1
|
Kajsikova M, Kajsik M, Bocanova L, Papayova K, Drahovska H, Bukovska G. Endolysin EN572-5 as an alternative to treat urinary tract infection caused by Streptococcus agalactiae. Appl Microbiol Biotechnol 2024; 108:79. [PMID: 38189950 PMCID: PMC10774192 DOI: 10.1007/s00253-023-12949-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 01/09/2024]
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is an opportunistic pathogen causing urinary tract infection (UTI). Endolysin EN572-5 was identified in prophage KMB-572-E of the human isolate Streptococcus agalactiae KMB-572. The entire EN572-5 gene was cloned into an expression vector and the corresponding recombinant protein EN572-5 was expressed in Escherichia coli in a soluble form, isolated by affinity chromatography, and characterized. The isolated protein was highly active after 30 min incubation in a temperature range of - 20 °C to 37 °C and in a pH range of 5.5-8.0. The endolysin EN572-5 lytic activity was tested on different Streptococcus spp. and Lactobacillus spp. The enzyme lysed clinical GBS (n = 31/31) and different streptococci (n = 6/8), and also exhibited moderate lytic activity against UPEC (n = 4/4), but no lysis of beneficial vaginal lactobacilli (n = 4) was observed. The ability of EN572-5 to eliminate GBS during UTI was investigated using an in vitro model of UPSA. After the administration of 3 μM EN572-5, a nearly 3-log decrease of urine bacterial burden was detected within 3 h. To date, no studies have been published on the use of endolysins against S. agalactiae during UTI. KEY POINTS: • A lytic protein, EN572-5, from a prophage of a human GBS isolate has been identified. • This protein is easily produced, simple to prepare, and stable after lyophilization. • The bacteriolytic activity of EN572-5 was demonstrated for the first time in human urine.
Collapse
Affiliation(s)
- Maria Kajsikova
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Michal Kajsik
- Comenius University Science Park, Ilkovicova 8, 841 04, Bratislava, Slovakia
| | - Lucia Bocanova
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Kristina Papayova
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Hana Drahovska
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 841 15, Bratislava, Slovakia
| | - Gabriela Bukovska
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia.
| |
Collapse
|
2
|
Wang S, Li X, Ji J, Li X, Zhu H, Duan X, Hu D, Qian P. A novel chimeric endolysin Cly2v shows potential in treating streptococci-induced bovine mastitis and systemic infections. Front Microbiol 2024; 15:1482189. [PMID: 39493846 PMCID: PMC11527626 DOI: 10.3389/fmicb.2024.1482189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
Streptococcus species are important pathogens implicated in bovine mastitis, causing considerable economic losses within the global dairy industry. With the development of multidrug-resistant bacteria, it is crucial to develop novel antibiotic alternatives. Here, we constructed a novel chimeric endolysin, Cly2v, which comprises the Ply2741 CHAP domain (1-155aa) and the PlyV12 CBD domain (146-314aa). Biochemical characterization analysis indicated that Cly2v exhibits a melting temperature of 50.7°C and retains stable bactericidal activity at pH = 3-10. In vitro experiments demonstrated that Cly2v exhibited more efficient bactericidal activity against Streptococcus compared to the parental endolysin Ply2741. Cly2v (25 μg/mL) can effectively inhibit and reduce biofilms formed by Streptococcus, resulting in a 68 and 44% reduction in OD590nm for S. agalactiae X2 and S. uberis 002-1 biofilms. Notably, in a mouse mastitis model, treatment with Cly2v (50 μg/gland) led to a reduction in bacterial load by 2.16 log10CFU/ml and decreased inflammatory cytokine levels in mammary tissue. To our knowledge, this represents the first application of a chimeric endolysin in the treatment of early-stage mouse mastitis induced by streptococci. Additionally, in a systemic infection model, treatment with Cly2v (400 μg/mouse) provided protection rates of up to 100 and 78% against S. agalactiae ATCC13813 infections when challenged for 1 h and 3 h, respectively. Furthermore, a significant reduction in bacterial loads was observed in the blood and organs compared to the PBS group. In summary, Cly2v possesses significant potential as an alternative antibiotic for the treatment of streptococci-induced bovine mastitis and systemic infections.
Collapse
Affiliation(s)
- Shuang Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xinxin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junrou Ji
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hechao Zhu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaochao Duan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dayue Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Pedersen EC, Lerche CJ, Schwartz FA, Ciofu O, Azeredo J, Thomsen K, Moser C. Bacteriophage therapy and infective endocarditis - is it realistic? APMIS 2024; 132:675-687. [PMID: 39007242 DOI: 10.1111/apm.13455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
Infective endocarditis (IE) is a severe infection of the inner heart. Even with current standard treatment, the mean in-hospital mortality is as high as 15-20%, and 1-year mortality is up to 40% for left-sided IE. Importantly, IE mortality rates have not changed substantially over the past 30 years, and the incidence of IE is rising. The treatment is challenging due to the bacterial biofilm mode of growth inside the heart valve vegetations, resulting in antibiotic tolerance. Achieving sufficient antibiotic anti-biofilm concentrations in the biofilms of the heart valve vegetations is problematic, even with high-dose and long-term antibiotic therapy. The increasing prevalence of IE caused by antibiotic-resistant bacteria adds to the challenge. Therefore, adjunctive antibiotic-potentiating drug candidates and strategies are increasingly being investigated. Bacteriophage therapy is a reemerging antibacterial treatment strategy for difficult-to-treat infections, mainly biofilm-associated and caused by multidrug-resistant bacteria. However, significant knowledge gaps regarding the safety and efficacy of phage therapy impede more widespread implementation in clinical practice. Hopefully, future preclinical and clinical testing will reveal whether it is a viable treatment. The objective of the present review is to assess whether bacteriophage therapy is a realistic treatment for IE.
Collapse
Affiliation(s)
- Emilie C Pedersen
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian Johann Lerche
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
- Department for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Oana Ciofu
- Department for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- European Society for Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Biofilms (ESGB), Basel, Switzerland
| | - Joana Azeredo
- European Society for Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Biofilms (ESGB), Basel, Switzerland
- Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Kim Thomsen
- Department of Clinical Microbiology, Zealand University Hospital, Slagelse, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
- Department for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- European Society for Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Biofilms (ESGB), Basel, Switzerland
| |
Collapse
|
4
|
Peng J, Guo C, Yang C, Zhang L, Yang F, Huang X, Yu Y, Zhang T, Peng J. Phage therapy for bone and joint infections: A comprehensive exploration of challenges, dynamics, and therapeutic prospects. J Glob Antimicrob Resist 2024; 39:12-21. [PMID: 39168373 DOI: 10.1016/j.jgar.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/27/2024] [Accepted: 07/13/2024] [Indexed: 08/23/2024] Open
Abstract
OBJECTIVES Bone and joint infections (BJI) pose formidable challenges in orthopaedics due to antibiotic resistance and the complexities of biofilm, complicating treatment. This comprehensive exploration addresses the intricate challenges posed by BJI and highlights the significant role of phage therapy as a non-antibiotic strategy. METHODS BJI, which encompass prosthetic joint infections, osteomyelitis, and purulent arthritis, are exacerbated by biofilm formation on bone and implant surfaces, hindering treatment efficacy. Gram-negative bacterial infections, characterized by elevated antibiotic resistance, further contribute to the clinical challenge. Amidst this therapeutic challenge, phage therapy emerges as a potential strategy, showing unique characteristics such as strict host specificity and biofilm disruption capabilities. RESULTS The review unveils the dynamics of phages, including their origins, lifecycle outcomes, and genomic characteristics. Animal studies, in vitro investigations, and clinical research provide compelling evidence of the efficacy of phages in treating Staphylococcus aureus infections, particularly in osteomyelitis cases. Phage lysins exhibit biofilm-disrupting capabilities, offering a meaningful method for addressing BJI. Recent statistical analyses reveal high clinical relief rates and a favourable safety profile for phage therapy. CONCLUSIONS Despite its promise, phage therapy encounters limitations, including a narrow host range and potential immunogenicity. The comprehensive analysis navigates these challenges and charts the future of phage therapy, emphasizing standardization, pharmacokinetics, and global collaboration. Anticipated strides in phage engineering and combination therapy hold promise for combating antibiotic-resistant BJI.
Collapse
Affiliation(s)
- Jiaze Peng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China
| | - Caopei Guo
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China
| | - Chengbing Yang
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China
| | - Lin Zhang
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China
| | - Fuyin Yang
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China
| | - Xianpeng Huang
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China
| | - Yang Yu
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiachen Peng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China; Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China.
| |
Collapse
|
5
|
Niu H, Gu J, Zhang Y. Bacterial persisters: molecular mechanisms and therapeutic development. Signal Transduct Target Ther 2024; 9:174. [PMID: 39013893 PMCID: PMC11252167 DOI: 10.1038/s41392-024-01866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 07/18/2024] Open
Abstract
Persisters refer to genetically drug susceptible quiescent (non-growing or slow growing) bacteria that survive in stress environments such as antibiotic exposure, acidic and starvation conditions. These cells can regrow after stress removal and remain susceptible to the same stress. Persisters are underlying the problems of treating chronic and persistent infections and relapse infections after treatment, drug resistance development, and biofilm infections, and pose significant challenges for effective treatments. Understanding the characteristics and the exact mechanisms of persister formation, especially the key molecules that affect the formation and survival of the persisters is critical to more effective treatment of chronic and persistent infections. Currently, genes related to persister formation and survival are being discovered and confirmed, but the mechanisms by which bacteria form persisters are very complex, and there are still many unanswered questions. This article comprehensively summarizes the historical background of bacterial persisters, details their complex characteristics and their relationship with antibiotic tolerant and resistant bacteria, systematically elucidates the interplay between various bacterial biological processes and the formation of persister cells, as well as consolidates the diverse anti-persister compounds and treatments. We hope to provide theoretical background for in-depth research on mechanisms of persisters and suggest new ideas for choosing strategies for more effective treatment of persistent infections.
Collapse
Affiliation(s)
- Hongxia Niu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Jiaying Gu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250022, Shandong, China.
| |
Collapse
|
6
|
Vázquez R, Gutiérrez D, Dezutter Z, Criel B, de Groote P, Briers Y. You get what you test for: The killing effect of phage lysins is highly dependent on buffer tonicity and ionic strength. Microb Biotechnol 2024; 17:e14513. [PMID: 38962879 PMCID: PMC11222872 DOI: 10.1111/1751-7915.14513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 07/05/2024] Open
Abstract
The phage lysin field has done nothing but grow in the last decades. As a result, many different research groups around the world are contributing to the field, often with certain methodological differences that pose a challenge to the interpretation and comparison of results. In this work, we present the case study of three Acinetobacter baumannii-targeting phage lysins (wild-type endolysin LysMK34 plus engineered lysins eLysMK34 and 1D10) plus one lysin with broad activity against Gram-positive bacteria (PlySs2) to provide exemplary evidence on the risks of generalization when using one of the most common lysin evaluation assays: the killing assay with resting cells. To that end, we performed killing assays with the aforementioned lysins using hypo-, iso- and hypertonic buffers plus human serum either as the reaction or the dilution medium in a systematic manner. Our findings stress the perils of creating hypotonic conditions or a hypotonic shock during a killing assay, suggesting that hypotonic buffers should be avoided as a test environment or as diluents before plating to avoid overestimation of the killing effect in the assayed conditions. As a conclusion, we suggest that the nature of both the incubation and the dilution buffers should be always clearly identified when reporting killing activity data, and that for experimental consistency the same incubation buffer should be used as a diluent for posterior serial dilution and plating unless explicitly required by the experimental design. In addition, the most appropriate buffer mimicking the final application must be chosen to obtain relevant results.
