1
|
Al-Zahrani IA, Brek TM. Comprehensive Genome Analysis of Colistin-Only-Sensitive KPC-2 and NDM1-1-Coproducing Klebsiella pneumoniae ST11 and Acinetobacter baumannii ST2 From a Critically Ill Patient With COVID-19 in Saudi Arabia: Whole Genome Sequencing (WGS) of K. pneumoniae ST11 and A. baumannii ST2. Int J Microbiol 2024; 2024:9233075. [PMID: 39502515 PMCID: PMC11537734 DOI: 10.1155/2024/9233075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/13/2024] [Accepted: 10/12/2024] [Indexed: 11/08/2024] Open
Abstract
The COVID-19 pandemic has intensified the issue of multidrug-resistant (MDR) infections, particularly in intensive care units (ICUs). This study documents the first known case of coinfection with two extensively drug-resistant (XDR) bacterial isolates in a critically ill patient with COVID-19 in Saudi Arabia. Both XDR isolates were recovered from blood and were resistant to all tested antimicrobial agents except colistin. Whole genome sequencing (WGS) revealed that the K. pneumoniae isolate KP-JZ107 had sequence type 11 (ST11) and core genome MLST (cgMLST 304742), while the A. baumannii isolate AB-JZ67 had ST2 and cgMLST 785. KP-JZ107 was found to possess the virulence plasmid KpVP-type-1, carbapenemase genes bla NDM and bla KPC , and numerous antimicrobial-resistant genes (ARGs). The AB-JZ67 isolate had several biofilm-related genes, including biofilm-associated protein (BAP), csuE, and pgaB, and multiple ARGs, including bla ADC-25, bla OXA-23, and bla OXA-66. Our findings suggest that the coexistence of KP-JZ107 and AB-JZ67 isolates may indicate their widespread presence in ICUs, requiring comprehensive surveillance studies across all hospitals.
Collapse
Affiliation(s)
- Ibrahim A. Al-Zahrani
- Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit-Biosafety Level-3, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamer M. Brek
- Public Health Laboratory, The Regional Laboratory, Jazan Health Cluster, Jazan, Saudi Arabia
| |
Collapse
|
2
|
Ha VN, Huy HT, Đac TN, Nguyen PA, Cuong LD. Genomic epidemiology and resistant genes of Acinetobacter baumannii clinical strains in Vietnamese hospitals. J Med Microbiol 2024; 73:001922. [PMID: 39475466 PMCID: PMC11524319 DOI: 10.1099/jmm.0.001922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction. Acinetobacter baumannii is a common cause of multidrug-resistant (MDR) nosocomial infections worldwide, including Vietnam.Hypothesis. Analysis of crucial genetic factors may link to epidemiological characteristics and antibiotic resistance of A. baumannii clinical strains in Vietnamese hospitals.Methodology. Fifty-one A. baumannii clinical strains from six different tertiary hospitals in Vietnam were analysed using whole genome sequencing (WGS), between 2017 and 2019.Results. Eleven sequence types (STs) were identified, including four STs reported for the first time in Vietnam based on the PubMLST database and three new STs not previously documented. ST1336, ST1260 and ST575 were found exclusively in Vietnam. These STs were widely distributed in all hospitals in Vietnam, with ST2 and ST571 being the most dominant. Resistant rates to eight antibiotics, belonging to four antibiotic groups, were very high (72.5-94.1 %) with high MIC values, while resistance to colistin was 29.4%. Fifty-one isolates were identified as MDR, with 100% (51/51) isolates carrying antimicrobial-resistant (AMR) genes, and 52 antibiotic-resistant genes were detected among these strains, including β-lactam (22 genes), chloramphenicol (5 genes), lincosamide (2 genes), aminoglycoside (11 genes), rifampicin (1 gene), quinolone (2 genes), sulfonamide and trimethoprim (4 genes) and tetracycline (5 genes) resistance. The most commonly found mobile structures carried partial or complete transposons: ISaba24/ISEc29/ISEc35 contains a series of antibiotic-resistant genes.Conclusion. The WGS results of the 51 strains of A. baumannii provided important information regarding the distribution of STs and associated antibiotic-resistant genes among A. baumannii strains.
