1
|
Trujillo P, Garavaglia P, Alvarez G, Aduviri S, Domene C, Cannata J, Asciutto EK, García GA, Pickholz M. Insight from atomistic molecular dynamics simulations into the supramolecular assembly of the aldo-keto reductase from Trypanosoma cruzi. J Mol Model 2024; 30:346. [PMID: 39316137 DOI: 10.1007/s00894-024-06153-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
CONTEXT Currently, Chagas disease represents an important public health problem affecting more than 8 million people worldwide. The vector of this disease is the Trypanosoma cruzi (Tc) parasite. Our research specifically focuses on the structure and aggregation states of the enzyme aldo-keto reductase of Tc (TcAKR) reported in this parasite. TcAKR belongs to the aldo-keto reductase (AKR) superfamily, enzymes that catalyze redox reactions involved in crucial biological processes. While most AKRs are found in monomeric forms, some have been reported to form dimeric and tetrameric structures. This is the case for some TcAKR. To better understand how TcAKR multimers form and remain stable, we conducted a comprehensive computational analysis using molecular dynamics (MD) simulations. Our approach to elucidating the aggregation states of TcAKR involved two strategies. Initially, we explored the dynamic behaviour of pre-assembled TcAKR dimers. Subsequently, we examined the self-aggregation of eight monomers. This investigation led to the identification of crucial residues that contribute to the stabilization of protein-protein interactions. It was also found that TcAKRs can form stable supramolecular assemblies, with each monomer typically surrounded by three first neighbours. These findings align with experimental reports of tetrameric or more complex supramolecular structures. Our computational studies could guide further experimental investigations aiming at drug development and assist in designing strategies to modulate aggregation. METHOD Atomistic molecular dynamics simulations were carried out. The TcAKR 3D model structure was obtained by homology modelling using the Swiss Model for the TcAKR sequence (GenBank accession no. EU558869). Further, we checked the model with Alphafold2 and found a high degree of similarity between models. Several tools were used to build the dimers including CLUSPRO, GRAMM-Docking, Hdock, and Py-dock. Protein superstructures were built using the PACKMOL package. CHARMM-GUI was used to set up the simulation systems. GROMACS version 2020.5 was used to perform the simulations with the CHARMM36 force field for the protein and ions and the TIP3P model for water. Further analyses were performed using VMD, GROMACS, AMBER tools, MDLovoFit, bio3d, and in-house programs.
Collapse
Affiliation(s)
- Pablo Trujillo
- Department of Physics, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
- CONICET-University of Buenos Aires, Physics Institute of Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - Patricia Garavaglia
- National Institute of Parasitology "Dr. Mario Fatala Chaben" ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Guadalupe Alvarez
- School of Science and Technology, National University of San Martín (UNSAM), ICIFI, CONICET, San Martín, Argentina
| | - Sebastian Aduviri
- Department of Physics, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
- CONICET-University of Buenos Aires, Physics Institute of Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - Carmen Domene
- Department of Chemistry, University of Bath, 1 South Bldg, Claverton Down, Bath, BA27AY, UK
| | - Joaquín Cannata
- Institute for Biotechnological Research (IIB-INTECH) "Dr. Rodolfo A. Ugalde", National University of General San Martín-CONICET, San Martín, Argentina
| | - Eliana K Asciutto
- School of Science and Technology, National University of San Martín (UNSAM), ICIFI, CONICET, San Martín, Argentina
| | - Gabriela A García
- National Institute of Parasitology "Dr. Mario Fatala Chaben" ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Mónica Pickholz
- Department of Physics, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina.
- CONICET-University of Buenos Aires, Physics Institute of Buenos Aires (IFIBA), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Shanbhag AP, Bhowmik P. Cancer to Cataracts: The Mechanistic Impact of Aldo-Keto Reductases in Chronic Diseases. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:179-204. [PMID: 38947111 PMCID: PMC11202113 DOI: 10.59249/vtbv6559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Aldo-keto reductases (AKRs) are a superfamily of promiscuous enzymes that have been chiseled by evolution to act as catalysts for numerous regulatory pathways in humans. However, they have not lost their promiscuity in the process, essentially making them a double-edged sword. The superfamily is involved in multiple metabolic pathways and are linked to chronic diseases such as cataracts, diabetes, and various cancers. Unlike other detoxifying enzymes such as cytochrome P450s (CYP450s), short-chain dehydrogenases (SDRs), and medium-chain dehydrogenases (MDRs), that participate in essential pathways, AKRs are more widely distributed and have members with interchangeable functions. Moreover, their promiscuity is ubiquitous across all species and participates in the resistance of pathogenic microbes. Moreover, the introduction of synthetic substrates, such as synthetic molecules and processed foods, results in unwanted "toxification" due to enzyme promiscuity, leading to chronic diseases.