Collapse
Affiliation(s)
- Roberto Vázquez
- Department of BiotechnologyGhent UniversityGhentBelgium
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES)MadridSpain
| | | | - Zoë Dezutter
- Department of BiotechnologyGhent UniversityGhentBelgium
| | - Bjorn Criel
- Department of BiotechnologyGhent UniversityGhentBelgium
| | | | - Yves Briers
- Department of BiotechnologyGhent UniversityGhentBelgium
| |
Collapse
|
7
|
Vander Elst N. Bacteriophage-derived endolysins as innovative antimicrobials against bovine mastitis-causing streptococci and staphylococci: a state-of-the-art review. Acta Vet Scand 2024; 66:20. [PMID: 38769566 PMCID: PMC11106882 DOI: 10.1186/s13028-024-00740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/05/2024] [Indexed: 05/22/2024] Open
Abstract
Bacteriophage-encoded endolysins, peptidoglycan hydrolases breaking down the Gram-positive bacterial cell wall, represent a groundbreaking class of novel antimicrobials to revolutionize the veterinary medicine field. Wild-type endolysins exhibit a modular structure, consisting of enzymatically active and cell wall-binding domains, that enable genetic engineering strategies for the creation of chimeric fusion proteins or so-called 'engineered endolysins'. This biotechnological approach has yielded variants with modified lytic spectrums, introducing new possibilities in antimicrobial development. However, the discovery of highly similar endolysins by different groups has occasionally resulted in the assignment of different names that complicate a straightforward comparison. The aim of this review was to perform a homology-based comparison of the wild-type and engineered endolysins that have been characterized in the context of bovine mastitis-causing streptococci and staphylococci, grouping homologous endolysins with ≥ 95.0% protein sequence similarity. Literature is explored by homologous groups for the wild-type endolysins, followed by a chronological examination of engineered endolysins according to their year of publication. This review concludes that the wild-type endolysins encountered persistent challenges in raw milk and in vivo settings, causing a notable shift in the field towards the engineering of endolysins. Lead candidates that display robust lytic activity are nowadays selected from screening assays that are performed under these challenging conditions, often utilizing advanced high-throughput protein engineering methods. Overall, these recent advancements suggest that endolysins will integrate into the antibiotic arsenal over the next decade, thereby innovating antimicrobial treatment against bovine mastitis-causing streptococci and staphylococci.
Collapse
Affiliation(s)
- Niels Vander Elst
- Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, Solnavägen 9, 17165, Solna, Stockholm, Sweden.
| |
Collapse
|
8
|
Roehrig C, Huemer M, Lorgé D, Arn F, Heinrich N, Selvakumar L, Gasser L, Hauswirth P, Chang CC, Schweizer TA, Eichenseher F, Lehmann S, Zinkernagel AS, Schmelcher M. MEndoB, a chimeric lysin featuring a novel domain architecture and superior activity for the treatment of staphylococcal infections. mBio 2024; 15:e0254023. [PMID: 38275913 PMCID: PMC10865858 DOI: 10.1128/mbio.02540-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Bacterial infections are a growing global healthcare concern, as an estimated annual 4.95 million deaths are associated with antimicrobial resistance (AMR). Methicillin-resistant Staphylococcus aureus is one of the deadliest pathogens and a high-priority pathogen according to the World Health Organization. Peptidoglycan hydrolases (PGHs) of phage origin have been postulated as a new class of antimicrobials for the treatment of bacterial infections, with a novel mechanism of action and no known resistances. The modular architecture of PGHs permits the creation of chimeric PGH libraries. In this study, the chimeric enzyme MEndoB was selected from a library of staphylococcal PGHs based on its rapid and sustained activity against staphylococci in human serum. The benefit of the presented screening approach was illustrated by the superiority of MEndoB in a head-to-head comparison with other PGHs intended for use against staphylococcal bacteremia. MEndoB displayed synergy with antibiotics and rapid killing in human whole blood with complete inhibition of re-growth over 24 h at low doses. Successful treatment of S. aureus-infected zebrafish larvae with MEndoB provided evidence for its in vivo effectiveness. This was further confirmed in a lethal systemic mouse infection model in which MEndoB significantly reduced S. aureus loads and tumor necrosis factor alpha levels in blood in a dose-dependent manner, which led to increased survival of the animals. Thus, the thorough lead candidate selection of MEndoB resulted in an outstanding second-generation PGH with in vitro, ex vivo, and in vivo results supporting further development.IMPORTANCEOne of the most pressing challenges of our era is the rising occurrence of bacteria that are resistant to antibiotics. Staphylococci are prominent pathogens in humans, which have developed multiple strategies to evade the effects of antibiotics. Infections caused by these bacteria have resulted in a high burden on the health care system and a significant loss of lives. In this study, we have successfully engineered lytic enzymes that exhibit an extraordinary ability to eradicate staphylococci. Our findings substantiate the importance of meticulous lead candidate selection to identify therapeutically promising peptidoglycan hydrolases with unprecedented activity. Hence, they offer a promising new avenue for treating staphylococcal infections.
Collapse
Affiliation(s)
- Christian Roehrig
- Micreos Pharmaceuticals AG, Baar, Zug, Switzerland
- Micreos GmbH, Wädenswil, Zurich, Switzerland
| | | | | | | | | | | | - Lynn Gasser
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences (ZHAW), Wädenswil, Zurich, Switzerland
| | - Patrick Hauswirth
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences (ZHAW), Wädenswil, Zurich, Switzerland
| | - Chun-Chi Chang
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tiziano A. Schweizer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Steffi Lehmann
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences (ZHAW), Wädenswil, Zurich, Switzerland
| | - Annelies S. Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
9
|
Deshotel MB, Dave UM, Farmer B, Kemboi D, Nelson DC. Bacteriophage endolysin treatment for systemic infection of Streptococcus iniae in hybrid striped bass. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109296. [PMID: 38104698 DOI: 10.1016/j.fsi.2023.109296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Streptococcus iniae, a zoonotic Gram-positive pathogen, poses a threat to finfish aquaculture, causing streptococcosis with an annual economic impact exceeding $150 million globally. As aquaculture trends shift towards recirculating systems, the potential for horizontal transmission of S. iniae among fish intensifies. Current vaccine development provides only short-term protection, driving the widespread use of antibiotics like florfenicol. However, this practice raises environmental concerns and potentially contributes to antibiotic resistance. Thus, alternative strategies are urgently needed. Endolysin therapy, derived from bacteriophages, employs hydrolytic endolysin enzymes that target bacterial peptidoglycan cell walls. This study assesses three synthetic endolysins (PlyGBS 90-1, PlyGBS 90-8, and ClyX-2) alongside the antibiotic carbenicillin in treating S. iniae-infected hybrid striped bass (HSB). Results demonstrate that ClyX-2 exhibits remarkable bacteriolytic potency, with lytic activity detected at concentrations as low as ∼15 μg/mL, approximately 8-fold more potent than the PlyGBS derivatives. In therapeutic effectiveness assessments, both carbenicillin and ClyX-2 treatments achieved significantly higher survival rates (85 % and 95 %, respectively) compared to placebo and PlyGBS-based endolysin treatments. Importantly, no statistical differences were observed between ClyX-2 and carbenicillin treatments. This highlights ClyX-2 as a promising alternative for combating S. iniae infections in aquaculture, offering potent bacteriolytic activity and high survival rates.
Collapse
Affiliation(s)
- Michael B Deshotel
- United States Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, 72160, USA.
| | - Urmil M Dave
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
| | - Bradley Farmer
- United States Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, 72160, USA
| | - Daniel Kemboi
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
| | - Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA; Department of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
10
|
Singh AK, Gangakhedkar R, Thakur HS, Raman SK, Patil SA, Jain V. Mycobacteriophage D29 Lysin B exhibits promising anti-mycobacterial activity against drug-resistant Mycobacterium tuberculosis. Microbiol Spectr 2023; 11:e0459722. [PMID: 37800970 PMCID: PMC10714809 DOI: 10.1128/spectrum.04597-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 08/18/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE To combat the rapidly emerging drug-resistant M. tuberculosis, it is now essential to look for alternative therapeutics. Mycobacteriophages can be considered as efficient therapeutics due to their natural ability to infect and kill mycobacteria including M. tuberculosis. Here, we have exploited the mycolyl-arabinogalactan esterase property of LysB encoded from mycobacteriophage D29. This study is novel in terms of targeting a multi-drug-resistant pathogenic strain of M. tuberculosis with LysB and also examining the combination of anti-TB drugs and LysB. All the experiments include external administration of LysB. Therefore, the remarkable lytic activity of LysB overcomes the difficulty to enter the complex cell envelope of mycobacteria. Targeting the intracellularly located M. tuberculosis by LysB and non-toxicity to macrophages take the process of the development of LysB as a drug one step ahead, and also, the interaction studies with rifampicin and isoniazid will help to form a new treatment regimen against tuberculosis.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, Uttar Pradesh, India
| | - Rutuja Gangakhedkar
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Hemant Singh Thakur
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, Uttar Pradesh, India
| | - Sunil Kumar Raman
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shripad A. Patil
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, Uttar Pradesh, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
11
|
Wang J, Liang S, Lu X, Xu Q, Zhu Y, Yu S, Zhang W, Liu S, Xie F. Bacteriophage endolysin Ply113 as a potent antibacterial agent against polymicrobial biofilms formed by enterococci and Staphylococcus aureus. Front Microbiol 2023; 14:1304932. [PMID: 38152375 PMCID: PMC10751913 DOI: 10.3389/fmicb.2023.1304932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
Antibiotic resistance in Enterococcus faecium, Enterococcus faecalis, and Staphylococcus aureus remains a major public health concern worldwide. Furthermore, these microbes frequently co-exist in biofilm-associated infections, largely nullifying antibiotic-based therapy. Therefore, it is imperative to develop an efficient therapeutic strategy for combating infections caused by polymicrobial biofilms. In this study, we investigated the antibacterial and antibiofilm activity of the bacteriophage endolysin Ply113 in vitro. Ply113 exhibited high and rapid lytic activity against E. faecium, E. faecalis, and S. aureus, including vancomycin-resistant Enterococcus and methicillin-resistant S. aureus isolates. Transmission electron microscopy revealed that Ply113 treatment led to the detachment of bacterial cell walls and considerable cell lysis. Ply113 maintained stable lytic activity over a temperature range of 4-45°C, over a pH range of 5.0-8.0, and in the presence of 0-400 mM NaCl. Ply113 treatment effectively eliminated the mono-species biofilms formed by E. faecium, E. faecalis, and S. aureus in a dose-dependent manner. Ply113 was also able to eliminate the dual-species biofilms of E. faecium-S. aureus and E. faecalis-S. aureus. Additionally, Ply113 exerted potent antibacterial efficacy in vivo, distinctly decreasing the bacterial loads in a murine peritoneal septicemia model. Our findings suggest that the bacteriophage endolysin Ply113 is a promising antimicrobial agent for the treatment of polymicrobial infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Siguo Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fang Xie
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
12
|
Xi H, Fu Y, Chen C, Feng X, Han W, Gu J, Ji Y. Aerococcus viridans Phage Lysin AVPL Had Lytic Activity against Streptococcus suis in a Mouse Bacteremia Model. Int J Mol Sci 2023; 24:16670. [PMID: 38068990 PMCID: PMC10706753 DOI: 10.3390/ijms242316670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Streptococcus suis (S. suis) is a swine pathogen that can cause sepsis, meningitis, endocarditis, and other infectious diseases; it is also a zoonotic pathogen that has caused a global surge in fatal human infections. The widespread prevalence of multidrug-resistant S. suis strains and the decline in novel antibiotic candidates have necessitated the development of alternative antimicrobial agents. In this study, AVPL, the Aerococcus viridans (A. viridans) phage lysin, was found to exhibit efficient bactericidal activity and broad lytic activity against multiple serotypes of S. suis. A final concentration of 300 μg/mL AVPL reduced S. suis counts by 4-4.5 log10 within 1 h in vitro. Importantly, AVPL effectively inhibited 48 h S. suis biofilm formation and disrupted preformed biofilms. In a mouse model, 300 μg/mouse AVPL protected 100% of mice from infection following the administration of lethal doses of multidrug-resistant S. suis type 2 (SS2) strain SC19, reduced the bacterial load in different organs, and effectively alleviated inflammation and histopathological damage in infected mice. These data suggest that AVPL is a valuable candidate antimicrobial agent for treating S. suis infections.