Collapse
Affiliation(s)
- Vu Nhi Ha
- Thai Nguyen University of Medicine and Pharmacy, No. 284 Luong Ngoc Quyen Street, Quang Trung Ward, Thai Nguyen City, Thai Nguyen Province, Vietnam
| | - Hoang Tran Huy
- National Institute of Hygiene and Epidemiology, 1st Yersin, Hanoi city, Vietnam
| | - Trung Nguyen Đac
- Thai Nguyen University of Medicine and Pharmacy, No. 284 Luong Ngoc Quyen Street, Quang Trung Ward, Thai Nguyen City, Thai Nguyen Province, Vietnam
| | - Phuong Anh Nguyen
- Department of Experiment Medicine, 108 Military Central Hospital, 1st Tran Hung Dao Street, Bach Dang Ward, Hai Ba Trung District, Hanoi City, Vietnam
| | - Le Duy Cuong
- Department of Experiment Medicine, 108 Military Central Hospital, 1st Tran Hung Dao Street, Bach Dang Ward, Hai Ba Trung District, Hanoi City, Vietnam
| |
Collapse
|
3
|
Mazzamurro F, Chirakadavil JB, Durieux I, Poiré L, Plantade J, Ginevra C, Jarraud S, Wilharm G, Charpentier X, P. C. Rocha E. Intragenomic conflicts with plasmids and chromosomal mobile genetic elements drive the evolution of natural transformation within species. PLoS Biol 2024; 22:e3002814. [PMID: 39401218 PMCID: PMC11472951 DOI: 10.1371/journal.pbio.3002814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/27/2024] [Indexed: 10/17/2024] Open
Abstract
Natural transformation is the only mechanism of genetic exchange controlled by the recipient bacteria. We quantified its rates in 786 clinical strains of the human pathogens Legionella pneumophila (Lp) and 496 clinical and environmental strains of Acinetobacter baumannii (Ab). The analysis of transformation rates in the light of phylogeny revealed they evolve by a mixture of frequent small changes and a few large quick jumps across 6 orders of magnitude. In standard conditions close to half of the strains of Lp and a more than a third in Ab are below the detection limit and thus presumably non-transformable. Ab environmental strains tend to have higher transformation rates than the clinical ones. Transitions to non-transformability were frequent and usually recent, suggesting that they are deleterious and subsequently purged by natural selection. Accordingly, we find that transformation decreases genetic linkage in both species, which might accelerate adaptation. Intragenomic conflicts with chromosomal mobile genetic elements (MGEs) and plasmids could explain these transitions and a GWAS confirmed systematic negative associations between transformation and MGEs: plasmids and other conjugative elements in Lp, prophages in Ab, and transposable elements in both. In accordance with the hypothesis of modulation of transformation rates by genetic conflicts, transformable strains have fewer MGEs in both species and some MGEs inactivate genes implicated in the transformation with heterologous DNA (in Ab). Innate defense systems against MGEs are associated with lower transformation rates, especially restriction-modification systems. In contrast, CRISPR-Cas systems are associated with higher transformation rates suggesting that adaptive defense systems may facilitate cell protection from MGEs while preserving genetic exchanges by natural transformation. Ab and Lp have different lifestyles, gene repertoires, and population structure. Nevertheless, they exhibit similar trends in terms of variation of transformation rates and its determinants, suggesting that genetic conflicts could drive the evolution of natural transformation in many bacteria.
Collapse
Affiliation(s)
- Fanny Mazzamurro
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
- Collège Doctoral–Sorbonne Université, Paris, France
| | - Jason Baby Chirakadavil
- CIRI, Centre International de Recherche en Infectiologie–Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Villeurbanne, France
| | - Isabelle Durieux
- CIRI, Centre International de Recherche en Infectiologie–Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Villeurbanne, France
| | - Ludovic Poiré
- CIRI, Centre International de Recherche en Infectiologie–Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Villeurbanne, France
| | - Julie Plantade
- CIRI, Centre International de Recherche en Infectiologie–Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Villeurbanne, France
| | - Christophe Ginevra
- Centre national de Référence des Légionelles–Centre de biologie Nord, Lyon, Cedex 04, France
| | - Sophie Jarraud
- Centre national de Référence des Légionelles–Centre de biologie Nord, Lyon, Cedex 04, France
| | - Gottfried Wilharm
- Robert Koch Institute, Project group P2, Wernigerode Branch, Wernigerode, Germany
| | - Xavier Charpentier
- CIRI, Centre International de Recherche en Infectiologie–Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Villeurbanne, France
| | - Eduardo P. C. Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| |
Collapse
|
4
|
André A, Plantade J, Durieux I, Durieu P, Godeux AS, Decellieres M, Pouzot-Nevoret C, Venner S, Charpentier X, Laaberki MH. Genomics unveils country-to-country transmission between animal hospitals of a multidrug-resistant and sequence type 2 Acinetobacter baumannii clone. Microb Genom 2024; 10:001292. [PMID: 39401062 PMCID: PMC11472879 DOI: 10.1099/mgen.0.001292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/21/2024] [Indexed: 10/15/2024] Open
Abstract
Acinetobacter baumannii is a globally distributed opportunistic pathogen in human health settings, including in intensive care units (ICUs). We investigated the contamination of a French small animal ICU with A. baumannii. We discovered repeated animal contamination by A. baumannii, and phylogenetic analysis traced contamination back to a potential foreign animal origin. Genomic analysis combined with antibiotic susceptibility testing revealed heteroresistance to penicillin and aminoglycoside mediated by insertion sequence dynamics and also suggest a potential cross-resistance to human-restricted piperacillin-tazobactam combination. The A. baumannii isolates of the animal ICU belong to the International Clone 2 commonly found in human health settings. Our results suggest a high adaptation of this lineage to healthcare settings and provide questions on the requirements for genetic determinants enabling adaptation to host and abiotic conditions.