Collapse
Affiliation(s)
- Anirudh P. Shanbhag
- Bugworks Research India Pvt. Ltd., Bengaluru,
Karnataka, India
- Novartis Healthcare Pvt. Ltd., Hyderabad, Telangana,
India
| | - Purnendu Bhowmik
- Bugworks Research India Pvt. Ltd., Bengaluru,
Karnataka, India
- Centre for Cellular and Molecular Platforms (C-CAMP),
National Centre for Biological Sciences (NCBS), Bengaluru, Karnataka,
India
| |
Collapse
|
3
|
Durães-Oliveira J, Palma-Marques J, Moreno C, Rodrigues A, Monteiro M, Alexandre-Pires G, da Fonseca IP, Santos-Gomes G. Chagas Disease: A Silent Threat for Dogs and Humans. Int J Mol Sci 2024; 25:3840. [PMID: 38612650 PMCID: PMC11011309 DOI: 10.3390/ijms25073840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Chagas disease (CD) is a vector-borne Neglected Zoonotic Disease (NZD) caused by a flagellate protozoan, Trypanosoma cruzi, that affects various mammalian species across America, including humans and domestic animals. However, due to an increase in population movements and new routes of transmission, T. cruzi infection is presently considered a worldwide health concern, no longer restricted to endemic countries. Dogs play a major role in the domestic cycle by acting very efficiently as reservoirs and allowing the perpetuation of parasite transmission in endemic areas. Despite the significant progress made in recent years, still there is no vaccine against human and animal disease, there are few drugs available for the treatment of human CD, and there is no standard protocol for the treatment of canine CD. In this review, we highlight human and canine Chagas Disease in its different dimensions and interconnections. Dogs, which are considered to be the most important peridomestic reservoir and sentinel for the transmission of T. cruzi infection in a community, develop CD that is clinically similar to human CD. Therefore, an integrative approach, based on the One Health concept, bringing together the advances in genomics, immunology, and epidemiology can lead to the effective development of vaccines, new treatments, and innovative control strategies to tackle CD.
Collapse
Affiliation(s)
- João Durães-Oliveira
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Joana Palma-Marques
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Cláudia Moreno
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Armanda Rodrigues
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Marta Monteiro
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
- Centre for Interdisciplinary Research in Animal Health, CIISA, Faculty of Veterinary Medicine, FMV, University of Lisbon, ULisboa, 1649-004 Lisbon, Portugal; (G.A.-P.); (I.P.d.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Graça Alexandre-Pires
- Centre for Interdisciplinary Research in Animal Health, CIISA, Faculty of Veterinary Medicine, FMV, University of Lisbon, ULisboa, 1649-004 Lisbon, Portugal; (G.A.-P.); (I.P.d.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Isabel Pereira da Fonseca
- Centre for Interdisciplinary Research in Animal Health, CIISA, Faculty of Veterinary Medicine, FMV, University of Lisbon, ULisboa, 1649-004 Lisbon, Portugal; (G.A.-P.); (I.P.d.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Gabriela Santos-Gomes
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| |
Collapse
|
4
|
Díaz-Viraqué F, Chiribao ML, Paes-Vieira L, Machado MR, Faral-Tello P, Tomasina R, Trochine A, Robello C. New Insights into the Role of the Trypanosoma cruzi Aldo-Keto Reductase TcAKR. Pathogens 2023; 12:pathogens12010085. [PMID: 36678433 PMCID: PMC9860839 DOI: 10.3390/pathogens12010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Chagas disease is a zoonotic infectious disease caused by the protozoan parasite Trypanosoma cruzi. It is distributed worldwide, affecting around 7 million people; there is no effective treatment, and it constitutes a leading cause of disability and premature death in the Americas. Only two drugs are currently approved for the treatment, Benznidazole and Nifurtimox, and both have to be activated by reducing the nitro-group. The T. cruzi aldo-keto reductase (TcAKR) has been related to the metabolism of benznidazole. TcAKR has been extensively studied, being most efforts focused on characterizing its implication in trypanocidal drug metabolism; however, little is known regarding its biological role. Here, we found that TcAKR is confined, throughout the entire life cycle, into the parasite mitochondria providing new insights into its biological function. In particular, in epimastigotes, TcAKR is associated with the kinetoplast, which suggests additional roles of the protein. The upregulation of TcAKR, which does not affect TcOYE expression, was correlated with an increase in PGF2α, suggesting that this enzyme is related to PGF2α synthesis in T. cruzi. Structural analysis showed that TcAKR contains a catalytic tetrad conserved in the AKR superfamily. Finally, we found that TcAKR is also involved in Nfx metabolization.
