1
|
Fu B, Xu J, Yin D, Sun C, Liu D, Zhai W, Bai R, Cao Y, Zhang Q, Ma S, Walsh TR, Hu F, Wang Y, Wu C, Shen J. Transmission of blaNDM in Enterobacteriaceae among animals, food and human. Emerg Microbes Infect 2024; 13:2337678. [PMID: 38629492 PMCID: PMC11034458 DOI: 10.1080/22221751.2024.2337678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
Despite carbapenems not being used in animals, carbapenem-resistant Enterobacterales (CRE), particularly New Delhi metallo-β-lactamase-producing CRE (NDM-CRE), are prevalent in livestock. Concurrently, the incidence of human infections caused by NDM-CRE is rising, particularly in children. Although a positive association between livestock production and human NDM-CRE infections at the national level was identified, the evidence of direct transmission of NDM originating from livestock to humans remains largely unknown. Here, we conducted a cross-sectional study in Chengdu, Sichuan Province, to examine the prevalence of NDM-CRE in chickens and pigs along the breeding-slaughtering-retail chains, in pork in cafeterias of schools, and in colonizations and infections from children's hospital and examined the correlation of NDM-CRE among animals, foods and humans. Overall, the blaNDM increases gradually along the chicken and pig breeding (4.70%/2.0%) -slaughtering (7.60%/22.40%) -retail (65.56%/34.26%) chains. The slaughterhouse has become a hotspot for cross-contamination and amplifier of blaNDM. Notably, 63.11% of pork from the school cafeteria was positive for blaNDM. The prevalence of blaNDM in intestinal and infection samples from children's hospitals was 21.68% and 19.80%, respectively. whole genome sequencing (WGS) analysis revealed the sporadic, not large-scale, clonal spread of NDM-CRE along the chicken and pig breeding-slaughtering-retail chain, with further spreading via IncX3-blaNDM plasmid within each stage of whole chains. Clonal transmission of NDM-CRE is predominant in children's hospitals. The IncX3-blaNDM plasmid was highly prevalent among animals and humans and accounted for 57.7% of Escherichia coli and 91.3% of Klebsiella pneumoniae. Attention should be directed towards the IncX3 plasmid to control the transmission of blaNDM between animals and humans.
Collapse
Affiliation(s)
- Bo Fu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jian Xu
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics (MoH), Shanghai, People’s Republic of China
| | - Chengtao Sun
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Dejun Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Weishuai Zhai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Rina Bai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yue Cao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Qin Zhang
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Shizhen Ma
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Timothy R. Walsh
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Department of Zoology, Ineos-Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics (MoH), Shanghai, People’s Republic of China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Congming Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Oke MT, Martz K, Mocăniță M, Knezevic S, D'Costa VM. Analysis of Acinetobacter P-type type IV secretion system-encoding plasmid diversity uncovers extensive secretion system conservation and diverse antibiotic resistance determinants. Antimicrob Agents Chemother 2024:e0103824. [PMID: 39494882 DOI: 10.1128/aac.01038-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Acinetobacter baumannii is globally recognized as a multi-drug-resistant pathogen of critical concern due to its capacity for horizontal gene transfer and resistance to antibiotics. Phylogenetically diverse Acinetobacter species mediate human infection, including many considered as important emerging pathogens. While globally recognized as a pathogen of concern, pathogenesis mechanisms are poorly understood. P-type type IV secretion systems (T4SSs) represent important drivers of pathogen evolution, responsible for horizontal gene transfer and secretion of proteins that mediate host-pathogen interactions, contributing to pathogen survival, antibiotic resistance, virulence, and biofilm formation. Genes encoding a P-type T4SS were previously identified on plasmids harboring the carbapenemase gene blaNDM-1 in several clinically problematic Acinetobacter; however, their prevalence among the genus, geographical distribution, the conservation of T4SS proteins, and full capacity for resistance genes remain unclear. Using systematic analyses, we show that these plasmids belong to a group of 53 P-type T4SS-encoding plasmids in 20 established Acinetobacter species, the majority of clinical relevance, including diverse A. baumannii sequence types and one strain of Providencia rettgeri. The strains were globally distributed in 14 countries spanning five continents, and the conjugative operon's T4SS proteins were highly conserved in most plasmids. A high proportion of plasmids harbored resistance genes, with 17 different genes spanning seven drug classes. Collectively, this demonstrates that P-type T4SS-encoding plasmids are more widespread among the Acinetobacter genus than previously anticipated, including strains of both clinical and environmental importance. This research provides insight into the spread of resistance genes among Acinetobacter and highlights a group of plasmids of importance for future surveillance.
Collapse
Affiliation(s)
- Mosopefoluwa T Oke
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Kailey Martz
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Mădălina Mocăniță
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Sara Knezevic
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Vanessa M D'Costa
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Dai S, Han Z, Liu S, Wang Y, Zhang Y, Yang M. Bacterial hosts and horizontal transfer characteristics of clinically important tet(X)-variant genes in municipal wastewater treatment plants using epicPCR-directed cultivation strategy. WATER RESEARCH 2024; 268:122658. [PMID: 39486342 DOI: 10.1016/j.watres.2024.122658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024]
Abstract
Mobile tet(X)-variant genes confer resistance to a wide range of tetracyclines, including the antibiotic of last-resort, tigecycline, raising significant concerns regarding their potential spread cross-environmental dissemination. However, the bacterial hosts and environmental spread of these genes remain poorly understood. Herein, a retrospective study unveiled the prevalence of tet(X)-variant genes (ranging from tet(X3) to tet(X6)) in activated sludge samples from five municipal wastewater treatment plants (WWTPs) from 2013 to 2021. Among these variants, tet(X4) exhibited the highest detection frequency (100 %) and abundance [(2.48 ± 3.07) × 107 copies/g dry weight] with an increasing trend. An epicPCR-directed cultivation strategy was proposed to facilitate the targeted isolation of tet(X4)-carrying bacterial hosts in activated sludge. This strategy involves the identification of bacterial host profiles using epicPCR and subsequent selective isolating target bacteria. Enterobacteriaceae emerged as the primary bacterial host for tet(X4), alongside previously unreported genera like Providencia, Advenella, and Moheibacter. Subsequent selective isolation of the most abundant Enterobacteriaceae based on the epicPCR-informed host spectrum yielded 39 tet(X4)-carrying Escherichia coli strains from the WWTP. Whole genome sequencing of tet(X4)-positive strains revealed that plasmid-mediated horizontal gene transfer is the primary mechanism driving tet(X4) dissemination. Plasmids including IncFIA(HI1)/IncHI1A/IncHI1B(R27) and IncX1, commonly reported in various clinical and animal settings, were identified as the predominant carriers of tet(X4). E. coli strains harbouring tet(X4) in the WWTP showed substantial genetic similarity to strains from hospital and animal sources, underscoring concerns about the potential risk of across diverse sectors. This study provided the first glimpse of the presence of mobile tet(X)-variants in WWTPs, and highlighted the promise of the epicPCR-directed cultivation strategy for exploring bacterial hosts of clinically important ARGs in different habitats from a One Health perspective.
Collapse
Affiliation(s)
- Shiting Dai
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihai Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Wang B, Farhan MHR, Yuan L, Sui Y, Chu J, Yang X, Li Y, Huang L, Cheng G. Transfer dynamics of antimicrobial resistance among gram-negative bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176347. [PMID: 39306135 DOI: 10.1016/j.scitotenv.2024.176347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Antimicrobial resistance (AMR) in gram-negative bacteria (GNBs) is a significant global health concern, exacerbated by mobile genetic elements (MGEs). This review examines the transfer of antibiotic resistance genes (ARGs) within and between different species of GNB facilitated by MGEs, focusing on the roles of plasmids and phages. The impact of non-antibiotic chemicals, environmental factors affecting ARG transfer frequency, and underlying molecular mechanisms of bacterial resistance evolution are also discussed. Additionally, the study critically assesses the impact of fitness costs and compensatory evolution driven by MGEs in host organisms, shedding light on the transfer frequency of ARGs and host evolution within ecosystems. Overall, this comprehensive review highlights the factors and mechanisms influencing ARG movement among diverse GNB species and underscores the importance of implementing holistic One-Health strategies to effectively address the escalating public health challenges associated with AMR.
Collapse
Affiliation(s)
- Bangjuan Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Muhammad Haris Raza Farhan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Linlin Yuan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Sui
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinhua Chu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaohan Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Jin H, Jia Q, Jin X, Zhu X, Wang MG, Sun RY, Cui C. Identification of novel Tet(X6)-Tet(X2) recombinant variant in Elizabethkingia meningoseptica from a bullfrog farm and downstream river in China. Front Microbiol 2024; 15:1453801. [PMID: 39144213 PMCID: PMC11322121 DOI: 10.3389/fmicb.2024.1453801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction The dissemination of strains producing tetracyclines monooxygenase Tet(X) from breeding farms to the natural environment poses a potential threat to public health. Methods Antimicrobial susceptibility testing and WGS were performed to identify resistance phenotypes and genotypes. Cloning experiments, sequence alignment, and homology modeling were used to characterize the function and formation mechanisms of the recombinant variant. The mobilization potential of Tet(X) was assessed by collinearity analysis, conjugation experiments, and phylogenetic analysis. Results Three tet(X)-producing Elizabethkingia meningoseptica strains were isolated from bullfrog breeding ponds, the sewage outlet, and downstream river in Zhejiang Province, China. These strains carry a novel Tet(X) variant, differing from Tet(X6) by seven residues, and possess the ability to degrade tetracyclines. Interestingly, the novel Tet(X) is a recombinant variant formed by homologous recombination of Tet(X6) and the C-terminal of Tet(X2). Further analysis revealed that Tet(X6) formed several Tet(X) variants, including Tet(X5), through homologous recombination. The novel tet(X) gene is located on a circularizable integrative and conjugative element (ICEEmeChn3), with ISwz1 participating in the recombination of its multi-drug resistance region, potentially facilitating the mobilization and recombination of tet(X) in early hosts. These three strains were clonally transmitted and shared a close genetic relationship (SNP < 62) with a clinically-sourced strain isolated from the same province. Discussion To our knowledge, this is the first report of homologous recombination between Tet(X) variants with differing activities. These clonal strains provide evidence of the transmission of tet(X)-positive strains from aquaculture sewage to the natural environment, highlighting the need to strengthen the monitoring and management of this emerging farming model.
Collapse
Affiliation(s)
- Haobo Jin
- Laboratory Animal Centre, Wenzhou Medical University, Zhejiang, China
| | - Qing Jia
- Laboratory Animal Centre, Wenzhou Medical University, Zhejiang, China
| | - Xi Jin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xinlong Zhu
- Laboratory Animal Centre, Wenzhou Medical University, Zhejiang, China
| | - Min-Ge Wang
- Phage Research Center, Liaocheng University, Liaocheng, Shandong, China
| | - Ruan-Yang Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chaoyue Cui
- Laboratory Animal Centre, Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
6
|
Zhu DM, Yan YS, Wang H, Zhong Y, Inam, Gao YH, Li GM, Mu GD, Dong HF, Li Y, Liu DK, Ma HX, Kong LC. Transmission of human-pet antibiotic resistance via aerosols in pet hospitals of Changchun. One Health 2024; 18:100765. [PMID: 38855194 PMCID: PMC11157275 DOI: 10.1016/j.onehlt.2024.100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
In recent years, aerosols have been recognized as a prominent medium for the transmission of antibiotic-resistant bacteria and genes. Among these, particles with a particle size of 2 μm (PM2.5) can directly penetrate the alveoli. However, the presence of antibiotic-resistant genes in aerosols from pet hospitals and the potential risks posed by antibiotic-resistant bacteria in these aerosols to humans and animals need to be investigated. In this study, cefotaxime-resistant bacteria were collected from 5 representative pet hospitals in Changchun using a Six-Stage Andersen Cascade Impactor. The distribution of bacteria in each stage was analyzed, and bacteria from stage 5 and 6 were isolated and identified. Minimal inhibitory concentrations of isolates against 12 antimicrobials were determined using broth microdilution method. Quantitative Polymerase Chain Reaction was employed to detect resistance genes and mobile genetic elements that could facilitate resistance spread. The results indicated that ARBs were enriched in stage 5 (1.1-2.1 μm) and stage 3 (3.3-4.7 μm) of the sampler. A total of 159 isolates were collected from stage 5 and 6. Among these isolates, the genera Enterococcus spp. (51%), Staphylococcus spp. (19%), and Bacillus spp. (14%) were the most prevalent. The isolates exhibited the highest resistance to tetracycline and the lowest resistance to cefquinome. Furthermore, 56 (73%) isolates were multidrug-resistant. Quantitative PCR revealed the expression of 165 genes in these isolates, with mobile genetic elements showing the highest expression levels. In conclusion, PM2.5 from pet hospitals harbor a significant number of antibiotic-resistant bacteria and carry mobile genetic elements, posing a potential risk for alveolar infections and the dissemination of antibiotic resistance genes.
