HerpesDRG: a comprehensive resource for human herpesvirus antiviral drug resistance genotyping. BMC Bioinformatics 2024; 25:279. [PMID: 39192205 DOI: 10.1186/s12859-024-05885-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
The prevention and treatment of many herpesvirus associated diseases is based on the utilization of antiviral therapies, however therapeutic success is limited by the development of drug resistance. Currently no single database cataloguing resistance mutations exists, which hampers the use of sequence data for patient management. We therefore developed HerpesDRG, a drug resistance mutation database that incorporates all the known resistance genes and current treatment options, built from a systematic review of available genotype to phenotype literature. The database is released along with an R package that provides a simple approach to resistance variant annotation and clinical implication analysis from common sanger and next generation sequencing data. This represents the first openly available and community maintainable database of drug resistance mutations for the human herpesviruses (HHV), developed for the community of researchers and clinicians tackling HHV drug resistance.
Collapse
Affiliation(s)
- O J Charles
- Department of Infection, Immunity and Inflammation, University College London, Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK.
| | - C Venturini
- Department of Infection, Immunity and Inflammation, University College London, Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - R A Goldstein
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
| | - J Breuer
- Department of Infection, Immunity and Inflammation, University College London, Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, WC1N 1LE, UK
| |
Collapse
|
4
|
Chou S, Watanabe J. Phenotypes of cytomegalovirus genetic variants encountered in a letermovir clinical trial illustrate the importance of genotyping validation. Antiviral Res 2024; 228:105935. [PMID: 38880196 PMCID: PMC11250465 DOI: 10.1016/j.antiviral.2024.105935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Emergence of drug resistance is rare after use of letermovir (LMV) as prophylaxis for post-transplant cytomegalovirus (CMV) infection. In a recent study involving renal transplant recipients, no known LMV resistance mutations were detected in those receiving LMV prophylaxis. However, uncharacterized viral amino acid substitutions were detected in LMV recipients by deep sequencing in viral subpopulations of 5%-7%, at codons previously associated with drug resistance: UL56 S229Y (n = 1), UL56 M329I (n = 9) and UL89 D344Y (n = 5). Phenotypic analysis of these mutations in a cloned laboratory CMV strain showed that S229Y conferred a 2-fold increase in LMV EC50, M329I conferred no LMV resistance, and D344Y knocked out viral viability that was restored after the nonviable clone was reverted to wild type D344. As in previous CMV antiviral trials, the detection of nonviable mutations, even in multiple study subjects, raises strong suspicion of genotyping artifacts and encourages the use of replicate testing for authentication of atypical mutation readouts. The non-viability of UL89 D344Y also confirms the biologically important locus of the D344E substitution that confers resistance to benzimidazole CMV terminase complex inhibitors, but does not feature prominently in LMV resistance.
Collapse
Affiliation(s)
- Sunwen Chou
- Department of Veterans Affairs Medical Center, Portland, OR, USA; Division of Infectious Diseases, Oregon Health and Science University, Portland, OR, USA.
| | - Justin Watanabe
- Department of Veterans Affairs Medical Center, Portland, OR, USA
| |
Collapse
|
5
|
Suetsugu K, Shigematsu T, Nakamura T, Hirota T, Ieiri I. Clinical Pharmacokinetics and Pharmacodynamics of Letermovir in Allogenic Hematopoietic Cell Transplantation. Clin Pharmacokinet 2024; 63:945-964. [PMID: 39012618 DOI: 10.1007/s40262-024-01392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/17/2024]
Abstract
Letermovir is a newly developed antiviral agent used for the prophylaxis of human cytomegalovirus infections in patients undergoing allogeneic hematopoietic cell transplantation. This novel anti-cytomegalovirus drug, used for the prophylaxis of cytomegalovirus reactivation until approximately 200 days after transplantation, effectively reduces the risk of clinically significant cytomegalovirus infection. No human counterpart exists for the terminase complex; letermovir is virus specific and lacks some toxicities previously observed with other anti-cytomegalovirus drugs, such as cytopenia and nephrotoxicity. The absolute bioavailability of letermovir in healthy individuals is estimated to be 94% based on a population-pharmacokinetic analysis. In contrast, oral administration of letermovir to patients undergoing hematopoietic cell transplantation results in lower exposure than that in healthy individuals. Renal or hepatic impairment does not influence the intrinsic clearance of letermovir. Co-administration of letermovir may alter the plasma concentrations of other drugs, including itself, as it acts as a substrate and inhibitor/inducer of several drug-metabolizing enzymes and transporters. In particular, attention should be paid to the drug-drug interactions between letermovir and calcineurin inhibitors or azole antifungal agents, which are commonly used in patients undergoing hematopoietic cell transplantation. This article reviews and summarizes the clinical pharmacokinetics and pharmacodynamics of letermovir, focusing on patients undergoing hematopoietic cell transplantation, healthy individuals, and specific patient subsets.
Collapse
Affiliation(s)
- Kimitaka Suetsugu
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomohiro Shigematsu
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takahiro Nakamura
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeshi Hirota
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ichiro Ieiri
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
6
|
Ibrahim D, Byrns J, Maziarz E, Alexander BD, Saullo JL. Use of Letermovir for Primary and Secondary Cytomegalovirus Prophylaxis in Abdominal Organ Transplantation: A Single Center Experience. J Pharm Pract 2024; 37:770-779. [PMID: 37280011 DOI: 10.1177/08971900231176430] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Background: Cytomegalovirus (CMV) infection after abdominal organ transplantation is associated with increased morbidity and mortality. The use of valganciclovir for CMV prophylaxis is limited by drug-induced myelosuppression and potential emergence of resistance. Letermovir is approved for primary CMV prophylaxis in CMV seropositive allogeneic hematopoietic cell transplant recipients. However, it is increasingly used off-label for prophylaxis in solid organ transplant (SOT) recipients. Methods: Based on pharmacy records, we examined retrospectively the use of letermovir for CMV prophylaxis in abdominal transplant recipients initiated on therapy at our center from January 1, 2018 through October 15, 2020. Data were summarized using descriptive statistics. Results: Twelve episodes of letermovir prophylaxis occurred in ten patients. Four patients received primary and 6 patients received secondary prophylaxis during the study period, with 1 patient receiving letermovir secondary prophylaxis on 3 separate occasions. All patients receiving letermovir for primary prophylaxis had successful outcomes. However, letermovir secondary prophylaxis was unsuccessful in 5 of the 8 episodes (62.5%) due to breakthrough CMV DNAemia and/or disease. Only 1 patient discontinued therapy due to adverse effects. Conclusion: Although letermovir was generally well tolerated, the high rate of failure when used as secondary prophylaxis was noteworthy. Additional controlled clinical trials assessing the safety and efficacy of letermovir prophylaxis in SOT recipients are warranted.
Collapse
Affiliation(s)
- Dima Ibrahim
- Division of Infectious Diseases, Burjeel Medical City, Abu Dhabi, UAE
- Duke University Medical Center, Durham, NC, USA
| | - Jennifer Byrns
- Department of Pharmacy, Duke University Medical Center, Durham, NC, USA
| | - Eileen Maziarz
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA
| | - Barbara D Alexander
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA
| | - Jennifer L Saullo
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
7
|
Monday LM, Keri V, Chandrasekar PH. Advances in pharmacotherapies for cytomegalovirus infection: what is the current state of play? Expert Opin Pharmacother 2024; 25:685-694. [PMID: 38717943 DOI: 10.1080/14656566.2024.2353627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/07/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Cytomegalovirus (CMV) remains a serious opportunistic infection in hematopoietic cell transplant (HCT) and solid-organ transplant (SOT) recipients. Traditional anti-CMV drugs are limited by toxicities and the development of resistance. Letermovir and maribavir are newly approved antivirals for the prevention and treatment of CMV. AREAS COVERED Prior reviews have discussed use of letermovir for prevention of CMV after HCT and maribavir for resistant or refractory (R/R) CMV post HCT or SOT. Subsequent data have expanded their use including letermovir for primary CMV prophylaxis in high-risk renal transplant recipients and new recommendations for extending prophylaxis through day + 200 in certain HCT patients. Data on the use of maribavir for first asymptomatic CMV infection post-HCT has also been published. This review compares the pharmacology of anti-CMV agents and discusses the updated literature of these new drugs in the prevention and treatment of CMV. EXPERT OPINION Letermovir and maribavir are much needed tools that spare toxicities of ganciclovir, foscarnet, and cidofovir. High cost is a challenge preventing their integration into clinical practice in resource-limited countries. Transplant centers need to exercise restraint in overuse to avoid resistance, particularly in the setting of high viral loads.
Collapse
Affiliation(s)
- Lea M Monday
- Division of Infectious Diseases, Department of Medicine, Wayne State University, Detroit, MI, USA
| | - Vishakh Keri
- Division of Infectious Diseases, Department of Medicine, Wayne State University, Detroit, MI, USA
| | | |
Collapse
|
8
|
Grgic I, Gorenec L. Human Cytomegalovirus (HCMV) Genetic Diversity, Drug Resistance Testing and Prevalence of the Resistance Mutations: A Literature Review. Trop Med Infect Dis 2024; 9:49. [PMID: 38393138 PMCID: PMC10892457 DOI: 10.3390/tropicalmed9020049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a pathogen with high prevalence in the general population that is responsible for high morbidity and mortality in immunocompromised individuals and newborns, while remaining mainly asymptomatic in healthy individuals. The HCMV genome is 236,000 nucleotides long and encodes approximately 200 genes in more than 170 open reading frames, with the highest rate of genetic polymorphisms occurring in the envelope glycoproteins. HCMV infection is treated with antiviral drugs such as ganciclovir, valganciclovir, cidofovir, foscarnet, letermovir and maribavir targeting viral enzymes, DNA polymerase, kinase and the terminase complex. One of the obstacles to successful therapy is the emergence of drug resistance, which can be tested phenotypically or by genotyping using Sanger sequencing, which is a widely available but less sensitive method, or next-generation sequencing performed in samples with a lower viral load to detect minority variants, those representing approximately 1% of the population. The prevalence of drug resistance depends on the population tested, as well as the drug, and ranges from no mutations detected to up to almost 50%. A high prevalence of resistance emphasizes the importance of testing the patient whenever resistance is suspected, which requires the development of more sensitive and rapid tests while also highlighting the need for alternative therapeutic targets, strategies and the development of an effective vaccine.
Collapse
Affiliation(s)
- Ivana Grgic
- Department of Molecular and Immunological Diagnostic, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Lana Gorenec
- Department of Molecular and Immunological Diagnostic, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| |
Collapse
|
9
|
Chou S, Alain S, Cervera C, Chemaly RF, Kotton CN, Lundgren J, Papanicolaou GA, Pereira MR, Wu JJ, Murray RA, Buss NE, Fournier M. Drug Resistance Assessed in a Phase 3 Clinical Trial of Maribavir Therapy for Refractory or Resistant Cytomegalovirus Infection in Transplant Recipients. J Infect Dis 2024; 229:413-421. [PMID: 37506264 PMCID: PMC10873177 DOI: 10.1093/infdis/jiad293] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND This drug resistance analysis of a randomized trial includes 234 patients receiving maribavir and 116 receiving investigator-assigned standard therapy (IAT), where 56% and 24%, respectively, cleared cytomegalovirus DNA at week 8 (treatment responders). METHODS Baseline and posttreatment plasma samples were tested for mutations conferring drug resistance in viral genes UL97, UL54, and UL27. RESULTS At baseline, genotypic testing revealed resistance to ganciclovir, foscarnet, or cidofovir in 56% of patients receiving maribavir and 68% receiving IAT, including 9 newly phenotyped mutations. Among them, 63% (maribavir) and 21% (IAT) were treatment responders. Detected baseline maribavir resistance mutations were UL27 L193F (n = 1) and UL97 F342Y (n = 3). Posttreatment, emergent maribavir resistance mutations were detected in 60 (26%) of those randomized to maribavir, including 49 (48%) of 103 nonresponders and 25 (86%) of the 29 nonresponders where viral DNA initially cleared then rebounded while on maribavir. The most common maribavir resistance mutations were UL97 T409M (n = 34), H411Y (n = 26), and C480F (n = 21), first detected 26 to 130 (median 56) days after starting maribavir. CONCLUSIONS Baseline maribavir resistance was rare. Drug resistance to standard cytomegalovirus antivirals did not preclude treatment response to maribavir. Rebound in plasma cytomegalovirus DNA while on maribavir strongly suggests emerging drug resistance. CLINICAL TRIALS REGISTRATION NCT02931539.