Collapse
Affiliation(s)
- Amédée André
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, 69007 Lyon, France
- Université de Lyon, VeAgro Sup, 69280 Marcy l'Etoile, France
- Université de Lyon, VeAgro Sup, Intensive Care Unit (SIAMU), APCSe, 69280, Marcy l'Etoile, France
| | - Julie Plantade
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, 69007 Lyon, France
| | - Isabelle Durieux
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, 69007 Lyon, France
| | - Pauline Durieu
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, 69007 Lyon, France
| | - Anne-Sophie Godeux
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, 69007 Lyon, France
| | - Maxence Decellieres
- Université de Lyon, VeAgro Sup, 69280 Marcy l'Etoile, France
- Université de Lyon, VeAgro Sup, Intensive Care Unit (SIAMU), APCSe, 69280, Marcy l'Etoile, France
| | - Céline Pouzot-Nevoret
- Université de Lyon, VeAgro Sup, 69280 Marcy l'Etoile, France
- Université de Lyon, VeAgro Sup, Intensive Care Unit (SIAMU), APCSe, 69280, Marcy l'Etoile, France
| | - Samuel Venner
- UMR CNRS 5558 – LBBE 'Laboratoire de Biométrie et Biologie Évolutive', Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Xavier Charpentier
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, 69007 Lyon, France
| | - Maria-Halima Laaberki
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, 69007 Lyon, France
- Université de Lyon, VeAgro Sup, 69280 Marcy l'Etoile, France
| |
Collapse
|
5
|
Tuffet R, Carvalho G, Godeux AS, Mazzamurro F, Rocha EPC, Laaberki MH, Venner S, Charpentier X. Manipulation of natural transformation by AbaR-type islands promotes fixation of antibiotic resistance in Acinetobacter baumannii. Proc Natl Acad Sci U S A 2024; 121:e2409843121. [PMID: 39288183 PMCID: PMC11441513 DOI: 10.1073/pnas.2409843121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024] Open
Abstract
The opportunistic pathogen Acinetobacter baumannii, carries variants of A. baumannii resistance islands (AbaR)-type genomic islands conferring multidrug resistance. Their pervasiveness in the species has remained enigmatic. The dissemination of AbaRs is intricately linked to their horizontal transfer via natural transformation, a process through which bacteria can import and recombine exogenous DNA, effecting allelic recombination, genetic acquisition, and deletion. In experimental populations of the closely related pathogenic Acinetobacter nosocomialis, we quantified the rates at which these natural transformation events occur between individuals. When integrated into a model of population dynamics, they lead to the swift removal of AbaRs from the population, contrasting with the high prevalence of AbaRs in genomes. Yet, genomic analyses show that nearly all AbaRs specifically disrupt comM, a gene encoding a helicase critical for natural transformation. We found that such disruption impedes gene acquisition, and deletion, while moderately impacting acquisition of single nucleotide polymorphism. A mathematical evolutionary model demonstrates that AbaRs inserted into comM gain a selective advantage over AbaRs inserted in sites that do not inhibit or completely inhibit transformation, in line with the genomic observations. The persistence of AbaRs can be ascribed to their integration into a specific gene, diminishing the likelihood of their removal from the bacterial genome. This integration preserves the acquisition and elimination of alleles, enabling the host bacterium-and thus its AbaR-to adapt to unpredictable environments and persist over the long term. This work underscores how manipulation of natural transformation by mobile genetic elements can drive the prevalence of multidrug resistance.