Collapse
Affiliation(s)
- Dao Mi Zhu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Ya Song Yan
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Hao Wang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Yue Zhong
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Inam
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Yun Hang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Gong Mei Li
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Guo Dong Mu
- Jilin Provincial Animal Disease Prevention and Control Center, Jilin Animal Husbandry Building, Xi'an Road No. 4510, Changchun, PR China
| | - Hui Feng Dong
- Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, No.27, Shengda Second Branch Road, Wangwenzhuang Industrial Park, Xiqing District, Tianjin 300383, PR China
| | - Yuan Li
- Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, No.27, Shengda Second Branch Road, Wangwenzhuang Industrial Park, Xiqing District, Tianjin 300383, PR China
| | - Ding Kuo Liu
- Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, No.27, Shengda Second Branch Road, Wangwenzhuang Industrial Park, Xiqing District, Tianjin 300383, PR China
| | - Hong Xia Ma
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Ling Cong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| |
Collapse
|
7
|
Wang Y, Chen H, Pan Q, Wang J, Jiao X, Zhang Y. Development and evaluation of rapid and accurate one-tube RPA-CRISPR-Cas12b-based detection of mcr-1 and tet(X4). Appl Microbiol Biotechnol 2024; 108:345. [PMID: 38801527 PMCID: PMC11129972 DOI: 10.1007/s00253-024-13191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The emergence and quick spread of the plasmid-mediated tigecycline resistance gene tet(X4) and colistin resistance gene mcr-1 have posed a great threat to public health and raised global concerns. It is imperative to develop rapid and accurate detection systems for the onsite surveillance of mcr-1 and tet(X4). In this study, we developed one-tube recombinase polymerase amplification (RPA) and CRISPR-Cas12b integrated mcr-1 and tet(X4) detection systems. We identified mcr-1- and tet(X4)-conserved and -specific protospacers through a comprehensive BLAST search based on the NCBI nt database and used them for assembling the detection systems. Our developed one-tube RPA-CRISPR-Cas12b-based detection systems enabled the specific detection of mcr-1 and tet(X4) with a sensitivity of 6.25 and 9 copies within a detection time of ~ 55 and ~ 40 min, respectively. The detection results using pork and associated environmental samples collected from retail markets demonstrated that our developed mcr-1 and tet(X4) detection systems could successfully monitor mcr-1 and tet(X4), respectively. Notably, mcr-1- and tet(X4)-positive strains were isolated from the positive samples, as revealed using the developed detection systems. Whole-genome sequencing of representative strains identified an mcr-1-carrying IncI2 plasmid and a tet(X4)-carrying IncFII plasmid, which are known as important vectors for mcr-1 and tet(X4) transmission, respectively. Taken together, our developed one-tube RPA-CRISPR-Cas12b-based mcr-1 and tet(X4) detection systems show promising potential for the onsite detection of mcr-1 and tet(X4). KEY POINTS: • One-tube RPA-CRISPR-Cas12b-based mcr-1 and tet(X4) detection systems were developed based on identified novel protospacers. • Both detection systems exhibited high sensitivity and specification with a sample-to-answer time of less than 1 h. • The detection systems show promising potential for onsite detection of mcr-1 and tet(X4).
Collapse
Affiliation(s)
- Yu Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Huan Chen
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Qingyun Pan
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Jing Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China
| | - Xin'an Jiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China.
| | - Yunzeng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
8
|
Yue C, Bai Y, Li T, Deng H, Lu L, Lin W, Cui X, Lv L, Gao G, Liu JH, Liu YY. Emergence of tet(X4)-positive Enterobacterales in retail eggs and the widespread of IncFIA(HI1)-HI1A-HI1B(R27) plasmids carrying tet(X4). Int J Food Microbiol 2024; 414:110574. [PMID: 38325259 DOI: 10.1016/j.ijfoodmicro.2024.110574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 02/09/2024]
Abstract
The proliferation of antimicrobial-resistant microbes and resistance genes in various foods poses a serious hazard to public health. The plasmid-mediated tigecycline resistance gene tet(X4) has been detected in Enterobacterales from various niches but has not yet been reported in eggs. This study aimed to investigate the occurrence and characteristics of tigecycline-resistant strains from retail eggs. A total of 144 eggs were purchased from farmers' markets in Guangdong province, China, and eggshell (n = 144) and egg content (n = 96) samples were used to screen for tigecycline-resistant strains. Eight Escherichia coli strains (two ST195, one ST48, ST8165, ST752, ST93, ST189, and ST224) and one Klebsiella pneumoniae strain (ST252) recovered from eight (5.56 %, 8/144) egg samples (eggshells, n = 6; egg content, n = 2) were positive for tet(X4). Notably, the two E. coli ST195 strains were closely (15-54 SNPs) related to all the tet(X4)-positive E. coli ST195 from various origins (food animals, foods, migratory birds, human, and environment) deposited in GenBank. The E. coli ST224 showed a close phylogenetic relationship (9-12 SNPs) with two tet(X4)-positive E. coli strains from chicken feces and retail chicken in Guangdong province. The hybrid plasmid IncFIA(HI1)-HI1A-HI1B(R27) constitutes the predominant tet(X4) vector both herein (7/9, 77.78 %) and in the GenBank database (32/160, 20 %). The tet(X4)-positive IncFIA(HI1)-HI1A-HI1B(R27) plasmids, sharing highly similar structures, have been widely disseminated across China. However, the IncFIA(HI1)-HI1A-HI1B(R27) plasmids exhibit poor stability and low conjugation frequency. The contamination of tet(X4)-positive bacteria internally and externally in retail eggs poses a prospective food safety threat. More attention should be paid to the spread of the tet(X4) gene via epidemic clone E. coli ST195 and the plasmid IncFIA(HI1)-HI1A-HI1B(R27).
Collapse
Affiliation(s)
- Chao Yue
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| | - Yuman Bai
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| | - Tong Li
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| | - Haotian Deng
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| | - Litao Lu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| | - Wannan Lin
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| | - Xiaoxiao Cui
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| | - Luchao Lv
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| | - Guolong Gao
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China
| | - Jian-Hua Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China.
| | - Yi-Yun Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
9
|
Gao FZ, He LY, Liu YS, Zhao JL, Zhang T, Ying GG. Integrating global microbiome data into antibiotic resistance assessment in large rivers. WATER RESEARCH 2024; 250:121030. [PMID: 38113599 DOI: 10.1016/j.watres.2023.121030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/21/2023]
Abstract
Rivers are important in spreading antimicrobial resistance (AMR). Assessing AMR risk in large rivers is challenged by large spatial scale and numerous contamination sources. Integrating river resistome data into a global framework may help addressing this difficulty. Here, we conducted an omics-based assessment of AMR in a large river (i.e. the Pearl River in China) with global microbiome data. Results showed that antibiotic resistome in river water and sediment was more diversified than that in other rivers, with contamination levels in some river reaches higher than global baselines. Discharge of WWTP effluent and landfill waste drove AMR prevalence in the river, and the resistome level was highly associated with human and animal sources. Detection of 54 risk rank I ARGs and emerging mobilizable mcr and tet(X) highlighted AMR risk in the river reaches with high human population density and livestock pollution. Florfenicol-resistant floR therein deserved priority concerns due to its high detection frequency, dissimilar phylogenetic distance, mobilizable potential, and presence in multiple pathogens. Co-sharing of ARGs across taxonomic ranks implied their transfer potentials in the community. By comparing with global genomic data, we found that Burkholderiaceae, Enterobacteriaceae, Moraxellaceae and Pseudomonadaceae were important potential ARG-carrying bacteria in the river, and WHO priority carbapenem-resistant Enterobacteriaceae, A. baumannii and P. aeruginosa should be included in future surveillance. Collectively, the findings from this study provide an omics-benchmarked assessment strategy for public risk associated with AMR in large rivers.
Collapse
Affiliation(s)
- Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China.
| |
Collapse
|
10
|
Yu Z, Wang Q, Pinilla-Redondo R, Madsen JS, Clasen KAD, Ananbeh H, Olesen AK, Gong Z, Yang N, Dechesne A, Smets B, Nesme J, Sørensen SJ. Horizontal transmission of a multidrug-resistant IncN plasmid isolated from urban wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115971. [PMID: 38237397 DOI: 10.1016/j.ecoenv.2024.115971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/05/2024]
Abstract
Wastewater treatment plants (WWTPs) are considered reservoirs of antibiotic resistance genes (ARGs). Given that plasmid-mediated horizontal gene transfer plays a critical role in disseminating ARGs in the environment, it is important to inspect the transfer potential of transmissible plasmids to have a better understanding of whether these mobile ARGs can be hosted by opportunistic pathogens and should be included in One Health's considerations. In this study, we used a fluorescent-reporter-gene based exogenous isolation approach to capture extended-spectrum beta-lactamases encoding mobile determinants from sewer microbiome samples that enter an urban water system (UWS) in Denmark. After screening and sequencing, we isolated a ∼73 Kbp IncN plasmid (pDK_DARWIN) that harboured and expressed multiple ARGs. Using a dual fluorescent reporter gene system, we showed that this plasmid can transfer into resident urban water communities. We demonstrated the transfer of pDK_DARWIN to microbiome members of both the sewer (in the upstream UWS compartment) and wastewater treatment (in the downstream UWS compartment) microbiomes. Sequence similarity search across curated plasmid repositories revealed that pDK_DARWIN derives from an IncN backbone harboured by environmental and nosocomial Enterobacterial isolates. Furthermore, we searched for pDK_DARWIN sequence matches in UWS metagenomes from three countries, revealing that this plasmid can be detected in all of them, with a higher relative abundance in hospital sewers compared to residential sewers. Overall, this study demonstrates that this IncN plasmid is prevalent across Europe and an efficient vector capable of disseminating multiple ARGs in the urban water systems.
Collapse
Affiliation(s)
- Zhuofeng Yu
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Qinqin Wang
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Jonas Stenløkke Madsen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Kamille Anna Dam Clasen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Hanadi Ananbeh
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Asmus Kalckar Olesen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Zhuang Gong
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Nan Yang
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Arnaud Dechesne
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, DK-2800 Kgs, Lyngby, Denmark
| | - Barth Smets
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, DK-2800 Kgs, Lyngby, Denmark
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| | - Søren Johannes Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
11
|
Chen H, Zhan Y, Wang L, Xiao Z, Feng D, Chen Z, Liu H, Chen D, Xu Z, Yang L. Co-Occurrence of tet(X4) and blaNDM-5 in Escherichia coli Isolates of Inpatient Origin in Guangzhou, China. Microb Drug Resist 2023. [PMID: 38150703 DOI: 10.1089/mdr.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
Tigecycline, one of the last-resort therapeutic options for complicated infections caused by multidrug-resistant pathogens, especially carbapenem-resistant Enterobacterales and Acinetobacter in recent years. The emergence of antibiotic-resistant bacteria and antibiotic-resistant genes has threatened the effectiveness of antibiotics and public health with the excessive use of antibiotics in clinics. However, the emergence and dissemination of high-level mobile tigecycline-resistance gene tet(X) is challenging for clinical effectiveness of antimicrobial agent. This study aimed to characterize an E. coli strain T43, isolated from an inpatient in a teaching hospital in China. The E. coli T43 was resistant to almost all antimicrobials except colistin and consisted of a 4,774,080 bp chromosome and three plasmids. Plasmids pT43-1 and pT43-2 contained tigecycline-resistance gene tet(X4). Plasmid pT43-1 had a size of 152,423 bp with 51.05% GC content and harbored 151 putative open reading frames. pT43-1 was the largest plasmid in strain T43 and carried numerous resistance genes, especially tigecycline resistance gene tet(X4) and carbapenemase resistance gene blaNDM-5. The tet(X) gene was associated with IS26. Co-occurrence of numerous resistance genes in a single plasmid possibly contributed to the dissemination of these genes under antibiotics stress. It might explain the presence of clinically crucial resistance genes tet(X) and blaNDM-5 in clinics. This study suggested the applicable use of antibiotics and continued surveillance of tet(X) and blaNDM-5 in clinics are imperative.
Collapse
Affiliation(s)
- Haijun Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi Zhan
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Linjing Wang
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhirou Xiao
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Donghua Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhemei Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haitao Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dingqiang Chen
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenbo Xu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ling Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Zhu DM, Ding Q, Li PH, Wang YL, Li YZ, Yu Li X, Li GM, Ma HX, Kong LC. Antimicrobial resistance in E. Coli of animal origin and discovery of a novel ICE mobile element in Northeast China. BMC Vet Res 2023; 19:255. [PMID: 38053138 DOI: 10.1186/s12917-023-03828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Multidrug resistance in Enterobacteriaceae including resistance to quinolones is rising worldwide. The development of resistance may lead to the emergence of new transmission mechanisms. In this study, the collection of different E. coli was performed from animals and subjected to subsequent procedures including pulsed-field gel electrophoresis, micro-broth dilution method, polymerase chain reaction. Whole genome sequencing of E. coli C3 was performed to detect the affinity, antimicrobial resistance and major carriers of the isolates. RESULTS A total of 66 E. coli were isolated and their antibiotic resistance genes, frequency of horizontal transfer and genetic environment of E. coli C3 were determined. The results showed there were both different and same types in PFGE typing, indicating clonal transmission of E. coli among different animals. The detection of antimicrobial resistance and major antibiotic resistance genes and the plasmid transfer results showed that strains from different sources had high levels of resistance to commonly used clinical antibiotics and could be spread horizontally. Whole-genome sequencing discovered a novel ICE mobile element. CONCLUSION In summary, the antimicrobial resistance of E. coli in northeast China is a serious issue and there is a risk of antimicrobial resistance transmission. Meanwhile, a novel ICE mobile element appeared in the process of antimicrobial resistance formation.
Collapse
Affiliation(s)
- Dao Mi Zhu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street#2888, Changchun, 130118, P.R. China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng #Street, Changchun, 2888, 130118, P.R. China
| | - Qiang Ding
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street#2888, Changchun, 130118, P.R. China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng #Street, Changchun, 2888, 130118, P.R. China
| | - Peng Hui Li
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street#2888, Changchun, 130118, P.R. China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng #Street, Changchun, 2888, 130118, P.R. China
| | - Yong Liang Wang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street#2888, Changchun, 130118, P.R. China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng #Street, Changchun, 2888, 130118, P.R. China
| | - Ya Zhuo Li
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street#2888, Changchun, 130118, P.R. China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng #Street, Changchun, 2888, 130118, P.R. China
| | - Xuan Yu Li
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street#2888, Changchun, 130118, P.R. China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng #Street, Changchun, 2888, 130118, P.R. China
| | - Gong Mei Li
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street#2888, Changchun, 130118, P.R. China
| | - Hong Xia Ma
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street#2888, Changchun, 130118, P.R. China.
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street#2888, Changchun, 130118, P.R. China.
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng #Street, Changchun, 2888, 130118, P.R. China.
| | - Ling Cong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street#2888, Changchun, 130118, P.R. China.