Collapse
Affiliation(s)
- Sunwen Chou
- Division of Infectious Diseases, Oregon Health and Science University, Portland, Oregon, USA
- Research and Development Service, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Sophie Alain
- Department of Virology and National Reference Center for Herpesviruses, Limoges University Hospital, UMR Inserm 1092, University of Limoges, Limoges, France
| | - Carlos Cervera
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control, and Employee Health, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Camille N Kotton
- Transplant and Immunocompromised Host Infectious Diseases, Infectious Diseases Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jens Lundgren
- Centre for Health and Infectious Disease Research, Department of Infectious Diseases, Rigshospitalitet, University of Copenhagen, Copenhagen, Denmark
| | - Genovefa A Papanicolaou
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Marcus R Pereira
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Jingyang J Wu
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| | - Rose Ann Murray
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| | - Neil E Buss
- Medical Expressions, Büren, Solothurn, Switzerland
| | - Martha Fournier
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| |
Collapse
|
10
|
Pando-Caciano A, Escudero-Ramirez KA, Torres-Rodríguez JC, Maita-Malpartida H. Refractory human cytomegalovirus infection without evidence of genetic resistance in the UL-54 and UL-97 genes in a pediatric hematopoietic stem cell transplant recipient: a case report. Front Med (Lausanne) 2024; 11:1335969. [PMID: 38371512 PMCID: PMC10870326 DOI: 10.3389/fmed.2024.1335969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Cytomegalovirus (CMV) infection is a common complication in patients undergoing hematopoietic stem cell transplantation (HSCT). Management of refractory CMV infections, especially in developing countries, can be challenging due to the limited availability of second and third-line antiviral drugs or alternative treatments. Here, we present a case of an 8 years-old patient diagnosed with acute myeloid leukemia. Eight months post-diagnosis, the patient underwent TCR-αβ+/CD19+-depleted haploidentical HSCT. Both the donor and recipient tested positive for anti-CMV IgG and negative for IgM antibodies. Before transplantation, the patient received CMV prophylaxis in the form of intravenous ganciclovir. Post-transplantation, the patient exhibited oscillating CMV viral loads and was diagnosed with a refractory infection. Treatment with ganciclovir, foscarnet, and cidofovir was unsuccessful. Sequencing of UL-54 and UL-97 genes was performed to rule out potential resistance to first-line treatment. Ten months after the HSCT, the child died from hypovolemic shock due to gastrointestinal bleeding. This is the first case reported in Peru and Latin America of a refractory CMV infection in a pediatric HSCT recipient without evidence of clinical symptoms and CMV genetic resistance. This case demonstrates the need for alternative treatments to manage refractory CMV infections, especially in haploidentical HSCT cases where drug resistance is frequent (~15%). Furthermore, this case highlights the importance of using highly sensitive genetic tools to detect mutations associated with virus resistance in a broader range of the viral genome.
Collapse
Affiliation(s)
- Alejandra Pando-Caciano
- Department of Cellular and Molecular Sciences, School of Science and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ketty Adid Escudero-Ramirez
- Department of Cellular and Molecular Sciences, School of Science and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jackeline Carol Torres-Rodríguez
- Sub Unidad Integral Especializada del Paciente de Progenitores Hematopoyéticos, Instituto Nacional de Salud del Niño San Borja, Lima, Peru
| | - Holger Maita-Malpartida
- Department of Cellular and Molecular Sciences, School of Science and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
- Sub Unidad de Investigación e Innovación Tecnológica, Instituto Nacional de Salud del Niño San Borja, Lima, Peru
| |
Collapse
|
11
|
Brusosa M, Ruiz S, Monge I, Solano MT, Rosiñol L, Esteve J, Carreras E, Marcos MÁ, Riu G, Carcelero E, Martinez C, Fernández-Avilés F, Rovira M, Suárez-Lledó M, Salas MQ. Impact of letermovir prophylaxis in CMV reactivation and disease after allogenic hematopoietic cell transplantation: a real-world, observational study. Ann Hematol 2024; 103:609-621. [PMID: 37957371 DOI: 10.1007/s00277-023-05542-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Letermovir for CMV prevention in CMV-seropositive adults undergoing allo-HCT was implemented at our program in 2021. This study investigates the results from the use of letermovir. The study includes all the 140 CMV-seropositive patients who underwent an allo-HCT during the years 2020, 2021, and 2022 at our institution. Thirty-eight (27.4%) of these patients received letermovir, administered from day + 7 to day + 100 and restarted if patients were on treatment with steroids. The day + 180 and 1-year cumulative incidences of CMV reactivation were 5.3% and 12.1% for patients who received letermovir and 52.9% and 53.9% for those who did not (P < 0.001) (HR 0.19, P < 0.001). Four (10.5%) of these thirty-eight patients had a CMV reactivation, but only 2 (5.3%) cases occurred during the administration of letermovir. During the first year after allo-HCT, 13 (9.2%) patients had CMV disease; the day + 180 and 1-year cumulative incidences were 2.6% and 6.0% for patients who received letermovir and 9.9% and 12.3% for those who did not (P = 0.254) (HR 1.01, P = 0.458). Two (4.2%) of the patients included in the letermovir group had CMV disease, but both of them after letermovir discontinuation. Letermovir induced a protective effect on CMV reactivation risk, but its use was not associated with a significant reduction of CMV disease. The fact that the CMV disease in patients who received letermovir occurred after the discontinuation of the drug, questions whether CMV prophylaxis should be used in patients with high risk for CMV reactivation or disease.
Collapse
Affiliation(s)
| | - Sonia Ruiz
- Pharmacy Clinic Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Inés Monge
- Pharmacy Clinic Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - María Teresa Solano
- Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hematopoietic Transplantation Unit, Hospital Clínic de Barcelona, C/ Villarroel 190, 08036, Barcelona, CP, Spain
| | - Laura Rosiñol
- University of Barcelona, Barcelona, Spain
- Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hematopoietic Transplantation Unit, Hospital Clínic de Barcelona, C/ Villarroel 190, 08036, Barcelona, CP, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Esteve
- University of Barcelona, Barcelona, Spain
- Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hematopoietic Transplantation Unit, Hospital Clínic de Barcelona, C/ Villarroel 190, 08036, Barcelona, CP, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Enric Carreras
- Fundació I Institut de Recerca Josep Carreras Contra La Leucèmia, Barcelona, Spain
| | - M Ángeles Marcos
- Department of Microbiology, Hospital Clínic-ISGlobal, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Gisela Riu
- Pharmacy Clinic Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Esther Carcelero
- Pharmacy Clinic Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Carmen Martinez
- University of Barcelona, Barcelona, Spain
- Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hematopoietic Transplantation Unit, Hospital Clínic de Barcelona, C/ Villarroel 190, 08036, Barcelona, CP, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Francesc Fernández-Avilés
- University of Barcelona, Barcelona, Spain
- Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hematopoietic Transplantation Unit, Hospital Clínic de Barcelona, C/ Villarroel 190, 08036, Barcelona, CP, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Montserrat Rovira
- University of Barcelona, Barcelona, Spain
- Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hematopoietic Transplantation Unit, Hospital Clínic de Barcelona, C/ Villarroel 190, 08036, Barcelona, CP, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - María Suárez-Lledó
- University of Barcelona, Barcelona, Spain
- Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hematopoietic Transplantation Unit, Hospital Clínic de Barcelona, C/ Villarroel 190, 08036, Barcelona, CP, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - María Queralt Salas
- University of Barcelona, Barcelona, Spain.
- Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hematopoietic Transplantation Unit, Hospital Clínic de Barcelona, C/ Villarroel 190, 08036, Barcelona, CP, Spain.
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
12
|
Piret J, Boivin G. Management of Cytomegalovirus Infections in the Era of the Novel Antiviral Players, Letermovir and Maribavir. Infect Dis Rep 2024; 16:65-82. [PMID: 38247977 PMCID: PMC10801527 DOI: 10.3390/idr16010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Cytomegalovirus (CMV) infections may increase morbidity and mortality in immunocompromised patients. Until recently, standard antiviral drugs against CMV were limited to viral DNA polymerase inhibitors (val)ganciclovir, foscarnet and cidofovir with a risk for cross-resistance. These drugs may also cause serious side effects. This narrative review provides an update on new antiviral agents that were approved for the prevention and treatment of CMV infections in transplant recipients. Letermovir was approved in 2017 for CMV prophylaxis in CMV-seropositive adults who received an allogeneic hematopoietic stem cell transplant. Maribavir followed four years later, with an indication in the treatment of adult and pediatric transplant patients with refractory/resistant CMV disease. The target of letermovir is the CMV terminase complex (constituted of pUL56, pUL89 and pUL51 subunits). Letermovir prevents the cleavage of viral DNA and its packaging into capsids. Maribavir is a pUL97 kinase inhibitor, which interferes with the assembly of capsids and the egress of virions from the nucleus. Both drugs have activity against most CMV strains resistant to standard drugs and exhibit favorable safety profiles. However, high-level resistance mutations may arise more rapidly in the UL56 gene under letermovir than low-grade resistance mutations. Some mutations emerging in the UL97 gene under maribavir can be cross-resistant with ganciclovir. Thus, letermovir and maribavir now extend the drug arsenal available for the management of CMV infections and their respective niches are currently defined.
Collapse
Affiliation(s)
| | - Guy Boivin
- Centre de Recherche en Infectiologie, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada;
| |
Collapse
|
13
|
von Hoerschelmann E, Münch J, Gao L, Lücht C, Naik MG, Schmidt D, Pitzinger P, Michel D, Avaniadi P, Schrezenmeier E, Choi M, Halleck F, Budde K. Letermovir Rescue Therapy in Kidney Transplant Recipients with Refractory/Resistant CMV Disease. J Clin Med 2023; 13:100. [PMID: 38202107 PMCID: PMC10780128 DOI: 10.3390/jcm13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
(1) Background: CMV infections remain a problem after kidney transplantation, particularly if patients are refractory or resistant (r/r) to treatment with valganciclovir (VGCV) or ganciclovir (GCV). (2) Methods: In a single-center retrospective study, kidney transplant recipients (KTR) receiving letermovir (LTV) as rescue therapy for VGCV-/GCV-r/r CMV disease were analyzed regarding CMV history, immunosuppression, and outcomes. (3) Results: Of 201 KTR treated for CMV between 2017 and 2022, 8 patients received LTV following treatment failure with VGCV/GCV. All patients received CMV prophylaxis with VGCV according to the center's protocol, and 7/8 patients had a high-risk (D+/R-) CMV constellation. In seven of eight cases, rising CMV levels occurred during prophylaxis. In seven of eight patients, a mutation in UL97 associated with a decreased response to VGCV/GCV was detected. In four of eight patients, LTV resulted in CMV clearance after 24 ± 10 weeks (16-39 weeks), two of eight patients stabilized at viral loads <2000 cop/mL (6-20 weeks), and two of eight patients developed LTV resistance (range 8-10 weeks). (4) Conclusion: LTV, which is currently evaluated for CMV prophylaxis in kidney transplantation, also shows promising results for the treatment of patients with VGCV/GCV resistance despite the risk of developing LTV resistance. Additional studies are needed to further define its role in the treatment of patients with CMV resistance.