Collapse
Affiliation(s)
- Rémi Tuffet
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon 69007, France
- UMR CNRS 5558, Laboratoire de Biométrie et Biologie Évolutive, Université Claude Bernard Lyon 1, Villeurbanne 69100, France
| | - Gabriel Carvalho
- UMR CNRS 5558, Laboratoire de Biométrie et Biologie Évolutive, Université Claude Bernard Lyon 1, Villeurbanne 69100, France
| | - Anne-Sophie Godeux
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon 69007, France
- Université de Lyon, VetAgro Sup, Marcy l'Etoile 69280, France
| | - Fanny Mazzamurro
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
- Collège Doctoral, Sorbonne Université, Paris F-75005, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | - Maria-Halima Laaberki
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon 69007, France
- Université de Lyon, VetAgro Sup, Marcy l'Etoile 69280, France
| | - Samuel Venner
- UMR CNRS 5558, Laboratoire de Biométrie et Biologie Évolutive, Université Claude Bernard Lyon 1, Villeurbanne 69100, France
| | - Xavier Charpentier
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon 69007, France
| |
Collapse
|
6
|
Xu A, Li M, Hang Y, Zeng L, Zhang X, Hu Y, Guo Q, Wang M. Multicenter retrospective genomic characterization of carbapenemase-producing Acinetobacter baumannii isolates from Jiangxi patients 2021-2022: identification of a novel international clone, IC11. mSphere 2024; 9:e0027624. [PMID: 38832781 PMCID: PMC11332331 DOI: 10.1128/msphere.00276-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
This study aimed to characterize carbapenem-resistant Acinetobacter baumannii (CRAB) isolates from Jiangxi patients using whole-genome sequencing (WGS). We subjected 100 clinical CRAB strains isolated from the three local largest teaching hospitals to WGS and antimicrobial susceptibility testing. Molecular epidemiology was investigated using multilocus sequence typing, core genome multilocus typing, core genome single-nucleotide polymorphism phylogeny, and pulsed-field gel electrophoresis. The most prevalent acquired carbapenemase was blaOXA-23, predominant in all isolates (100%). Isolates belonging to the dominating international clone IC2 accounted for 92% of all isolates. International IC11 (ST164Pas/ST1418Ox) clone was found in an additional 8% (eight isolates), with seven isolates (87.5%) carrying an acquired additional blaNDM-1 carbapenemase. The oxa23-associated Tn2009, either alone or in a tandem repeat structure containing four copies of blaOXA-23, was discovered in 62% (57 isolates) of IC2. The oxa23-associated Tn2006 was identified in 38% (35 isolates) of IC2 and all IC11 isolates. A putative conjugative RP-T1 (formerly RepAci6) plasmid with blaOXA-23 in Tn2006 within AbaR4, designated pSRM1.1, was found in IC2 A. baumannii strain SRM1. The blaNDM-1 gene found in seven IC11 isolates was located on a novel Tn6924-like transposon, a first-time report in IC11. These findings underscore the significant importance of real-time surveillance to prevent the further spread of CRAB. IMPORTANCE Carbapenem-resistant Acinetobacter baumannii (CRAB) is notorious for causing difficult-to-treat infections. To elucidate the molecular and clinical epidemiology of CRAB in Jiangxi, clinical CRAB isolates were collected and underwent whole-genome sequencing and antibiotic susceptibility phenotyping. Key findings included the predominance of OXA-23-producing IC2 A. baumannii, marked by the emergence of OXA-23 and NDM-1-producing IC11 strains.
Collapse
Affiliation(s)
- An Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People’s Republic of China, Shanghai, China
| | - Min Li
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yaping Hang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lingbing Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xuefei Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People’s Republic of China, Shanghai, China
| | - Yiyi Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People’s Republic of China, Shanghai, China
| | - Qinglan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People’s Republic of China, Shanghai, China
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of People’s Republic of China, Shanghai, China
| |
Collapse
|
7
|
Correa A, Shehreen S, Machado LC, Thesier J, Cunic L, Petassi M, Chu J, Kapili B, Jia Y, England K, Peters J. Novel mechanisms of diversity generation in Acinetobacter baumannii resistance islands driven by Tn7-like elements. Nucleic Acids Res 2024; 52:3180-3198. [PMID: 38407477 PMCID: PMC11014353 DOI: 10.1093/nar/gkae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/25/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024] Open
Abstract
Mobile genetic elements play an important role in the acquisition of antibiotic and biocide resistance, especially through the formation of resistance islands in bacterial chromosomes. We analyzed the contribution of Tn7-like transposons to island formation and diversification in the nosocomial pathogen Acinetobacter baumannii and identified four separate families that recognize different integration sites. One integration site is within the comM gene and coincides with the previously described Tn6022 elements suggested to account for the AbaR resistance island. We established Tn6022 in a heterologous E. coli host and confirmed basic features of transposition into the comM attachment site and the use of a novel transposition protein. By analyzing population features within Tn6022 elements we identified two potential novel transposon-encoded diversification mechanisms with this dynamic genetic island. The activities of these diversification features were confirmed in E. coli. One was a novel natural gain-of-activity allele that could function to broaden transposition targeting. The second was a transposon-encoded hybrid dif-like site that parasitizes the host dimer chromosome resolution system to function with its own tyrosine recombinase. This work establishes a highly active Tn7-like transposon that harnesses novel features allowing the spread and diversification of genetic islands in pathogenic bacteria.