Collapse
Affiliation(s)
- Hengyu Xi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
| | - Yao Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
| | - Chong Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
| | - Xin Feng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
| | - Wenyu Han
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jingmin Gu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yalu Ji
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (H.X.); (Y.F.); (C.C.); (W.H.); (J.G.)
| |
Collapse
|
13
|
Abdurahman MA, Durukan İ, Dinçer T, Pektaş S, Karataş E, Kiliç AO. Staphylococcus aureus Bacteriophage 52 Endolysin Exhibits Anti-Biofilm and Broad Antibacterial Activity Against Gram-Positive Bacteria. Protein J 2023; 42:596-606. [PMID: 37634214 DOI: 10.1007/s10930-023-10145-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
Bacteriophage endolysins have been shown to hold great promise as new antibacterial agents for animal and human health in food preservation. In the present study, endolysin from Staphylococcus aureus subsp. aureus ATCC 27692-B1 bacteriophage 52 (LysSA52) was cloned, expressed, and characterized for its antimicrobial properties. Following DNA extraction from bacteriophage 52, a 1446-bp DNA fragment containing the endolysin gene (lysSA52) was obtained by PCR amplification and cloned into pET SUMO expression vector. The positive clone was validated by sequencing and open-reading frame analysis. The LysSA52 sequence shared high homology with staphylococcal phage endolysins of the SA12, SA13, and DSW2 phages and others. The cloned lysSA52 gene encoding 481 amino acids endolysin was expressed in Escherichia coli BL21 with a calculated molecular mass of 66 kDa (LysSA52). This recombinant endolysin LysSA52 exhibited lytic activity against 8 of 10 Gram-positive bacteria via agar spot-on lawn antimicrobial assay, including methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Streptococcus pneumonia, Streptococcus pyogenes, Enterococcus faecium, Enterococcus faecalis, and Bacillus atrophaeus. In addition, the 0.50 mg/mL, LysSA52 endolysins reduced about 60% of the biofilms of S. aureus and S. epidermidis established on a microtiter plate in 12 h treatment. The data from this study indicate that LysSA52 endolysin could be used as an antibacterial protein to prevent and treat infections caused by staphylococci and several other Gram-positive pathogenic bacteria irrespective of their antibiotic resistance.
Collapse
Affiliation(s)
- Mujib Abdulkadir Abdurahman
- Department of Medical Microbiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, 61080, Turkey
- Department of Microbial, Cellular, and Molecular Biology, Faculty of Natural Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - İnci Durukan
- Department of Medical Microbiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, 61080, Turkey
| | - Tuba Dinçer
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Serap Pektaş
- Department of Chemistry, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, Turkey
| | - Ersin Karataş
- Department of Medical Services and Techniques, Patnos Vocational School, Ağrı İbrahim Çeçen University, Ağrı, Turkey
| | - Ali Osman Kiliç
- Department of Medical Microbiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, 61080, Turkey.
| |
Collapse
|
14
|
Mursalin MH, Astley R, Coburn PS, Bagaruka E, Hunt JJ, Fischetti VA, Callegan MC. Therapeutic potential of Bacillus phage lysin PlyB in ocular infections. mSphere 2023; 8:e0004423. [PMID: 37273201 PMCID: PMC10449515 DOI: 10.1128/msphere.00044-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/19/2023] [Indexed: 06/06/2023] Open
Abstract
Bacteriophage lytic enzymes (i.e., phage lysins) are a trending alternative for general antibiotics to combat growing antimicrobial resistance. Gram-positive Bacillus cereus causes one of the most severe forms of intraocular infection, often resulting in complete vision loss. It is an inherently β-lactamase-resistant organism that is highly inflammogenic in the eye, and antibiotics are not often beneficial as the sole therapeutic option for these blinding infections. The use of phage lysins as a treatment for B. cereus ocular infection has never been tested or reported. In this study, the phage lysin PlyB was tested in vitro, demonstrating rapid killing of vegetative B. cereus but not its spores. PlyB was also highly group specific and effectively killed the bacteria in various bacterial growth conditions, including ex vivo rabbit vitreous (Vit). Furthermore, PlyB demonstrated no cytotoxic or hemolytic activity toward human retinal cells or erythrocytes and did not trigger innate activation. In in vivo therapeutic experiments, PlyB was effective in killing B. cereus when administered intravitreally in an experimental endophthalmitis model and topically in an experimental keratitis model. In both models of ocular infection, the effective bactericidal property of PlyB prevented pathological damage to ocular tissues. Thus, PlyB was found to be safe and effective in killing B. cereus in the eye, greatly improving an otherwise devastating outcome. Overall, this study demonstrates that PlyB is a promising therapeutic option for B. cereus eye infections.IMPORTANCEEye infections from antibiotic-resistant Bacillus cereus are devastating and can result in blindness with few available treatment options. Bacteriophage lysins are an alternative to conventional antibiotics with the potential to control antibiotic-resistant bacteria. This study demonstrates that a lysin called PlyB can effectively kill B. cereus in two models of B. cereus eye infections, thus treating and preventing the blinding effects of these infections.
Collapse
Affiliation(s)
- Md Huzzatul Mursalin
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Roger Astley
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA
| | - Phillip S. Coburn
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA
| | - Eddy Bagaruka
- Oklahoma Christian University, Edmond, Oklahoma, USA
| | | | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
| | - Michelle C. Callegan
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
15
|
Vila-Farres X, Sauve K, Oh J, Swift S, DeJonge B, Ambler JE, Schuch R. Rapid bacteriolysis of Staphylococcus aureus by lysin exebacase. Microbiol Spectr 2023; 11:e0190623. [PMID: 37561151 PMCID: PMC10580946 DOI: 10.1128/spectrum.01906-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
Lysins (peptidoglycan hydrolases) are promising new protein-based antimicrobial candidates under development to address rising antibiotic resistance encountered among pathogenic bacteria. Exebacase is an antistaphylococcal lysin and the first member of the lysin class to have entered clinical trials in the United States. In this study, the bacteriolytic activity of exebacase was characterized with time-kill assays, turbidity reduction assays, and microscopy. Three methicillin-susceptible Staphylococcus aureus and three methicillin-resistant S. aureus isolates were tested in time-kill assays over a range of concentrations from 0.25 to 8 × MIC. Exebacase demonstrated a concentration-dependent killing and showed bactericidal activity (≥3 log10 kill achieved relative to the starting inoculum) within 3 h at 1 × MIC against all strains tested. Dose-dependent lysis by exebacase was, furthermore, observed in the turbidity reduction assay, wherein decreases in initial OD600 of 50% were observed within ~15 min at concentrations as low as 4 µg/mL. Membrane dissolution, loss of cytoplasmic material, and lysis were confirmed by video and electron microscopy. The demonstrated rapid bacteriolytic effect of exebacase is an important distinguishing feature of this novel modality. IMPORTANCE To guide the development of an investigational new antibacterial entity, microbiological data are required to evaluate the killing kinetics against target organism(s). Exebacase is a lysin (peptidoglycan hydrolase) that represents a novel antimicrobial modality based on degradation of the cell wall of Staphylococcus aureus. Killing by exebacase was determined in multiple assay formats including time-kill assays, wherein reductions of viability of ≥3 log10 colony-forming units/mL were observed within 3 h for multiple different isolates tested, consistent with very rapid bactericidal activity. Rapid reductions in optical density were likewise observed in exebacase-treated cultures, which were visually consistent with microscopic observations of rapid lysis. Overall, exebacase provides a novel antimicrobial modality against S. aureus, characterized by a rapid cidal and lytic activity.
Collapse
Affiliation(s)
| | - Karen Sauve
- ContraFect Corporation, Yonkers, New York, USA
| | - Jun Oh
- Janssen Pharmaceuticals, Brisbane, California, USA
| | | | | | | | | |
Collapse
|
16
|
Vázquez R, Briers Y. What's in a Name? An Overview of the Proliferating Nomenclature in the Field of Phage Lysins. Cells 2023; 12:2016. [PMID: 37566095 PMCID: PMC10417350 DOI: 10.3390/cells12152016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023] Open
Abstract
In the last few years, the volume of research produced on phage lysins has grown spectacularly due to the interest in using them as alternative antimicrobials. As a result, a plethora of naming customs has sprouted among the different research groups devoted to them. While the naming diversity accounts for the vitality of the topic, on too many occasions it also creates some confusion and lack of comparability between different works. This article aims at clarifying the ambiguities found among names referring to phage lysins. We do so by tackling the naming customs historically, framing their original adoption, and employing a semantic classification to facilitate their discussion. We propose a periodization of phage lysin research that begins at the discovery era, in the early 20th century, enriches with a strong molecular biology period, and grows into a current time of markedly applied research. During these different periods, names referring to the general concepts surrounding lysins have been created and adopted, as well as other more specific terms related to their structure and function or, finally, names that have been coined for the antimicrobial application and engineering of phage lysins. Thus, this article means to serve as an invitation to the global lysin community to take action and discuss a widely supported, standardized nomenclature.
Collapse
Affiliation(s)
- Roberto Vázquez
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
17
|
Ambigapathy G, Mukundan S, Nagamoto-Combs K, Combs CK, Nookala S. HLA-II-Dependent Neuroimmune Changes in Group A Streptococcal Necrotizing Fasciitis. Pathogens 2023; 12:1000. [PMID: 37623960 PMCID: PMC10459635 DOI: 10.3390/pathogens12081000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus, GAS) bacteria cause a spectrum of human diseases ranging from self-limiting pharyngitis and mild, uncomplicated skin infections (impetigo, erysipelas, and cellulitis) to highly morbid and rapidly invasive, life-threatening infections such as streptococcal toxic shock syndrome and necrotizing fasciitis (NF). HLA class II allelic polymorphisms are linked with differential outcomes and severity of GAS infections. The dysregulated immune response and peripheral cytokine storm elicited due to invasive GAS infections increase the risk for toxic shock and multiple organ failure in genetically susceptible individuals. We hypothesized that, while the host immune mediators regulate the immune responses against peripheral GAS infections, these interactions may simultaneously trigger neuropathology and, in some cases, induce persistent alterations in the glial phenotypes. Here, we studied the consequences of peripheral GAS skin infection on the brain in an HLA-II transgenic mouse model of GAS NF with and without treatment with an antibiotic, clindamycin (CLN). Mice expressing the human HLA-II DR3 (DR3) or the HLA-II DR4 (DR4) allele were divided into three groups: (i) uninfected controls, (ii) subcutaneously infected with a clinical GAS strain isolated from a patient with GAS NF, and (iii) GAS-infected with CLN treatment (10 mg/kg/5 days, intraperitoneal). The groups were monitored for 15 days post-infection. Skin GAS burden and lesion area, splenic and hippocampal mRNA levels of inflammatory markers, and immunohistochemical changes in hippocampal GFAP and Iba-1 immunoreactivity were assessed. Skin GAS burden and hippocampal mRNA levels of the inflammatory markers S100A8/A9, IL-1β, IL-33, inflammasome-related caspase-1 (Casp1), and NLRP6 were elevated in infected DR3 but not DR4 mice. The levels of these markers were significantly reduced following CLN treatment in DR3 mice. Although GAS was not detectable in the brain, astrocyte (GFAP) and microglia (Iba-1) activation were evident from increased GFAP and Iba-1 mRNA levels in DR3 and DR4 mice. However, CLN treatment significantly reduced GFAP mRNA levels in DR3 mice, not DR4 mice. Our data suggest a skin-brain axis during GAS NF, demonstrating that peripherally induced pathological conditions regulate neuroimmune changes and gliotic events in the brain.