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng #Street, Changchun, 2888, 130118, P.R. China.
| |
Collapse
|
13
|
Cheng Y, Li Y, Yang M, He Y, Shi X, Zhang Z, Zhong Y, Zhang Y, Si H. Emergence of novel tigecycline resistance gene tet(X5) variant in multidrug-resistant Acinetobacter indicus of swine farming environments. Vet Microbiol 2023; 284:109837. [PMID: 37531842 DOI: 10.1016/j.vetmic.2023.109837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/12/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Antibiotic-resistant bacteria are emerging all the time, but the continued emergence of novel resistance genes and genetic structures is even more alarming. Tigecycline is currently the important last barrier in the treatment of multidrug-resistant (MDR) infections. tet(X), a resistance gene to tigecycline, is the most prevalent and constantly emerging novel variants. In this research, we characterized two MDR Acinetobacter indicus strains to tigecycline that were identified and analyzed by antimicrobial susceptibility testing, conjugation transfer, whole genome sequencing (WGS) and bioinformatics analysis, and gene function analysis. The results showed that three tet(X) variants were carried in BDT201, including tet(X6) on the chromosome, tet(X3) on the plasmid pBDT201-2, and a novel tet(X5) variant adjacent to the ISAba1 elements on the plasmid pBDT201-3. The novel Tet(X5) variant showed 98.7% amino acid identity with Tet(X5) and was named Tet(X5.4). By expressing tet(X5.4) gene, the tigecycline minimum inhibitory concentration (MIC) values for Escherichia coli JM109 increased 32- fold (from 0.13 to 4 mg/L). BDT2076 contained tigecycline and carbapenems resistance genes, such as tet(X3), blaOXA-58, blaNDM-3, and blaCARB-2. The continuous emergence of MDR bacteria and resistance genes is a global environmental health issue that can not be ignored and therefore needs to pay more urgent attention to it.
Collapse
Affiliation(s)
- Yumeng Cheng
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, China
| | - Yakun Li
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Meng Yang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, China
| | - Yang He
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, China
| | - Xinru Shi
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, China
| | - Zhidan Zhang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, China
| | - Yesheng Zhong
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, China
| | - Yuan Zhang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
14
|
Sheck E, Romanov A, Shapovalova V, Shaidullina E, Martinovich A, Ivanchik N, Mikotina A, Skleenova E, Oloviannikov V, Azizov I, Vityazeva V, Lavrinenko A, Kozlov R, Edelstein M. Acinetobacter Non- baumannii Species: Occurrence in Infections in Hospitalized Patients, Identification, and Antibiotic Resistance. Antibiotics (Basel) 2023; 12:1301. [PMID: 37627721 PMCID: PMC10451542 DOI: 10.3390/antibiotics12081301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Acinetobacter species other than A. baumannii are becoming increasingly more important as opportunistic pathogens for humans. The primary aim of this study was to assess the prevalence, species distribution, antimicrobial resistance patterns, and carbapenemase gene content of clinical Acinetobacter non-baumannii (Anb) isolates that were collected as part of a sentinel surveillance program of bacterial infections in hospitalized patients. The secondary aim was to evaluate the performance of MALDI-TOF MS systems for the species-level identification of Anb isolates. METHODS Clinical bacterial isolates were collected from multiple sites across Russia and Kazakhstan in 2016-2022. Species identification was performed by means of MALDI-TOF MS, with the Autobio and Bruker systems used in parallel. The PCR detection of the species-specific blaOXA-51-like gene was used as a means of differentiating A. baumannii from Anb species, and the partial sequencing of the rpoB gene was used as a reference method for Anb species identification. The susceptibility of isolates to antibiotics (amikacin, cefepime, ciprofloxacin, colistin, gentamicin, imipenem, meropenem, sulbactam, tigecycline, tobramycin, and trimethoprim-sulfamethoxazole) was determined using the broth microdilution method. The presence of the most common in Acinetobacter-acquired carbapenemase genes (blaOXA-23-like, blaOXA-24/40-like, blaOXA-58-like, blaNDM, blaIMP, and blaVIM) was assessed using real-time PCR. RESULTS In total, 234 isolates were identified as belonging to 14 Anb species. These comprised 6.2% of Acinetobacter spp. and 0.7% of all bacterial isolates from the observations. Among the Anb species, the most abundant were A. pittii (42.7%), A. nosocomialis (13.7%), the A. calcoaceticus/oleivorans group (9.0%), A. bereziniae (7.7%), and A. geminorum (6.0%). Notably, two environmental species, A. oleivorans and A. courvalinii, were found for the first time in the clinical samples of patients with urinary tract infections. The prevalence of resistance to different antibiotics in Anb species varied from <4% (meropenem and colistin) to 11.2% (gentamicin). Most isolates were susceptible to all antibiotics; however, sporadic isolates of A. bereziniae, A. johnsonii, A. nosocomialis, A. oleivorans, A. pittii, and A. ursingii were resistant to carbapenems. A. bereziniae was more frequently resistant to sulbactam, aminoglycosides, trimethoprim-sulfamethoxazole, and tigecycline than the other species. Four (1.7%) isolates of A. bereziniae, A. johnsonii, A. pittii were found to carry carbapenemase genes (blaOXA-58-like and blaNDM, either alone or in combination). The overall accuracy rates of the species-level identification of Anb isolates with the Autobio and Bruker systems were 80.8% and 88.5%, with misidentifications occurring in 5 and 3 species, respectively. CONCLUSIONS This study provides important new insights into the methods of identification, occurrence, species distribution, and antibiotic resistance traits of clinical Anb isolates.
Collapse
Affiliation(s)
- Eugene Sheck
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Andrey Romanov
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Valeria Shapovalova
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Elvira Shaidullina
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Alexey Martinovich
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Natali Ivanchik
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Anna Mikotina
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Elena Skleenova
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Vladimir Oloviannikov
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Ilya Azizov
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Vera Vityazeva
- Republican Children’s Hospital, 185000 Petrozavodsk, Republic of Karelia, Russia
| | - Alyona Lavrinenko
- Shared Resource Laboratory, Karaganda Medical University, 100008 Karaganda, Kazakhstan
| | - Roman Kozlov
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Mikhail Edelstein
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| |
Collapse
|
15
|
Lyu Z, Han S, Li J, Guo Z, Geng N, Lyu C, Qin L, Li N. Epidemiological investigation and drug resistance characteristics of Riemerella anatipestifer strains from large-scale duck farms in Shandong Province, China from March 2020 to March 2022. Poult Sci 2023; 102:102759. [PMID: 37209657 PMCID: PMC10209456 DOI: 10.1016/j.psj.2023.102759] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/22/2023] Open
Abstract
Infectious serositis is a common disease caused by Riemerella anatipestifer (R. anatipestifer) in ducks, characterized by respiratory distress, septicemia, and neurological symptoms. In this study, 1,020 samples (brain and liver) were collected from ducks with suspected R. anatipestifer infection from March 2020 to March 2022 in Shandong Province, of which 171 R. anatipestifer strains were identified by PCR and isolation culture. The serotype of all strains was analyzed, and 74 strains were subjected to drug sensitivity tests and drug resistance genes detection. The results showed that the overall prevalence rate of R. anatipestifer in Shandong Province was 16.7% (171/1,020), with most strains coming from brain samples of ducklings under 3-mo old collected from September to December each year. Histopathological examination showed that heart vessels of the diseased duck were highly dilated and filled with red blood cells, with obvious fibrin exudates outside the pericardium, and fatty degeneration of liver cells. There were 45 strains of serotype 1, 45 strains of serotype 2, 2 strains of serotype 4, 33 strains of serotype 6, 44 strains of serotype 7, and 2 strains of serotype 10. The minimum inhibitory concentration (MIC) of 10 common antibiotics against 74 representative strains was determined by the agar dilution method. It was found that 74 strains had the most severe resistance to gentamicin (77%) and fully susceptible to ceftriaxone, but the 81.1% isolated strains were multidrug resistant. Resistance genes testing of 74 R. anatipestifers showed that tetracycline resistance gene tet X had the highest detection rate of 95.9%, followed by macrolide resistance gene ermF with 77%, and the rate of β-lactam resistance gene blaTEM is the lowest (10.8%). The animal experiment of 4 R. anatipestifer strains with different serotypes showed that they had strong pathogenicity to 7-day-old ducklings, which could cause nervous symptoms, and the mortality rate was 58% to 70%. The autopsy showed obvious pathological changes. These findings of this study on R. anatipestifer will help us to understand the latest prevalence, drug resistance characteristics, and pathogenicity of R. anatipestifer in Shandong, China, and provide a scientific guide for the treatment and control of the disease.
Collapse
Affiliation(s)
- Zehao Lyu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Shanshan Han
- Qingdao Key Laboratory of Livestock & Poultry Pathogen Biotechnology, Qingdao Jiazhi Biotechnology Co., Ltd., Qingdao 266100, China
| | - Jing Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Zhiyun Guo
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Ningwei Geng
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China
| | - Chuang Lyu
- Qingdao Key Laboratory of Livestock & Poultry Pathogen Biotechnology, Qingdao Jiazhi Biotechnology Co., Ltd., Qingdao 266100, China
| | - Liting Qin
- Qingdao Key Laboratory of Livestock & Poultry Pathogen Biotechnology, Qingdao Jiazhi Biotechnology Co., Ltd., Qingdao 266100, China
| | - Ning Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, Tai'an City 271018, Shandong Province, China.
| |
Collapse
|
16
|
Wang F, Fu Y, Lin Z, Zhang B, Se J, Guo X, Fan J, Jia Y, Xu X, Jiang Y, Shen C. Neglected Drivers of Antibiotic Resistance: Survival of Extended-Spectrum β-Lactamase-Producing Pathogenic Escherichia coli from Livestock Waste through Dormancy and Release of Transformable Extracellular Antibiotic Resistance Genes under Heat Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37336722 DOI: 10.1021/acs.est.3c02377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae has caused a global pandemic with high prevalence in livestock and poultry, which could disseminate into the environment and humans. To curb this risk, heat-based harmless treatment of livestock waste was carried out. However, some risks of the bacterial persistence have not been thoroughly assessed. This study demonstrated that antibiotic-resistant bacteria (ARB) could survive at 55 °C through dormancy, and simultaneously transformable extracellular antibiotic resistance genes (eARGs) would be released. The ESBL-producing pathogenic Escherichia coli CM1 from chicken manure could enter a dormant state at 55 °C and reactivate at 37 °C. Dormant CM1 had stronger β-lactam resistance, which was associated with high expression of β-lactamase genes and low expression of outer membrane porin genes. Resuscitated CM1 maintained its virulence expression and multidrug resistance and even had stronger cephalosporin resistance, which might be due to the ultra-low expression of the porin genes. Besides, heat at 55 °C promoted the release of eARGs, some of which possessed a certain nuclease stability and heat persistence, and even maintained their transformability to an Acinetobacter baylyi strain. Therefore, dormant multidrug-resistant pathogens from livestock waste will still pose a direct health risk to humans, while the resuscitation of dormant ARB and the transformation of released eARGs will jointly promote the proliferation of ARGs and the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Feiyu Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yulong Fu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhihao Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bingni Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Se
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoguang Guo
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahui Fan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yangyang Jia
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaojie Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunhan Jiang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China
| |
Collapse
|
17
|
Gao FZ, He LY, Chen X, Chen JL, Yi X, He LX, Huang XY, Chen ZY, Bai H, Zhang M, Liu YS, Ying GG. Swine farm groundwater is a hidden hotspot for antibiotic-resistant pathogenic Acinetobacter. ISME COMMUNICATIONS 2023; 3:34. [PMID: 37081217 PMCID: PMC10119254 DOI: 10.1038/s43705-023-00240-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023]
Abstract
Acinetobacter is present in the livestock environment, but little is known about their antibiotic resistance and pathogenic species in the farm groundwater. Here we investigated antibiotic resistance of Acinetobacter in the swine farm groundwater (JZPG) and residential groundwater (JZG) of a swine farming village, in comparison to a nearby (3.5 km) non-farming village (WTG) using metagenomic and culture-based approaches. Results showed that the abundance of antibiotic resistome in some JZG and all JZPG (~3.4 copies/16S rRNA gene) was higher than that in WTG (~0.7 copies/16S rRNA gene), indicating the influence of farming activities on both groundwater types. Acinetobacter accounted for ~95.7% of the bacteria in JZG and JZPG, but only ~8.0% in WTG. They were potential hosts of ~95.6% of the resistome in farm affected groundwater, which includes 99 ARG subtypes against 23 antibiotic classes. These ARGs were associated with diverse intrinsic and acquired resistance mechanisms, and the predominant ARGs were tetracyclines and fluoroquinolones resistance genes. Metagenomic binning analysis elucidated that non-baumannii Acinetobacter including A. oleivorans, A. beijerinckii, A. seifertii, A. bereziniae and A. modestus might pose environmental risks because of multidrug resistance, pathogenicity and massive existence in the groundwater. Antibiotic susceptibility tests showed that the isolated strains were resistant to multiple antibiotics including sulfamethoxazole (resistance ratio: 96.2%), levofloxacin (42.5%), gatifloxacin (39.0%), ciprofloxacin (32.6%), tetracycline (32.0%), doxycycline (29.0%) and ampicillin (12.0%) as well as last-resort polymyxin B (31.7%), colistin (24.1%) and tigecycline (4.1%). The findings highlight potential prevalence of groundwater-borne antibiotic-resistant pathogenic Acinetobacter in the livestock environment.
Collapse
Affiliation(s)
- Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China.
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China.
| | - Xin Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Jing-Liang Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Xinzhu Yi
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Lu-Xi He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - Xin-Yi Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, G61 1QH, UK
| | - Zi-Yin Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China.
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China.
| |
Collapse
|
18
|
First detection of tet(X4)-positive Enterobacterales in retail vegetables and clonal spread of Escherichia coli ST195 producing Tet(X4) in animals, foods, and humans across China and Thailand. Int J Food Microbiol 2023; 391-393:110145. [PMID: 36841076 DOI: 10.1016/j.ijfoodmicro.2023.110145] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/19/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
The mobile tigecycline-resistant gene tet(X4), which confers resistance to all tetracyclines, has been identified in bacterial isolates from various sources. However, there are no reports on the occurrence of tet(X4) in bacterial isolates of ready-to-eat fresh vegetables. In this study, 113 vegetable samples from farmers' markets were screened for tigecycline-resistant strains. Ten Escherichia coli (two ST195, two ST48, and one ST10, ST58, ST88, ST394, ST641, and ST101) and one Klebsiella pneumoniae (ST327) recovered from nine vegetable samples (7.96 %) were identified as carrying tet(X4). The core genome sequences of the two E. coli ST195 isolates showed a close relationship (14-41 single-nucleotide polymorphisms) with 31 tet(X4)-bearing E. coli ST195 isolates from humans, pigs, pork, and bird in China and Thailand, and the 33 E. coli ST195 isolates producing Tet(X4) shared similar resistance genes and plasmid replicons. Nanopore sequencing and conjugation experiments confirmed that the tet(X4) genes were located on the hybrid plasmids IncFIA-HI1A-HI1B (n = 6), IncX1 (n = 3), and IncFII2 (n = 1) in E. coli, and IncFII plasmid in K. pneumoniae. IncFIA-HI1A-HI1B and IncX1 plasmids shared highly similar structures with plasmids from various sources in the GenBank database. This is the first study to report the observation of tet(X4)-positive bacteria in retail vegetables. The epidemic clones and plasmids contribute to tet(X4) dissemination in vegetables. The clonal spread of Tet(X4)-producing E. coli ST195 across multiple niches and countries could pose a potential threat to public health.