Collapse
Affiliation(s)
- Alberto Correa
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | | | | | - Jordan Thesier
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Lille M Cunic
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | | | - Joshua Chu
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | | | - Yu Jia
- College of Life Sciences and Engineering Research Center of Bioreactor and Pharmaceutical Development (Ministry of Education), Jilin Agricultural University, Changchun City, Jilin Province, China
| | - Kevin A England
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
8
|
Lupo A, Valot B, Saras E, Drapeau A, Robert M, Bour M, Haenni M, Plésiat P, Madec JY, Potron A. Multiple host colonization and differential expansion of multidrug-resistant ST25-Acinetobacter baumannii clades. Sci Rep 2023; 13:21854. [PMID: 38071225 PMCID: PMC10710421 DOI: 10.1038/s41598-023-49268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
The Acinetobacter baumannii clonal lineage ST25 has been identified in humans and animals and found associated with outbreaks globally. To highlight possible similarities among ST25 A. baumannii of animal and human origins and to gather clues on the dissemination and evolution of the ST25 lineage, we conducted a phylogenetic analysis on n = 106 human and n = 35 animal A. baumannii ST25 genomes, including 44 sequenced for this study. Resistance genes and their genetic background were analyzed, as well. ST25 genomes are clustered into four clades: two are widespread in South America, while the other two are largely distributed in Europe, Asia and America. One particular clade was found to include the most recent strains and the highest number of acquired antibiotic resistance genes. OXA-23-type carbapenemase was the most common. Other resistance genes such as blaNDM-1, blaPER-7, and armA were found embedded in complex chromosomal regions present in human isolates. Genomic similarity among multidrug resistant ST25 isolates of either animal or human origin was revealed, suggesting cross-contaminations between the two sectors. Tracking the clonal complex ST25 between humans and animals should provide new insights into the mode of dissemination of these bacteria, and should help defining strategies for preserving global health.
Collapse
Affiliation(s)
- Agnese Lupo
- Unité Antibiorésistance et Virulence Bactériennes, ANSES - Université de Lyon 1, 31 Avenue Tony Garnier, 69007, Lyon, France.
| | - Benoît Valot
- UMR 6249 Chrono-Environnement, CNRS-Université de Bourgogne/Franche-Comté, Besançon, France
| | - Estelle Saras
- Unité Antibiorésistance et Virulence Bactériennes, ANSES - Université de Lyon 1, 31 Avenue Tony Garnier, 69007, Lyon, France
| | - Antoine Drapeau
- Unité Antibiorésistance et Virulence Bactériennes, ANSES - Université de Lyon 1, 31 Avenue Tony Garnier, 69007, Lyon, France
| | - Marine Robert
- Unité Antibiorésistance et Virulence Bactériennes, ANSES - Université de Lyon 1, 31 Avenue Tony Garnier, 69007, Lyon, France
| | - Maxime Bour
- CNR de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, ANSES - Université de Lyon 1, 31 Avenue Tony Garnier, 69007, Lyon, France
| | - Patrick Plésiat
- UMR 6249 Chrono-Environnement, CNRS-Université de Bourgogne/Franche-Comté, Besançon, France
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, ANSES - Université de Lyon 1, 31 Avenue Tony Garnier, 69007, Lyon, France
| | - Anaïs Potron
- UMR 6249 Chrono-Environnement, CNRS-Université de Bourgogne/Franche-Comté, Besançon, France
- CNR de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, Besançon, France
| |
Collapse
|
9
|
Słoczyńska A, Wand ME, Bock LJ, Tyski S, Laudy AE. Efflux-Related Carbapenem Resistance in Acinetobacter baumannii Is Associated with Two-Component Regulatory Efflux Systems' Alteration and Insertion of ΔAbaR25-Type Island Fragment. Int J Mol Sci 2023; 24:ijms24119525. [PMID: 37298476 DOI: 10.3390/ijms24119525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The efflux pumps, beside the class D carbapenem-hydrolysing enzymes (CHLDs), are being increasingly investigated as a mechanism of carbapenem resistance in Acinetobacter baumannii. This study investigates the contribution of efflux mechanism to carbapenem resistance in 61 acquired blaCHDL-genes-carrying A. baumannii clinical strains isolated in Warsaw, Poland. Studies were conducted using phenotypic (susceptibility testing to carbapenems ± efflux pump inhibitors (EPIs)) and molecular (determining expression levels of efflux operon with regulatory-gene and whole genome sequencing (WGS)) methods. EPIs reduced carbapenem resistance of 14/61 isolates. Upregulation (5-67-fold) of adeB was observed together with mutations in the sequences of AdeRS local and of BaeS global regulators in all 15 selected isolates. Long-read WGS of isolate no. AB96 revealed the presence of AbaR25 resistance island and its two disrupted elements: the first contained a duplicate ISAba1-blaOXA-23, and the second was located between adeR and adeA in the efflux operon. This insert was flanked by two copies of ISAba1, and one of them provides a strong promoter for adeABC, elevating the adeB expression levels. Our study for the first time reports the involvement of the insertion of the ΔAbaR25-type resistance island fragment with ISAba1 element upstream the efflux operon in the carbapenem resistance of A. baumannii.