Collapse
Affiliation(s)
| | | | | | | | - Suba Nookala
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (G.A.); (S.M.); (K.N.-C.); (C.K.C.)
| |
Collapse
|
18
|
Douglas EJA, Wulandari SW, Lovell SD, Laabei M. Novel antimicrobial strategies to treat multi-drug resistant Staphylococcus aureus infections. Microb Biotechnol 2023; 16:1456-1474. [PMID: 37178319 PMCID: PMC10281381 DOI: 10.1111/1751-7915.14268] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Antimicrobial resistance is a major obstacle for the treatment of infectious diseases and currently represents one of the most significant threats to global health. Staphylococcus aureus remains a formidable human pathogen with high mortality rates associated with severe systemic infections. S. aureus has become notorious as a multidrug resistant bacterium, which when combined with its extensive arsenal of virulence factors that exacerbate disease, culminates in an incredibly challenging pathogen to treat clinically. Compounding this major health issue is the lack of antibiotic discovery and development, with only two new classes of antibiotics approved for clinical use in the last 20 years. Combined efforts from the scientific community have reacted to the threat of dwindling treatment options to combat S. aureus disease in several innovative and exciting developments. This review describes current and future antimicrobial strategies aimed at treating staphylococcal colonization and/or disease, examining therapies that show significant promise at the preclinical development stage to approaches that are currently being investigated in clinical trials.
Collapse
|
19
|
Duan XC, Li XX, Li XM, Wang S, Zhang FQ, Qian P. Exploiting Broad-Spectrum Chimeric Lysin to Cooperate with Mupirocin against Staphylococcus aureus-Induced Skin Infections and Delay the Development of Mupirocin Resistance. Microbiol Spectr 2023; 11:e0505022. [PMID: 37125939 PMCID: PMC10269905 DOI: 10.1128/spectrum.05050-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/10/2023] [Indexed: 05/02/2023] Open
Abstract
Staphylococcus aureus often leads to severe skin infections. However, S. aureus is facing a crisis of antibiotic resistance. The combination of phage and antibiotics is effective for drug-resistant S. aureus infections. Therefore, it is worth exploiting novel antibacterial agents to cooperate with antibiotics against S. aureus infections. Herein, a novel chimeric lysin ClyQ was constructed, which was composed of a cysteine- and histidine-dependent amidohydrolase/peptidase (CHAP) catalytic domain from S. aureus phage lysin LysGH15 and cell wall-binding domain (CBD) from Enterococcus faecalis phage lysin PlyV12. ClyQ had an exceptionally broad host range targeting streptococci, staphylococci, E. faecalis, and E. rhusiopathiae. ClyQ combined with mupirocin (2.64 log reduction) was more effective at treating S. aureus skin infections than ClyQ (0.46 log reduction) and mupirocin (2.23 log reduction) alone. Of equal importance, none of S. aureus ATCC 29213 or S3 exposed to ClyQ developed resistance, and the combination of ClyQ and mupirocin delayed the development of mupirocin resistance. Collectively, chimeric lysin ClyQ enriches the reservoirs for treating S. aureus infections. Our findings may provide a way to alleviate the current antibiotic resistance crisis. IMPORTANCE Staphylococcus aureus, as an Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species (ESKAPE) pathogen, can escape the elimination of existing antibiotics. At present, phages and phage lysins against S. aureus infections are considered alternative antibacterial agents. However, the development of broad-spectrum chimeric phage lysins to cooperate with antibiotics against S. aureus infections remains at its initial stage. In this study, we found that the broad-host-range chimeric lysin ClyQ can synergize with mupirocin to treat S. aureus skin infections. Furthermore, the development of S. aureus resistance to mupirocin is delayed by the combination of ClyQ and mupirocin in vitro. Our results bring research attention toward the development of chimeric lysin that cooperates with antibiotics to overcome bacterial infections.
Collapse
Affiliation(s)
- Xiao-chao Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xin-xin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiang-min Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shuang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Fen-qiang Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
20
|
Stojowska-Swędrzyńska K, Kuczyńska-Wiśnik D, Laskowska E. New Strategies to Kill Metabolically-Dormant Cells Directly Bypassing the Need for Active Cellular Processes. Antibiotics (Basel) 2023; 12:1044. [PMID: 37370363 DOI: 10.3390/antibiotics12061044] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Antibiotic therapy failure is often caused by the presence of persister cells, which are metabolically-dormant bacteria capable of surviving exposure to antimicrobials. Under favorable conditions, persisters can resume growth leading to recurrent infections. Moreover, several studies have indicated that persisters may promote the evolution of antimicrobial resistance and facilitate the selection of specific resistant mutants; therefore, in light of the increasing numbers of multidrug-resistant infections worldwide, developing efficient strategies against dormant cells is of paramount importance. In this review, we present and discuss the efficacy of various agents whose antimicrobial activity is independent of the metabolic status of the bacteria as they target cell envelope structures. Since the biofilm-environment is favorable for the formation of dormant subpopulations, anti-persister strategies should also include agents that destroy the biofilm matrix or inhibit biofilm development. This article reviews examples of selected cell wall hydrolases, polysaccharide depolymerases and antimicrobial peptides. Their combination with standard antibiotics seems to be the most promising approach in combating persistent infections.
Collapse
Affiliation(s)
- Karolina Stojowska-Swędrzyńska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Dorota Kuczyńska-Wiśnik
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
21
|
Taha M, Arnaud T, Lightly TJ, Peters D, Wang L, Chen W, Cook BWM, Theriault SS, Abdelbary H. Combining bacteriophage and vancomycin is efficacious against MRSA biofilm-like aggregates formed in synovial fluid. Front Med (Lausanne) 2023; 10:1134912. [PMID: 37359001 PMCID: PMC10289194 DOI: 10.3389/fmed.2023.1134912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Background Biofilm formation is a major clinical challenge contributing to treatment failure of periprosthetic joint infection (PJI). Lytic bacteriophages (phages) can target biofilm associated bacteria at localized sites of infection. The aim of this study is to investigate whether combination therapy of phage and vancomycin is capable of clearing Staphylococcus aureus biofilm-like aggregates formed in human synovial fluid. Methods In this study, S. aureus BP043, a PJI clinical isolate was utilized. This strain is a methicillin-resistant S. aureus (MRSA) biofilm-former. Phage Remus, known to infect S. aureus, was selected for the treatment protocol. BP043 was grown as aggregates in human synovial fluid. The characterization of S. aureus aggregates was assessed for structure and size using scanning electron microscopy (SEM) and flow cytometry, respectively. Moreover, the formed aggregates were subsequently treated in vitro with: (a) phage Remus [∼108 plaque-forming units (PFU)/ml], (b) vancomycin (500 μg/ml), or (c) phage Remus (∼108 PFU/ml) followed by vancomycin (500 μg/ml), for 48 h. Bacterial survival was quantified by enumeration [colony-forming units (CFU)/ml]. The efficacy of phage and vancomycin against BP043 aggregates was assessed in vivo as individual treatments and in combination. The in vivo model utilized Galleria mellonella larvae which were infected with BP043 aggregates pre-formed in synovial fluid. Results Scanning electron microscopy (SEM) images and flow cytometry data demonstrated the ability of human synovial fluid to promote formation of S. aureus aggregates. Treatment with Remus resulted in significant reduction in viable S. aureus residing within the synovial fluid aggregates compared to the aggregates that did not receive Remus (p < 0.0001). Remus was more efficient in eliminating viable bacteria within the aggregates compared to vancomycin (p < 0.0001). Combination treatment of Remus followed by vancomycin was more efficacious in reducing bacterial load compared to using either Remus or vancomycin alone (p = 0.0023, p < 0.0001, respectively). When tested in vivo, this combination treatment also resulted in the highest survival rate (37%) 96 h post-treatment, compared to untreated larvae (3%; p < 0.0001). Conclusion We demonstrate that combining phage Remus and vancomycin led to synergistic interaction against MRSA biofilm-like aggregates in vitro and in vivo.
Collapse
Affiliation(s)
- Mariam Taha
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Division of Orthopedic Surgery, The Ottawa Hospital, Ottawa, ON, Canada
| | - Tia Arnaud
- Cytophage Technologies Inc., Winnipeg, MB, Canada
- Department of Microbiology, The University of Manitoba, Winnipeg, MB, Canada
| | | | - Danielle Peters
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, ON, Canada
| | - Liyuan Wang
- Cell Biology and Image Acquisition, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, ON, Canada
- Department of Biology, Brock University, St. Catharines, ON, Canada
| | | | - Steven S. Theriault
- Cytophage Technologies Inc., Winnipeg, MB, Canada
- Department of Microbiology, The University of Manitoba, Winnipeg, MB, Canada
| | - Hesham Abdelbary
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Division of Orthopedic Surgery, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Surgery, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
22
|
Euler CW, Raz A, Hernandez A, Serrano A, Xu S, Andersson M, Zou G, Zhang Y, Fischetti VA, Li J. PlyKp104, a Novel Phage Lysin for the Treatment of Klebsiella pneumoniae, Pseudomonas aeruginosa, and Other Gram-Negative ESKAPE Pathogens. Antimicrob Agents Chemother 2023; 67:e0151922. [PMID: 37098944 PMCID: PMC10190635 DOI: 10.1128/aac.01519-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/30/2023] [Indexed: 04/27/2023] Open
Abstract
Klebsiella pneumoniae and Pseudomonas aeruginosa are two leading causes of burn and wound infections, pneumonia, urinary tract infections, and more severe invasive diseases, which are often multidrug resistant (MDR) or extensively drug resistant. Due to this, it is critical to discover alternative antimicrobials, such as bacteriophage lysins, against these pathogens. Unfortunately, most lysins that target Gram-negative bacteria require additional modifications or outer membrane permeabilizing agents to be bactericidal. We identified four putative lysins through bioinformatic analysis of Pseudomonas and Klebsiella phage genomes in the NCBI database and then expressed and tested their intrinsic lytic activity in vitro. The most active lysin, PlyKp104, exhibited >5-log killing against K. pneumoniae, P. aeruginosa, and other Gram-negative representatives of the multidrug-resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, K. pneumonia, Acinetobacter baumannii, P. aeruginosa, and Enterobacter species) without further modification. PlyKp104 displayed rapid killing and high activity over a wide pH range and in high concentrations of salt and urea. Additionally, pulmonary surfactants and low concentrations of human serum did not inhibit PlyKp104 activity in vitro. PlyKp104 also significantly reduced drug-resistant K. pneumoniae >2 logs in a murine skin infection model after one treatment of the wound, suggesting that this lysin could be used as a topical antimicrobial against K. pneumoniae and other MDR Gram-negative infections.
Collapse
Affiliation(s)
- Chad W. Euler
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Department of Medical Laboratory Sciences, Hunter College, CUNY, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Assaf Raz
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Department of Medical Laboratory Sciences, Hunter College, CUNY, New York, New York, USA
| | - Anaise Hernandez
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Department of Medical Laboratory Sciences, Hunter College, CUNY, New York, New York, USA
| | - Anna Serrano
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
| | - Siyue Xu
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Martin Andersson
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yue Zhang
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
23
|
Liu H, Hu Z, Li M, Yang Y, Lu S, Rao X. Therapeutic potential of bacteriophage endolysins for infections caused by Gram-positive bacteria. J Biomed Sci 2023; 30:29. [PMID: 37101261 PMCID: PMC10131408 DOI: 10.1186/s12929-023-00919-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Gram-positive (G+) bacterial infection is a great burden to both healthcare and community medical resources. As a result of the increasing prevalence of multidrug-resistant G+ bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), novel antimicrobial agents must urgently be developed for the treatment of infections caused by G+ bacteria. Endolysins are bacteriophage (phage)-encoded enzymes that can specifically hydrolyze the bacterial cell wall and quickly kill bacteria. Bacterial resistance to endolysins is low. Therefore, endolysins are considered promising alternatives for solving the mounting resistance problem. In this review, endolysins derived from phages targeting G+ bacteria were classified based on their structural characteristics. The active mechanisms, efficacy, and advantages of endolysins as antibacterial drug candidates were summarized. Moreover, the remarkable potential of phage endolysins in the treatment of G+ bacterial infections was described. In addition, the safety of endolysins, challenges, and possible solutions were addressed. Notwithstanding the limitations of endolysins, the trends in development indicate that endolysin-based drugs will be approved in the near future. Overall, this review presents crucial information of the current progress involving endolysins as potential therapeutic agents, and it provides a guideline for biomaterial researchers who are devoting themselves to fighting against bacterial infections.