Collapse
Affiliation(s)
- Ellen von Hoerschelmann
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Johannes Münch
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Linde Gao
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christian Lücht
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Marcel G. Naik
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Danilo Schmidt
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Paul Pitzinger
- Institute of Virology, Charité Universitätsmedizin Berlin, Labor Berlin-Charité-Vivantes GmbH, 10117 Berlin, Germany
| | - Detlef Michel
- Institute of Virology, Universitätsklinikum Ulm, 89081 Ulm, Germany
| | - Parthenopi Avaniadi
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Eva Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Mira Choi
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Fabian Halleck
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
14
|
Mallory MA, Hymas WC, Simmon KE, Pyne MT, Stevenson JB, Barker AP, Hillyard DR, Hanson KE. Development and validation of a next-generation sequencing assay with open-access analysis software for detecting resistance-associated mutations in CMV. J Clin Microbiol 2023; 61:e0082923. [PMID: 38092673 PMCID: PMC10729743 DOI: 10.1128/jcm.00829-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/29/2023] [Indexed: 12/20/2023] Open
Abstract
Cytomegalovirus (CMV) resistance testing by targeted next-generation sequencing (NGS) allows for the simultaneous analysis of multiple genes. We developed and validated an amplicon-based Ion Torrent NGS assay to detect CMV resistance mutations in UL27, UL54, UL56, and UL97 and compared the results to standard Sanger sequencing. NGS primers were designed to generate 83 overlapping amplicons of four CMV genes (~10 kb encompassing 138 mutation sites). An open-access software plugin was developed to perform read alignment, call variants, and interpret drug resistance. Plasmids were tested to determine NGS error rate and minor variant limit of detection. NGS limit of detection was determined using the CMV WHO International Standard and quantified clinical specimens. Reproducibility was also assessed. After establishing quality control metrics, 185 patient specimens previously tested using Sanger were reanalyzed by NGS. The NGS assay had a low error rate (<0.05%) and high accuracy (95%) for detecting CMV-associated resistance mutations present at ≥5% in contrived mixed populations. Mutation sites were reproducibly sequenced with 40× coverage when plasma viral loads were ≥2.6 log IU/mL. NGS detected the same resistance-associated mutations identified by Sanger in 68/69 (98.6%) specimens. In 16 specimens, NGS detected 18 resistance mutations that Sanger failed to detect; 14 were low-frequency variants (<20%), and six would have changed the drug resistance interpretation. The NGS assay showed excellent agreement with Sanger and generated high-quality sequence from low viral load specimens. Additionally, the higher resolution and analytic sensitivity of NGS potentially enables earlier detection of antiviral resistance.
Collapse
Affiliation(s)
- Melanie A. Mallory
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Weston C. Hymas
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Keith E. Simmon
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Michael T. Pyne
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Jeffery B. Stevenson
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Adam P. Barker
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - David R. Hillyard
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Kimberly E. Hanson
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
15
|
Pérez AB, Santos Bravo M, Vidal-Verdú E, Páez-Vega A, Vaquero-Barrios JM, Montero JL, Marcos MÁ, Torre-Cisneros J. Real-life experience in two cases of secondary prophylaxis with letermovir for CMV infection in solid organ transplantation. Microbiol Spectr 2023; 11:e0163023. [PMID: 37902387 PMCID: PMC10714737 DOI: 10.1128/spectrum.01630-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE This observation provides comprehensive data on the clinical correlates of both cytomegalovirus (CMV) genotypic follow-up and clinical monitoring and outcomes for two different solid organ transplantation recipients that received letermovir as secondary prophylaxis. Our study emphasizes that monitoring of CMV disease in the patient and early genotypic detection of resistance mutations are essential when using new antiviral drugs for off-label indication in patients experiencing CMV relapses or not responding to standard antiviral therapy. These cases and the bibliography reviewed can be helpful for other researchers and clinicians working in the field to optimize the use of new treatments for transplant recipients since drug-resistant CMV infection is an important emerging problem even with new developments in antiviral treatment.
Collapse
Affiliation(s)
- Ana-Belén Pérez
- Microbiology Service, Reina Sofia University Hospital, Cordoba, Spain
- Maimónides Institute for Biomedical Research (IMIBIC), Cordoba, Spain
- Centre of Biomedical Research for Infectious Diseases (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
| | - Marta Santos Bravo
- Centre of Biomedical Research for Infectious Diseases (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
- Microbiology Service, Hospital Clínic, Barcelona, Spain
| | - Elisa Vidal-Verdú
- Centre of Biomedical Research for Infectious Diseases (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
- Infectious Diseases Service, Reina Sofia University Hospital, Cordoba, Spain
- Maimónides Institute for Biomedical Research (IMIBIC), Cordoba, Spain
- Departament of Medicine (Medicine, Dermatology and Otorhinolaryngology), University of Cordoba, Spain
| | - Aurora Páez-Vega
- Centre of Biomedical Research for Infectious Diseases (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
- Maimónides Institute for Biomedical Research (IMIBIC), Cordoba, Spain
| | - José-Manuel Vaquero-Barrios
- Maimónides Institute for Biomedical Research (IMIBIC), Cordoba, Spain
- Lung Transplantation Section, Reina Sofia University Hospital, Cordoba, Spain
| | - José-Luis Montero
- Maimónides Institute for Biomedical Research (IMIBIC), Cordoba, Spain
- Liver Transplantation Section, Reina Sofia University Hospital, Cordoba, Spain
| | - María-Ángeles Marcos
- Centre of Biomedical Research for Infectious Diseases (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
- Microbiology Service, Hospital Clínic, Barcelona, Spain
| | - Julián Torre-Cisneros
- Maimónides Institute for Biomedical Research (IMIBIC), Cordoba, Spain
- Centre of Biomedical Research for Infectious Diseases (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
- Infectious Diseases Service, Reina Sofia University Hospital, Cordoba, Spain
- Departament of Medicine (Medicine, Dermatology and Otorhinolaryngology), University of Cordoba, Spain
| |
Collapse
|
16
|
Hinman B, Cox J, Umoru G, Kamble R, Musick W. Extended duration letermovir in allogeneic hematopoietic stem cell transplant. Transpl Immunol 2023; 81:101936. [PMID: 37770000 DOI: 10.1016/j.trim.2023.101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVES Despite the use of antiviral prophylaxis in recipients of allogeneic hematopoietic cell transplants (HCT), cytomegalovirus (CMV) is a common clinically significant infection and is associated with significant morbidity and mortality in this patient population. Based on current approval, letermovir is initiated within 28 days following allogeneic HCT for CMV seropositive recipients and continued through 100 days post-transplant. However, it is unknown whether patients who receive extended duration CMV prophylaxis with letermovir would result in less CMV reactivation and reactivation compared to those who do not. This study aimed to evaluate the efficacy of letermovir prophylaxis in CMV seropositive patients when continued for greater than 100 days post-allogeneic stem cell transplant. METHODS A single-center retrospective chart review was conducted on recipients of allogeneic HCT from November 2017 to July 2021. Patients were eligible for inclusion if they were at least 18 years of age, received an allogeneic HCT, CMV seropositive, and initiated letermovir between days 0-28 post-transplant. The primary endpoint of this study is to compare rates of CMV reactivation in patients who stopped letermovir prophylaxis at 100 days post-transplant (standard duration group) versus those who continued letermovir prophylaxis past day 100 (extended duration group). RESULTS A total of 87 patients met the eligibility criteria for inclusion. The median duration of letermovir prophylaxis was 78 days in the standard duration group versus and 132 days in the extended duration group. There were more CMV reactivations in the standard duration group versus the extended duration group, 28% versus 19% respectively. CMV pneumonitis was observed in one of the patients in the standard duration group. All-cause mortality at day 200 post-transplant was similar between the two groups. CONCLUSION The results of this study suggest that extended duration letermovir prophylaxis may be associated with less CMV reactivation compared to the standard duration of prophylaxis.
Collapse
Affiliation(s)
- Breanna Hinman
- Houston Methodist Hospital, 6565 Fannin St., Houston, TX 77054, USA.
| | - James Cox
- Houston Methodist Hospital, 6565 Fannin St., Houston, TX 77054, USA.
| | - Godsfavour Umoru
- Houston Methodist Hospital, 6565 Fannin St., Houston, TX 77054, USA.
| | - Rammurti Kamble
- Center for Cell and Gene Therapy, Baylor College of Medicine and Houston Methodist Hospital, 6565 Fannin St., Houston, TX 77054, USA.
| | - Will Musick
- Houston Methodist Hospital, 6565 Fannin St., Houston, TX 77054, USA.
| |
Collapse
|
17
|
Hume J, Lowry K, Whiley DM, Irwin AD, Bletchly C, Sweeney EL. Application of the ViroKey® SQ FLEX assay for detection of cytomegalovirus antiviral resistance. J Clin Virol 2023; 167:105556. [PMID: 37566984 DOI: 10.1016/j.jcv.2023.105556] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Cytomegalovirus (CMV) is a viral infection which establishes lifelong latency, often reactivating and causing disease in immunosuppressed individuals, including haematopoietic stem cell transplant (HSCT) recipients. Treatment can be problematic due to antiviral resistance which substantially increases the risk of patient mortality. Diagnostic testing capabilities for CMV antiviral resistance in Australia and elsewhere have traditionally relied on gene-specific Sanger sequencing approaches, however, are now being superseded by next generation sequencing protocols. OBJECTIVE Provide a snapshot of local mutations and explore the feasibility of the ViroKeyࣨ® SQ FLEX Genotyping Assay (Vela Diagnostics Pty Ltd) by examining sequencing success. METHOD Performed sequencing on adult (n = 38) and paediatric (n = 81) plasma samples, over a large range of viral loads (above and below the assay recommended threshold of ≥1,000 International Units (IU)/mL; noting most of our paediatric samples have loads <1,000 IU/mL). RESULTS Eleven test runs (including three repeat runs; 14 to 15 samples per run) were conducted, and four runs were deemed valid. The overall individual sample success rate for the four evaluable test runs was 71.2% (42/59 samples); 80.4% (37/46) samples ≥1,000 IU/mL were valid. Ten clinically important antiviral resistance mutations were detected, the most common being A594V in the UL97 gene, found in 6 (5%) samples. CONCLUSIONS A range of technical issues were experienced, however with improvement this platform could be a useful addition to routine pathology workflows, providing timely antiviral resistance results for patients undergoing HSCT.
Collapse
Affiliation(s)
- Jocelyn Hume
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia
| | - Kym Lowry
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Queensland Paediatric Infectious Diseases (QPID) Sakzewski Laboratory, Centre for Children's Health Research, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - David M Whiley
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia
| | - Adam D Irwin
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Infection Management and Prevention Service, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Cheryl Bletchly
- Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia
| | - Emma L Sweeney
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
18
|
Razonable RR. Oral antiviral drugs for treatment of cytomegalovirus in transplant recipients. Clin Microbiol Infect 2023; 29:1144-1149. [PMID: 36963566 DOI: 10.1016/j.cmi.2023.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND Cytomegalovirus (CMV) is an opportunistic pathogen responsible for substantial morbidity after solid organ transplantation and haematopoietic stem cell transplantation. Treatment of CMV disease involves a two-pronged approach with antiviral drug treatment coupled with strategies to minimize the intensity of immune suppression. OBJECTIVES This narrative review examines the evidence for the current treatment of CMV disease in transplant recipients, including the use of oral antiviral drugs. SOURCES Literature search was performed on PubMed with keywords cytomegalovirus, transplantation, ganciclovir, valganciclovir, maribavir, letermovir, cidofovir, and foscarnet. CONTENT Intravenous and oral valganciclovir are the standard first-line treatment of cytomegalovirus disease after transplantation. Oral maribavir has demonstrated superior efficacy and safety over CMV DNA polymerase inhibitors for the treatment of refractory or resistant CMV infection. Transplant patients with severe and life-threatening CMV disease, those with very high viral load, and patients with impaired gastrointestinal absorption should still be treated initially with intravenous antiviral drugs, including ganciclovir and foscarnet. Criteria for the safe transition from intravenous therapies to oral antiviral drugs include achieving clinical improvement and satisfactory decline in viral load. Recurrence of CMV viremia and disease is common, particularly among transplant patients who are lymphopenic and have impaired CMV-specific immunity. IMPLICATIONS Oral antiviral drugs for the treatment of CMV infection and disease in transplant recipients have improved the CMV landscape, because they reduce the cost and mitigate the inconvenience and risks related to prolonged hospitalization and the need for long-term intravascular access. However, their antiviral efficacy should be complemented by an intentional strategy of reducing the degree of immune suppression to allow for immunologic recovery that ensures durable control of CMV infection.
Collapse
|
19
|
Hume J, Sweeney EL, Lowry K, Fraser C, Clark JE, Whiley DM, Irwin AD. Cytomegalovirus in children undergoing haematopoietic stem cell transplantation: a diagnostic and therapeutic approach to antiviral resistance. Front Pediatr 2023; 11:1180392. [PMID: 37325366 PMCID: PMC10267881 DOI: 10.3389/fped.2023.1180392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous virus which causes a mild illness in healthy individuals. In immunocompromised individuals, such as children receiving haematopoietic stem cell transplantation, CMV can reactivate, causing serious disease and increasing the risk of death. CMV can be effectively treated with antiviral drugs, but antiviral resistance is an increasingly common complication. Available therapies are associated with adverse effects such as bone marrow suppression and renal impairment, making the choice of appropriate treatment challenging. New agents are emerging and require evaluation in children to establish their role. This review will discuss established and emerging diagnostic tools and treatment options for CMV, including antiviral resistant CMV, in children undergoing haematopoietic stem cell transplant.