Collapse
Affiliation(s)
- Alicja Słoczyńska
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Matthew E Wand
- UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury SP4 0JG, UK
| | - Lucy J Bock
- UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury SP4 0JG, UK
| | - Stefan Tyski
- Department of Antibiotics and Microbiology, National Medicines Institute, 00-725 Warsaw, Poland
| | - Agnieszka E Laudy
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
10
|
Mangioni D, Fox V, Chatenoud L, Bolis M, Bottino N, Cariani L, Gentiloni Silverj F, Matinato C, Monti G, Muscatello A, Teri A, Terranova L, Piatti A, Gori A, Grasselli G, Stocchetti N, Alteri C, Bandera A. Genomic Characterization of Carbapenem-Resistant Acinetobacter baumannii (CRAB) in Mechanically Ventilated COVID-19 Patients and Impact of Infection Control Measures on Reducing CRAB Circulation during the Second Wave of the SARS-CoV-2 Pandemic in Milan, Italy. Microbiol Spectr 2023; 11:e0020923. [PMID: 36976013 PMCID: PMC10100775 DOI: 10.1128/spectrum.00209-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
COVID-19 has significantly affected hospital infection prevention and control (IPC) practices, especially in intensive care units (ICUs). This frequently caused dissemination of multidrug-resistant organisms (MDROs), including carbapenem-resistant Acinetobacter baumannii (CRAB). Here, we report the management of a CRAB outbreak in a large ICU COVID-19 hub Hospital in Italy, together with retrospective genotypic analysis by whole-genome sequencing (WGS). Bacterial strains obtained from severe COVID-19 mechanically ventilated patients diagnosed with CRAB infection or colonization between October 2020 and May 2021 were analyzed by WGS to assess antimicrobial resistance and virulence genes, along with mobile genetic elements. Phylogenetic analysis in combination with epidemiological data was used to identify putative transmission chains. CRAB infections and colonization were diagnosed in 14/40 (35%) and 26/40 (65%) cases, respectively, with isolation within 48 h from admission in 7 cases (17.5%). All CRAB strains belonged to Pasteur sequence type 2 (ST2) and 5 different Oxford STs and presented blaOXA-23 gene-carrying Tn2006 transposons. Phylogenetic analysis revealed the existence of four transmission chains inside and among ICUs, circulating mainly between November and January 2021. A tailored IPC strategy was composed of a 5-point bundle, including ICU modules' temporary conversion to CRAB-ICUs and dynamic reopening, with limited impact on ICU admission rate. After its implementation, no CRAB transmission chains were detected. Our study underlies the potentiality of integrating classical epidemiological studies with genomic investigation to identify transmission routes during outbreaks, which could represent a valuable tool to ensure IPC strategies and prevent the spread of MDROs. IMPORTANCE Infection prevention and control (IPC) practices are of paramount importance for preventing the spread of multidrug-resistant organisms (MDROs) in hospitals, especially in the intensive care unit (ICU). Whole-genome sequencing (WGS) is seen as a promising tool for IPC, but its employment is currently still limited. COVID-19 pandemics have posed dramatic challenges in IPC practices, causing worldwide several outbreaks of MDROs, including carbapenem-resistant Acinetobacter baumannii (CRAB). We present the management of a CRAB outbreak in a large ICU COVID-19 hub hospital in Italy using a tailored IPC strategy that allowed us to contain CRAB transmission while preventing ICU closure during a critical pandemic period. The analysis of clinical and epidemiological data coupled with retrospective genotypic analysis by WGS identified different putative transmission chains and confirmed the effectiveness of the IPC strategy implemented. This could be a promising approach for future IPC strategies.
Collapse
Affiliation(s)
- Davide Mangioni
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| | - Valeria Fox
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Matteo Bolis
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Nicola Bottino
- Department of Anaesthesia, Critical Care and Emergency, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Lisa Cariani
- Microbiology Laboratory, Clinical Laboratory, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | | | - Caterina Matinato
- Microbiology Laboratory, Clinical Laboratory, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Gianpaola Monti
- Department of Anesthesia and Intensive Care, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Antonio Muscatello
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Antonio Teri
- Microbiology Laboratory, Clinical Laboratory, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Leonardo Terranova
- Department of Internal Medicine, Respiratory Unit and Adult Cystic Fibrosis Center, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Piatti
- Medical Direction, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Andrea Gori
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| | - Giacomo Grasselli
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
- Department of Anaesthesia, Critical Care and Emergency, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Nino Stocchetti
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
- Department of Anaesthesia and Critical Care, Neuroscience Intensive Care Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Claudia Alteri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Alessandra Bandera
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| |
Collapse
|
11
|
Gupta N, Angadi K, Jadhav S. Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii with Special Reference to Carbapenemases: A Systematic Review. Infect Drug Resist 2022; 15:7631-7650. [PMID: 36579124 PMCID: PMC9791997 DOI: 10.2147/idr.s386641] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Carbapenemases are β-lactamase enzymes that hydrolyze a variety of β-lactams including carbapenem and belong to different Ambler classes (A, B, D). These enzymes can be encoded by plasmid or chromosomal-mediated genes. The major issues associated with carbapenemases-producing organisms are compromising the activity and increasing the resistance to carbapenems which are the last resort antibiotics used in treating serious infections. The global increase of pathogen, carbapenem-resistant A. baumannii has significantly threatened public health. Thus, there is a pressing need for a better understanding of this pathogen, to know the various carbapenem resistance encoding genes and dissemination of resistance genes from A. baumannii which help in developing strategies to overcome this problem. The horizontal transfer of resistant determinants through mobile genetic elements increases the incidence of multidrug, extensive drug, and Pan-drug resistant A. baumannii. Therefore, the current review aims to know the various mechanisms of carbapenem resistance, categorize and discuss carbapenemases encoding genes and various mobile genetic elements, and the prevalence of carbapenemase genes in recent years in A. baumannii from various geographical regions.