Collapse
|
19
|
Characteristics and Traceability Analysis of Microbial Assemblage in Fine Particulate Matter from a Pig House. Animals (Basel) 2023; 13:ani13061058. [PMID: 36978598 PMCID: PMC10044456 DOI: 10.3390/ani13061058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Fine particulate matter (PM2.5) can carry numerous substances and penetrate deep into the respiratory tract due to its small particle size; associated harmful microorganisms are suspected to increase health risks for humans and animals. To find out the microbial compositions of PM2.5 in piggeries, their interaction and traceability, we collected PM2.5 samples from a piggery while continuously monitoring the environmental indicators. We also identified pathogenic bacteria and allergens in the samples using high-throughput sequencing technology. We analyzed the microbial differences of PM2.5 samples at different heights and during different times of day and investigated the microbial dynamics among the PM2.5 samples. To better understand the interaction between microorganisms and environmental factors among different microbial communities, we applied the network analysis method to identify the correlation among various variables. Finally, SourceTracker, a commonly used microbial traceability tool, was used to predict the source of airborne microorganisms in the pig house. We identified 14 potential pathogenic bacteria and 5 allergens from PM2.5 in the pig houses, of which Acinetobacter was the dominant bacterium in all samples (relative abundance > 1%), which warrants attention. We found that bacteria and fungi directly affected the the microbial community. The bacterial community mainly played a positive role in the microbial community. Environmental variables mainly indirectly and positively affected microbial abundance. In the SourceTracker analysis using fecal matter and feed as sources and PM2.5 sample as sink, we found that fecal matter made the greatest contribution to both bacterial and fungal components of PM2.5. Our findings provide important insights into the potential risks of pathogens in PM2.5 to human and animal health and their main sources.
Collapse
|
20
|
He T, Li J, Gong L, Wang Y, Li R, Ji X, Luan F, Tang M, Zhu L, Wei R, Wang R. Comprehensive Analysis of Antimicrobial, Heavy Metal, and Pesticide Residues in Commercial Organic Fertilizers and Their Correlation with Tigecycline-Resistant tet(X)-Variant Genes. Microbiol Spectr 2023; 11:e0425122. [PMID: 36916994 PMCID: PMC10100909 DOI: 10.1128/spectrum.04251-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/15/2023] [Indexed: 03/16/2023] Open
Abstract
With the issue of the antimicrobial additive ban in feed in Chinese animal husbandry, it is important to determine the potential drivers of the spread of the newly discovered tigecycline-resistant tet(X)-variant genes. Here, we investigated the correlations between residues of heavy metals, antimicrobials, and pesticides and the relative abundance of tet(X)-variant genes in 94 commercial organic-fertilizer samples collected from 9 Chinese provinces. A total of 5 heavy metals (mercury, lead, arsenic, chromium, and cadmium), 10 antimicrobials, and 18 pesticides were detected. The tet(X)-variant genes, including tet(X)/(X2), tet(X3), tet(X4), tet(X5), and tet(X6) were detected in 39 (41.5%) samples. Although tet(X)-variant-carrying bacteria were not isolated from these samples, the tet(X4)-carrying plasmids could be captured by exogenous Escherichia coli. Correlation analysis revealed that heavy metals, other than antimicrobials, showed a significant positive association with the relative abundance of the tet(X)-variant genes, especially tet(X3) and tet(X4) (R = 0.346 to 0.389, P < 0.001). The correlation was attributed to the coselection of the tet(X3)/tet(X4) gene on the same plasmid and the conjugation-promoting effect of tet(X3)/tet(X4)-carrying plasmids by subinhibitory concentrations of heavy metals. The heavy metals increased the permeability of the bacterial outer membrane and upregulated the transcription of type IV secretion system (T4SS)-encoding genes on tet(X)-variant-carrying plasmids, therefore enhancing the bacterial conjugation rates. Taken together, our findings have indicated that heavy metals may play an important role in spreading tet(X)-variant genes within the animal manure-related environment. IMPORTANCE An antimicrobial resistance gene (ARG) is considered a novel contaminant for the environment. Most animal feces are usually made into commercial organic fertilizers in China and will pose a threat to the farmland soil and agricultural product if fertilizers harboring clinically significant antimicrobial-resistant (AMR) genes are applied on farmland. This study has indicated that heavy metals may play an important role in the transmission of transferable tigecycline resistance genes [tet(X3) and tet(X4)]. The mechanism was that heavy metals posed a coselection effect of the tet(X3)/tet(X4) gene on the same plasmid and could increase the conjugation ability of tet(X3)/tet(X4)-carrying plasmids. The conjugation-promoting concentrations of heavy metals are lower than the maximal limits defined in the national standard for fertilizers, indicating a high transmission risk of tet(X3)/tet(X4) genes within the animal manure-related environment. The findings in this study will provide scientific evidence for the future development of effective measures to reduce AMR dissemination.
Collapse
Affiliation(s)
- Tao He
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jun Li
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lan Gong
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yang Wang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xing Ji
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fengting Luan
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Minmin Tang
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lei Zhu
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ruicheng Wei
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ran Wang
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
21
|
Whole-Genome Analysis of blaNDM-Bearing Proteus mirabilis Isolates and mcr-1-Positive Escherichia coli Isolates Carrying blaNDM from the Same Fresh Vegetables in China. Foods 2023; 12:foods12030492. [PMID: 36766021 PMCID: PMC9913981 DOI: 10.3390/foods12030492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
The global spread of colistin or carbapenem-resistant Enterobacteriaceae (CRE) has been a pressing threat to public health. Members of Enterobacteriaceae, especially Proteus mirabilis and Escherichia coli, have been prevalent foodborne pathogens and such pathogens from fresh vegetables have triggered foodborne illness in China. However, reports about CRE, especially P. mirabilis from fresh vegetables, are still lacking. In this study, we identified five blaNDM-positive P. mirabilis and five blaNDM-positive generic E. coli concurrently from five fresh vegetables in two markets from China, and four of the five E. coli also carried mcr-1. The 10 isolates were characterized with methods including antimicrobial susceptibility testing, conjugation, whole-genome sequencing and phylogenetic analysis. All 10 isolates were multidrug-resistant (MDR). blaNDM-5 in five E. coli isolates and one P. mirabilis carrying blaNDM-5 was located on similarly transferable IncX3 plasmids, while transferably untypable plasmids were the carriers of blaNDM-1 in four P. mirabilis isolates from different types of vegetables/markets. mcr-1 in the four blaNDM-5-positive E. coli was located on similarly non-conjugative IncHI2 MDR plasmids lacking transfer region. Notably, ISCR1 complex class 1 integron capable of capturing blaNDM-1 was found on all untypable plasmids from P. mirabilis, and five copies of ISCR1 complex class 1 integron containing blaNDM-1 even occurred in one P. mirabilis, which showed high-level carbapenem resistance. Plasmid and phylogenetic analysis revealed that the blaNDM-positive P. mirabilis and E. coli from fresh vegetables might be derived from animals and transmitted to humans via the food chain. The concurrence of blaNDM-positive P. mirabilis and E. coli carrying both mcr-1 and blaNDM in different types of fresh vegetables eaten raw is alarming and threatens food safety. Sustained surveillance of these foodborne pathogens among fresh vegetables is urgent to ensure the health of food consumers. We report for the first time the concurrence of blaNDM-positive P. mirabilis and mcr-1-bearing E. coli carrying blaNDM from the same fresh vegetables.
Collapse
|
22
|
Chen H, Yan H, Xiu Y, Jiang L, Zhang J, Chen G, Yu X, Zhu H, Zhao X, Li Y, Tang W, Zhang X. Seasonal dynamics in bacterial communities of closed-cage broiler houses. Front Vet Sci 2022; 9:1019005. [PMID: 36406086 PMCID: PMC9669973 DOI: 10.3389/fvets.2022.1019005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
The bacteria contained in air aerosols from poultry houses are closely connected to animal health and production. This study aimed to investigate the seasonal factors on microbial aerosol concentration, particle size and bacterial spectrum composition inside a closed-cage broiler house. Then, 16S rDNA sequencing technology was applied to analyze the characteristics of bacterial abundance and diversity. The results indicated that the concentration of bacterial aerosol in the broiler house varied significantly in different seasons, with a concentration range of 5.87–15.77 × 103 CFU/m3, and the highest and lowest concentrations in the summer and winter, respectively. Microbiological analysis showed that the proportion of Gram-negative bacteria in autumn was significantly higher than that in summer (P < 0.05). In addition, the floral structure of potential pathogenic bacterial genera also differed by season. Escherichia-Shigella, Streptococcus, Acinetobacter, Pseudomonas were identified in the bacterial aerosols. Importantly, the relative abundance of Firmicutes in spring and autumn was much higher. In contrast, the relative abundance of Proteobacteria in spring and autumn was lower than that in summer and winter. Altogether, results revealed the effects of seasonal factors on the diversity and abundance of bacteria and the distribution characteristics of major opportunistic pathogens in the air of closed-cage broiler houses. These results will provide important information for exploring the potential risk of aerosols from poultry houses all four seasons.
Collapse
Affiliation(s)
- Huan Chen
- College of Life Science, Ludong University, Yantai, Shandong, China
- Shandong Breeding Environmental Control Engineering Laboratory, Ludong University, Yantai, China
| | - Han Yan
- College of Life Science, Ludong University, Yantai, Shandong, China
- Shandong Breeding Environmental Control Engineering Laboratory, Ludong University, Yantai, China
| | - Yan Xiu
- Clinical Lab, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Linlin Jiang
- College of Life Science, Ludong University, Yantai, Shandong, China
- Shandong Breeding Environmental Control Engineering Laboratory, Ludong University, Yantai, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Ludong University, Yantai, China
- *Correspondence: Linlin Jiang
| | - Jianlong Zhang
- College of Life Science, Ludong University, Yantai, Shandong, China
- Shandong Breeding Environmental Control Engineering Laboratory, Ludong University, Yantai, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Ludong University, Yantai, China
- Jianlong Zhang
| | - Guozhong Chen
- College of Life Science, Ludong University, Yantai, Shandong, China
- Shandong Breeding Environmental Control Engineering Laboratory, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Institute of Veterinary Drug Quality Inspection of Shandong Province, Jinan, China
| | - Xin Yu
- College of Life Science, Ludong University, Yantai, Shandong, China
- Shandong Breeding Environmental Control Engineering Laboratory, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Institute of Veterinary Drug Quality Inspection of Shandong Province, Jinan, China
| | - Hongwei Zhu
- College of Life Science, Ludong University, Yantai, Shandong, China
- Shandong Breeding Environmental Control Engineering Laboratory, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Institute of Veterinary Drug Quality Inspection of Shandong Province, Jinan, China
| | - Xiaoyu Zhao
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Institute of Veterinary Drug Quality Inspection of Shandong Province, Jinan, China
| | - Youzhi Li
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Institute of Veterinary Drug Quality Inspection of Shandong Province, Jinan, China
| | - Wenli Tang
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Institute of Veterinary Drug Quality Inspection of Shandong Province, Jinan, China
| | - Xingxiao Zhang
- College of Life Science, Ludong University, Yantai, Shandong, China
- Shandong Breeding Environmental Control Engineering Laboratory, Ludong University, Yantai, China
- Xingxiao Zhang
| |
Collapse
|
23
|
Wang Q, Lei C, Cheng H, Yang X, Huang Z, Chen X, Ju Z, Zhang H, Wang H. Widespread Dissemination of Plasmid-Mediated Tigecycline Resistance Gene tet(X4) in Enterobacterales of Porcine Origin. Microbiol Spectr 2022; 10:e0161522. [PMID: 36125305 PMCID: PMC9602804 DOI: 10.1128/spectrum.01615-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/17/2022] [Indexed: 12/31/2022] Open
Abstract
The emergence of the plasmid-mediated high levels of the tigecycline resistance gene has drawn worldwide attention and has posed a major threat to public health. In this study, we investigated the prevalence of the tet(X4)-positive Enterobacterales isolates collected from a pig slaughterhouse and farms. A total of 101 tigecycline resistance strains were isolated from 353 samples via a medium with tigecycline, of which 33 carried tet(X4) (9.35%, 33/353) and 2 carried tet(X6) (0.57%, 2/353). These strains belong to seven different species, with Escherichia coli being the main host bacteria. Importantly, this report is the first one to demonstrate that tet(X4) was observed in Morganella morganii. Whole-genome sequencing results revealed that tet(X4)-positive bacteria can coexist with other resistance genes, such as blaNDM-1 and cfr. Additionally, we were the first to report that tet(X4) and blaNDM-1 coexist in a Klebsiella quasipneumoniae strain. The phylogenetic tree of 533 tet(X4)-positive E. coli strains was constructed using 509 strains from the NCBI genome assembly database and 24 strains from this study, which arose from 8 sources and belonged to 135 sequence types (STs) worldwide. We used Nanopore sequencing to interpret the selected 21 nonclonal and representative strains and observed that 19 tet(X4)-harboring plasmids were classified into 8 replicon types, and 2 tet(X6) genes were located on integrating conjugative elements. A total of 68.42% of plasmids carrying tet(X4) were transferred successfully with a conjugation frequency of 10-2 to 10-7. These findings highlight that diverse plasmids drive the widespread dissemination of the tigecycline resistance gene tet(X4) in Enterobacterales of porcine origin. IMPORTANCE Tigecycline is considered to be the last resort of defense against diseases caused by broad-spectrum resistant Gram-negative bacteria. In this study, we systematically analyzed the prevalence and genetic environments of the resistance gene tet(X4) in a pig slaughterhouse and farms and the evolutionary relationship of 533 tet(X4)-positive Escherichia coli strains, including 509 tet(X4)-positive E. coli strains selected from the 27,802 assembled genomes of E. coli from the NCBI between 2002 and 2022. The drug resistance of tigecycline is widely prevalent in pig farms where tetracycline is used as a veterinary drug. This prevalence suggests that pigs are a large reservoir of tet(X4) and that tet(X4) can spread horizontally through the food chain via mobile genetic elements. Furthermore, tetracycline resistance may drive tigecycline resistance through some mechanisms. Therefore, it is important to monitor tigecycline resistance, develop effective control measures, and focus on tetracycline use in the pig farms.