Collapse
Affiliation(s)
- He Liu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Mengyang Li
- Department of Microbiology, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Shuguang Lu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
24
|
Manoharadas S, Ahmad N, Altaf M, Alrefaei AF, Al-Rayes BF. An Enzybiotic Cocktail Effectively Disrupts Preformed Dual Biofilm of Staphylococcus aureus and Enterococcus faecalis. Pharmaceuticals (Basel) 2023; 16:ph16040564. [PMID: 37111322 PMCID: PMC10145859 DOI: 10.3390/ph16040564] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Multidrug-resistant bacterial infections are on the rise around the world. Chronic infections caused by these pathogens through biofilm mediation often complicate the situation. In natural settings, biofilms are often formed with different species of bacteria existing synergistically or antagonistically. Biofilms on diabetic foot ulcers are formed predominantly by two opportunistic pathogens, Staphylococcus aureus and Enterococcus faecalis. Bacteriophages and phage-based proteins, including endolysins, have been found to be active against biofilms. In this study, we evaluated the activity of two engineered enzybiotics either by themselves or as a combination against a dual biofilm formed by S. aureus and E. faecalis in an inert glass surface. An additive effect in rapidly disrupting the preformed dual biofilm was observed with the cocktail of proteins, in comparison with mono treatment. The cocktail-treated biofilms were dispersed by more than 90% within 3 h of treatment. Apart from biofilm disruption, bacterial cells embedded in the biofilm matrix were also effectively reduced by more than 90% within 3 h of treatment. This is the first instance where a cocktail of engineered enzybiotics has been effectively used to impede the structural integrity of a dual biofilm.
Collapse
Affiliation(s)
- Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
- Central Laboratory RM 63AA, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| | - Naushad Ahmad
- Central Laboratory RM 63AA, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| | - Mohammad Altaf
- Central Laboratory RM 63AA, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| | - Basel F Al-Rayes
- Central Laboratory RM 63AA, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| |
Collapse
|
25
|
Tu Q, Pu M, Li Y, Wang Y, Li M, Song L, Li M, An X, Fan H, Tong Y. Acinetobacter Baumannii Phages: Past, Present and Future. Viruses 2023; 15:v15030673. [PMID: 36992382 PMCID: PMC10057898 DOI: 10.3390/v15030673] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is one of the most common clinical pathogens and a typical multi-drug resistant (MDR) bacterium. With the increase of drug-resistant A. baumannii infections, it is urgent to find some new treatment strategies, such as phage therapy. In this paper, we described the different drug resistances of A. baumannii and some basic properties of A. baumannii phages, analyzed the interaction between phages and their hosts, and focused on A. baumannii phage therapies. Finally, we discussed the chance and challenge of phage therapy. This paper aims to provide a more comprehensive understanding of A. baumannii phages and theoretical support for the clinical application of A. baumannii phages.
Collapse
Affiliation(s)
- Qihang Tu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingfang Pu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yahao Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuer Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (H.F.); (Y.T.)
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (H.F.); (Y.T.)
| |
Collapse
|
26
|
Liu P, Dong X, Cao X, Xie Q, Huang X, Jiang J, Dai H, Tang Z, Lin Y, Feng S, Luo K. Identification of Three Campylobacter Lysins and Enhancement of Their Anti-Escherichia coli Efficacy Using Colicin-Based Translocation and Receptor-Binding Domain Fusion. Microbiol Spectr 2023; 11:e0451522. [PMID: 36749047 PMCID: PMC10100823 DOI: 10.1128/spectrum.04515-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
The emergence of multidrug-resistant Escherichia coli, which poses a major threat to public health, has motivated the development of numerous alternative antimicrobials. Lysins are bacteriophage- and bacterium-derived peptidoglycan hydrolases that represent a new antibiotic treatment targeting bacterial cell walls. However, the bactericidal effect of native lysins on Gram-negative bacteria is restricted by the presence of an outer membrane. Here, we first evaluated the antibacterial activity of three Campylobacter-derived lysins (Clysins) against E. coli. To improve their transmembrane ability and antibacterial activities, six engineered Clysins were constructed by fusing with the translocation and receptor-binding (TRB) domains from two types of colicins (colicin A [TRBA] and colicin K [TRBK]), and their biological activities were determined. Notably, engineered lysin TRBK-Cly02 exhibited the highest bactericidal activity against the E. coli BL21 strain, with a reduction of 6.22 ± 0.34 log units of cells at a concentration of 60.1 μg/mL, and formed an observable inhibition zone even at a dose of 6.01 μg. Moreover, TRBK-Cly02 killed E. coli dose dependently and exhibited the strongest bactericidal activity at pH 6. It also exhibited potential bioactivity against multidrug-resistant E. coli clinical isolates. In summary, this study identified three lysins from Campylobacter strains against E. coli, and the enhancement of their antibacterial activities by TRB domains fusion may allow them to be developed as potential alternatives to antibiotics. IMPORTANCE Three lysins from Campylobacter, namely, Clysins, were investigated, and their antibacterial activities against E. coli were determined for the first time. To overcome the restriction of the outer membrane of Gram-negative bacteria, we combined the TRB domains of colicins with these Clysins. Moreover, we discovered that the Clysins fused with TRB domains from colicin K (TRBK) killed E. coli more effectively, and this provides a new foundation for the development of novel bioengineered lysins by employing TRBK constructs that target outer membrane receptor/transport systems. One of the designed lysins, TRBK-Cly02, exhibited potent bactericidal efficacy against E. coli strains and may be used for control of multidrug-resistant clinical isolates. The results suggest that TRBK-Cly02 can be considered a potential antibacterial agent against pathogenic E. coli.
Collapse
Affiliation(s)
- Peiqi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinying Dong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xuewei Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qianmei Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiuqin Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinfei Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huilin Dai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zheng Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yizhen Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Kaijian Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
27
|
Helmy YA, Taha-Abdelaziz K, Hawwas HAEH, Ghosh S, AlKafaas SS, Moawad MMM, Saied EM, Kassem II, Mawad AMM. Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens. Antibiotics (Basel) 2023; 12:274. [PMID: 36830185 PMCID: PMC9952301 DOI: 10.3390/antibiotics12020274] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the most important global public health problems. The imprudent use of antibiotics in humans and animals has resulted in the emergence of antibiotic-resistant bacteria. The dissemination of these strains and their resistant determinants could endanger antibiotic efficacy. Therefore, there is an urgent need to identify and develop novel strategies to combat antibiotic resistance. This review provides insights into the evolution and the mechanisms of AMR. Additionally, it discusses alternative approaches that might be used to control AMR, including probiotics, prebiotics, antimicrobial peptides, small molecules, organic acids, essential oils, bacteriophage, fecal transplants, and nanoparticles.
Collapse
Affiliation(s)
- Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Khaled Taha-Abdelaziz
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - Hanan Abd El-Halim Hawwas
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Samar Sami AlKafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31511, Egypt
| | | | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Issmat I. Kassem
- Centre for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA 30609, USA
| | - Asmaa M. M. Mawad
- Department of Biology, College of Science, Taibah University, Madinah 42317, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
28
|
Elois MA, da Silva R, Pilati GVT, Rodríguez-Lázaro D, Fongaro G. Bacteriophages as Biotechnological Tools. Viruses 2023; 15:349. [PMID: 36851563 PMCID: PMC9963553 DOI: 10.3390/v15020349] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Bacteriophages are ubiquitous organisms that can be specific to one or multiple strains of hosts, in addition to being the most abundant entities on the planet. It is estimated that they exceed ten times the total number of bacteria. They are classified as temperate, which means that phages can integrate their genome into the host genome, originating a prophage that replicates with the host cell and may confer immunity against infection by the same type of phage; and lytics, those with greater biotechnological interest and are viruses that lyse the host cell at the end of its reproductive cycle. When lysogenic, they are capable of disseminating bacterial antibiotic resistance genes through horizontal gene transfer. When professionally lytic-that is, obligately lytic and not recently descended from a temperate ancestor-they become allies in bacterial control in ecological imbalance scenarios; these viruses have a biofilm-reducing capacity. Phage therapy has also been advocated by the scientific community, given the uniqueness of issues related to the control of microorganisms and biofilm production when compared to other commonly used techniques. The advantages of using bacteriophages appear as a viable and promising alternative. This review will provide updates on the landscape of phage applications for the biocontrol of pathogens in industrial settings and healthcare.
Collapse
Affiliation(s)
- Mariana Alves Elois
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Raphael da Silva
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Giulia Von Tönnemann Pilati
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - David Rodríguez-Lázaro
- Microbiology Division, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain
- Research Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
29
|
Li G, Walker MJ, De Oliveira DMP. Vancomycin Resistance in Enterococcus and Staphylococcus aureus. Microorganisms 2022; 11:microorganisms11010024. [PMID: 36677316 PMCID: PMC9866002 DOI: 10.3390/microorganisms11010024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are both common commensals and major opportunistic human pathogens. In recent decades, these bacteria have acquired broad resistance to several major classes of antibiotics, including commonly employed glycopeptides. Exemplified by resistance to vancomycin, glycopeptide resistance is mediated through intrinsic gene mutations, and/or transferrable van resistance gene cassette-carrying mobile genetic elements. Here, this review will discuss the epidemiology of vancomycin-resistant Enterococcus and S. aureus in healthcare, community, and agricultural settings, explore vancomycin resistance in the context of van and non-van mediated resistance development and provide insights into alternative therapeutic approaches aimed at treating drug-resistant Enterococcus and S. aureus infections.
Collapse
|
30
|
Walesch S, Birkelbach J, Jézéquel G, Haeckl FPJ, Hegemann JD, Hesterkamp T, Hirsch AKH, Hammann P, Müller R. Fighting antibiotic resistance-strategies and (pre)clinical developments to find new antibacterials. EMBO Rep 2022; 24:e56033. [PMID: 36533629 PMCID: PMC9827564 DOI: 10.15252/embr.202256033] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Antibacterial resistance is one of the greatest threats to human health. The development of new therapeutics against bacterial pathogens has slowed drastically since the approvals of the first antibiotics in the early and mid-20th century. Most of the currently investigated drug leads are modifications of approved antibacterials, many of which are derived from natural products. In this review, we highlight the challenges, advancements and current standing of the clinical and preclinical antibacterial research pipeline. Additionally, we present novel strategies for rejuvenating the discovery process and advocate for renewed and enthusiastic investment in the antibacterial discovery pipeline.