Collapse
Affiliation(s)
- Jocelyn Hume
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Central Microbiology, Pathology Queensland, Brisbane, QLD, Australia
| | - Emma L. Sweeney
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kym Lowry
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Chris Fraser
- Blood and Bone Marrow Transplant Program, Queensland Children’s Hospital, Brisbane, QLD, Australia
| | - Julia E. Clark
- Infection Management and Prevention Service, Queensland Children’s Hospital, Brisbane, QLD, Australia
| | - David M. Whiley
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Central Microbiology, Pathology Queensland, Brisbane, QLD, Australia
| | - Adam D. Irwin
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Infection Management and Prevention Service, Queensland Children’s Hospital, Brisbane, QLD, Australia
| |
Collapse
|
20
|
Dadwal SS, Papanicolaou GA, Boeckh M. How I prevent viral reactivation in high-risk patients. Blood 2023; 141:2062-2074. [PMID: 36493341 PMCID: PMC10163320 DOI: 10.1182/blood.2021014676] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Preventing viral infections at an early stage is a key strategy for successfully improving transplant outcomes. Preemptive therapy and prophylaxis with antiviral agents have been successfully used to prevent clinically significant viral infections in hematopoietic cell transplant recipients. Major progress has been made over the past decades in preventing viral infections through a better understanding of the biology and risk factors, as well as the introduction of novel antiviral agents and advances in immunotherapy. High-quality evidence exists for the effective prevention of herpes simplex virus, varicella-zoster virus, and cytomegalovirus infection and disease. Few data are available on the effective prevention of human herpesvirus 6, Epstein-Barr virus, adenovirus, and BK virus infections. To highlight the spectrum of clinical practice, here we review high-risk situations that we handle with a high degree of uniformity and cases that feature differences in approaches, reflecting distinct hematopoietic cell transplant practices, such as ex vivo T-cell depletion.
Collapse
Affiliation(s)
- Sanjeet S. Dadwal
- Division of Infectious Disease, Department of Medicine, City of Hope National Medical Center, Duarte, CA
| | - Genovefa A. Papanicolaou
- Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY
| | - Michael Boeckh
- Vaccine and Infectious and Clinical Research Divisions, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
21
|
Ghosh AK, Su YP, Forman M, Keyes RF, Smith BC, Hu X, Ferrer M, Arav-Boger R. Harnessing the Noncanonical Keap1-Nrf2 Pathway for Human Cytomegalovirus Control. J Virol 2023; 97:e0016023. [PMID: 36939350 PMCID: PMC10134830 DOI: 10.1128/jvi.00160-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/02/2023] [Indexed: 03/21/2023] Open
Abstract
Host-derived cellular pathways can provide an unfavorable environment for virus replication. These pathways have been a subject of interest for herpesviruses, including the betaherpesvirus human cytomegalovirus (HCMV). Here, we demonstrate that a compound, ARP101, induces the noncanonical sequestosome 1 (SQSTM1)/p62-Keap1-Nrf2 pathway for HCMV suppression. ARP101 increased the levels of both LC3 II and SQSTM1/p62 and induced phosphorylation of p62 at the C-terminal domain, resulting in its increased affinity for Keap1. ARP101 treatment resulted in Nrf2 stabilization and translocation into the nucleus, binding to specific promoter sites and transcription of antioxidant enzymes under the antioxidant response element (ARE), and HCMV suppression. Knockdown of Nrf2 recovered HCMV replication following ARP101 treatment, indicating the role of the Keap1-Nrf2 axis in HCMV inhibition by ARP101. SQSTM1/p62 phosphorylation was not modulated by the mTOR kinase or casein kinase 1 or 2, indicating ARP101 engages other kinases. Together, the data uncover a novel antiviral strategy for SQSTM1/p62 through the noncanonical Keap1-Nrf2 axis. This pathway could be further exploited, including the identification of the responsible kinases, to define the biological events during HCMV replication. IMPORTANCE Antiviral treatment for human cytomegalovirus (HCMV) is limited and suffers from the selection of drug-resistant viruses. Several cellular pathways have been shown to modulate HCMV replication. The autophagy receptor sequestosome 1 (SQSTM1)/p62 has been reported to interact with several HCMV proteins, particularly with components of HCMV capsid, suggesting it plays a role in viral replication. Here, we report on a new and unexpected role for SQSTM1/p62, in HCMV suppression. Using a small-molecule probe, ARP101, we show SQSTM1/p62 phosphorylation at its C terminus domain initiates the noncanonical Keap1-Nrf2 axis, leading to transcription of genes under the antioxidant response element, resulting in HCMV inhibition in vitro. Our study highlights the dynamic nature of SQSTM1/p62 during HCMV infection and how its phosphorylation activates a new pathway that can be exploited for antiviral intervention.
Collapse
Affiliation(s)
- Ayan K. Ghosh
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yu-Pin Su
- Department of Pediatrics, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Forman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F. Keyes
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian C. Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, Maryland, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, Maryland, USA
| | - Ravit Arav-Boger
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Pediatrics, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
22
|
La Rosa C, Aldoss I, Park Y, Yang D, Zhou Q, Gendzekhadze K, Kaltcheva T, Rida W, Dempsey S, Arslan S, Artz A, Ball B, Nikolaenko L, Pullarkat VA, Nakamura R, Diamond DJ. Hematopoietic stem cell donor vaccination with cytomegalovirus triplex augments frequencies of functional and durable cytomegalovirus-specific T cells in the recipient: A novel strategy to limit antiviral prophylaxis. Am J Hematol 2023; 98:588-597. [PMID: 36594185 PMCID: PMC10294297 DOI: 10.1002/ajh.26824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023]
Abstract
To enhance protective cytomegalovirus (CMV)-specific T cells in immunosuppressed recipients of an allogeneic hematopoietic cell transplant (HCT), we evaluated post-HCT impact of vaccinating healthy HCT donors with Triplex. Triplex is a viral vectored recombinant vaccine expressing three immunodominant CMV antigens. The vector is modified vaccinia Ankara (MVA), an attenuated, non-replicating poxvirus derived from the vaccinia virus strain Ankara. It demonstrated tolerability and immunogenicity in healthy adults and HCT recipients, in whom it also reduced CMV reactivation. Here, we report feasibility, safety, and immunological outcomes of a pilot phase 1 trial (NCT03560752 at ClinicalTrials.gov) including 17 CMV-seropositive recipients who received an HCT from a matched related donor (MRD) vaccinated with 5.1 × 108 pfu/ml of Triplex before cell harvest (median 15, range 11-28 days). Donor and recipient pairs who committed to participation in the trial resulted in exceptional adherence to the protocol. Triplex was well-tolerated with limited adverse events in donors and recipients, who all engrafted with full donor chimerism. On day 28 post-HCT, levels of functional vaccinia- and CMV-specific CD137+ CD8+ T cells were significantly higher (p < .0001 and p = .0174, respectively) in recipients of Triplex vaccinated MRD than unvaccinated MRD (control cohort). Predominantly, central and effector memory CMV-specific T-cell responses continued to steadily expand through 1-year follow-up. CMV viremia requiring antivirals developed in three recipients (18%). In summary, this novel approach represents a promising strategy applicable to different HCT settings for limiting the use of antiviral prophylaxis, which can impair and delay CMV-specific immunity, leading to CMV reactivation requiring treatment.
Collapse
Affiliation(s)
- Corinna La Rosa
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Yoonsuh Park
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Dongyun Yang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Qiao Zhou
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Ketevan Gendzekhadze
- Histocompatibility Laboratory, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Teodora Kaltcheva
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | | | - Shannon Dempsey
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Shukaib Arslan
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Andrew Artz
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Brian Ball
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Liana Nikolaenko
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Vinod A Pullarkat
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Don J. Diamond
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| |
Collapse
|
23
|
Zakhour J, Allaw F, Haddad SF, Kanj SS. The Ten Most Common Questions on Cytomegalovirus Infection in Hematopoietic Stem Cell Transplant Patients. Clin Hematol Int 2023; 5:21-28. [PMID: 36577863 PMCID: PMC9797381 DOI: 10.1007/s44228-022-00025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/15/2022] [Indexed: 12/30/2022] Open
Abstract
With the rising number of patients undergoing hematopoietic stem cell transplantation (HSCT), clinicians are more likely to encounter infectious complications in immunocompromised hosts, particularly cytomegalovirus (CMV) infection. Besides the high mortality of CMV end-organ disease, patients with detectable CMV viremia may have worse outcomes and decreased survival even in the absence of end-organ disease. In view of the implications on morbidity and mortality, clinicians should maintain a high index of suspicion and initiate antiviral drugs promptly when CMV infection is confirmed. High-risk patients should be identified in order to provide optimal management. Additionally, novel antiviral agents with a good safety profile and minor adverse events are now available for prophylaxis in high-risk patients and for treatment of resistant or refractory CMV infection. The following review provides concise, yet comprehensive, guidance on the burden and risk factors of CMV in this population, as well as an update on the latest evidence for the management of CMV infection.
Collapse
Affiliation(s)
- Johnny Zakhour
- Internal Medicine Department, Infectious Diseases Division, Center of Infectious Disease Research, American University of Beirut Medical Center, Riad El Solh, PO Box 11-0236, Beirut, 1107 2020, Lebanon
| | - Fatima Allaw
- Internal Medicine Department, Infectious Diseases Division, Center of Infectious Disease Research, American University of Beirut Medical Center, Riad El Solh, PO Box 11-0236, Beirut, 1107 2020, Lebanon
| | - Sara F Haddad
- Internal Medicine Department, Infectious Diseases Division, Center of Infectious Disease Research, American University of Beirut Medical Center, Riad El Solh, PO Box 11-0236, Beirut, 1107 2020, Lebanon
| | - Souha S Kanj
- Internal Medicine Department, Infectious Diseases Division, Center of Infectious Disease Research, American University of Beirut Medical Center, Riad El Solh, PO Box 11-0236, Beirut, 1107 2020, Lebanon.
| |
Collapse
|
24
|
Saullo JL, Miller RA. Cytomegalovirus Therapy: Role of Letermovir in Prophylaxis and Treatment in Transplant Recipients. Annu Rev Med 2023; 74:89-105. [PMID: 36332639 DOI: 10.1146/annurev-med-042921-124739] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cytomegalovirus (CMV) is a common viral pathogen in the transplant population and is associated with significant morbidity and mortality. CMV prevention is paramount; however, selecting the best preventive strategy depends on many factors including donor-recipient CMV serostatus, transplant-specific risks, antiviral toxicities and cost. Novel CMV therapeutics such as letermovir (LTV) are desperately needed to optimize CMV management. Uniquely among CMV antiviral therapies, LTV inhibits the viral terminase complex in the CMV DNA synthesis pathway and disrupts viral genome packaging. Further, it lacks side effects frequently associated with other CMV antiviral therapies and evades common mechanisms of resistance. LTV is approved by the US Food and Drug Administration for CMV prevention in adult CMV-seropositive hematopoietic cell transplant recipients but is increasingly applied off-label for prophylaxis and treatment. This review summarizes important concepts of CMV management in transplantation, with a specific focus on LTV pharmacology and clinical experience to date alongside future prospects for its application.