Collapse
Affiliation(s)
- Neetu Gupta
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Kalpana Angadi
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Savita Jadhav
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India,Correspondence: Savita Jadhav, Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India, Tel +919284434364, Email
| |
Collapse
|
12
|
Kumkar SN, Kamble EE, Chavan NS, Dhotre DP, Pardesi KR. Diversity of resistant determinants, virulence factors, and mobile genetic elements in Acinetobacter baumannii from India: A comprehensive in silico genome analysis. Front Cell Infect Microbiol 2022; 12:997897. [PMID: 36519127 PMCID: PMC9742364 DOI: 10.3389/fcimb.2022.997897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction The frequency of infections associated with multidrug resistant A. baumannii has risen substantially in India. The use of next-generation sequencing (NGS) techniques combined with comparative genomics has great potential for tracking, monitoring, and ultimately controlling the spread of this troublesome pathogen. Here, we investigated the whole genome sequences of 47 A. baumannii from India. Methods In brief, A. baumannii genomes were analyzed for the presence of antibiotic resistance genes (ARGs), virulence factors genes (VFGs), and mobile genetic elements (MGEs) using various in silico tools. The AbaR-type resistance islands (AbaRIs) were detected by examining the genetic environment of the chromosomal comM gene. Multilocus sequence types were determined using the Pasteur scheme. The eBURST and whole genome SNPs-based phylogenetic analysis were performed to analyze genetic diversity between A. baumannii genomes. Results and discussion A larger number of A. baumannii isolates belonging to the ST2 genotype was observed. The SNPs-based phylogenetic analysis showed a diversity between compared genomes. The predicted resistome showed the presence of intrinsic and acquired ARGs. The presence of plasmids, insertion sequences, and resistance islands carrying putative ARGs conferring resistance to antibiotics, quaternary ammonium compounds, and heavy metals was predicted in 43 (91%) genomes. The presence of putative VFGs related to adherence, biofilm formation and iron uptake was observed in the study. Overall, the comprehensive genome analysis in this study provides an essential insight into the resistome, virulome and mobilome of A. baumannii isolates from India.
Collapse
Affiliation(s)
- Shital N. Kumkar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra State, India
| | - Ekta E. Kamble
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra State, India
| | - Nikeeta S. Chavan
- National Centre for Cell Science, Savitribai Phule Pune University Pune, Maharashtra State, India
| | - Dhiraj P. Dhotre
- National Centre for Cell Science, Savitribai Phule Pune University Pune, Maharashtra State, India,*Correspondence: Dhiraj P. Dhotre, ; Karishma R. Pardesi,
| | - Karishma R. Pardesi
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra State, India,*Correspondence: Dhiraj P. Dhotre, ; Karishma R. Pardesi,
| |
Collapse
|
13
|
Homenta H, Julyadharma J, Susianti H, Noorhamdani N, Santosaningsih D. Molecular Epidemiology of Clinical Carbapenem-Resistant Acinetobacter baumannii-calcoaceticus complex Isolates in Tertiary Care Hospitals in Java and Sulawesi Islands, Indonesia. Trop Med Infect Dis 2022; 7:tropicalmed7100277. [PMID: 36288018 PMCID: PMC9607243 DOI: 10.3390/tropicalmed7100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (A. baumannii)-calcoaceticus complex (CRAb-cc) is an important pathogen causing nosocomial infections worldwide; however, molecular epidemiology of the A. baumannii-calcoaceticus complex in Indonesian hospitals is scarce. This study aimed to determine the clonal relatedness of CRAb-cc in two tertiary care hospitals in Malang and Manado in Indonesia. The CRAb-cc isolates from routine clinical cultures in two tertiary care hospitals in Malang and Manado were identified using the Vitek2® system (bioMérieux, Lyon, France). Multi-locus variable-number tandem-repeat analysis (MLVA) typing, multi-locus sequence typing (MLST), clonal complex (CC), and phylogenetic tree analysis were conducted for a subset of isolates. Seventy-three CRAb-cc isolates were collected. The CRAb-cc isolates were frequently found among lower-respiratory-tract specimens. We detected the MLVA type (MT) 1, MT3, and MT4 CRAB-cc isolates belonging to the sequence type (ST) 642, and CC1 was the predominant clone in this study. In conclusion, we identified the clonal relatedness of A. baumannii-calcoaceticus complex isolates in two tertiary care hospitals in Malang and Manado in Indonesia. Further study is required to investigate the clinical importance and distribution of ST642 in Indonesian hospitals for developing prevention and control measures.