Collapse
Affiliation(s)
- Sebastian Walesch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Joy Birkelbach
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Gwenaëlle Jézéquel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Julian D Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Thomas Hesterkamp
- Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany,Helmholtz International Lab for Anti‐InfectivesSaarbrückenGermany
| | - Peter Hammann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany,Helmholtz International Lab for Anti‐InfectivesSaarbrückenGermany
| |
Collapse
|
31
|
Matharoo K, Chua J, Park JR, Ingavale S, Jelacic TM, Jurkouich KM, Compton JR, Meinig JM, Chabot D, Friedlander AM, Legler PM. Engineering an Fc-Fusion of a Capsule Degrading Enzyme for the Treatment of Anthrax. ACS Infect Dis 2022; 8:2133-2148. [PMID: 36102590 DOI: 10.1021/acsinfecdis.2c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Polymers of d-glutamic acid (PDGA) form the capsule of the highly virulent Ames strain of B. anthracis. PDGA is antiphagocytic and weakly immunogenic; it enables the bacteria to evade the innate immune responses. CapD is an enzyme that catalyzes the covalent anchoring of PDGA. CapD is an Ntn-amido hydrolase that utilizes an internal Thr-352 as its nucleophile and general acid and base. An internal cleavage produces a free N-terminal Thr-352 and a short and long polypeptide chain. The chains were circularly permuted (CP) to move Thr-352 to the N-terminus of the polypeptide. We previously showed that a branched PEG-CapDS334C-CP could protect mice (80% survival) against a 5 LD50 challenge with B. anthracis Ames without the use of antibiotics, monoclonals, or vaccines. In attempts to improve the in vivo circulation time of CapD and enhance its avidity to its polymeric substrate, an Fc-domain of a mouse IgG1 was fused to CapDS334C-CP and the linker length and sequence were optimized. The resulting construct, Fc-CapDS334C-CP, then was pegylated with a linear 2 kDa mPEG at S334C to produce mPEG-Fc-CapDS334C-CP. Interestingly, the fusion of the Fc-domain and incorporation of the S334C mutation imparted acid stability, but slightly reduced the kcat (∼ 2-fold lower). In vivo, the measured protein concentration in sera was higher for the Fc-fusion constructs compared to the mPEG-Fc-CapDS334C-CP. However, the exposure calculated from measured sera enzymatic activity was higher for the mPEG-CapDS334C-CP. The pegylated Fc-fusion was less active than the PEG-CapDS334C-CP, but detectable in sera at 24 h by immunoblot. Here we describe the engineering of a soluble, active, pegylated Fc-fusion of B. anthracis CapD (mPEG-Fc-CapD-CP) with activity in vitro, in serum, and on encapsulated bacteria.
Collapse
Affiliation(s)
- Khushie Matharoo
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Jennifer Chua
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Junyoung R Park
- West Springfield High School, Springfield, Virginia 22152, United States
| | - Susham Ingavale
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Tanya M Jelacic
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Kayla M Jurkouich
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Jaimee R Compton
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratories, Washington, D.C. 20375, United States
| | - J Matthew Meinig
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Donald Chabot
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Arthur M Friedlander
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Patricia M Legler
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratories, Washington, D.C. 20375, United States
| |
Collapse
|
32
|
Wong KY, Megat Mazhar Khair MH, Song AAL, Masarudin MJ, Chong CM, In LLA, Teo MYM. Endolysins against Streptococci as an antibiotic alternative. Front Microbiol 2022; 13:935145. [PMID: 35983327 PMCID: PMC9378833 DOI: 10.3389/fmicb.2022.935145] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Multi-drug resistance has called for a race to uncover alternatives to existing antibiotics. Phage therapy is one of the explored alternatives, including the use of endolysins, which are phage-encoded peptidoglycan hydrolases responsible for bacterial lysis. Endolysins have been extensively researched in different fields, including medicine, food, and agricultural applications. While the target specificity of various endolysins varies greatly between species, this current review focuses specifically on streptococcal endolysins. Streptococcus spp. causes numerous infections, from the common strep throat to much more serious life-threatening infections such as pneumonia and meningitis. It is reported as a major crisis in various industries, causing systemic infections associated with high mortality and morbidity, as well as economic losses, especially in the agricultural industry. This review highlights the types of catalytic and cell wall-binding domains found in streptococcal endolysins and gives a comprehensive account of the lytic ability of both native and engineered streptococcal endolysins studied thus far, as well as its potential application across different industries. Finally, it gives an overview of the advantages and limitations of these enzyme-based antibiotics, which has caused the term enzybiotics to be conferred to it.
Collapse
Affiliation(s)
- Kuan Yee Wong
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Megat Hamzah Megat Mazhar Khair
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Chou Min Chong
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
- Lionel Lian Aun In,
| | - Michelle Yee Mun Teo
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
- *Correspondence: Michelle Yee Mun Teo,
| |
Collapse
|
33
|
Li M, Wang H, Chen L, Guo G, Li P, Ma J, Chen R, Du H, Liu Y, Zhang W. Identification of a phage-derived depolymerase specific for KL47 capsule of Klebsiella pneumoniae and its therapeutic potential in mice. Virol Sin 2022; 37:538-546. [PMID: 35513275 PMCID: PMC9437526 DOI: 10.1016/j.virs.2022.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
Klebsiella pneumoniae is one of the major pathogens causing global multidrug-resistant infections. Therefore, strategies for preventing and controlling the infections are urgently needed. Phage depolymerase, often found in the tail fiber protein or the tail spike protein, is reported to have antibiofilm activity. In this study, phage P560 isolated from sewage showed specific for capsule locus type KL47 K. pneumoniae, and the enlarged haloes around plaques indicated that P560 encoded a depolymerase. The capsule depolymerase, ORF43, named P560dep, derived from phage P560 was expressed, purified, characterized and evaluated for enzymatic activity as well as specificity. We reported that the capsule depolymerase P560dep, can digest the capsule polysaccharides on the surface of KL47 type K. pneumoniae, and the depolymerization spectrum of P560dep matched to the host range of phage P560, KL47 K. pneumoniae. Crystal violet staining assay showed that P560dep was able to significantly inhibit biofilm formation. Further, a single dose (50 μg/mouse) of depolymerase intraperitoneal injection protected 90%-100% of mice from lethal challenge before or after infection by KL47 carbapenem-resistant K. pneumoniae. And pathological changes were alleviated in lung and liver of mice infected by KL47 type K. pneumoniae. It is demonstrated that depolymerase P560dep as an attractive antivirulence agent represents a promising tool for antimicrobial therapy.
Collapse
Affiliation(s)
- Min Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Long Chen
- Department of Clinical Laboratory, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, 215600, China
| | - Genglin Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pei Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rong Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yuqing Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
34
|
Activity of Exebacase (CF-301) against Biofilms Formed by Staphylococcus epidermidis Strains Isolated from Prosthetic Joint Infections. Antimicrob Agents Chemother 2022; 66:e0058822. [PMID: 35861539 PMCID: PMC9380561 DOI: 10.1128/aac.00588-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus epidermidis
is one of the main pathogens responsible for bone and joint infections, especially those involving prosthetic materials, due to its ability to form biofilms. In these cases, biofilm formation, combined with increased antimicrobial resistance, often results in therapeutic failures.
Collapse
|
35
|
Patent highlights October–November 2021. Pharm Pat Anal 2022; 11:37-44. [DOI: 10.4155/ppa-2022-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
36
|
Wang Z, Liu X, Shi Z, Zhao R, Ji Y, Tang F, Guan Y, Feng X, Sun C, Lei L, Han W, Du XD, Gu J. A novel lysin Ply1228 provides efficient protection against Streptococcus suis type 2 infection in a murine bacteremia model. Vet Microbiol 2022; 268:109425. [PMID: 35397385 DOI: 10.1016/j.vetmic.2022.109425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 03/20/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
Streptococcus suis is an important zoonotic pathogen that is difficult to control with antibiotics due to the widespread development of multidrug-resistant strains. Phage lysin is considered a potential therapeutic agent to combat S. suis. In this study, the novel lysin Ply1228 derived from the prophage of S. suis type 12 was identified. Bioinformatics analysis showed that Ply1228 contains a CHAP catalytic domain, which is a binding domain composed of a CW-7 binding motif and an amidase-2 catalytic domain. The CHAP catalytic domain is essential for the bactericidal function of lysin Ply1228 and does not depend on the presence of Ca2+. C34 and H99 of the CHAP domain were identified as the key active sites. The CW-7 binding motif plays a key binding role in Ply1228. Ply1228 can specifically lyse S. suis, including types 2, 3, 7, 9, 10, 12, 14, and 27. Within 10 min, Ply1228 killed 4 log of the S. suis population, which had a starting concentration of approximately 107 CFU/mL. In addition, Ply1228 showed favourable thermal and pH stability. The therapeutic effect of Ply1228 was further investigated in a mouse model of S. suis bacteremia. The administration of the lysin Ply1228 (200 μg/mouse) 1 h after the intraperitoneal injection of 2 × MLD of SS2 strain SC225 was sufficient to protect the mice (P < 0.0001) and significantly reduced the bacterial loads in the blood and organs (livers, spleens, lungs and kidneys). The levels of inflammation and histopathological damage in infected mice were effectively relieved after the Ply1228 treatment. These results indicate that Ply1228 might represent a new enzybiotic candidate for S. suis infection.
Collapse
Affiliation(s)
- Zijing Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xiao Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Zhaoxin Shi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Rihong Zhao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Yalu Ji
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuan Guan
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xin Feng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Changjiang Sun
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Liancheng Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Wenyu Han
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China.
| | - Jingmin Gu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
37
|
Arroyo-Moreno S, Cummings M, Corcoran DB, Coffey A, McCarthy RR. Identification and characterization of novel endolysins targeting Gardnerella vaginalis biofilms to treat bacterial vaginosis. NPJ Biofilms Microbiomes 2022; 8:29. [PMID: 35440653 PMCID: PMC9018826 DOI: 10.1038/s41522-022-00285-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial vaginosis (BV) is a recurrent dysbiosis that is frequently associated with preterm birth, increased risk for acquisition of human immunodeficiency virus (HIV) and other sexually transmitted infections (STIs). The overgrowth of a key pathobiont, Gardnerella vaginalis, as a recalcitrant biofilm is central to the development of this dysbiosis. Overgrowth of vaginal biofilms, seeded by initial G. vaginalis colonization, leads to recurrent symptomatic BV which is poorly resolved by classically used antibiotics. In this light, the use of bacteriophages and/or their proteins, represents a promising alternative. Here we identify 84 diverse anti-Gardnerella endolysins across 7 protein families. A subset of 36 endolysin candidates were refactored and overexpressed in an E. coli BL21 (DE3) system and 5 biochemically and structurally diverse endolysins were fully characterized. Each candidate endolysin showed good lytic activity against planktonic G. vaginalis ATCC14018, as well as G. vaginalis clinical isolates. These endolysin candidates were assayed in biofilm prevention and disruption assays, with biofilm disruption at low microgram concentrations (5 μg/ml) observed. In addition to clonal G. vaginalis biofilms, endolysin candidates could also successfully disrupt polyspecies biofilms. Importantly, none of our candidates showed lytic activity against commensal lactobacilli present in the vaginal microbiota such as L. crispatus, L. jensenii, L. gasseri, and L. iners or against Atopobium vaginae (currently classified as Fannyhessa vaginae). The potency and selectivity of these novel endolysins constitute a promising alternative treatment to combat BV, avoiding problems associated with antibiotic resistance, while retaining beneficial commensal bacteria in the vaginal flora. The diverse library of candidates reported here represents a strong repository of endolysins for further preclinical development.
Collapse
Affiliation(s)
- Sara Arroyo-Moreno
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | | | | | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Ronan R McCarthy
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
38
|
Chandran C, Tham HY, Abdul Rahim R, Lim SHE, Yusoff K, Song AAL. Lactococcus lactis secreting phage lysins as a potential antimicrobial against multi-drug resistant Staphylococcus aureus. PeerJ 2022; 10:e12648. [PMID: 35251775 PMCID: PMC8896023 DOI: 10.7717/peerj.12648] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/26/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Staphylococcus aureus is an opportunistic Gram-positive bacterium that can form biofilm and become resistant to many types of antibiotics. The treatment of multi-drug resistant Staphylococcus aureus (MDRSA) infection is difficult since it possesses multiple antibiotic-resistant mechanisms. Endolysin and virion-associated peptidoglycan hydrolases (VAPGH) enzymes from bacteriophage have been identified as potential alternative antimicrobial agents. This study aimed to assess the ability of Lactococcus lactis NZ9000 secreting endolysin and VAPGH from S. aureus bacteriophage 88 to inhibit the growth of S. aureus PS 88, a MDRSA. METHOD Endolysin and VAPGH genes were cloned and expressed in L. lactis NZ9000 after fusion with the SPK1 signal peptide for secretion. The recombinant proteins were expressed and purified, then analyzed for antimicrobial activity using plate assay and turbidity reduction assay. In addition, the spent media of the recombinant lactococcal culture was analyzed for its ability to inhibit the growth of the S. aureus PS 88. RESULTS Extracellular recombinant endolysin (Endo88) and VAPGH (VAH88) was successfully expressed and secreted from L. lactis which was able to inhibit S. aureus PS 88, as shown by halozone formation on plate assays as well as inhibition of growth in the turbidity reduction assay. Moreover, it was observed that the spent media from L. lactis NZ9000 expressing Endo88 and VAH88 reduced the viability of PS 88 by up to 3.5-log reduction with Endo88 being more efficacious than VAH88. In addition, Endo88 was able to lyse all MRSA strains tested and Staphylococcus epidermidis but not the other bacteria while VAH88 could only lyse S. aureus PS 88. CONCLUSION Recombinant L. lactisNZ9000 expressing phage 88 endolysin may be potentially developed into a new antimicrobial agent for the treatment of MDRSA infection.