Collapse
Affiliation(s)
- Qin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Changwei Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Hansen Cheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Xue Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Zheren Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Xuan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Zijing Ju
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Haoyu Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
24
|
Xiao X, Liu Z, Chen X, Peng K, Li R, Liu Y, Wang Z. Persistence of plasmid and tet(X4) in an Escherichia coli isolate coharboring blaNDM-5 and mcr-1 after acquiring an IncFII tet(X4)-positive plasmid. Front Microbiol 2022; 13:1010387. [PMID: 36338060 PMCID: PMC9626518 DOI: 10.3389/fmicb.2022.1010387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2022] Open
Abstract
The prevalence of plasmid-mediated tigecycline resistance gene tet(X4) is presenting an increasing trend. Once tet(X4)-bearing plasmids are captured by multidrug-resistant bacteria, such as blaNDM and mcr-coharboring bacteria, it will promote bacteria to develop an ultra-broad resistance spectrum, limiting clinical treatment options. However, little is known about the destiny of such bacteria or how they will evolve in the future. Herein, we constructed a multidrug-resistant bacteria coharboring tet(X4), blaNDM-5, and mcr-1 by introducing a tet(X4)-bearing plasmid into a blaNDM-5 and mcr-1 positive E. coli strain. Subsequently, the stability of tet(X4) and the plasmid was measured after being evolved under tigecycline or antibiotic-free circumstance. Interestingly, we observed both tet(X4)-bearing plasmids in tigecycline treated strains and non-tigecycline treated strains were stable, which might be jointly affected by the increased conjugation frequency and the structural alterations of the tet(X4)-positive plasmid. However, the stability of tet(X4) gene showed different scenarios in the two types of evolved strains. The tet(X4) gene in non-tigecycline treated strains was stable whereas the tet(X4) gene was discarded rapidly in tigecycline treated strains. Accordingly, we found the expression levels of tet(X4) gene in tigecycline-treated strains were several times higher than in non-tigecycline treated strains and ancestral strains, which might in turn impose a stronger burden on the host bacteria. SNPs analysis revealed that a myriad of mutations occurred in genes involving in conjugation transfer, and the missense mutation of marR gene in chromosome of tigecycline treated strains might account for the completely different stability of tet(X4)-bearing plasmid and tet(X4) gene. Collectively, these findings shed a light on the possibility of the emergence of multidrug resistant bacteria due to the transmission of tet(X4)-bearing plasmid, and highlighted that the antibiotic residues may be critical to the development of such bacteria.
Collapse
Affiliation(s)
- Xia Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Ziyi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Xiaojun Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Kai Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- *Correspondence: Zhiqiang Wang,
| |
Collapse
|
25
|
Li R, Zhang L, Lu X, Peng K, Liu Y, Xiao X, Song H, Wang Z. Occurrence and Characterization of NDM-1-Producing Shewanella spp. and Acinetobacter portensis Co-Harboring tet(X3) in a Chinese Dairy Farm. Antibiotics (Basel) 2022; 11:1422. [PMID: 36290080 PMCID: PMC9598548 DOI: 10.3390/antibiotics11101422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 08/15/2023] Open
Abstract
Bacteria with carbapenem or tigecycline resistance have been spreading widely among humans, animals and the environment globally, being great threats to public health. However, bacteria co-carrying drug resistance genes of carbapenem and tigecycline in Shewanella and Acinetobacter species remain to be investigated. Here, we detected nine blaNDM-1-carrying Shewanella spp. isolates as well as three A. portensis isolates co-harboring tet(X3) and blaNDM-1 from seventy-two samples collected from a dairy farm in China. To explore their genomic characteristic and transmission mechanism, we utilized various methods, including PCR, antimicrobial susceptibility testing, conjugation experiment, whole-genome sequencing, circular intermediate identification and bioinformatics analysis. Clonal dissemination was found among three A. portensis, of which tet(X3) and blaNDM-1 were located on a novel non-conjugative plasmid pJNE5-X3_NDM-1 (333,311 bp), and the circular intermediate ΔISCR2-tet(X3)-blaNDM-1 was identified. Moreover, there was another copy of tet(X3) on the chromosome of A. portensis. It was verified that blaNDM-1 could be transferred to Escherichia coli C600 from Shewanella spp. by conjugation, and self-transmissible IncA/C2 plasmids mediated the transmission of blaNDM-1 in Shewanella spp. strains. Stringent surveillance was warranted to curb the transmission of such vital resistance genes.
Collapse
Affiliation(s)
- Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Lifei Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyu Lu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Kai Peng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yuan Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xia Xiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Hongqin Song
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
26
|
Zhang S, Wen J, Wang Y, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. Dissemination and prevalence of plasmid-mediated high-level tigecycline resistance gene tet (X4). Front Microbiol 2022; 13:969769. [PMID: 36246244 PMCID: PMC9557194 DOI: 10.3389/fmicb.2022.969769] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
With the large-scale use of antibiotics, antibiotic resistant bacteria (ARB) continue to rise, and antibiotic resistance genes (ARGs) are regarded as emerging environmental pollutants. The new tetracycline-class antibiotic, tigecycline is the last resort for treating multidrug-resistant (MDR) bacteria. Plasmid-mediated horizontal transfer enables the sharing of genetic information among different bacteria. The tigecycline resistance gene tet(X) threatens the efficacy of tigecycline, and the adjacent ISCR2 or IS26 are often detected upstream and downstream of the tet(X) gene, which may play a crucial driving role in the transmission of the tet(X) gene. Since the first discovery of the plasmid-mediated high-level tigecycline resistance gene tet(X4) in China in 2019, the tet(X) genes, especially tet(X4), have been reported within various reservoirs worldwide, such as ducks, geese, migratory birds, chickens, pigs, cattle, aquatic animals, agricultural field, meat, and humans. Further, our current researches also mentioned viruses as novel environmental reservoirs of antibiotic resistance, which will probably become a focus of studying the transmission of ARGs. Overall, this article mainly aims to discuss the current status of plasmid-mediated transmission of different tet(X) genes, in particular tet(X4), as environmental pollutants, which will risk to public health for the "One Health" concept.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jinfeng Wen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuwei Wang
- Mianyang Academy of Agricultural Sciences, Mianyang, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
27
|
Li A, Yu R, Zhao W, Schwarz S, Li C, Yao H, Du XD. Characterization of a genomic Island carrying the tet(X4) gene in porcine Acinetobacter towneri co-harboring plasmid-borne blaNDM−1 and blaOXA−58 genes. Front Vet Sci 2022; 9:1002149. [PMID: 36246313 PMCID: PMC9557058 DOI: 10.3389/fvets.2022.1002149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
Tigecycline and carbapenems are last-resort antimicrobial agents to treat serious infections caused by multi-drug resistant bacterial pathogens. However, the co-occurrence of tigecycline and carbapenem resistance determinants challenges the clinical efficacy of these antimicrobial agents. In this study, we report the co-existence of tet(X4), blaNDM−1 and blaOXA−58 genes in the porcine Acinetobacter towneri isolate 19110F47. Sequence analysis revealed that tet(X4) gene, along with the florfenicol resistance gene floR, was flanked by three copies of IS91-like elements, which can form three different translocatable units (TUs), and were located in a 41,098-bp multidrug resistance region (MDRR) within a novel 100,354-bp genomic island (GI) region. TUs comprising floR-virD2-ISVsa3, hp-abh-tet(X4)-ISVsa3 and virD2-floR-ISVsa3-hp-abh-tet(X4)-ISVsa3 can be looped out from the chromosomal DNA and facilitate the transfer of the TU-based resistance genes into other plasmidic or chromosomal sites. In addition, the carbapenemase genes blaNDM−1 and blaOXA−58 were found on different non-conjugative multiresistance plasmids in this isolate, with the genetic contexts ISAba125-blaNDM−1-bleMBL-tnpR and ΔISAba3-blaOXA−58-ISAba3, respectively. The simultaneous occurrence of tet(X4), blaNDM−1 and blaOXA−58 in the same porcine A. towneri isolate emphasizes the importance of antimicrobial resistance surveillance in food-producing animals.
Collapse
Affiliation(s)
- Aijuan Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Runhao Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Wenbo Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Stefan Schwarz
- Department of Veterinary Medicine, Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre of Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Chenglong Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hong Yao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Hong Yao
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Xiang-Dang Du
| |
Collapse
|
28
|
Plasmids as Key Players in Acinetobacter Adaptation. Int J Mol Sci 2022; 23:ijms231810893. [PMID: 36142804 PMCID: PMC9501444 DOI: 10.3390/ijms231810893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
This review briefly summarizes the data on the mechanisms of development of the adaptability of Acinetobacters to various living conditions in the environment and in the clinic. A comparative analysis of the genomes of free-living and clinical strains of A. lwoffii, as well as the genomes of A. lwoffii and A. baumannii, has been carried out. It has been shown that plasmids, both large and small, play a key role in the formation of the adaptability of Acinetobacter to their living conditions. In particular, it has been demonstrated that the plasmids of various strains of Acinetobacter differ from each other in their structure and gene composition depending on the lifestyle of their host bacteria. Plasmids of modern strains are enriched with antibiotic-resistant genes, while the content of genes involved in resistance to heavy metals and arsenic is comparable to plasmids from modern and ancient strains. It is concluded that Acinetobacter plasmids may ensure the survival of host bacteria under conditions of various types of environmental and clinical stresses. A brief overview of the main mechanisms of horizontal gene transfer on plasmids inherent in Acinetobacter strains is also given.
Collapse
|
29
|
Chen C, Huang PY, Cui CY, He Q, Sun J, Liu YH, Huang JL. Classification and molecular characteristics of tet(X)-carrying plasmids in Acinetobacter species. Front Microbiol 2022; 13:974432. [PMID: 36081799 PMCID: PMC9445619 DOI: 10.3389/fmicb.2022.974432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The rapid dissemination of plasmid-mediated tet(X) genes in Acinetobacter species has compromised the clinical effectiveness of tigecycline, one of the last-resort antibiotics. However, the classification strategy and homology group of tet(X)-positive Acinetobacter spp. plasmids remain largely unknown. In this study, we classified them by genome-based replicon typing, followed by analyses of structural characteristics, transferability and in vivo effect. A total of 34 plasmids distributed in at least nine Acinetobacter species were collected, including three tet(X3)-positive plasmids and one tet(X6)-positive plasmid from our genome sequencing results. Among them, there were 28 plasmids carrying Rep_3 superfamily replicase genes and classified into six homology groups, consisting of GR31 (82.1%), GR26 (3.6%), GR41 (3.6%), GR59 (3.6%), and novel groups GR60 (3.6%) and GR61 (3.6%). Our tet(X3)-positive plasmids pYH16040-1, pYH16056-1, and pYH12068-1 belonged to the dominant GR31 group, whereas the tet(X6)-positive plasmid pYH12068-2 was unclassified. Structurally, all tet(X)-positive GR31 plasmids shared similar plasmid replication (repB), stability (parA and parB) and accessory modules [tet(X) and sul2], and 97.6% of plasmid-mediated tet(X) genes in Acinetobacter species were adjacent to ISCR2. Conjugation and susceptibility testing revealed pYH16040-1, pYH16056-1, and pYH12068-2, carrying plasmid transfer modules, were able to mediate the mobilization of multiple antibiotic resistance. Under the treatment of tigecycline, the mortality rate of Galleria mellonella infected by pYH16040-1-mediated tet(X3)-positive Acinetobacter spp. isolate significantly increased when compared with its plasmid-cured strain (p < 0.0001). The spread of such plasmids is of great clinical concern, more effects are needed and will facilitate the future analysis of tet(X)-positive Acinetobacter spp. plasmids.
Collapse
Affiliation(s)
- Chong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Ping-Yu Huang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Chao-Yue Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Qian He
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Jin-Lin Huang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
30
|
Anyanwu MU, Nwobi OC, Okpala COR, Ezeonu IM. Mobile Tigecycline Resistance: An Emerging Health Catastrophe Requiring Urgent One Health Global Intervention. Front Microbiol 2022; 13:808744. [PMID: 35979498 PMCID: PMC9376449 DOI: 10.3389/fmicb.2022.808744] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/24/2022] [Indexed: 01/13/2023] Open
Abstract
Mobile tigecycline resistance (MTR) threatens the clinical efficacy of the salvage antibiotic, tigecycline (TIG) used in treating deadly infections in humans caused by superbugs (multidrug-, extensively drug-, and pandrug-resistant bacteria), including carbapenem- and colistin-resistant bacteria. Currently, non-mobile tet(X) and mobile plasmid-mediated transmissible tet(X) and resistance-nodulation-division (RND) efflux pump tmexCD-toprJ genes, conferring high-level TIG (HLT) resistance have been detected in humans, animals, and environmental ecosystems. Given the increasing rate of development and spread of plasmid-mediated resistance against the two last-resort antibiotics, colistin (COL) and TIG, there is a need to alert the global community on the emergence and spread of plasmid-mediated HLT resistance and the need for nations, especially developing countries, to increase their antimicrobial stewardship. Justifiably, MTR spread projects One Health ramifications and portends a monumental threat to global public and animal health, which could lead to outrageous health and economic impact due to limited options for therapy. To delve more into this very important subject matter, this current work will discuss why MTR is an emerging health catastrophe requiring urgent One Health global intervention, which has been constructed as follows: (a) antimicrobial activity of TIG; (b) mechanism of TIG resistance; (c) distribution, reservoirs, and traits of MTR gene-harboring isolates; (d) causes of MTR development; (e) possible MTR gene transfer mode and One Health implication; and (f) MTR spread and mitigating strategies.