Collapse
Affiliation(s)
- Jennifer L Saullo
- Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina 27710, USA; ,
| | - Rachel A Miller
- Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina 27710, USA; ,
| |
Collapse
|
25
|
Khawaja F, Spallone A, Kotton CN, Chemaly RF. Cytomegalovirus infection in transplant recipients: newly approved additions to our armamentarium. Clin Microbiol Infect 2023; 29:44-50. [PMID: 35843567 DOI: 10.1016/j.cmi.2022.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND The burden that cytomegalovirus (CMV) portends for haematopoietic and solid-organ transplant recipients cannot be understated. Valganciclovir and ganciclovir have successfully been used for prevention and treatment of CMV infections, although with serious side effects such as leucopenia and some development of resistance. Until recently, available therapies for ganciclovir-resistant CMV have significant toxicities. Although advances have been made in the field, the unmet medical needs for effective and well-tolerated therapies are significant. OBJECTIVES This review aims to summarise the current and emerging CMV antiviral drugs and discusses future perspectives in the field. SOURCES We searched for relevant articles with pertinent keywords: "Cytomegalovirus OR CMV", "Transplant" and "Antiviral". Articles published after 2019 were given preference. Articles were reviewed by the authors for relevance and impact to the subject of interest. CONTENT We outline in this review current advances in prophylaxis of CMV infection with letermovir, breakthrough CMV infections while on or after prophylaxis, the development of resistant and refractory CMV infections, and the newly approved anti-CMV agent, maribavir, in haematopoietic and solid-organ transplant recipients. IMPLICATIONS Prevention of CMV infections after transplant has improved greatly over the past few years. Despite major advancements, breakthrough CMV infections and development of refractory and resistant CMV infections remain major complications post transplantation. We highlight emerging therapeutics that tolerably and effectively prevent and treat CMV infections, especially refractory and resistant cases.
Collapse
Affiliation(s)
- Fareed Khawaja
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amy Spallone
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Camille N Kotton
- Transplant Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
26
|
Letermovir for Prophylaxis and Pre-emptive Therapy of Cytomegalovirus Infection in Paediatric Allogeneic Haematopoietic Cell Transplant Patients. Paediatr Drugs 2023; 25:225-232. [PMID: 36572834 PMCID: PMC9931806 DOI: 10.1007/s40272-022-00547-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cytomegalovirus (CMV) infection is a frequent event in patients undergoing allogeneic haematopoietic cell transplantation (HCT) and is associated with increased morbidity and mortality due to eventual progress to end-organ disease. Letermovir prophylaxis for CMV infections has become a standard of care in adult HCT recipients due to its efficacy and high tolerability. However, it is not yet approved for paediatric patients. OBJECTIVE In a retrospective single-centre observational study we evaluated the use of letermovir for prophylaxis or pre-emptive treatment of cytomegalovirus (CMV) infection in seropositive paediatric HCT recipients receiving the compound outside of clinical trials. The primary endpoint was CMV reactivation requiring a change of medication. METHODS A total of 17 patients (seven female/ten male; median age 12.2 [range 3.5-19] years, median body weight 39.5 [range 15-63] kg; median follow-up time 463.7 [range 41-1022] days) were identified who were started on oral (14) or intravenous (3) followed by oral (2) letermovir shortly after neutrophil engraftment at doses determined on the basis of age, weight, and concomitant cyclosporine use. RESULTS Five patients had no evidence of viral replication (prophylactic use), while 12 patients had varying extents of viral replication (pre-emptive therapy). A change of therapy was required in one patient due to a sustained increase in CMV viral load, and in two patients, letermovir was stopped without later reactivation after initiation of palliative care for recurrent leukaemia. Of the 14 patients who completed treatment, 3 had evidence of transient viral replication after end of treatment that required no further antiviral treatment. No patients (of 17) discontinued letermovir due to an adverse event. CONCLUSION Letermovir was effective in controlling CMV infection in seropositive paediatric allogeneic HCT recipients and was overall well tolerated. Pending completion of the still ongoing paediatric investigation plans, letermovir will be an important adjunct to our options for control of infectious complications in this special population.
Collapse
|
27
|
Parsons AJ, Ophir SI, Gardner TJ, Paredes JC, Stein KR, Kwasny SM, Cardinale SC, Torhan M, Prichard MN, James SH, Atanasoff KE, G-Dayanandan N, Bowlin TL, Opperman TJ, Tortorella D. Investigating N-arylpyrimidinamine (NAPA) compounds as early-stage inhibitors against human cytomegalovirus. Antiviral Res 2023; 209:105474. [PMID: 36511318 PMCID: PMC9907720 DOI: 10.1016/j.antiviral.2022.105474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
Human cytomegalovirus (CMV) is a ubiquitous β-herpesvirus that establishes latent asymptomatic infections in healthy individuals but can cause serious infections in immunocompromised people, resulting in increased risk of morbidity and mortality. The current FDA-approved CMV drugs target late stages of the CMV life-cycle. While these drugs are effective in most cases, they have serious drawbacks, including poor oral bioavailability, dose-limiting toxicity, and a low barrier to resistance. Given the clinical relevance of CMV-associated diseases, novel therapies are needed. Thus, a novel class of compounds that inhibits the early stages of the CMV life-cycle was identified and found to block infection of different strains in physiologically relevant cell types. This class of compounds, N-arylpyrimidinamine (NAPA), demonstrated potent anti-CMV activity against ganciclovir-sensitive and -resistant strains in in vitro replication assays, a selectivity index >30, and favorable in vitro ADME properties. Mechanism of action studies demonstrated that NAPA compounds inhibit an early step of virus infection. NAPA compounds are specific inhibitors of cytomegaloviruses and exhibited limited anti-viral activity against other herpesviruses. Collectively, we have identified a novel class of CMV inhibitor that effectively limits viral infection and proliferation.
Collapse
Affiliation(s)
- Andrea J Parsons
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sabrina I Ophir
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Thomas J Gardner
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jailene Casado Paredes
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kathryn R Stein
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | | | | | - Mark N Prichard
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Scott H James
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Kristina E Atanasoff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | | | | | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
28
|
Chou S, Kleiboeker S. Relative frequency of cytomegalovirus UL56 gene mutations detected in genotypic letermovir resistance testing. Antiviral Res 2022; 207:105422. [PMID: 36170912 PMCID: PMC9759347 DOI: 10.1016/j.antiviral.2022.105422] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 11/24/2022]
Abstract
Genotypic testing for letermovir (LMV) resistance was performed by Sanger sequencing of cytomegalovirus terminase gene UL56 (codons 202-412) in 1165 diagnostic specimens, disclosing 36 sequence variants among 173 (14.8%) of the specimens, including one or more LMV resistance mutations in 134 specimens. Codon 325 mutations (C325Y/F/W/R) were the most common (108 specimens), followed by those at codon 369 (R369 S/G/T/K, 13 specimens) and V236M (11 specimens). Mutations V231L, N232Y, Q234R, L257F and V363I were detected in 1-3 specimens each. Combinations of codon 325 mutation and those at codons 236 or 369 were found in 6 specimens. Eleven novel sequence variants were phenotyped, validating Q234R, V363I and R369K as conferring 2- to 5-fold increased LMV 50% inhibitory concentrations (EC50). These findings indicate that UL56 codon 325 mutations conferring >3000-fold LMV EC50 are detected much more frequently in clinical practice than those conferring lower grade resistance, and suggest that a single step mutation to absolute LMV resistance is an ongoing concern in its therapeutic use.
Collapse
Affiliation(s)
- Sunwen Chou
- Department of Veterans Affairs Medical Center, Portland, OR, USA; Division of Infectious Diseases, Oregon Health and Science University, USA.
| | | |
Collapse
|
29
|
Strang BL. Toward inhibition of human cytomegalovirus replication with compounds targeting cellular proteins. J Gen Virol 2022; 103. [PMID: 36215160 DOI: 10.1099/jgv.0.001795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antiviral therapy for human cytomegalovirus (HCMV) currently relies upon direct-acting antiviral drugs. However, it is now well known that these drugs have shortcomings, which limit their use. Here I review the identification and investigation of compounds targeting cellular proteins that have anti-HCMV activity and could supersede those anti-HCMV drugs currently in use. This includes discussion of drug repurposing, for example the use of artemisinin compounds, and discussion of new directions to identify compounds that target cellular factors in HCMV-infected cells, for example screening of kinase inhibitors. In addition, I highlight developing areas such as the use of machine learning and emphasize how interaction with fields outside virology will be critical for development of anti-HCMV compounds.
Collapse
Affiliation(s)
- Blair L Strang
- Institute for Infection & Immunity, St George's, University of London, London, UK
| |
Collapse
|
30
|
Broad-spectrum antiviral diazadispiroalkane core molecules block attachment and cell-to-cell spread of herpesviruses. Antiviral Res 2022; 206:105402. [PMID: 36007600 DOI: 10.1016/j.antiviral.2022.105402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/19/2022]
Abstract
Regarding the problems with the current available drugs many research studies deal with the class of the dispirotripiperazine (DSTP)-based compounds. These are small molecules consisting of polycyclic saturated ring systems with positively charged nitrogen atoms. These compounds can interact with negatively charged HSPGs and thus block viral attachment. In a previous paper by Adfeldt et al. (2021), we have shown that the diazadispiroalkane derivatives 11826091 and 11826236 exhibit dose-dependent antiviral activity against human cytomegalovirus (HCMV) and pseudorabies virus (PrV). In the present study, these two small molecules are evaluated against two other herpesvirus species, murine cytomegalovirus (MCMV) and herpes simplex virus type 1 (HSV-1), as well as a HCMV clinical isolate. They exhibit potent antiherpetic activity against these herpesviruses with a high selectivity index. The low cytotoxicity was underlined by the LD50 determination in mice. We have shown that inhibition occurs at an early stage of infection. Interestingly, 11826091 and 11826236 reduced immediate early gene expression in HCMV and HSV-1 infected cells in a dose-dependent manner. Both small molecules probably interact electrostatically with sulfated glycosaminoglycans (GAGs) of proteoglycans on target cells resulting in blockage of adsorption sites for herpesvirus glycoprotein. Moreover, both compounds showed significant effects against the cell-associated viral spread of HSV-1 and HCMV. Overall, this study shows that 11826091 and 11826236 represent two promising candidates for a new approach of a broad antiviral therapy.
Collapse
|
31
|
Santos Bravo M, Plault N, Sánchez-Palomino S, Rodríguez C, Navarro Gabriel M, Mosquera MM, Fernández Avilés F, Suarez-Lledó M, Rovira M, Bodro M, Moreno A, Linares L, Cofan F, Berengua C, Esteva C, Cordero E, Martin-Davila P, Aranzamendi M, Pérez Jiménez AB, Vidal E, Fernández Sabé N, Len O, Hantz S, Alain S, Marcos MÁ. Genotypic and phenotypic study of antiviral resistance mutations in refractory cytomegalovirus infection. J Infect Dis 2022; 226:1528-1536. [PMID: 35993155 DOI: 10.1093/infdis/jiac349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/18/2022] [Indexed: 11/14/2022] Open
Abstract
This study describes the genotypic and phenotypic characterisation of novel human cytomegalovirus (HCMV) genetic variants of a cohort of 94 clinically-resistant HCMV patients. Antiviral-resistant mutations were detected in the UL97, UL54 and UL56 target genes of 25/94 (26.6%) patients. The genotype-phenotype correlation study resolved the status of 5 uncharacterised UL54 DNA polymerase (G441S, A543V, F460S, R512C, A928T) and 2 UL56 terminase (F345L, P800L) mutations found in clinical isolates. A928T conferred high triple-resistance to ganciclovir, foscarnet and cidofovir, and A543V had 10-fold reduced susceptibility to cidofovir. Viral growth assays showed G441S, A543V, F345L and P800L impaired viral growth capacities compared with wild-type AD169 HCMV. 3D modelling predicted A543V and A928T phenotypes but not R512C, reinforcing the need for individual characterisation of mutations by recombinant phenotyping. Extending mutation databases is crucial to optimize treatments and to improve the assessment of patients with resistant/refractory HCMV infection.