Collapse
Affiliation(s)
- Florencia Díaz-Viraqué
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - María Laura Chiribao
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
- Departamento de Bioquímica, Facultad de Medicina Universidad de la República, Montevideo 11400, Uruguay
| | - Lisvane Paes-Vieira
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Matias R. Machado
- Unidad de Proteínas Recombinantes, Institut Pasteur de Montevideo, Montevideo 11300, Uruguay
| | - Paula Faral-Tello
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Ramiro Tomasina
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo and Departamento de Parasitología, Facultad de Medicina Universidad de la República, Montevideo 11300, Uruguay
| | - Andrea Trochine
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET-Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche 8400, Argentina
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
- Departamento de Bioquímica, Facultad de Medicina Universidad de la República, Montevideo 11400, Uruguay
- Correspondence:
| |
Collapse
|
5
|
Carvalho-Silva AC, Coelho CH, Cirelli C, Crepaldi F, Rodrigues-Chagas IA, Furst C, Pimenta DC, Toledo JSD, Fernandes AP, Costa AO. Differential expression of Acanthamoeba castellanii proteins during amoebic keratitis in rats. Exp Parasitol 2020; 221:108060. [PMID: 33338467 DOI: 10.1016/j.exppara.2020.108060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/04/2020] [Accepted: 12/13/2020] [Indexed: 11/25/2022]
Abstract
Amoebic keratitis (AK) is a sight-threatening infection characterized by a severe inflammation of the cornea, caused by the free-living protozoan of the genus Acanthamoeba. Identification of amoebic proteins involved in AK pathogenesis may help to elucidate molecular mechanisms of infection and contribute to indicate diagnostic and therapeutic targets. In this study, we evaluated changes in the expression profile of Acanthamoeba proteins triggered by the invasive process, using an approach involving two-dimensional polyacrylamide gel electrophoresis (2DE PAGE), followed by mass spectrometry identification (ESI-IT-TOF LC-MSn). AK was induced by intrastromal inoculation in Wistar rats, using trophozoites from a T4 genotype, human case-derived A. castellanii strain under prolonged axenic culture. Cultures re-isolated from the lesions after two successive passages in the animals were used as biological triplicate for proteomic experiments. Analysis of the protein profile comparing long-term and re-isolated cultures indicated 62 significant spots, from which 27 proteins could be identified in the Acanthamoeba proteome database. Five of them (Serpin, Carboxypeptidase A1, Hypothetical protein, Calponin domain-containing protein, aldo/keto reductase) were exclusively found in the re-isolated trophozoites. Our analysis also revealed that a concerted modulation of several biochemical pathways is triggered when A. castellanii switches from a free-living style to a parasitic mode, including energetic metabolism, proteolytic activity, control of gene expression, protein degradation and methylation of DNA, which may be also involved in gain of virulence in an animal model of AK.