Collapse
Affiliation(s)
- Madubuike Umunna Anyanwu
- Microbiology Unit, Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Obichukwu Chisom Nwobi
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Charles Odilichukwu R. Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Ifeoma M. Ezeonu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
31
|
Zhao N, Guo J, Zhang B, Liu K, Liu Y, Shen Y, Li J. Heterogeneity of the Tissue-specific Mucosal Microbiome of Normal Grass Carp (Ctenopharyngodon idella). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:366-379. [PMID: 35303209 DOI: 10.1007/s10126-022-10113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Microbiome plays key roles in the digestion, metabolism, and immunity of the grass carp (Ctenopharyngodon idella). Here, we characterized the normal microbiome of the intestinal contents (IC), skin mucus (SM), oral mucosa (OM), and gill mucosa (GM) of the grass carp, as well as the microbiome of the sidewall (SW) of the raising pool, using full-length 16S rRNA sequencing based on the PacBio platform in this specie for the first time. Twenty phyla, 38 classes, 130 families, 219 genera, and 291 species were classified. One hundred four common classified species might be core microbiota of grass carp. Proteobacteria, Bacteroides, and Cyanobacteria were the dominant phyla in the niche of grass carp. Proteobacteria and Bacteroides dominated the taxonomic composition in the SM, GM, and OM, while Proteobacteria, Planctomycetota, and Cyanobacteria preponderated in the IC and SW groups. Microbiota of IC exhibited higher alpha diversity indices. The microbial communities clustered either in SW or the niche from grass carp, significantly tighter in the SW, based on Bray-Curtis distances (P < 0.05). SM, GM, and OM were similar in microbial composition but were significantly different from IC and SW, while IC had similarity with SW due to their common Cyanobacteria (P < 0.05). Differences were also reflected by niche-specific and differentially abundant microorganisms such as Noviherbaspirillum in the SM and Rhodopseudomonas palustris, Mycobacterium fortuitum, and Acinetobacter schindleri in GM. Significantly raised gene expression was found in IC and SM associated with cell cycle control, cell division, chromosome, coenzyme transport and metabolism, replication, recombination and repair, cell motility, post-translational modification, signal transduction mechanisms, intracellular trafficking, secretion, and vesicles by PICRUSt. This work may be of great value for understanding of fish-microbial co-workshops, especially in different niche of grass carp.
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Jiamin Guo
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Bo Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Kai Liu
- Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Yuting Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.
- College of Fisheries and Life Science, Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.
- College of Fisheries and Life Science, Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
32
|
Cui CY, Li XJ, Chen C, Wu XT, He Q, Jia QL, Zhang XJ, Lin ZY, Li C, Fang LX, Liao XP, Liu YH, Hu B, Sun J. Comprehensive analysis of plasmid-mediated tet(X4)-positive Escherichia coli isolates from clinical settings revealed a high correlation with animals and environments-derived strains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150687. [PMID: 34597551 DOI: 10.1016/j.scitotenv.2021.150687] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The emergence of novel plasmid-mediated high-level tigecycline resistance genes tet(X) in the Enterobacteriaceae has increased public health risk for treating severe bacterial infections. Despite growing reports of tet(X)-positive isolates detected in animal sources, the epidemiological association of animal- and environment-derived isolates with human-derived isolates remains unclear. Here, we performed a comprehensive analysis of tet(X4)-positive Escherichia coli isolates collected in a hospital in Guangdong province, China. A total of 48 tet(X4)-positive E. coli isolates were obtained from 1001 fecal samples. The tet(X4)-positive E. coli isolates were genetically diverse but certain strains that belonged to ST48, ST10, and ST877 etc. also have clonally transmitted. Most of the tet(X4) genes from these patient isolates were located on conjugative plasmids that were successfully transferred (64.6%) and generally coexisted with other antibiotic resistance genes including aadA, floR, blaTEM and qnrS. More importantly, we found the IncX1 type plasmid was a common vector for tet(X4) and was prevalent in these patient-derived strains (31.3%). This plasmid type has been detected in animal-derived strains from different species in different regions demonstrating its strong transmission ability and wide host range. Furthermore, phylogenetic analysis revealed that certain strains of patient and animal origin were closely related indicating that the tet(X4)-positive E. coli isolates were likely to have cross-sectorial clonal transmission between humans, animals, and farm environments. Our research greatly expands the limited epidemiological knowledge of tet(X4)-positive strains in clinical settings and provides definitive evidence for the epidemiological link between human-derived tet(X4)-positive isolates and animal-derived isolates.
Collapse
Affiliation(s)
- Chao-Yue Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Jie Li
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Chong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Xiao-Ting Wu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qian He
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qiu-Lin Jia
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Jing Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhuo-Yu Lin
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Cang Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Bo Hu
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
33
|
Cui CY, Chen Q, He Q, Chen C, Zhang RM, Feng Y, Sun J. Transferability of tigecycline resistance: Characterization of the expanding Tet(X) family. WIREs Mech Dis 2022; 14:e1538. [PMID: 35023325 DOI: 10.1002/wsbm.1538] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/13/2023]
Abstract
Tetracycline and its derivative tigecycline are clinical options against Gram-negative bacterial infections. The emergence of mobile Tet(X) enzymes that destruct tetracycline-type antibiotics is posing a big challenge to antibacterial therapy and food/environmental securities. Here, we present an update on a growing number of Tet(X) variants. We describe structure and action of Tet(X) enzyme, and discuss the evolutional origin. In addition, potential Tet(X) inhibitors are given. This mini-review might benefit better understanding of Tet(X)-mediated tigecycline resistance. This article is categorized under: Infectious Diseases > Genetics/Genomics/Epigenetics Infectious Diseases > Environmental Factors Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Chao-Yue Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qiwei Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.,Department of Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qian He
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rong-Min Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Youjun Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.,Department of Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
34
|
Li Y, Peng K, Yin Y, Sun X, Zhang W, Li R, Wang Z. Occurrence and Molecular Characterization of Abundant tet(X) Variants Among Diverse Bacterial Species of Chicken Origin in Jiangsu, China. Front Microbiol 2022; 12:751006. [PMID: 34987485 PMCID: PMC8723793 DOI: 10.3389/fmicb.2021.751006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Many novel tigecycline-inactivating enzymes encoded by tet(X) variants from different bacteria were discovered since the plasmid-mediated tet(X3) and tet(X4) genes conferring high-level resistance to tigecycline in Enterobacterales and Acinetobacter were reported. However, there have been no comprehensive studies of the prevalence of different tet(X) variants in poultry farms. In this study, we collected 45 chicken fecal samples, isolated tet(X)-positive strains, and performed antimicrobial susceptibility testing, conjugation assay, whole-genome sequencing, and bioinformatics analysis. A total of 15 tet(X)-bearing strains were isolated from 13 samples. Species identification and tet(X) subtyping analysis found that the 15 strains belonged to eight different species and harbored four different tet(X) variants. Genomic investigation showed that transmission of tet(X) variants was associated with various mobile genetic elements, and tet(X4) was the most prevalent variant transferred by conjugative plasmids. Meanwhile, we characterized a plasmid co-harboring tet(X6) and blaOXA–58 in Acinetobacter baumannii. In summary, we demonstrated that different tet(X) variants were widely disseminated in the chicken farming environment and dominated by tet(X4). This finding expands the understanding of the prevalence of tet(X) among different animal sources, and it was advocated to reduce the usage of antibiotics to limit the emergence and transmission of novel tet(X) variants in the poultry industry.
Collapse
Affiliation(s)
- Yingshan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Kai Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yi Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xinran Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Wenhui Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
35
|
Sporadic Dissemination of tet(X3) and tet(X6) Mediated by Highly Diverse Plasmidomes among Livestock-Associated Acinetobacter. Microbiol Spectr 2021; 9:e0114121. [PMID: 34851156 PMCID: PMC8635130 DOI: 10.1128/spectrum.01141-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of high-level tigecycline resistance mediated by plasmid-borne tet(X) genes greatly threatens the clinical effectiveness of tigecycline. However, the dissemination pattern of plasmid-borne tet(X) genes remains unclear. We here recovered tet(X)-positive Acinetobacter isolates from 684 fecal and environmental samples collected at six livestock farms. Fifteen tet(X)-positive Acinetobacter isolates were identified, mainly including 9 tet(X3)- and 5 tet(X6)-positive Acinetobacter towneri isolates. A clonal dissemination of tet(X3)-positive A. towneri was detected in a swine farm, while the tet(X6)-positive A. towneri isolates mainly disseminated sporadically in the same farm. A tet(X3)-carrying plasmid (pAT181) was self-transmissible from a tigecycline-susceptible A. towneri strain to Acinetobacter baumannii strain ATCC 17978, causing 64- to 512-fold increases in the MIC values of tetracyclines (including tigecycline). Worrisomely, pAT181 was stably maintained and increased the growth rate of strain ATCC 17978. Further identification of tet(X) genes in 10,680 Acinetobacter genomes retrieved from GenBank revealed that tet(X3) (n = 249), tet(X5)-like (n = 61), and tet(X6) (n = 53) were the prevalent alleles mainly carried by four species, and most of them were livestock associated. Phylogenetic analysis showed that most of the tet(X3)- and tet(X6)-positive isolates disseminated sporadically. The structures of the tet(X3), and tet(X6) plasmidomes were highly diverse, and no epidemic plasmids were detected. However, cross-species and cross-region transmissions of tet(X3) might have been mediated by several plasmids in a small proportion of strains. Our study implies that horizontal plasmid transfer may be insignificant for the current dissemination of tet(X3) and tet(X6) in Acinetobacter strains. Continuous surveillance for tet(X) genes in the context of One Health is necessary to prevent them from transmitting to humans. IMPORTANCE Recently identified plasmid-borne tet(X) genes have greatly challenged the efficiency of tigecycline, a last-resort antibiotic for severe infection, while the dissemination pattern of the plasmid-borne tet(X) genes remains unclear. In this study, we identified a clonal dissemination of tet(X3)-positive A. towneri isolates on a swine farm, while the tet(X6)-positive A. towneri strains mainly disseminated sporadically on the same farm. Of more concern, a tet(X3)-carrying plasmid was found to be self-transmissible, resulting in enhanced tigecycline resistance and growth rate of the recipient. Further exploration of a global data set of tet(X)-positive Acinetobacter genomes retrieved from GenBank revealed that most of the tet(X3)- and tet(X6)-positive isolates shared a highly distant relationship, and the structures of tet(X3) and tet(X6) plasmidomes exhibited high mosaicism. Notably, some of the isolates belong to Acinetobacter species that are opportunistic pathogens and have been identified as sources of nosocomial infections, raising concerns about transmission to humans in the future. Our study evidenced the sporadic dissemination of tet(X3) and tet(X6) in Acinetobacter strains and the necessity of continuous surveillance for tet(X) genes in the context of One Health.
Collapse
|
36
|
Usui M, Fukuda A, Suzuki Y, Nakajima C, Tamura Y. Broad-host-range IncW plasmid harbouring tet(X) in Escherichia coli isolated from pigs in Japan. J Glob Antimicrob Resist 2021; 28:97-101. [PMID: 34936926 DOI: 10.1016/j.jgar.2021.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Tetracyclines are used in veterinary medicine for livestock. Tigecycline, a semisynthetic tetracycline derivative, is the last resort antimicrobial used to treat multidrug-resistant gram-negative bacterial infections. The prevalence of variants of mobile tigecycline resistance gene tet(X) in livestock is increasing worldwide. However, the prevalence of Tet(X) among livestock in Japan is obscure. This study was conducted to clarify the prevalence of Tet(X) in pigs in Japan, focusing on isolation and molecular characterisation of plasmid-mediated tet(X)-positive Escherichia coli through retrospective analysis. METHODS We retrospectively screened for tigecycline-resistant E. coli strains isolated from pigs. The tigecycline-resistant strain and tet(X)-harbouring plasmid were characterised. RESULTS The IncW plasmid harbouring the tet(X) variant (previously named as tet(X6)) was detected in one E. coli isolate from pigs (0.8%, 1/120) in 2012. The tet(X) plasmid was transferable by conjugation into the E. coli ML4909 recipient strain. Some mobile gene elements (TnAs3 and ISVsa3) were observed in the region surrounding tet(X). The tet(X)-harbouring plasmid shared a conserved backbone IncW plasmid R388, which is a broad-host-range plasmid. CONCLUSIONS The emergence and spread of tet(X) variants in Enterobacterales poses a public health concern. To the best of our knowledge, this is the first report of the emergence of the IncW plasmid harbouring tet(X). Using tetracyclines in livestock exerts selective pressure on the tet(X) plasmid; therefore, prudent use of tetracyclines is required.
Collapse
Affiliation(s)
- Masaru Usui
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.
| | - Akira Fukuda
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Hokkaido, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Hokkaido, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Hokkaido, Japan
| | - Yutaka Tamura
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| |
Collapse
|
37
|
Characterization of NDM-1-Producing Carbapenemase in Proteus mirabilis among Broilers in China. Microorganisms 2021; 9:microorganisms9122443. [PMID: 34946044 PMCID: PMC8707091 DOI: 10.3390/microorganisms9122443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/14/2021] [Accepted: 11/23/2021] [Indexed: 11/28/2022] Open
Abstract
Carbapenem-resistant pathogens mediated by metallo-beta-lactamases (MBLs) have spread worldwide, where NDM-1 is a typical and key MBL. Here, we firstly discussed the distribution characterization of NDM-1, which produces multidrug-resistant Proteus mirabilis among broilers in China. From January to April 2019, 40 (18.1%, 40/221) blaNDM-1-carrying P. mirabilis strains were recovered from commercial broilers in slaughterhouse B in China. All the isolates were resistant to imipenem, meropenem and other β-lactams. These isolates belong to five clusters identified via pulsed field gel electrophoresis (PFGE). Further studies on twenty representative strains revealed that seven blaNDM-1 genes were located on plasmids with sizes of 104.5–138.9 kb. Notably, only three strains (PB72, PB96 and PB109) were successfully transferred to Escherichia coli J53, while the other four isolates were located in nontransferable plasmids. The rest were harbored in chromosomes. Ulteriorly, based on whole genome sequencing (WGS), these twenty isolates showed four typical phylogenetic clades according to single nucleotide polymorphisms (SNPs) of a core genome and presented four main genomic backbone profiles, in which type II/III strains shared a similar genetic context. All of the above is evidence of blaNDM-1 transmission and evolution in P. mirabilis, suggesting that the prevalence may be more diverse in broiler farms. Accordingly, as intestinal and environmental symbiotic pathogens, blaNDM-1-positive P. mirabilis will pose greater threats to the environment and public health.