Collapse
Affiliation(s)
- Marta Santos Bravo
- Microbiology Department, Hospital Clinic of Barcelona, University of Barcelona. Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Nicolas Plault
- National Reference Center for Herpesviruses, Microbiology Department, CHU Limoges, Limoges, France.,UMR Inserm 1092, University of Limoges, Limoges, France
| | - Sonsoles Sánchez-Palomino
- AIDS Research Group, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic I Provincial de Barcelona, University of Barcelona, Barcelona, Spain
| | - Cristina Rodríguez
- Microbiology Department, Hospital Clinic of Barcelona, University of Barcelona. Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Mireia Navarro Gabriel
- Microbiology Department, Hospital Clinic of Barcelona, University of Barcelona. Institute for Global Health (ISGlobal), Barcelona, Spain
| | - María Mar Mosquera
- Microbiology Department, Hospital Clinic of Barcelona, University of Barcelona. Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Francesc Fernández Avilés
- Bone Marrow Transplant Unit, Hematology Department, Clinical Institute of Hematological and Oncological Diseases (ICMHO) Hospital Clinic of Barcelona, , Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - María Suarez-Lledó
- Bone Marrow Transplant Unit, Hematology Department, Clinical Institute of Hematological and Oncological Diseases (ICMHO) Hospital Clinic of Barcelona, , Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Montserrat Rovira
- Bone Marrow Transplant Unit, Hematology Department, Clinical Institute of Hematological and Oncological Diseases (ICMHO) Hospital Clinic of Barcelona, , Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Marta Bodro
- Infectious Diseases Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Asunción Moreno
- Infectious Diseases Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Laura Linares
- Infectious Diseases Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Frederic Cofan
- Renal Transplantation Unit, Department of Nephrology. Hospital Clinic of Barcelona, Barcelona, Spain
| | - Carla Berengua
- Microbiology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Cristina Esteva
- Molecular Microbiology Unit, Hospital Universitari Sant Joan de Déu, Barcelona, Spain. Malalties Prevenibles amb Vacunes, Institut de Recerca Sant Joan de Déu, Universitat de Barcelona. Centre of Biomedical Research for Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Elisa Cordero
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine. Viral and Infectious Diseases in Immunodeficient Group. Institute of Biomedicine of Seville (IBiS). Virgen del Rocio University Hospital. University of Seville. Seville, Spain
| | | | - Maitane Aranzamendi
- Microbiology Department. Hospital Universitario de Cruces, Donostia, Gipuzkoa, Spain
| | - Ana Belén Pérez Jiménez
- Microbiology Unit, Hospital Universitario Reina Sofía, Intituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain. Centre of Biomedical Research for Infectious Diseases (CIBERINFEC), Intitute of Carlos III, Madrid, Spain
| | - Elisa Vidal
- Microbiology Unit, Hospital Universitario Reina Sofía, Intituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain. Centre of Biomedical Research for Infectious Diseases (CIBERINFEC), Intitute of Carlos III, Madrid, Spain
| | - Nuria Fernández Sabé
- Department of Infectious Diseases, Bellvitge University Hospital, Insitut D'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Oscar Len
- Department of Infectious Diseases, Hospital Universitari Vall d'Hebrón, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Sebastien Hantz
- National Reference Center for Herpesviruses, Microbiology Department, CHU Limoges, Limoges, France.,UMR Inserm 1092, University of Limoges, Limoges, France
| | - Sophie Alain
- National Reference Center for Herpesviruses, Microbiology Department, CHU Limoges, Limoges, France.,UMR Inserm 1092, University of Limoges, Limoges, France
| | - María Ángeles Marcos
- Microbiology Department, Hospital Clinic of Barcelona, University of Barcelona. Institute for Global Health (ISGlobal), Barcelona, Spain
| | | |
Collapse
|
32
|
Wright LR, Wright DL, Weller SK. Viral Nucleases from Herpesviruses and Coronavirus in Recombination and Proofreading: Potential Targets for Antiviral Drug Discovery. Viruses 2022; 14:1557. [PMID: 35891537 PMCID: PMC9324378 DOI: 10.3390/v14071557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
In this review, we explore recombination in two very different virus families that have become major threats to human health. The Herpesviridae are a large family of pathogenic double-stranded DNA viruses involved in a range of diseases affecting both people and animals. Coronaviridae are positive-strand RNA viruses (CoVs) that have also become major threats to global health and economic stability, especially in the last two decades. Despite many differences, such as the make-up of their genetic material (DNA vs. RNA) and overall mechanisms of genome replication, both human herpes viruses (HHVs) and CoVs have evolved to rely heavily on recombination for viral genome replication, adaptation to new hosts and evasion of host immune regulation. In this review, we will focus on the roles of three viral exonucleases: two HHV exonucleases (alkaline nuclease and PolExo) and one CoV exonuclease (ExoN). We will review the roles of these three nucleases in their respective life cycles and discuss the state of drug discovery efforts against these targets.
Collapse
Affiliation(s)
- Lee R. Wright
- Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, CT 06269, USA; (L.R.W.); (D.L.W.)
| | - Dennis L. Wright
- Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, CT 06269, USA; (L.R.W.); (D.L.W.)
| | - Sandra K. Weller
- Department of Molecular Biology and Biophysics, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| |
Collapse
|
33
|
First clinical description of letermovir resistance mutation in cytomegalovirus UL51 gene and potential impact on the terminase complex structure. Antiviral Res 2022; 204:105361. [PMID: 35690130 DOI: 10.1016/j.antiviral.2022.105361] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Letermovir (LMV) is a human cytomegalovirus (HCMV) terminase inhibitor indicated as prophylaxis for HCMV-positive stem-cell recipients. Its mechanism of action involves at least the viral terminase proteins pUL56, pUL89 and pUL51. Despite its efficiency, resistance mutations were characterized in vitro and in vivo, largely focused on pUL56. To date, mutations in pUL51 in clinical resistance remain to be demonstrated. METHODS The pUL51 natural polymorphism was described by sequencing 54 LMV-naive strains and was compared to UL51 HCMV genes from 16 patients non-responding to LMV therapy (prophylaxis or curative). Recombinant viruses were built by «en-passant» mutagenesis to measure the impact of the new mutations on antiviral activity and viral growth. Structure prediction was performed by homology modeling. The pUL51 final-model was analyzed and aligned with the atomic coordinates of the monomeric HSV-1 terminase complex (PDB:6M5R). RESULTS Among the 16 strains from treated-patients with LMV, 4 never described substitutions in pUL51 (D12E, 17del, A95V, V113L) were highlighted. These substitutions had no impact on viral fitness. Only UL51-A95V conferred 13.8-fold increased LMV resistance level by itself (IC50 = 29.246 ± 0.788). CONCLUSION As an isolated mutation in pUL51 in a clinical isolate can lead to LMV resistance, genotyping for resistance should involve sequencing of the pUL51, pUL56 and pUL89 genes. With terminase modelling, we make the hypothesis that LMV could bind to domains were UL56-L257I and UL51-A95V mutations were localized.
Collapse
|
34
|
Weinberger S, Steininger C. Reliable quantification of Cytomegalovirus DNAemia in Letermovir treated patients. Antiviral Res 2022; 201:105299. [DOI: 10.1016/j.antiviral.2022.105299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022]
|
35
|
Piret J, Goyette N, Boivin G. In vitro activity of letermovir against human cytomegalovirus isolates with different drug susceptibility phenotypes. Antiviral Res 2022; 202:105328. [PMID: 35490740 DOI: 10.1016/j.antiviral.2022.105328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022]
Abstract
Letermovir (LTV) is approved for the prophylaxis of human cytomegalovirus (HCMV) infection in adult seropositive recipients of an allogeneic hematopoietic stem cell transplant. Here, we report on the in vitro activity of LTV against a large panel of clinical HCMV isolates and recombinant viruses with different drug susceptibility phenotypes to currently-approved DNA polymerase inhibitors or maribavir. No pre-existing mutations conferring resistance to LTV were detected by Sanger sequencing in clinical HCMV isolates susceptible or resistant to DNA polymerases inhibitors. The susceptibility of LTV against the different recombinant HCMV mutants with amino acid substitutions in the UL97 kinase or in the UL54 DNA polymerase was similar to that of the wild type virus. LTV was also effective against recombinant HCMV harboring UL97 mutations conferring resistance to maribavir.
Collapse
Affiliation(s)
- Jocelyne Piret
- CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | | | - Guy Boivin
- CHU de Québec-Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
36
|
Senaweera S, Edwards TC, Kankanala J, Wang Y, Sahani RL, Xie J, Geraghty RJ, Wang Z. Discovery of N-benzyl hydroxypyridone carboxamides as a novel and potent antiviral chemotype against human cytomegalovirus (HCMV). Acta Pharm Sin B 2022; 12:1671-1684. [PMID: 35847513 PMCID: PMC9279720 DOI: 10.1016/j.apsb.2021.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/05/2021] [Accepted: 08/17/2021] [Indexed: 12/29/2022] Open
Abstract
Current drugs for treating human cytomegalovirus (HCMV) infections are limited by resistance and treatment-associated toxicities. In developing mechanistically novel HCMV antivirals, we discovered an N-benzyl hydroxypyridone carboxamide antiviral hit (8a) inhibiting HCMV in submicromolar range. We describe herein the structure–activity relationship (SAR) for 8a, and the characterization of potent analogs for cytotoxicity/cytostatic property, the preliminary mechanism of action, and the absorption, distribution, metabolism and excretion (ADME) properties. The SAR revealed a few pharmacophore features conferring optimal antiviral profile, including the 5-OH, the N-1 benzyl, at least one –CH2− in the linker, and a di-halogen substituted phenyl ring in the amide moiety. In the end, we identified numerous analogs with sub-micromolar antiviral potency and good selectivity index. The preliminary mechanism of action characterization used a pUL89-C biochemical endonuclease assay, a virus entry assay, a time-of-addition assay, and a compound withdrawal assay. ADME profiling measuring aqueous solubility, plasma and liver microsomal stability, and parallel artificial membrane permeability assay (PAMPA) permeability demonstrated largely favorable drug-like properties. Together, these studies validate the N-benzyl hydroxypyridone carboxamide as a viable chemotype for potent and mechanistically distinct antivirals against HCMV.
Collapse
|
37
|
Assessment of UL56 Mutations before Letermovir Therapy in Refractory Cytomegalovirus Transplant Recipients. Microbiol Spectr 2022; 10:e0019122. [PMID: 35343771 PMCID: PMC9045154 DOI: 10.1128/spectrum.00191-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
De novo mutations in the UL56 terminase subunit and its associated phenotypes were studied in the context of cytomegalovirus (CMV) transplant recipients clinically resistant to DNA-polymerase inhibitors, naive to letermovir. R246C was the only UL56 variant detected by standard and deep sequencing, located within the letermovir-resistance-associated region (residues 230–370). R246C emerged in 2/80 transplant recipients (1 hematopoietic and 1 heart) since first cytomegalovirus replication and responded transiently to various alternative antiviral treatments in vivo. Recombinant phenotyping showed R246C conferred an advanced viral fitness and was sensitive to ganciclovir, cidofovir, foscarnet, maribavir, and letermovir. These results demonstrate a low rate (2.5%) of natural occurring polymorphisms within the letermovir-resistant-associated region before its administration. Identification of high replicative capacity variants in patients not responding to treatment or experiencing relapses could be helpful to guide further therapy and dosing of antiviral molecules. IMPORTANCE We provide comprehensive data on the clinical correlates of both CMV genotypic follow-up by standard and deep sequencing and the clinical outcomes, as well as recombinant phenotypic results of this novel mutation. Our study emphasizes that the clinical follow-up in combination with genotypic and phenotypic studies is essential for the assessment and optimization of patients experiencing HCMV relapses or not responding to antiviral therapy. This information may be important for other researchers and clinicians working in the field to improve the care of transplant patients since drug-resistant CMV infections are an important emerging problem even with the new antiviral development.
Collapse
|
38
|
Majewska A, Mlynarczyk-Bonikowska B. 40 Years after the Registration of Acyclovir: Do We Need New Anti-Herpetic Drugs? Int J Mol Sci 2022; 23:ijms23073431. [PMID: 35408788 PMCID: PMC8998721 DOI: 10.3390/ijms23073431] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 01/17/2023] Open
Abstract
Herpes simplex virus types 1 and 2 HSV1 and 2, namely varicella-zoster VZV and cytomegalovirus CMV, are among the most common pathogens worldwide. They remain in the host body for life. The course of infection with these viruses is often asymptomatic or mild and self-limiting, but in immunocompromised patients, such as solid organ or bone marrow transplant recipients, the course can be very severe or even life-threatening. Unfortunately, in the latter group, the highest percentage of infections with strains resistant to routinely used drugs is observed. On the other hand, frequent recurrences of genital herpes can be a problem even in people with normal immunity. Genital herpes also increases the risk of acquiring sexually transmitted diseases, including HIV infection and, if present in pregnant women, poses a risk to the fetus and newborn. Even more frequently than herpes simplex, congenital infections can be caused by cytomegalovirus. We present the most important anti-herpesviral agents, the mechanisms of resistance to these drugs, and the associated mutations in the viral genome. Special emphasis was placed on newly introduced drugs such as maribavir and brincidofovir. We also briefly discuss the most promising substances in preclinical testing as well as immunotherapy options and vaccines currently in use and under investigation.