Collapse
Affiliation(s)
- Carumathy Chandran
- Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hong Yun Tham
- Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Swee Hua Erin Lim
- Health Science Division, Abu Dhabi Women’s College, Abu Dhabi, United Arab Emirates
| | - Khatijah Yusoff
- Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
39
|
Singh A, Padmesh S, Dwivedi M, Kostova I. How Good are Bacteriophages as an Alternative Therapy to Mitigate Biofilms of Nosocomial Infections. Infect Drug Resist 2022; 15:503-532. [PMID: 35210792 PMCID: PMC8860455 DOI: 10.2147/idr.s348700] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Bacteria survive on any surface through the generation of biofilms that provide a protective environment to grow as well as making them drug resistant. Extracellular polymeric matrix is a crucial component in biofilm formation. The presence of biofilms consisting of common opportunistic and nosocomial, drug-resistant pathogens has been reported on medical devices like catheters and prosthetics, leading to many complications. Several approaches are under investigation to combat drug-resistant bacteria. Deployment of bacteriophages is one of the promising approaches to invade biofilm that may expose bacteria to the conditions adverse for their growth. Penetration into these biofilms and their destruction by bacteriophages is brought about due to their small size and ability of their progeny to diffuse through the bacterial cell wall. The other mechanisms employed by phages to infect biofilms may include their relocation through water channels to embedded host cells, replication at local sites followed by infection to the neighboring cells and production of depolymerizing enzymes to decompose viscous biofilm matrix, etc. Various research groups are investigating intricacies involved in phage therapy to mitigate the bacterial infection and biofilm formation. Thus, bacteriophages represent a good control over different biofilms and further understanding of phage-biofilm interaction at molecular level may overcome the clinical challenges in phage therapy. The present review summarizes the comprehensive details on dynamic interaction of phages with bacterial biofilms and the role of phage-derived enzymes - endolysin and depolymerases in extenuating biofilms of clinical and medical concern. The methodology employed was an extensive literature search, using several keywords in important scientific databases, such as Scopus, Web of Science, PubMed, ScienceDirect, etc. The keywords were also used with Boolean operator "And". More than 250 relevant and recent articles were selected and reviewed to discuss the evidence-based data on the application of phage therapy with recent updates, and related potential challenges.
Collapse
Affiliation(s)
- Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Sudhakar Padmesh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University, Sofia, 1000, Bulgaria
| |
Collapse
|
40
|
Characterization of a novel broad-spectrum endolysin PlyD4 encoded by a highly conserved prophage found in Aeromonas hydrophila ST251 strains. Appl Microbiol Biotechnol 2022; 106:699-711. [PMID: 34985567 DOI: 10.1007/s00253-021-11752-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
Aeromonas hydrophila is a zoonotic pathogen that exhibits high level resistance to classic antibiotics and is a heavy burden for aquaculture industry. Lytic enzymes encoded by phages or prophages have shown potential for use against pathogenic bacteria. In this study, an intact prophage (named phAhD4) was identified from A. hydrophila D4. phAhD4 is highly conserved in all 10 published A. hydrophila sequence type (ST) 251 strains and is unique to the ST251 strains. The unique endolysin PlyD4, encoded by phAhD4, was obtained by prokaryotic expression. PlyD4 showed bactericidal activity against a broad range of bacterial species in vitro, including A. hydrophila, Aeromonas veronii, Vibrio parahemolyticus, Pseudomonas aeruginosa, and so on. Synergistically with 5 mmol/L ethylene diamine tetraacetic acid (EDTA), the ratio of the optical density at 600 nm (OD600) of PlyD4 treatment versus the OD600 with no PlyD4 treatment for most tested strains decreased from 1 to 0.1-0.8 within 2 h. PlyD4 exhibited optimal activity at 28 °C and maintained high activity over a wide pH range (pH 6-10). Divalent metal ions conferred significant enhancement to PlyD4 lytic activity at low concentrations (0.1 mmol/L). In vivo, a 4.5 μg dose of PlyD4 protected 75.0% (15/20) of zebrafish in a bacteremia model of A. hydrophila D4 infection. These results indicated that PlyD4 was an effective therapeutic agent against multiple aquaculture-related pathogens. To the best of our knowledge, this study is the first to report on an A. hydrophila prophage endolysin that exerts antibacterial activity against a broad range of pathogens. KEY POINTS: • The prophage phAhD4 is highly conserved in 10 published A. hydrophila ST251 strains. • PlyD4 exerts antibacterial activity against multiple aquaculture-related pathogens. • PlyD4 conferred protection against A. hydrophila infection in a zebrafish model.
Collapse
|
41
|
Liu G, Zhang S, Gao T, Mao Z, Shen Y, Pan Z, Guo C, Yu Y, Yao H. Identification of a novel broad-spectrum endolysin, Ply0643, with high antibacterial activity in mouse models of streptococcal bacteriaemia and mastitis. Res Vet Sci 2021; 143:41-49. [PMID: 34973538 DOI: 10.1016/j.rvsc.2021.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022]
Abstract
Streptococcal infections are very common in humans and animals, and they are usually treated with antibiotics. Multidrug-resistant Streptococcus strains have continuously emerged in recent years, prompting the search for alternatives to antibiotics. The use of endolysins encoded by phages has presented a promising alternative approach to treatment. In this study, a novel prophage endolysin, Ply0643, was identified from the prophage S. a 04. At an optimal concentration (30 μg/mL), rPly0643 exhibited broad and strong lysosomal enzyme activity against 66 Streptococcus strains from different sources while also maintaining high lytic activity over a wide pH range (pH 6-10) and a broad range of temperatures (28 °C-45 °C). Two in vivo treatments of rPly0643 (total 0.8 mg/mouse) significantly protected mice (80%) from lethal bacteriaemia with Streptococcus suis, and single treatments of rPly0643 (0.1 mg/gland) significantly reduced Streptococcus agalactiae concentrations and inflammation in murine mammary glands. These findings collectively demonstrate that Ply0643 exhibits good bactericidal activity both in vitro and in vivo, and therefore represents a useful antibacterial agent for combatting streptococcal infections.
Collapse
Affiliation(s)
- Guangjin Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.
| | - Shiyu Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Tingting Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Zhao Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Yanling Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Changming Guo
- Jiangsu Agri-animal Husbandry and Veterinary College, Taizhou, China
| | - Yong Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| |
Collapse
|
42
|
Danis-Wlodarczyk KM, Wozniak DJ, Abedon ST. Treating Bacterial Infections with Bacteriophage-Based Enzybiotics: In Vitro, In Vivo and Clinical Application. Antibiotics (Basel) 2021; 10:1497. [PMID: 34943709 PMCID: PMC8698926 DOI: 10.3390/antibiotics10121497] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Over the past few decades, we have witnessed a surge around the world in the emergence of antibiotic-resistant bacteria. This global health threat arose mainly due to the overuse and misuse of antibiotics as well as a relative lack of new drug classes in development pipelines. Innovative antibacterial therapeutics and strategies are, therefore, in grave need. For the last twenty years, antimicrobial enzymes encoded by bacteriophages, viruses that can lyse and kill bacteria, have gained tremendous interest. There are two classes of these phage-derived enzymes, referred to also as enzybiotics: peptidoglycan hydrolases (lysins), which degrade the bacterial peptidoglycan layer, and polysaccharide depolymerases, which target extracellular or surface polysaccharides, i.e., bacterial capsules, slime layers, biofilm matrix, or lipopolysaccharides. Their features include distinctive modes of action, high efficiency, pathogen specificity, diversity in structure and activity, low possibility of bacterial resistance development, and no observed cross-resistance with currently used antibiotics. Additionally, and unlike antibiotics, enzybiotics can target metabolically inactive persister cells. These phage-derived enzymes have been tested in various animal models to combat both Gram-positive and Gram-negative bacteria, and in recent years peptidoglycan hydrolases have entered clinical trials. Here, we review the testing and clinical use of these enzymes.
Collapse
Affiliation(s)
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
43
|
Gutiérrez D, Rodríguez-Rubio L, Ruas-Madiedo P, Fernández L, Campelo AB, Briers Y, Nielsen MW, Pedersen K, Lavigne R, García P, Rodríguez A. Design and Selection of Engineered Lytic Proteins With Staphylococcus aureus Decolonizing Activity. Front Microbiol 2021; 12:723834. [PMID: 34594314 PMCID: PMC8477017 DOI: 10.3389/fmicb.2021.723834] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus causes various infections in humans and animals, the skin being the principal reservoir of this pathogen. The widespread occurrence of methicillin-resistant S. aureus (MRSA) limits the elimination and treatment of this pathogen. Phage lytic proteins have been proven as efficient antimicrobials against S. aureus. Here, a set of 12 engineered proteins based on endolysins were conceptualized to select the most optimal following a stepwise funnel approach assessing parameters including turbidity reduction, minimum inhibitory concentration (MIC), time-kill curves, and antibiofilm assays, as well as testing their stability in a broad range of storage conditions (pH, temperature, and ionic strength). The engineered phage lysins LysRODIΔAmi and ClyRODI-H5 showed the highest specific lytic activity (5 to 50 times higher than the rest), exhibited a shelf-life up to 6 months and remained stable at temperatures up to 50°C and in a pH range from 3 to 9. LysRODIΔAmi showed the lower MIC values against all staphylococcal strains tested. Both proteins were able to kill 6 log units of the strain S. aureus Sa9 within 5 min and could remove preformed biofilms (76 and 65%, respectively). Moreover, LysRODIΔAmi could prevent biofilm formation at low protein concentrations (0.15–0.6 μM). Due to its enhanced antibiofilm properties, LysRODIΔAmi was selected to effectively remove S. aureus contamination in both intact and disrupted keratinocyte monolayers. Notably, this protein did not demonstrate any toxicity toward human keratinocytes, even at high concentrations (22.1 μM). Finally, a pig skin ex vivo model was used to evaluate treatment of artificially contaminated pig skin using LysRODIΔAmi (16.5 μg/cm2). Following an early reduction of S. aureus, a second dose of protein completely eradicated S. aureus. Overall, our results suggest that LysRODIΔAmi is a suitable candidate as antimicrobial agent to prevent and treat staphylococcal skin infections.