Collapse
|
38
|
Plasmids Shape the Current Prevalence of tmexCD1-toprJ1 among Klebsiella pneumoniae in Food Production Chains. mSystems 2021; 6:e0070221. [PMID: 34609171 PMCID: PMC8547460 DOI: 10.1128/msystems.00702-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of novel antimicrobial resistance genes conferring resistance to last-resort antimicrobials poses a serious challenge to global public health security. Recently, one plasmid-mediated RND family multidrug resistance efflux pump gene cluster named tmexCD1-toprJ1, which confers resistance to tigecycline, was identified in bacteria of animal and human origins. However, the comprehensive landscape of the genomic epidemiology of this novel resistance determinant remained unclear. To fill this knowledge gap, we isolated 25 tmexCD1-toprJ1-positive bacteria from 682 samples collected along the pork production chain, including swine farms, slaughterhouses, and retail pork, and characterized the positive strains systematically using antimicrobial susceptibility testing, conjugation assays, single-molecule sequencing, and genomic analyses. We found that tmexCD1-toprJ1-positive bacteria were most prevalent in slaughterhouses (7.32%), followed by retail pork (0.72%). Most of the positive strains were Klebsiella pneumoniae (23/25), followed by Proteus mirabilis (2/25). IncFIB(Mar)/IncHI1B hybrid plasmids were mainly vectors for tmexCD1-toprJ1 and dominated the horizontal dissemination of tmexCD1-toprJ1 among K. pneumoniae isolates. However, in this study, we identified the IncR plasmid as a tmexCD1-toprJ1-positive plasmid with a broad host range, which evidenced that the widespread prevalence of tmexCD1-toprJ1 is possible due to such kinds of plasmids in the future. In addition, we found diversity and heterogeneity of translocatable units containing tmexCD1-toprJ1 in the plasmids. We also investigated the genetic features of tmexCD1-toprJ1 in online databases, which led to the proposal of the umuC gene as the potential insertion site of tmexCD1-toprJ1. Collectively, this study enriches the epidemiological and genomic characterization of tmexCD1-toprJ1 and provides a theoretical basis for preventing an increase in tmexCD1-toprJ1 prevalence. IMPORTANCE Tigecycline, the first member of the glycylcycline class of antibacterial agents, is frequently used to treat complicated infections caused by multidrug-resistant Gram-positive and Gram-negative bacteria. The emergence of a novel plasmid-mediated efflux pump, TmexCD1-ToprJ1, conferring resistance to multiple antimicrobials, including tigecycline, poses a huge risk to human health. In this study, we investigated the prevalence of tmexCD1-toprJ1-positive strains along the food production chain and found that tmexCD1-toprJ1 was mainly distributed in IncFIB(Mar)/HI1B hybrid plasmids of K. pneumoniae. We also observed a potential risk of transmission of such plasmids along the pork processing chain, which finally may incur a threat to humans. Furthermore, the IncFIB(Mar)/HI1B tmexCD1-toprJ1-positive plasmids with a limited host range and specific insertion sites of tmexCD1-toprJ1 are strong evidence to prevent a fulminant epidemic of tmexCD1-toprJ1 among diverse pathogens. The mobilization and dissemination of tmexCD1-toprJ1, especially when driven by plasmids, deserve sustained attention and investigations.
Collapse
|
39
|
An Outbreak of tet(X6)-Carrying Tigecycline-Resistant Acinetobacter baumannii Isolates with a New Capsular Type at a Hospital in Taiwan. Antibiotics (Basel) 2021; 10:antibiotics10101239. [PMID: 34680819 PMCID: PMC8532604 DOI: 10.3390/antibiotics10101239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/21/2022] Open
Abstract
Dissemination of multidrug-resistant, particularly tigecycline-resistant, Acinetobacter baumannii is of critical importance, as tigecycline is considered a last-line antibiotic. Acquisition of tet(X), a tigecycline-inactivating enzyme mostly found in strains of animal origin, imparts tigecycline resistance to A. baumannii. Herein, we investigated the presence of tet(X) variants among 228 tigecycline-non-susceptible A. baumannii isolates from patients at a Taiwanese hospital via polymerase chain reaction using a newly designed universal primer pair. Seven strains (3%) carrying tet(X)-like genes were subjected to whole genome sequencing, revealing high DNA identity. Phylogenetic analysis based on the PFGE profile clustered the seven strains in a clade, which were thus considered outbreak strains. These strains, which were found to co-harbor the chromosome-encoded tet(X6) and the plasmid-encoded blaOXA-72 genes, showed a distinct genotype with an uncommon sequence type (Oxford ST793/Pasteur ST723) and a new capsular type (KL129). In conclusion, we identified an outbreak clone co-carrying tet(X6) and blaOXA-72 among a group of clinical A. baumannii isolates in Taiwan. To the best of our knowledge, this is the first description of tet(X6) in humans and the first report of a tet(X)-like gene in Taiwan. These findings identify the risk for the spread of tet(X6)-carrying tigecycline- and carbapenem-resistant A. baumannii in human healthcare settings.
Collapse
|
40
|
Pan Y, Awan F, Zhenbao M, Zhang X, Zeng J, Zeng Z, Xiong W. Preliminary view of the global distribution and spread of the tet(X) family of tigecycline resistance genes. J Antimicrob Chemother 2021; 75:2797-2803. [PMID: 32766786 DOI: 10.1093/jac/dkaa284] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The emergence of plasmid-mediated tet(X3)/tet(X4) genes is threatening the role of tigecycline as a last-resort antibiotic to treat clinical infections caused by XDR bacteria. Considering the possible public health threat posed by tet(X) and its variants [which we collectively call 'tet(X) genes' in this study], global monitoring and surveillance are urgently required. OBJECTIVES Here we conducted a worldwide survey of the global distribution and spread of tet(X) genes. METHODS We analysed a comprehensive dataset of bacterial genomes in conjunction with surveillance data from our laboratory and the NCBI database, as well as sufficient metadata to characterize the results. RESULTS The global distribution features of tet(X) genes were revealed. We clustered three types of genetic backbones of tet(X) genes embedded or transferred in bacterial genomes. Our pan-genome analyses revealed a large genetic pool composed of tet(X)-carrying sequences. Moreover, phylogenetic trees of tet(X) genes and tet(X)-like proteins were built. CONCLUSIONS To the best of our knowledge, our results provide the first view of the global distribution of tet(X) genes, demonstrate the features of tet(X)-carrying fragments and highlight the possible evolution of tigecycline-inactivation enzymes in diverse bacterial species and habitats.
Collapse
Affiliation(s)
- Yu Pan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China.,National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Furqan Awan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
| | - Ma Zhenbao
- National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
| | - Xiufeng Zhang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
| | - Jiaxiong Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China.,National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China.,National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| |
Collapse
|
41
|
Jacobmeyer L, Stamm I, Semmler T, Ewers C. First report of NDM-1 in an Acinetobacter baumannii strain from a pet animal in Europe. J Glob Antimicrob Resist 2021; 26:128-129. [PMID: 34044179 DOI: 10.1016/j.jgar.2021.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/15/2021] [Accepted: 05/16/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Lisa Jacobmeyer
- Institute of Hygiene and Infectious Diseases of Animals (IHIT), Giessen, Germany
| | | | | | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals (IHIT), Giessen, Germany.
| |
Collapse
|
42
|
Cui CY, He Q, Jia QL, Li C, Chen C, Wu XT, Zhang XJ, Lin ZY, Zheng ZJ, Liao XP, Kreiswirth BN, Liu YH, Chen L, Sun J. Evolutionary Trajectory of the Tet(X) Family: Critical Residue Changes towards High-Level Tigecycline Resistance. mSystems 2021; 6:e00050-21. [PMID: 34006624 PMCID: PMC8269203 DOI: 10.1128/msystems.00050-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/05/2021] [Indexed: 01/05/2023] Open
Abstract
The emergence of the plasmid-mediated high-level tigecycline resistance mechanism Tet(X) threatens the role of tigecycline as the "last-resort" antibiotic in the treatment of infections caused by carbapenem-resistant Gram-negative bacteria. Compared with that of the prototypical Tet(X), the enzymatic activities of Tet(X3) and Tet(X4) were significantly enhanced, correlating with high-level tigecycline resistance, but the underlying mechanisms remain unclear. In this study, we probed the key amino acid changes leading to the enhancement of Tet(X) function and clarified the structural characteristics and evolutionary path of Tet(X) based upon the key residue changes. Through domain exchange and site-directed mutagenesis experiments, we successfully identified five candidate residues mutations (L282S, A339T, D340N, V350I, and K351E), involved in Tet(X2) activity enhancement. Importantly, these 5 residue changes were 100% conserved among all reported high-activity Tet(X) orthologs, Tet(X3) to Tet(X7), suggesting the important role of these residue changes in the molecular evolution of Tet(X). Structural analysis suggested that the mutant residues did not directly participate in the substrate and flavin adenine dinucleotide (FAD) recognition or binding, but indirectly altered the conformational dynamics of the enzyme through the interaction with adjacent residues. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and UV full-wavelength scanning experiments confirmed that each mutation led to an increase in activity without changing the biochemical properties of the Tet(X) enzyme. Further phylogenetic analysis suggested that Riemerella anatipestifer served as an important incubator and a main bridge vector for the resistance enhancement and spread of Tet(X). This study expands the knowledge of the structure and function of Tet(X) and provides insights into the evolutionary relationship between Tet(X) orthologs.IMPORTANCE The newly emerged tigecycline-inactivating enzymes Tet(X3) and Tet(X4), which are associated with high-level tigecycline resistance, demonstrated significantly higher activities in comparison to that of the prototypical Tet(X) enzyme, threatening the clinical efficacy of tigecycline as a last-resort antibiotic to treat multidrug-resistant (MDR) Gram-negative bacterial infections. However, the molecular mechanisms leading to high-level tigecycline resistance remain elusive. Here, we identified 5 key residue changes that lead to enhanced Tet(X) activity through domain swapping and site-directed mutagenesis. Instead of direct involvement with substrate binding or catalysis, these residue changes indirectly alter the conformational dynamics and allosterically affect enzyme activities. These findings further broaden the understanding of the structural characteristics and functional evolution of Tet(X) and provide a basis for the subsequent screening of specific inhibitors and the development of novel tetracycline antibiotics.
Collapse
Affiliation(s)
- Chao-Yue Cui
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qian He
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qiu-Lin Jia
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Cang Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chong Chen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Xiao-Ting Wu
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Jing Zhang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhuo-Yu Lin
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zi-Jian Zheng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Ping Liao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Ya-Hong Liu
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Jian Sun
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
43
|
Cheng Y, Chen Y, Liu Y, Guo Y, Zhou Y, Xiao T, Zhang S, Xu H, Chen Y, Shan T, Xiao Y, Zhou K. Identification of novel tetracycline resistance gene tet(X14) and its co-occurrence with tet(X2) in a tigecycline-resistant and colistin-resistant Empedobacter stercoris. Emerg Microbes Infect 2021; 9:1843-1852. [PMID: 32731802 PMCID: PMC7473080 DOI: 10.1080/22221751.2020.1803769] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tigecycline is one of the last-resort antibiotics to treat severe infections. Recently, tigecycline resistance has sporadically emerged with an increasing trend, and Tet(X) family represents a new resistance mechanism of tigecycline. In this study, a novel chromosome-encoded tigecycline resistance gene, tet(X14), was identified in a tigecycline-resistant and colistin-resistant Empedobacter stercoris strain ES183 recovered from a pig fecal sample in China. Tet(X14) shows 67.14-96.39% sequence identity to the other variants [Tet(X) to Tet(X13)]. Overexpression of Tet(X14) in Escherichia coli confers 16-fold increase in tigecycline MIC (from 0.125 to 2 mg/L), which is lower than that of Tet(X3), Tet(X4) and Tet(X6). Structural modelling predicted that Tet(X14) shared a high homology with the other 12 variants with RMSD value from 0.003 to 0.055, and Tet(X14) can interact with tetracyclines by a similar pattern as the other Tet(X)s. tet(X14) and two copies of tet(X2) were identified on a genome island with abnormal GC content carried by the chromosome of ES183, and no mobile genetic elements were found surrounding, suggesting that tet(X14) might be heterologously obtained by ES183 via recombination. Blasting in Genbank revealed that Tet(X14) was exclusively detected on the chromosome of Riemerella anatipestifer, mainly encoded on antimicrobial resistance islands. E. stercoris and R. anatipestifer belong to the family Flavobacteriaceae, suggesting that the members of Flavobacteriaceae maybe the major reservoir of tet(X14). Our study reports a novel chromosome-encoded tigecycline resistance gene tet(X14). The expanded members of Tet(X) family warrants the potential large-scale dissemination and the necessity of continuous surveillance for tet(X)-mediated tigecycline resistance.
Collapse
Affiliation(s)
- Yingying Cheng
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, People's Republic of China.,The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Yong Chen
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, People's Republic of China.,The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Yang Liu
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, People's Republic of China.,The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Yuqi Guo
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, People's Republic of China.,The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Yanzi Zhou
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Tingting Xiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Shuntian Zhang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yunbo Chen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Yonghong Xiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, People's Republic of China.,The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, People's Republic of China
| |
Collapse
|
44
|
Detection of a new tet(X6)-encoding plasmid in Acinetobacter towneri. J Glob Antimicrob Resist 2021; 25:132-136. [PMID: 33762210 DOI: 10.1016/j.jgar.2021.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/01/2020] [Accepted: 03/02/2021] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES The aim of this study was to characterise a novel tet(X6)-carrying plasmid detected in a livestock-associated Acinetobacter towneri isolate. METHODS PCR screening was performed to detect tet(X) variants in livestock-associated Acinetobacter spp. isolates. The tet(X6)-positive isolate was analysed by whole-genome sequencing. Functional cloning was performed to detect the activity of Tet(X6). Antibiotic susceptibility was determined by broth dilution and microbiological degradation assays. Site-directed mutagenesis was performed to identify the role of 23-Ala residue of Tet(X6) in tigecycline resistance. RESULTS The tet(X6) gene was detected on a 159-kb plasmid (pAT205) carried by a tigecycline-susceptible A. towneri isolate recovered from a swine faecal sample. The genetic context of tet(X6) [ΔISVsa3-tet(X6)-abh-guaA-ISVsa3] is highly similar to that of the reported plasmid-borne tet(X) variants, suggesting that it may represent a common structure mediating the dissemination of plasmid-borne tet(X) genes. Additional resistance genes detected on pAT205 were carried by a Tn6205-like region and a disrupted class 2 integron. Gene expression and microbiological degradation assays consistently suggested that the activity of tet(X6) is weaker than that of tet(X3) and tet(X4). The 23-Ala residue of the first FAD-binding site conferred higher activity to Tet(X6) than the Gly reside conserved in the other plasmid-borne tet(X) variants, indicating that the site might be under selection. CONCLUSION This study alerts to the silent dissemination possibility of tigecycline resistance mediated by a novel plasmid. Continuous monitoring of plasmid-borne tet(X) is imperative for tackling its dissemination.