Collapse
Affiliation(s)
- Anna Majewska
- Department of Medical Microbiology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland;
| | - Beata Mlynarczyk-Bonikowska
- Department of Dermatology, Immunodermatology and Venereology, Medical University of Warsaw, Koszykowa 82a, 02-008 Warsaw, Poland
- Correspondence: ; Tel.: +48-225021313
| |
Collapse
|
39
|
The Synthesis and Anti-Cytomegalovirus Activity of Piperidine-4-Carboxamides. Viruses 2022; 14:v14020234. [PMID: 35215828 PMCID: PMC8876412 DOI: 10.3390/v14020234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 01/04/2023] Open
Abstract
Treatment options for human cytomegalovirus (CMV) remain limited and are associated with significant adverse effects and the selection of resistant CMV strains in transplant recipients and congenitally infected infants. Although most approved drugs target and inhibit the CMV DNA polymerase, additional agents with distinct mechanisms of action are needed for the treatment and prevention of CMV. In a large high throughput screen using our CMV-luciferase reporter Towne, we identified several unique inhibitors of CMV replication. Here, we synthesize and test in vitro 13 analogs of the original NCGC2955 hit (1). Analogs with no activity against the CMV-luciferase at 10 µM and 30 µM (2–6, 10–14) were removed from further analysis. Three analogs (7–9) inhibited CMV replication in infected human foreskin fibroblasts. The EC50 of (1) was 1.7 ± 0.6 µM and 1.99 ± 0.15 µM, based on luciferase and plaque assay, respectively. Compounds 7, 8, and 9 showed similar activities: the EC50 values of 7 were 0.21 ± 0.06 µM (luciferase) and 0.55 ± 0.06 (plaque), of 8: 0.28 ± 0.06 µM and 0.42 ± 0.07, and of 9: 0.30 ± 0.05 µM (luciferase) and 0.35 ± 0.07 (plaque). The CC50 for 7, 8, and 9 in non-infected human foreskin fibroblasts was > 500µM, yielding a selectivity index of >1500. Compounds 1, 7, and 8 were also tested in CMV-infected primary human hepatocytes and showed a dose–response against CMV by luciferase activity and viral protein expression. None of the active compounds inhibited herpes simplex virus 1 or 2. Compounds 7 and 8 inhibited mouse CMV replication in vitro. Both inhibited CMV at late stages of replication; 7 reduced virus yield at all late time points, although not to the same degree as letermovir. Finally, the activity of analog 8 was additive with newly identified CMV inhibitors (MLS8969, NFU1827, MSL8554, and MSL8091) and with ganciclovir. Further structural activity development should provide promising anti-CMV agents for use in clinical studies.
Collapse
|
40
|
Cytomegalovirus and other herpesviruses after hematopoietic cell and solid organ transplantation: From antiviral drugs to virus-specific T cells. Transpl Immunol 2022; 71:101539. [PMID: 35051589 DOI: 10.1016/j.trim.2022.101539] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022]
Abstract
Herpesviruses can either cause primary infection or may get reactivated after both hematopoietic cell and solid organ transplantations. In general, viral infections increase post-transplant morbidity and mortality. Prophylactic, preemptive, or therapeutically administered antiviral drugs may be associated with serious side effects and may induce viral resistance. Virus-specific T cells represent a valuable addition to antiviral treatment, with high rates of response and minimal side effects. Even low numbers of virus-specific T cells manufactured by direct selection methods can reconstitute virus-specific immunity after transplantation and control viral replication. Virus-specific T cells belong to the advanced therapy medicinal products, and their production is regulated by appropriate legislation; also, strict safety regulations are required to minimize their side effects.
Collapse
|
41
|
Munting A, Manuel O. Viral infections in lung transplantation. J Thorac Dis 2022; 13:6673-6694. [PMID: 34992844 PMCID: PMC8662465 DOI: 10.21037/jtd-2021-24] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022]
Abstract
Viral infections account for up to 30% of all infectious complications in lung transplant recipients, remaining a significant cause of morbidity and even mortality. Impact of viral infections is not only due to the direct effects of viral replication, but also to immunologically-mediated lung injury that may lead to acute rejection and chronic lung allograft dysfunction. This has particularly been seen in infections caused by herpesviruses and respiratory viruses. The implementation of universal preventive measures against cytomegalovirus (CMV) and influenza (by means of antiviral prophylaxis and vaccination, respectively) and administration of early antiviral treatment have reduced the burden of these diseases and potentially their role in affecting allograft outcomes. New antivirals against CMV for prophylaxis and for treatment of antiviral-resistant CMV infection are currently being evaluated in transplant recipients, and may continue to improve the management of CMV in lung transplant recipients. However, new therapeutic and preventive strategies are highly needed for other viruses such as respiratory syncytial virus (RSV) or parainfluenza virus (PIV), including new antivirals and vaccines. This is particularly important in the advent of the COVID-19 pandemic, for which several unanswered questions remain, in particular on the best antiviral and immunomodulatory regimen for decreasing mortality specifically in lung transplant recipients. In conclusion, the appropriate management of viral complications after transplantation remain an essential step to continue improving survival and quality of life of lung transplant recipients.
Collapse
Affiliation(s)
- Aline Munting
- Infectious Diseases Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Oriol Manuel
- Infectious Diseases Service, Lausanne University Hospital, Lausanne, Switzerland.,Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
42
|
Hiskey L, Madigan T, Ristagno EH, Razonable RR, Ferdjallah A. Prevention and management of human cytomegalovirus in pediatric HSCT recipients: A review. Front Pediatr 2022; 10:1039938. [PMID: 36507142 PMCID: PMC9727199 DOI: 10.3389/fped.2022.1039938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Cytomegalovirus (CMV), like other herpesviruses, has the unique ability to establish latent infection with subsequent reactivation during periods of stress and immunosuppression. Herpesviruses cause potentially devastating disease, particularly in hematopoietic stem cell transplant (HSCT) recipients. CMV is especially of concern in HSCT recipients given the high community seroprevalence, high risk of reactivation and high risk of transmission from HSCT donors to recipients causing primary infection after transplantation. The risk of CMV infection and severity of CMV disease varies depending on the underlying disease of the HSCT recipient, donor and recipient CMV status prior to HSCT, type of conditioning therapy in preparation for HSCT, allogeneic versus autologous HSCT, donor graft source, timing of infection in relation to HSCT, and other patient comorbidities. Different strategies exist for prevention (e.g., preemptive therapy vs. universal prophylaxis) as well as management of CMV disease (e.g., antiviral therapy, augmenting immune reconstitution, cytotoxic T-cell therapy). The purpose of this narrative review is to discuss diagnosis, prevention, and management of CMV infection and disease at different stages of HSCT, including key points illustrated through presentations of complex cases and difficult clinical scenarios. Traditional and novel strategies for CMV management will be discussed in the context of these unique clinical cases.
Collapse
Affiliation(s)
- Lisa Hiskey
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Theresa Madigan
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Elizabeth H Ristagno
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Raymund R Razonable
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN, United States
| | - Asmaa Ferdjallah
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
43
|
Saullo JL, Baker AW, Snyder LD, Reynolds JM, Zaffiri L, Eichenberger EM, Ferrari A, Steinbrink JM, Maziarz EK, Bacchus M, Berry H, Kakoullis SA, Wolfe CR. Cytomegalovirus prevention in thoracic organ transplantation: A single-center evaluation of letermovir prophylaxis. J Heart Lung Transplant 2021; 41:508-515. [PMID: 35031206 PMCID: PMC9121640 DOI: 10.1016/j.healun.2021.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Cytomegalovirus (CMV) infection is common following thoracic organ transplantation and causes substantial morbidity and mortality. Letermovir is a novel antiviral agent used off-label in this population for CMV prevention. Our goal was to understand patterns of letermovir use and effectiveness when applied for CMV prophylaxis after thoracic transplantation. METHODS We retrospectively evaluated letermovir use among thoracic transplant recipients at an academic transplant center who initiated letermovir from January 2018 to October2019 for CMV prophylaxis. We analyzed indication, timing, and duration of prophylaxis; tolerability; and occurrence of breakthrough CMV DNAemia and disease. RESULTS Forty-two episodes of letermovir prophylaxis occurred in 41 patients, including 37 lung and 4 heart transplant recipients. Primary prophylaxis (26/42, 61.9%) was utilized mainly due to myelosuppression (25/26, 96.2%) and was initiated a median of 315 days post-transplant (interquartile range [IQR] 125-1139 days). Sixteen episodes of secondary prophylaxis (16/42, 38.1%) were initiated a median of 695 days post-transplant (IQR 537-1156 days) due to myelosuppression (10/16, 62.5%) or prior CMV resistance (6/16, 37.5%). Median duration of letermovir prophylaxis was 282 days (IQR 131-433 days). Adverse effects required letermovir cessation in 5/42 (11.9%) episodes. Only one episode (2.4%) was complicated by clinically significant breakthrough CMV infection. Transient low-level CMV DNAemia (<450 IU/ml) occurred in 15 episodes (35.7%) but did not require letermovir cessation. CONCLUSIONS Letermovir was well tolerated and effective during extended prophylactic courses with only one case of breakthrough CMV infection in this cohort of thoracic transplant recipients. Further prospective trials of letermovir prophylaxis in this population are warranted.
Collapse
Affiliation(s)
- Jennifer L Saullo
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina.
| | - Arthur W Baker
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina; Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina
| | - Laurie D Snyder
- Division of Pulmonary, Allergy and Critical Care, Duke University School of Medicine, Durham, North Carolina
| | - John M Reynolds
- Division of Pulmonary, Allergy and Critical Care, Duke University School of Medicine, Durham, North Carolina
| | - Lorenzo Zaffiri
- Division of Pulmonary, Allergy and Critical Care, Duke University School of Medicine, Durham, North Carolina
| | - Emily M Eichenberger
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina
| | - Alana Ferrari
- Department of Pharmacy, University of Virginia Medical Center, Charlottesville, Virginia
| | - Julie M Steinbrink
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina
| | - Eileen K Maziarz
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina
| | - Melissa Bacchus
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina
| | - Holly Berry
- Department of Pharmacy, Duke University Medical Center, Durham, North Carolina
| | - Stylianos A Kakoullis
- Division of Pulmonary and Intensive Care Medicine, European University of Cyprus School of Medicine, Engomi, Nicosia Cyprus
| | - Cameron R Wolfe
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
44
|
Falci Finardi N, Kim H, Hernandez LZ, Russell MRG, Ho CMK, Sreenu VB, Wenham HA, Merritt A, Strang BL. Identification and characterization of bisbenzimide compounds that inhibit human cytomegalovirus replication. J Gen Virol 2021; 102. [PMID: 34882533 PMCID: PMC8744270 DOI: 10.1099/jgv.0.001702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The shortcomings of current anti-human cytomegalovirus (HCMV) drugs has stimulated a search for anti-HCMV compounds with novel targets. We screened collections of bioactive compounds and identified a range of compounds with the potential to inhibit HCMV replication. Of these compounds, we selected bisbenzimide compound RO-90-7501 for further study. We generated analogues of RO-90-7501 and found that one compound, MRT00210423, had increased anti-HCMV activity compared to RO-90-7501. Using a combination of compound analogues, microscopy and biochemical assays we found RO-90-7501 and MRT00210423 interacted with DNA. In single molecule microscopy experiments we found RO-90-7501, but not MRT00210423, was able to compact DNA, suggesting that compaction of DNA was non-obligatory for anti-HCMV effects. Using bioinformatics analysis, we found that there were many putative bisbenzimide binding sites in the HCMV DNA genome. However, using western blotting, quantitative PCR and electron microscopy, we found that at a concentration able to inhibit HCMV replication our compounds had little or no effect on production of certain HCMV proteins or DNA synthesis, but did have a notable inhibitory effect on HCMV capsid production. We reasoned that these effects may have involved binding of our compounds to the HCMV genome and/or host cell chromatin. Therefore, our data expand our understanding of compounds with anti-HCMV activity and suggest targeting of DNA with bisbenzimide compounds may be a useful anti-HCMV strategy.