Collapse
Affiliation(s)
- Diana Gutiérrez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Asturias, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Lorena Rodríguez-Rubio
- Laboratory of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Patricia Ruas-Madiedo
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Asturias, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Lucía Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Asturias, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Ana Belén Campelo
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Asturias, Spain
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Martin Weiss Nielsen
- Department of Microbiology and Production, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Karl Pedersen
- Department of Microbiology and Production, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Asturias, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Ana Rodríguez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Asturias, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
44
|
Gontijo MTP, Jorge GP, Brocchi M. Current Status of Endolysin-Based Treatments against Gram-Negative Bacteria. Antibiotics (Basel) 2021; 10:1143. [PMID: 34680724 PMCID: PMC8532960 DOI: 10.3390/antibiotics10101143] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/31/2022] Open
Abstract
The prevalence of multidrug-resistant Gram-negative bacteria is a public health concern. Bacteriophages and bacteriophage-derived lytic enzymes have been studied in response to the emergence of multidrug-resistant bacteria. The availability of tRNAs and endolysin toxicity during recombinant protein expression is circumvented by codon optimization and lower expression levels using inducible pET-type plasmids and controlled cultivation conditions, respectively. The use of polyhistidine tags facilitates endolysin purification and alters antimicrobial activity. Outer membrane permeabilizers, such as organic acids, act synergistically with endolysins, but some endolysins permeate the outer membrane of Gram-negative bacteria per se. However, the outer membrane permeation mechanisms of endolysins remain unclear. Other strategies, such as the co-administration of endolysins with polymyxins, silver nanoparticles, and liposomes confer additional outer membrane permeation. Engineered endolysins comprising domains for outer membrane permeation is also a strategy used to overcome the current challenges on the control of multidrug-resistant Gram-negative bacteria. Metagenomics is a new strategy for screening endolysins with interesting antimicrobial properties from uncultured phage genomes. Here, we review the current state of the art on the heterologous expression of endolysin, showing the potential of bacteriophage endolysins in controlling bacterial infections.
Collapse
Affiliation(s)
- Marco Túlio Pardini Gontijo
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas 13083-862, Brazil; (G.P.J.); (M.B.)
| | | | | |
Collapse
|
45
|
Ho MKY, Zhang P, Chen X, Xia J, Leung SSY. Bacteriophage endolysins against gram-positive bacteria, an overview on the clinical development and recent advances on the delivery and formulation strategies. Crit Rev Microbiol 2021; 48:303-326. [PMID: 34478359 DOI: 10.1080/1040841x.2021.1962803] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Facing the increasing threat of multi-drug antimicrobial resistance (AMR), humans strive to search for antibiotic drug candidates and antibacterial alternatives from all possible places, from soils in remote areas to deep in the sea. In this "gold rush for antibacterials," researchers turn to the natural enemy of bacterial cells, bacteriophage (phages), and find them a rich source of weapons for AMR bacteria. Endolysins (lysins), the enzymes phages use to break the bacterial cells from within, have been shown to be highly selective and efficient in killing their target bacteria from outside while maintaining a low occurrence of bacterial resistance. In this review, we start with the structures and mechanisms of action of lysins against Gram-positive (GM+) bacteria. The developmental history of lysins is also outlined. Then, we detail the latest preclinical and clinical research on their safety and efficacy against GM+ bacteria, focusing on the formulation strategies of these enzymes. Finally, the challenges and potential hurdles are discussed. Notwithstanding these limitations, the trends in development indicate that the first, approved lysin drugs will be available soon in the near future. Overall, this review presents a timely summary of the current progress on lysins as antibacterial enzymes for AMR GM+ bacteria, and provides a guidebook for biomaterial researchers who are dedicating themselves to the battle against bacterial infections.
Collapse
Affiliation(s)
- Marco Kai Yuen Ho
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Pengfei Zhang
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Xi Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
46
|
Xiao Y, Chen R, Li M, Qi Z, Yu Y, Pan Z, Yao H, Feng Z, Zhang W. The effectiveness of extended binding affinity of prophage lysin PlyARI against Streptococcus suis infection. Arch Microbiol 2021; 203:5163-5172. [PMID: 34338822 DOI: 10.1007/s00203-021-02438-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/21/2023]
Abstract
Streptococcus suis is an important zoonotic pathogen. An increase in multi-drug-resistant strains has led to poor performance of traditional antibiotic therapies. Thus, alternative antibacterial agents are urgently needed. In this study, we identified a recombined and expressed lysin PlyARI derived from the novel serotype S. suis (Chz) prophage PhiARI0460-1. The recombinant PlyARI at a concentration of 10 µg/mL showed high bacteriolytic activity against 30 S. suis isolates. The minimum inhibitory concentration (MIC) of PlyARI against S. suis was found to be as low as 2 µg/mL, and the lytic efficiency could be maintained between the range of pH 4 and 12. Additionally, in a mouse infection model, a dose of 0.5 mg of PlyARI protected 10 out of 10 mice that were challenged with highly virulent S. suis strain HA9801. Furthermore, the binding specificity of PlyARI was evaluated by constructing a green fluorescent protein (GFP-ARIb), where GFP was fused with the PlyARI-SH3b (cell wall-binding domain, CBD), revealing a high affinity to S. suis, Staphylococcus aureus, and Streptococcus equi along with exhibiting a medium affinity to Streptococcus pneumoniae as well as Streptococcus agalactiae. Overall, our findings indicated that PlyARI may be an alternative antibacterial agent that was useful in treating and possibly the prevention of Streptococcal infections.
Collapse
Affiliation(s)
- Yuyi Xiao
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rong Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Min Li
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zitai Qi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanfei Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zihao Pan
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huochun Yao
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhixin Feng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Wei Zhang
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China. .,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China. .,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
47
|
Soltanmohammadi B, Piri‐Gavgani S, Basardeh E, Ghanei M, Azizi M, Khaksar Z, Sharifzadeh Z, Badmasti F, Soezi M, Fateh A, Azimi P, Siadat SD, Shooraj F, Bouzari S, Omrani MD, Rahimi‐Jamnani F. Bactericidal fully human single-chain fragment variable antibodies protect mice against methicillin-resistant Staphylococcus aureus bacteraemia. Clin Transl Immunology 2021; 10:e1302. [PMID: 34221401 PMCID: PMC8240403 DOI: 10.1002/cti2.1302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/01/2021] [Accepted: 05/30/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES The increasing prevalence of antibiotic-resistant Staphylococcus aureus, besides the inadequate numbers of effective antibiotics, emphasises the need to find new therapeutic agents against this lethal pathogen. METHODS In this study, to obtain antibody fragments against S. aureus, a human single-chain fragment variable (scFv) library was enriched against living methicillin-resistant S. aureus (MRSA) cells, grown in three different conditions, that is human peripheral blood mononuclear cells with plasma, whole blood and biofilm. The antibacterial activity of scFvs was evaluated by the growth inhibition assay in vitro. Furthermore, the therapeutic efficacy of anti-S. aureus scFvs was appraised in a mouse model of bacteraemia. RESULTS Three scFv antibodies, that is MEH63, MEH158 and MEH183, with unique sequences, were found, which exhibited significant binding to S. aureus and reduced the viability of S. aureus in in vitro inhibition assays. Based on the results, MEH63, MEH158 and MEH183, in addition to their combination, could prolong the survival rate, reduce the bacterial burden in the blood and prevent inflammation and tissue destruction in the kidneys and spleen of mice with MRSA bacteraemia compared with the vehicle group (treated with normal saline). CONCLUSION The combination therapy with anti-S. aureus scFvs and conventional antibiotics might shed light on the treatment of patients with S. aureus infections.
Collapse
Affiliation(s)
- Behnoush Soltanmohammadi
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Somayeh Piri‐Gavgani
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Eilnaz Basardeh
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Mostafa Ghanei
- Chemical Injuries Research CenterSystems Biology and Poisoning InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Masoumeh Azizi
- Molecular Medicine Department, Biotechnology Research CenterPasteur Institute of IranTehranIran
| | - Zabihollah Khaksar
- Department of Basic SciencesSchool of Veterinary MedicineShiraz UniversityShirazIran
| | | | - Farzad Badmasti
- Department of BacteriologyPasteur Institute of IranTehranIran
| | - Mahdieh Soezi
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Parisa Azimi
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Fahimeh Shooraj
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Saeid Bouzari
- Molecular Biology DepartmentPasteur Institute of IranTehranIran
| | - Mir Davood Omrani
- Department of Medical GeneticsSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Fatemeh Rahimi‐Jamnani
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| |
Collapse
|
48
|
Aslam B, Arshad MI, Aslam MA, Muzammil S, Siddique AB, Yasmeen N, Khurshid M, Rasool M, Ahmad M, Rasool MH, Fahim M, Hussain R, Xia X, Baloch Z. Bacteriophage Proteome: Insights and Potentials of an Alternate to Antibiotics. Infect Dis Ther 2021; 10:1171-1193. [PMID: 34170506 PMCID: PMC8322358 DOI: 10.1007/s40121-021-00446-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/27/2021] [Indexed: 01/21/2023] Open
Abstract
Introduction The mounting incidence of multidrug-resistant bacterial strains and the dearth of novel antibiotics demand alternate therapies to manage the infections caused by resistant superbugs. Bacteriophages and phage=derived proteins are considered as potential alternates to treat such infections, and have several applications in health care systems. The aim of this review is to explore the hidden potential of bacteriophage proteins which may be a practical alternative approach to manage the threat of antibiotic resistance. Results Clinical trials are in progress for the use of phage therapy as a tool for routine medical use; however, the existing regulations may hamper their development of routine antimicrobial agents. The advancement of molecular techniques and the advent of sequencing have opened new potentials for the design of engineered bacteriophages as well as recombinant bacteriophage proteins. The phage enzymes and proteins encoded by the lysis cassette genes, especially endolysins, holins, and spanins, have shown plausible potentials as therapeutic candidates. Conclusion This review offers an integrated viewpoint that aims to decipher the insights and abilities of bacteriophages and their derived proteins as potential alternatives to antibiotics.
Collapse
Affiliation(s)
- Bilal Aslam
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Imran Arshad
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Aamir Aslam
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abu Baker Siddique
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nafeesa Yasmeen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Maria Rasool
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Moeed Ahmad
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Mohammad Fahim
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Riaz Hussain
- University College of Veterinary and Animal Sciences, Islamia University Bahawalpur, Bahawalpur, Pakistan
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P.R. China.
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P.R. China.
| |
Collapse
|
49
|
Page JE, Walker S. Natural products that target the cell envelope. Curr Opin Microbiol 2021; 61:16-24. [PMID: 33662818 PMCID: PMC8169544 DOI: 10.1016/j.mib.2021.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
The inexorable spread of resistance to clinically used drugs demands that we maintain a full pipeline of antibiotic candidates. As organisms have struggled to survive and compete over evolutionary history, they have developed the capacity to make a remarkably diverse array of natural products that target the cell envelope. A few have been developed for use in the clinic but most have not, and there are still an enormous number of opportunities to investigate. Substrate-binding antibiotics for Gram-positive organisms, phage-derived lysins, and outer membrane protein-targeting agents for Gram-negative organisms represent promising avenues where nature's gifts may be repurposed for use in the clinic.
Collapse
Affiliation(s)
- Julia E Page
- Department of Microbiology, Harvard Medical School, HIM1013, 4 Blackfan Circle, Boston, MA, 02115, United States
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, HIM1013, 4 Blackfan Circle, Boston, MA, 02115, United States.
| |
Collapse
|
50
|
Characterization of an Endolysin Targeting Clostridioides difficile That Affects Spore Outgrowth. Int J Mol Sci 2021; 22:ijms22115690. [PMID: 34073633 PMCID: PMC8199566 DOI: 10.3390/ijms22115690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Clostridioides difficile is a spore-forming enteric pathogen causing life-threatening diarrhoea and colitis. Microbial disruption caused by antibiotics has been linked with susceptibility to, and transmission and relapse of, C. difficile infection. Therefore, there is an urgent need for novel therapeutics that are effective in preventing C. difficile growth, spore germination, and outgrowth. In recent years bacteriophage-derived endolysins and their derivatives show promise as a novel class of antibacterial agents. In this study, we recombinantly expressed and characterized a cell wall hydrolase (CWH) lysin from C. difficile phage, phiMMP01. The full-length CWH displayed lytic activity against selected C. difficile strains. However, removing the N-terminal cell wall binding domain, creating CWH351—656, resulted in increased and/or an expanded lytic spectrum of activity. C. difficile specificity was retained versus commensal clostridia and other bacterial species. As expected, the putative cell wall binding domain, CWH1—350, was completely inactive. We also observe the effect of CWH351—656 on preventing C. difficile spore outgrowth. Our results suggest that CWH351—656 has therapeutic potential as an antimicrobial agent against C. difficile infection.
Collapse
|