Collapse
Affiliation(s)
- Ana Carolina Carvalho-Silva
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Camila H Coelho
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cecília Cirelli
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Frederico Crepaldi
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Cinthia Furst
- Department of Pathology, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil
| | | | - Juliano Simões de Toledo
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula Fernandes
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Adriana Oliveira Costa
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
6
|
do Vale Chaves e Mello F, Castro Salomão Quaresma BM, Resende Pitombeira MC, Araújo de Brito M, Farias PP, Lisboa de Castro S, Salomão K, Silva de Carvalho A, Oliveira de Paula JI, de Brito Nascimento S, Peixoto Cupello M, Paes MC, Boechat N, Felzenszwalb I. Novel nitroimidazole derivatives evaluated for their trypanocidal, cytotoxic, and genotoxic activities. Eur J Med Chem 2020; 186:111887. [DOI: 10.1016/j.ejmech.2019.111887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 01/03/2023]
|
7
|
Patterson S, Fairlamb AH. Current and Future Prospects of Nitro-compounds as Drugs for Trypanosomiasis and Leishmaniasis. Curr Med Chem 2019; 26:4454-4475. [PMID: 29701144 DOI: 10.2174/0929867325666180426164352] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/01/2018] [Accepted: 04/13/2018] [Indexed: 01/13/2023]
Abstract
Interest in nitroheterocyclic drugs for the treatment of infectious diseases has undergone a resurgence in recent years. Here we review the current status of monocyclic and bicyclic nitroheterocyclic compounds as existing or potential new treatments for visceral leishmaniasis, Chagas' disease and human African trypanosomiasis. Both monocyclic (nifurtimox, benznidazole and fexinidazole) and bicyclic (pretomanid (PA-824) and delamanid (OPC-67683)) nitro-compounds are prodrugs, requiring enzymatic activation to exert their parasite toxicity. Current understanding of the nitroreductases involved in activation and possible mechanisms by which parasites develop resistance is discussed along with a description of the pharmacokinetic / pharmacodynamic behaviour and chemical structure-activity relationships of drugs and experimental compounds.
Collapse
Affiliation(s)
- Stephen Patterson
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alan H Fairlamb
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
8
|
Cancela M, Paes JA, Moura H, Barr JR, Zaha A, Ferreira HB. Unraveling oxidative stress response in the cestode parasite Echinococcus granulosus. Sci Rep 2019; 9:15876. [PMID: 31685918 PMCID: PMC6828748 DOI: 10.1038/s41598-019-52456-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/18/2019] [Indexed: 01/19/2023] Open
Abstract
Cystic hydatid disease (CHD) is a worldwide neglected zoonotic disease caused by Echinococcus granulosus. The parasite is well adapted to its host by producing protective molecules that modulate host immune response. An unexplored issue associated with the parasite's persistence in its host is how the organism can survive the oxidative stress resulting from parasite endogenous metabolism and host defenses. Here, we used hydrogen peroxide (H2O2) to induce oxidative stress in E. granulosus protoescoleces (PSCs) to identify molecular pathways and antioxidant responses during H2O2 exposure. Using proteomics, we identified 550 unique proteins; including 474 in H2O2-exposed PSCs (H-PSCs) samples and 515 in non-exposed PSCs (C-PSCs) samples. Larger amounts of antioxidant proteins, including GSTs and novel carbonyl detoxifying enzymes, such as aldo-keto reductase and carbonyl reductase, were detected after H2O2 exposure. Increased concentrations of caspase-3 and cathepsin-D proteases and components of the 26S proteasome were also detected in H-PSCs. Reduction of lamin-B and other caspase-substrate, such as filamin, in H-PSCs suggested that molecular events related to early apoptosis were also induced. We present data that describe proteins expressed in response to oxidative stress in a metazoan parasite, including novel antioxidant enzymes and targets with potential application to treatment and prevention of CHD.
Collapse
Affiliation(s)
- Martín Cancela
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil.
| | - Jéssica A Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Hercules Moura
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John R Barr
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| | - Henrique B Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil. .,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
9
|
A Functional Analysis of the Cyclophilin Repertoire in the Protozoan Parasite Trypanosoma Cruzi. Biomolecules 2018; 8:biom8040132. [PMID: 30384485 PMCID: PMC6315776 DOI: 10.3390/biom8040132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma cruzi is the etiological agent of Chagas disease. It affects eight million people worldwide and can be spread by several routes, such as vectorborne transmission in endemic areas and congenitally, and is also important in non-endemic regions such as the United States and Europe due to migration from Latin America. Cyclophilins (CyPs) are proteins with enzymatic peptidyl-prolyl isomerase activity (PPIase), essential for protein folding in vivo. Cyclosporin A (CsA) has a high binding affinity for CyPs and inhibits their PPIase activity. CsA has proved to be a parasiticidal drug on some protozoa, including T. cruzi. In this review, we describe the T. cruzi cyclophilin gene family, that comprises 15 paralogues. Among the proteins isolated by CsA-affinity chromatography, we found orthologues of mammalian CyPs. TcCyP19, as the human CyPA, is secreted to the extracellular environment by all parasite stages and could be part of a complex interplay involving the parasite and the host cell. TcCyP22, an orthologue of mitochondrial CyPD, is involved in the regulation of parasite cell death. Our findings on T. cruzi cyclophilins will allow further characterization of these processes, leading to new insights into the biology, the evolution of metabolic pathways, and novel targets for anti-T. cruzi control.