Collapse
Affiliation(s)
- Nicole Falci Finardi
- Institute of Infection & Immunity, St George's, University of London, London, UK
| | - HyeongJun Kim
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, Edinburg, TX, USA.,Biochemistry and Molecular Biology Program, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Lee Z Hernandez
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, Edinburg, TX, USA.,Biochemistry and Molecular Biology Program, University of Texas Rio Grande Valley, Edinburg, TX, USA.,Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | | - Catherine M-K Ho
- Institute of Infection & Immunity, St George's, University of London, London, UK
| | - Vattipally B Sreenu
- MRC - University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Hannah A Wenham
- Institute of Infection & Immunity, St George's, University of London, London, UK
| | - Andy Merritt
- Centre for Therapeutic Discovery, LifeArc, Stevenage, UK
| | - Blair L Strang
- Institute of Infection & Immunity, St George's, University of London, London, UK.,Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Andouard D, Gueye R, Hantz S, Fagnère C, Liagre B, Bernardaud L, Pouget C, Duroux JL, Alain S. Impact of new cyclooxygenase 2 inhibitors on human cytomegalovirus replication in vitro. Antivir Ther 2021; 26:117-125. [DOI: 10.1177/13596535211064078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Human cytomegalovirus (HCMV) is involved in complications on immunocompromised patients. Current therapeutics are associated with several drawbacks, such as nephrotoxicity. Purpose: As HCMV infection affects inflammation pathways, especially prostaglandin E2 (PGE2) production via cyclooxygenase 2 enzyme (COX-2), we designed 2'-hydroxychalcone compounds to inhibit human cytomegalovirus. Study design We first selected the most efficient new synthetic chalcones for their effect against COX-2-catalyzed PGE2. Study sample Among the selected compounds, we assessed the antiviral efficacy against different HCMV strains, such as the laboratory strain AD169 and clinical strains (naïve or multi-resistant to conventional drugs) and toxicity on human cells. Results The most efficient and less toxic compound (chalcone 7) was tested against HCMV in combination with other antiviral molecules: artesunate (ART), baicalein (BAI), maribavir (MBV), ganciclovir (GCV), and quercetin (QUER) using Compusyn software. Association of chalcone 7 with MBV and BAI is synergistic, antagonistic with QUER, and additive with GCV and ART. Conclusion These results provide a promising search path for potential bitherapies against HCMV.
Collapse
Affiliation(s)
- D Andouard
- INSERM, CHU Limoges, RESINFIT, U1092, University Limoges, Limoges, France
- National Reference Center for Herpesviruses, Laboratoire de Bactériologie-Virologie-Hygiène, CHU Limoges, Limoges, France
| | - R Gueye
- PEIRENE EA 7500, University Limoges, Limoges, France
- Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop, Dakar, Sénégal
| | - S Hantz
- INSERM, CHU Limoges, RESINFIT, U1092, University Limoges, Limoges, France
- National Reference Center for Herpesviruses, Laboratoire de Bactériologie-Virologie-Hygiène, CHU Limoges, Limoges, France
| | - C Fagnère
- PEIRENE EA 7500, University Limoges, Limoges, France
| | - B Liagre
- PEIRENE EA 7500, University Limoges, Limoges, France
| | - L Bernardaud
- INSERM, CHU Limoges, RESINFIT, U1092, University Limoges, Limoges, France
- National Reference Center for Herpesviruses, Laboratoire de Bactériologie-Virologie-Hygiène, CHU Limoges, Limoges, France
| | - C Pouget
- PEIRENE EA 7500, University Limoges, Limoges, France
| | - JL Duroux
- PEIRENE EA 7500, University Limoges, Limoges, France
| | - S Alain
- INSERM, CHU Limoges, RESINFIT, U1092, University Limoges, Limoges, France
- National Reference Center for Herpesviruses, Laboratoire de Bactériologie-Virologie-Hygiène, CHU Limoges, Limoges, France
| |
Collapse
|
46
|
Veit T, Munker D, Barton J, Milger K, Kauke T, Meiser B, Michel S, Zoller M, Nitschko H, Keppler OT, Behr J, Kneidinger N. Letermovir in lung transplant recipients with cytomegalovirus infection: A retrospective observational study. Am J Transplant 2021; 21:3449-3455. [PMID: 34118118 DOI: 10.1111/ajt.16718] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 01/25/2023]
Abstract
Letermovir is a new antiviral drug approved for the prophylaxis of CMV infection in allogeneic stem cell transplants. The aim of the study was to assess the therapeutic efficacy of letermovir in difficult to treat CMV infections in lung transplant recipients. All lung transplant recipients between March 2018 and August 2020, who have been treated with letermovir for ganciclovir-resistant or refractory CMV infection were included in the study and analysed retrospectively. In total, 28 patients were identified. CMV disease was present in 15 patients (53.6%). In 23 patients (82.1%), rapid response was noticed, and CMV-viral load could be significantly decreased (>1 log10 ) after a median of 17 [14-27] days and cleared subsequently in all of these patients. Five patients (17.9%) were classified as non-responder. Thereof, development of a mutation of the CMV UL56 terminase (UL-56-Gen: C325Y) conferring letermovir resistance could be observed in three patients (60%). Common side effects were mild and mostly of gastrointestinal nature. Mild adjustments of the immunosuppressive drugs were mandatory upon treatment initiation with letermovir. In addition to other interventions, letermovir was effective in difficult to treat CMV infections in lung transplant recipients. However, in patients with treatment failure mutation conferring letermovir, resistance should be taken into account.
Collapse
Affiliation(s)
- Tobias Veit
- Department of Internal Medicine V, University Hospital, LMU, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Dieter Munker
- Department of Internal Medicine V, University Hospital, LMU, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Jürgen Barton
- Department of Internal Medicine V, University Hospital, LMU, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Katrin Milger
- Department of Internal Medicine V, University Hospital, LMU, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Teresa Kauke
- Laboratory for Immunogenetics, University of Munich, LMU, Munich, Germany.,Department of Thoracic Surgery, University of Munich, LMU, Munich, Germany
| | - Bruno Meiser
- Transplant Center, University of Munich, LMU, Munich, Germany
| | - Sebastian Michel
- Clinic of Cardiac Surgery, University of Munich, LMU, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Michael Zoller
- Department of Anaesthesiology, University of Munich, LMU, Munich, Germany
| | - Hans Nitschko
- Max von Pettenkofer Institute and Gene Center, Virology, German Center for Infection Research, Partner Site Munich, National Reference Center for Retroviruses, LMU, Munich, Germany
| | - Oliver T Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, German Center for Infection Research, Partner Site Munich, National Reference Center for Retroviruses, LMU, Munich, Germany
| | - Jürgen Behr
- Department of Internal Medicine V, University Hospital, LMU, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Nikolaus Kneidinger
- Department of Internal Medicine V, University Hospital, LMU, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
47
|
Emergence of Letermovir-resistant HCMV UL56 mutant during rescue treatment in a liver transplant recipient with ganciclovir-resistant infection HCMV: a case report. BMC Infect Dis 2021; 21:994. [PMID: 34556034 PMCID: PMC8461837 DOI: 10.1186/s12879-021-06694-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
Background Human Cytomegalovirus (HCMV) still represents a crucial concern in solid organ transplant recipients (SOTRs) and the use of antiviral therapy are limited by side effects and the selection of viral mutations conferring antiviral drug resistance. Case presentation Here we reported the case of an HCMV seronegative patient with common variable immunodeficiency (CVID), multiple hepatic adenomatosis, hepatopulmonary syndrome and portal hypertension who received a liver transplant from an HCMV seropositive donor. The patient was treated with Valganciclovir (vGCV) and then IV Ganciclovir (GCV) at 5 week post-transplant for uncontrolled HCMV DNAemia. However, since mutation A594V in UL97 gene conferring resistance to ganciclovir was reported, GCV therapy was interrupted. Due to the high toxicity of Foscarnet (FOS) and Cidofovir (CDV), Letermovir (LMV) monotherapy at the dosage of 480 mg per day was administered, with a gradual viral load reduction. However, a relapse of HCMV DNAemia revealed the presence of mutation C325Y in HCMV UL56 gene conferring resistance to LMV. Conclusions In conclusion, even if LMV is an effective and favorable safety molecule it might have a lower genetic barrier to resistance. A warning on the use of LMV monotherapy as rescue treatments for HCMV GCV-resistant infections in transplant recipients is warranted.
Collapse
|
48
|
Hakki M, Aitken SL, Danziger-Isakov L, Michaels MG, Carpenter PA, Chemaly RF, Papanicolaou GA, Boeckh M, Marty FM. American Society for Transplantation and Cellular Therapy Series: #3-Prevention of Cytomegalovirus Infection and Disease After Hematopoietic Cell Transplantation. Transplant Cell Ther 2021; 27:707-719. [PMID: 34452721 DOI: 10.1016/j.jtct.2021.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 11/20/2022]
Abstract
The Practice Guidelines Committee of the American Society for Transplantation and Cellular Therapy partnered with its Transplant Infectious Disease Special Interest Group to update its 2009 compendium-style infectious diseases guidelines for the care of hematopoietic cell transplant (HCT) recipients. A new approach was taken with the goal of better serving clinical providers by publishing each standalone topic in the infectious disease series as a concise format of frequently asked questions (FAQ), tables, and figures. Adult and pediatric infectious disease and HCT content experts developed and answered FAQs. Topics were finalized with harmonized recommendations that were made by assigning an A through E strength of recommendation paired with a level of supporting evidence graded I through III. The third topic in the series focuses on the prevention of cytomegalovirus infection and disease in HCT recipients by reviewing prophylaxis and preemptive therapy approaches; key definitions, relevant risk factors, and diagnostic monitoring considerations are also reviewed.
Collapse
Affiliation(s)
- Morgan Hakki
- Division of Infectious Diseases, Department of Medicine, Oregon Health and Science University, Portland, Oregon.
| | - Samuel L Aitken
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lara Danziger-Isakov
- Division of Infectious Disease, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio
| | - Marian G Michaels
- Division of Pediatric Infectious Diseases, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh and the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Paul A Carpenter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control, & Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Michael Boeckh
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Vaccine and Infectious Disease Divisions, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Francisco M Marty
- Division of Infectious Diseases, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
49
|
Saeed H, Thoendel M, Razonable RR. Individualized management of cytomegalovirus in solid organ transplant recipients. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021. [DOI: 10.1080/23808993.2021.1964951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Huma Saeed
- Division of Infectious Diseases, Department of Medicine and the William J Von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, United States
| | - Matthew Thoendel
- Division of Infectious Diseases, Department of Medicine and the William J Von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, United States
| | - Raymund R Razonable
- Division of Infectious Diseases, Department of Medicine and the William J Von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
50
|
Flores-Martínez YA, Le-Trilling VTK, Trilling M. Nedd8-Activating Enzyme Is a Druggable Host Dependency Factor of Human and Mouse Cytomegalovirus. Viruses 2021; 13:v13081610. [PMID: 34452475 PMCID: PMC8402636 DOI: 10.3390/v13081610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022] Open
Abstract
Human cytomegalovirus causes diseases in individuals with insufficient immunity. Cytomegaloviruses exploit the ubiquitin proteasome pathway to manipulate the proteome of infected cells. The proteasome degrades ubiquitinated proteins. The family of cullin RING ubiquitin ligases (CRL) regulates the stability of numerous important proteins. If the cullin within the CRL is modified with Nedd8 ("neddylated"), the CRL is enzymatically active, while CRLs lacking Nedd8 modifications are inactive. The Nedd8-activating enzyme (NAE) is indispensable for neddylation. By binding to NAE and inhibiting neddylation, the drug MLN4924 (pevonedistat) causes CRL inactivation and stabilization of CRL target proteins. We showed that MLN4924 elicits potent antiviral activity against cytomegaloviruses, suggesting that NAE might be a druggable host dependency factor (HDF). However, MLN4924 is a nucleoside analog related to AMP, and the antiviral activity of MLN4924 may have been influenced by off-target effects in addition to NAE inhibition. To test if NAE is indeed an HDF, we assessed the novel NAE inhibitor TAS4464 and observed potent antiviral activity against mouse and human cytomegalovirus. Additionally, we raised an MLN4924-resistant cell clone and showed that MLN4924 as well as TAS4464 lose their antiviral activity in these cells. Our results indicate that NAE, the neddylation process, and CRLs are druggable HDFs of cytomegaloviruses.
Collapse
|