Collapse
|
45
|
He T, Wei RC, Zhang L, Gong L, Zhu L, Gu J, Fu YL, Wang Y, Liu DJ, Wang R. Dissemination of the tet(X)-Variant Genes from Layer Farms to Manure-Receiving Soil and Corresponding Lettuce. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1604-1614. [PMID: 33427447 DOI: 10.1021/acs.est.0c05042] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The occurrence of high-level tigecycline resistance tet(X) variant genes represents a new transferable resistance crisis to food safety and human health. Here, we investigated the abundance of tet(X)-variant genes [tet(X), tet(X1) to tet(X6)] in 33 samples collected from layer manures, manured/un-manured soils, and corresponding lettuce from three provinces in China. The results showed the occurrence of tet(X)/(X2), tet(X3), and tet(X4) in 24 samples. The detection rate of tet(X)/(X2) (23/24) is higher than that of tet(X3) (7/24) and tet(X4) (2/24), and tet(X)/tet(X2) and tet(X3) were found to be enriched and more abundant in most manured soil and several lettuce samples from manured soils than that from manure samples. Twenty six tigecycline-resistant bacteria were isolated, and tet(X)-variant genes were found to be disseminated not only by bacterial clone spreading but also via multidrug resistance plasmids. The total concentrations of tet(X)-variant genes showed significantly positive correlations (R = 0.683, p < 0.001) with ISCR2. Two veterinary tetracyclines (tetracycline and oxytetracycline) and other classes of antimicrobials (enrofloxacin, azithromycin, thiamphenicol, and florfenicol) showed significant correlations with the total concentrations of tet(X)-variant genes (R = 0.35-0.516, p < 0.05). The findings indicate the transmission of tet(X)-variant genes from layer manures to their receiving environmental soils and lettuce and highlight the contribution of veterinary antimicrobials to the spread of tet(X)-variant genes.
Collapse
Affiliation(s)
- Tao He
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Rui-Cheng Wei
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lili Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lan Gong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lei Zhu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jili Gu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yu-Lin Fu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - De-Jun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Ran Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
46
|
Spread of tet(X5) and tet(X6) genes in multidrug-resistant Acinetobacter baumannii strains of animal origin. Vet Microbiol 2020; 253:108954. [PMID: 33373881 DOI: 10.1016/j.vetmic.2020.108954] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/07/2020] [Indexed: 01/05/2023]
Abstract
The recent emergence of plasmid-mediated tigecycline resistance gene tet(X) has challenged the clinical effectiveness of tigecycline as a last-resort treatment option. During 2017-2018, 336 fecal samples from sick ducks, pigs, chickens and geese in Guangdong, China, were screened for tet(X)-positive Acinetobacter baumannii strains. Their activities on tetracyclines were determined by microbiological degradation and mass spectrometry, followed by susceptibility testing, sequence typing, gene transfer, molecular location and genomic DNA sequencing analyses. A total of 10 tet(X)-positive A. baumannii strains were isolated from ducks and chickens, including eight plasmid-borne tet(X5)-positive and two chromosomal tet(X6)-positive isolates. All of them exhibited good degradation activities on tetracyclines by hydroxylation at C11a and were multidrug-resistant to tigecycline, tetracycline, florfenicol, ciprofloxacin and trimethoprim/sulfamethoxazole. Genetically, they belonged to two sequence types (ST355, n = 8; ST1980, n = 2) that were consistent with their pulsotypes, revealing a clonal spread of ST355 A. baumannii. An ISCR2- or IS26-mediated tet(X) transposition structure, homologous to those of clinical A. baumannii strains, was also identified and ISCR2 could transfer tet(X5) into the recipient Acinetobacter baylyi ADP1 at a frequency of (1.8 ± 0.3)×10-6. Therefore, more efforts are needed to evaluate the clinical impact of these tigecycline resistance genes.
Collapse
|
47
|
Chen C, Cui CY, Yu JJ, He Q, Wu XT, He YZ, Cui ZH, Li C, Jia QL, Shen XG, Sun RY, Wang XR, Wang MG, Tang T, Zhang Y, Liao XP, Kreiswirth BN, Zhou SD, Huang B, Du H, Sun J, Chen L, Liu YH. Genetic diversity and characteristics of high-level tigecycline resistance Tet(X) in Acinetobacter species. Genome Med 2020; 12:111. [PMID: 33287863 PMCID: PMC7722449 DOI: 10.1186/s13073-020-00807-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The recent emergence and dissemination of high-level mobile tigecycline resistance Tet(X) challenge the clinical effectiveness of tigecycline, one of the last-resort therapeutic options for complicated infections caused by multidrug-resistant Gram-negative and Gram-positive pathogens. Although tet(X) has been found in various bacterial species, less is known about phylogeographic distribution and phenotypic variance of different genetic variants. METHODS Herein, we conducted a multiregional whole-genome sequencing study of tet(X)-positive Acinetobacter isolates from human, animal, and their surrounding environmental sources in China. The molecular and enzymatic features of tet(X) variants were characterized by clonal expression, microbial degradation, reverse transcription, and gene transfer experiments, while the tet(X) genetic diversity and molecular evolution were explored by comparative genomic and Bayesian evolutionary analyses. RESULTS We identified 193 tet(X)-positive isolates from 3846 samples, with the prevalence ranging from 2.3 to 25.3% in nine provinces in China. The tet(X) was broadly distributed in 12 Acinetobacter species, including six novel species firstly described here. Besides tet(X3) (n = 188) and tet(X4) (n = 5), two tet(X5) variants, tet(X5.2) (n = 36) and tet(X5.3) (n = 4), were also found together with tet(X3) or tet(X4) but without additive effects on tetracyclines. These tet(X)-positive Acinetobacter spp. isolates exhibited 100% resistance rates to tigecycline and tetracycline, as well as high minimum inhibitory concentrations to eravacycline (2-8 μg/mL) and omadacycline (8-16 μg/mL). Genetic analysis revealed that different tet(X) variants shared an analogous ISCR2-mediated transposon structure. The molecular evolutionary analysis indicated that Tet(X) variants likely shared the same common ancestor with the chromosomal monooxygenases that are found in environmental Flavobacteriaceae bacteria, but sequence divergence suggested separation ~ 9900 years ago (7887 BC), presumably associated with the mobilization of tet(X)-like genes through horizontal transfer. CONCLUSIONS Four tet(X) variants were identified in this study, and they were widely distributed in multiple Acinetobacter spp. strains from various ecological niches across China. Our research also highlighted the crucial role of ISCR2 in mobilizing tet(X)-like genes between different Acinetobacter species and explored the evolutionary history of Tet(X)-like monooxygenases. Further studies are needed to evaluate the clinical impact of these mobile tigecycline resistance genes.
Collapse
Affiliation(s)
- Chong Chen
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Chao-Yue Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jun-Jun Yu
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, WENS Foodstuff Group Co Ltd, Xinxing, China
| | - Qian He
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiao-Ting Wu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Yu-Zhang He
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ze-Hua Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Cang Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Qiu-Lin Jia
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiang-Guang Shen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ruan-Yang Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xi-Ran Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Min-Ge Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Tian Tang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Yan Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Shi-Dan Zhou
- Intensive Care Unit, Huizhou Municipal Central Hospital, Huizhou, China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.
- Hackensack Meridian School of Medicine at Seton Hall University, Nutley, NJ, USA.
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
48
|
Cui ZH, Zheng ZJ, Tang T, Zhong ZX, Cui CY, Lian XL, Fang LX, He Q, Wang XR, Chen C, He B, Wang MG, Liu YH, Liao XP, Sun J. Rapid Detection of High-Level Tigecycline Resistance in Tet(X)-Producing Escherichia coli and Acinetobacter spp. Based on MALDI-TOF MS. Front Cell Infect Microbiol 2020; 10:583341. [PMID: 33102258 PMCID: PMC7545121 DOI: 10.3389/fcimb.2020.583341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
The emergence and spread of the novel mobile Tet(X) tetracycline destructases confer high-level tigecycline and eravacycline resistance in Escherichia coli and Acinetobacter spp. and pose serious threats to human and animal health. Therefore, a rapid and robust Tet(X) detection assay was urgently needed to monitor the dissemination of tigecycline resistance. We developed a rapid and simple assay to detect Tet(X) producers in Gram-negative bacteria based on matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). This MALDITet(X) test was based on the inactivation of tigecycline by a Tet(X)-producing strain after a 3-h incubation of bacterial cultures with tigecycline. Culture supernatants were analyzed using MALDI-TOF MS to identify peaks corresponding to tigecycline (586 ± 0.2 m/z) and a tigecycline metabolite (602 ± 0.2 m/z). The results were calculated using the MS ratio [metabolite/(metabolite + tigecycline)]. The sensitivity of the MALDITet(X) test with all 216 test strains was 99.19%, and specificity was 100%. The test can be completed within 3 h. Overall, the MALDITet(X) test is an accurate, rapid, cost-effective method for the detection of Tet(X)-producing E. coli and Acinetobacter spp. by determining the unique peak of an oxygen-modified derivative of tigecycline.
Collapse
Affiliation(s)
- Ze-Hua Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Zi-Jian Zheng
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Tian Tang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Zi-Xing Zhong
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Chao-Yue Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xin-Lei Lian
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Qian He
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xi-Ran Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Chong Chen
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Bing He
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Min-Ge Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
49
|
Wang J, Wang Y, Wu H, Wang ZY, Shen PC, Tian YQ, Sun F, Pan ZM, Jiao X. Coexistence of bla OXA-58 and tet(X) on a Novel Plasmid in Acinetobacter sp. From Pig in Shanghai, China. Front Microbiol 2020; 11:578020. [PMID: 33042094 PMCID: PMC7530245 DOI: 10.3389/fmicb.2020.578020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/18/2020] [Indexed: 12/31/2022] Open
Abstract
The purpose of this study was to characterize the complete sequence of a novel plasmid carrying tigecycline resistance gene tet(X) and carbapenemase gene blaOXA-58 from a swine Acinetobacter sp. strain SH19PTT10. Minimal inhibitory concentration (MIC) was performed using microbroth dilution method. The isolate SH19PTT10 was highly resistant (16 mg/L) to tigecycline, and also exhibited resistance to ampicillin, streptomycin, tetracycline, chloramphenicol, florfenicol, ciprofloxacin, and sulfamethoxazole/trimethoprim. Although SH19PTT10 harbored blaOXA-58, it was susceptible to cefotaxime and meropenem. The genome sequence of SH19PTT10 was determined using PacBio single-molecule real-time sequencing. Plasmid pYUSHP10-1 had a size of 174,032 bp and showed partial homology to several plasmids found in Acinetobacter isolates. It contained two repA genes, putative toxin-antitoxin systems (HipA/HipB, RelE/RelB, and BrnT/BrnA), partitioning genes (parA and parB), and heavy metal resistance-associated genes (copA/copB, nrp, and czcA/czcD) but the transfer region or proteins was not found. pYUSHP10-1 carried 16 resistance genes, mainly clustered in two mosaic multiresistance regions (MRRs). The first MRR contained sul3, qacI-aadA1-clmA1-aadA2-blaCARB-2-dfrA16 cassette, aac(3)-IId, and blaOXA-58. The blaOXA-58 gene was associated with ISAba3, as previously described. The second MRR is the tet(X) region (ISAcsp12-aph(3')-Ia-IS26-ΔxerD-tet(X)-res-ISCR2-sul2) related to the corresponding region in other tet(X)-bearing plasmids. The pdif sites, as well as mobile elements, play an important role in mobilization of DNA modules and plasmid evolution. Coexistence of numerous resistance genes on a single plasmid may contribute to the dissemination of these genes under pressure posed by different agents, which may explain the presence of clinically crucial resistance genes tet(X) and blaOXA-58 in livestock. Thus, rational drug use and continued surveillance of tet(X) and blaOXA-58 in livestock are warranted.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yan Wang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Han Wu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhen-Yu Wang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Peng-Cheng Shen
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yu-Qi Tian
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Fan Sun
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhi-Ming Pan
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
50
|
Li R, Peng K, Li Y, Liu Y, Wang Z. Exploring tet(X)-bearing tigecycline-resistant bacteria of swine farming environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139306. [PMID: 32446072 DOI: 10.1016/j.scitotenv.2020.139306] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/14/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Emergence of high-level tigecycline resistance tet(X) variants in animal and human Enterobacterales is posing a public health concern. Recently, novel tet(X) variants including tet(X3), tet(X4), tet(X5) and tet(X6) were detected in Enterobacterales and Acinetobacter baumannii. Here, we comprehensively investigated the prevalence of tet(X) variants among different bacterial species in swine farm environment with nanopore sequencing. The tet(X6) gene was found located on both plasmids and ICEs in Proteus, but tet(X4) was in plasmids in E. coli. To our knowledge, this is the first report of the emergence of IncA/C2-type plasmid-mediated tet(X6). The bacterial host adaptation of different tet(X) variants implies they evolved in microbiota separately, but ISCR2 should be the key element facilitating horizontal transfer of various tet(X) variants through circular intermediates. Our findings further expand the knowledge about reservoirs of mobile tigecycline resistance genes and the epidemic characteristics of tet(X) variants in animals and related environments.
Collapse
Affiliation(s)
- Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Kai Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Yan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, PR China.
| |
Collapse
|