Collapse
|
10
|
A role for trypanosomatid aldo-keto reductases in methylglyoxal, prostaglandin and isoprostane metabolism. Biochem J 2018; 475:2593-2610. [PMID: 30045874 PMCID: PMC6117947 DOI: 10.1042/bcj20180232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 11/17/2022]
Abstract
Trypanosomatid parasites are the infectious agents causing Chagas disease, visceral and cutaneous leishmaniasis and human African trypanosomiasis. Recent work of others has implicated an aldo-keto reductase (AKR) in the susceptibility and resistance of Trypanosoma cruzi to benznidazole, a drug used to treat Chagas disease. Here, we show that TcAKR and homologues in the related parasites Trypanosoma brucei and Leishmania donovani do not reductively activate monocyclic (benznidazole, nifurtimox and fexinidazole) or bicyclic nitro-drugs such as PA-824. Rather, these enzymes metabolise a variety of toxic ketoaldehydes, such as glyoxal and methylglyoxal, suggesting a role in cellular defence against chemical stress. UPLC-QToF/MS analysis of benznidazole bioactivation by T. cruzi cell lysates confirms previous reports identifying numerous drug metabolites, including a dihydro-dihydroxy intermediate that can dissociate to form N-benzyl-2-guanidinoacetamide and glyoxal, a toxic DNA-glycating and cross-linking agent. Thus, we propose that TcAKR contributes to benznidazole resistance by the removal of toxic glyoxal. In addition, three of the four enzymes studied here display activity as prostaglandin F2α synthases, despite the fact that there are no credible cyclooxygenases in these parasites to account for formation of the precursor PGH2 from arachidonic acid. Our studies suggest that arachidonic acid is first converted non-enzymatically in parasite lysates to (PGH2-like) regioisomers by free radical-mediated peroxidation and that AKRs convert these lipid peroxides into isoprostanes, including prostaglandin F2α and 8-iso-prostaglandin F2α.
Collapse
|
11
|
Trypanosoma cruzi: death phenotypes induced by ortho-naphthoquinone substrates of the aldo-keto reductase (TcAKR). Role of this enzyme in the mechanism of action of β-lapachone. Parasitology 2018; 145:1251-1259. [DOI: 10.1017/s0031182018000045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractSeveral ortho-naphthoquinones (o-NQs) have trypanocidal activity against Trypanosoma cruzi, the aetiological agent of Chagas disease. Previously, we demonstrated that the aldo-keto reductase from this parasite (TcAKR) reduces o-NQs, such as β-lapachone (β-Lap) and 9,10-phenanthrenequinone (9,10-PQ), with concomitant reactive oxygen species (ROS) production. Recent characterization of TcAKR activity and expression in two T. cruzi strains, CL Brener and Nicaragua, showed that TcAKR expression is 2.2-fold higher in CL Brener than in Nicaragua. Here, we studied the trypanocidal effect and induction of several death phenotypes by β-Lap and 9,10-PQ in epimastigotes of these two strains. The CL Brener strain was more resistant to both o-NQs than Nicaragua, indicating that greater TcAKR activity is unlikely to be a major influence on o-NQ toxicity. Evaluation of changes in ROS production, mitochondrial membrane potential, phosphatidylserine exposure and monodansylcadaverine labelling evidenced that β-Lap and 9,10-PQ induce different death phenotypes depending on the combination of drug and T. cruzi strain analysed. To study whether TcAKR participates in o-NQ activation in intact parasites, β-Lap and 9,10-PQ trypanocidal effect was next evaluated in TcAKR-overexpressing parasites. Only β-Lap was more effective and induced greater ROS production in TcAKR-overexpressing epimastigotes than in controls, suggesting that TcAKR may participate in β-Lap activation.
Collapse
|
12
|
Franco J, Scarone L, Comini MA. Drugs and Drug Resistance in African and American Trypanosomiasis. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2018. [DOI: 10.1016/bs.armc.2018.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
González L, García-Huertas P, Triana-Chávez O, García GA, Murta SMF, Mejía-Jaramillo AM. Aldo-keto reductase and alcohol dehydrogenase contribute to benznidazole natural resistance in Trypanosoma cruzi. Mol Microbiol 2017; 106:704-718. [PMID: 28884498 DOI: 10.1111/mmi.13830] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2017] [Indexed: 12/16/2022]
Abstract
The improvement of Chagas disease treatment is focused not only on the development of new drugs but also in understanding mechanisms of action and resistance to drugs conventionally used. Thus, some strategies aim to detect specific changes in proteins between sensitive and resistant parasites and to evaluate the role played in these processes by functional genomics. In this work, we used a natural Trypanosoma cruzi population resistant to benznidazole, which has clones with different susceptibilities to this drug without alterations in the NTR I gene. Using 2DE-gel electrophoresis, the aldo-keto reductase and the alcohol dehydrogenase proteins were found up regulated in the natural resistant clone and therefore their possible role in the resistance to benznidazole and glyoxal was investigated. Both genes were overexpressed in a drug sensitive T. cruzi clone and the biological changes in response to these compounds were evaluated. The results showed that the overexpression of these proteins enhances resistance to benznidazole and glyoxal in T. cruzi. Moreover, a decrease in mitochondrial and cell membrane damage was observed, accompanied by a drop in the intracellular concentration of reactive oxygen species after treatment. Our results suggest that these proteins are involved in the mechanism of action of benznidazole.
Collapse
Affiliation(s)
- Laura González
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Paola García-Huertas
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Omar Triana-Chávez
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Gabriela Andrea García
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben"- ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | | | - Ana M Mejía-Jaramillo
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Universidad de Antioquia, UdeA, Medellín, Colombia
| |
Collapse
|
14
|
García-Huertas P, Mejía-Jaramillo AM, Machado CR, Guimarães AC, Triana-Chávez O. Prostaglandin F2α synthase in Trypanosoma cruzi plays critical roles in oxidative stress and susceptibility to benznidazole. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170773. [PMID: 28989779 PMCID: PMC5627119 DOI: 10.1098/rsos.170773] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/10/2017] [Indexed: 05/17/2023]
Abstract
Nifurtimox (Nfx) and benznidazole (Bz) are the current drugs used for the treatment of Chagas disease. The mechanisms of action and resistance to these drugs in this parasite are poorly known. Prostaglandin F2α synthase or old yellow enzyme (OYE), an NAD(P)H flavin oxidoreductase, has been involved in the activation pathway of other trypanocidal drugs such as Nfx; however, its role in the mechanism of action of Bz is uncertain. In this paper, we performed some experiments of functional genomics in the parasite Trypanosoma cruzi with the aim to test the role of this gene in the resistance to Bz. For this, we overexpressed this gene in sensitive parasites and evaluated the resistance level to the drug and other chemical compounds such as hydrogen peroxide, methyl methanesulfonate and gamma radiation. Interestingly, parasites overexpressing OYE showed alteration of enzymes associated with oxidative stress protection such as superoxide dismutase A and trypanothione reductase. Furthermore, transfected parasites were more sensitive to drugs, genetic damage and oxidative stress. Additionally, transfected parasites were less infective than wild-type parasites and they showed higher alteration in mitochondrial membrane potential and cell cycle after treatment with Bz. These results supply essential information to help further the understanding of the mechanism of action of Bz in T. cruzi.
Collapse
Affiliation(s)
- Paola García-Huertas
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Instituto de Biología, Universidad de Antioquia, Calle 70 52-21, Medellín, Colombia
| | - Ana María Mejía-Jaramillo
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Instituto de Biología, Universidad de Antioquia, Calle 70 52-21, Medellín, Colombia
| | - Carlos Renato Machado
- Departamento de Bioquímica e Inmunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anna Cláudia Guimarães
- Departamento de Bioquímica e Inmunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Omar Triana-Chávez
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Instituto de Biología, Universidad de Antioquia, Calle 70 52-21, Medellín, Colombia
- Author for correspondence: Omar Triana-Chávez e-mail:
| |
Collapse
|