Collapse
Affiliation(s)
- Heriyannis Homenta
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang 65145, Indonesia
- Department of Clinical Microbiology, Faculty of Medicine, Sam Ratulangi University, Manado 95163, Indonesia
| | - Julyadharma Julyadharma
- Laboratory of Clinical Microbiology, Prof. Dr. R. D. Kandou Hospital, Manado 95163, Indonesia
| | - Hani Susianti
- Department of Clinical Pathology, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
- Department of Clinical Pathology, Dr. Saiful Anwar Hospital, Malang 65112, Indonesia
| | - Noorhamdani Noorhamdani
- Department of Clinical Microbiology, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
| | - Dewi Santosaningsih
- Department of Clinical Microbiology, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
- Department of Clinical Microbiology, Dr. Saiful Anwar Hospital, Malang 65112, Indonesia
- Correspondence:
| |
Collapse
|
14
|
Hamed SM, Hussein AFA, Al-Agamy MH, Radwan HH, Zafer MM. Genetic Configuration of Genomic Resistance Islands in Acinetobacter baumannii Clinical Isolates From Egypt. Front Microbiol 2022; 13:878912. [PMID: 35935207 PMCID: PMC9353178 DOI: 10.3389/fmicb.2022.878912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
In Acinetobacter baumannii (A. baumannii), a wide repertoire of resistance genes is often carried within genomic resistance islands (RIs), particularly in high-risk global clones (GCs). As the first in Egypt, the current study aimed at exploring the diversity and genetic configuration of RIs in the clinical isolates of A. baumannii. For this purpose, draft genomes of 18 isolates were generated by Illumina sequencing. Disk diffusion susceptibility profiling revealed multidrug resistance (MDR) and extensive drug resistance (XDR) phenotypes in 27.7 and 72.2%, respectively. The highest susceptibility was noted for tigecycline (100.0%) followed by colistin (94.4%), for which an MIC50 of 0.25 μg/ml was recorded by the broth microdilution assay. Sequence typing (ST) showed that the majority of the isolates belonged to high-risk global clones (GC1, GC2, and GC9). A novel Oxford sequence type (ST2329) that also formed a novel clonal complex was submitted to the PubMLST database. A novel blaADC variant (blaADC−258) was also identified in strain M18 (ST85Pas/1089Oxf). In addition to a wide array of resistance determinants, whole-genome sequencing (WGS) disclosed at least nine configurations of genomic RIs distributed over 16/18 isolates. GC2 isolates accumulated the largest number of RIs (three RIs/isolate) followed by those that belong to GC1 (two RIs/isolate). In addition to Tn6022 (44.4%), the comM gene was interrupted by AbaR4 (5.5%) and three variants of A. baumanniigenomic resistance island 1(AbGRI)-type RIs (44.4%), including AbaR4b (16.6%) and two novel configurations of AbGRI1-like RIs (22.2%). Three of which (AbaR4, AbaR4b, and AbGRI1-like-2) carried blaOXA−23 within Tn2006. With less abundance (38.8%), IS26-bound RIs were detected exclusively in GC2 isolates. These included a short version of AbGRI2 (AbGRI2-15) carrying the genes blaTEM−1 and aphA1 and two variants of AbGRI3 RIs carrying up to seven resistance genes [mphE-msrE-armA-sul1-aadA1-catB8-aacA4]. Confined to GC1 (22.2%), sulfonamide resistance was acquired by an ISAba1 bracketed GIsul2 RI. An additional RI (RI-PER-7) was also identified on a plasmid carried by strain M03. Among others, RI-PER-7 carried the resistance genes armA and blaPER−7. Here, we provided a closer view of the diversity and genetic organization of RIs carried by a previously unexplored population of A. baumannii.
Collapse
Affiliation(s)
- Samira M. Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Amira F. A. Hussein
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed H. Al-Agamy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hesham H. Radwan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mai M. Zafer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
- *Correspondence: Mai M. Zafer
| |
Collapse
|
15
|
Interbacterial Transfer of Carbapenem Resistance and Large Antibiotic Resistance Islands by Natural Transformation in Pathogenic Acinetobacter. mBio 2022; 13:e0263121. [PMID: 35073754 PMCID: PMC8787482 DOI: 10.1128/mbio.02631-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Acinetobacter baumannii infection poses a major health threat, with recurrent treatment failure due to antibiotic resistance, notably to carbapenems. While genomic analyses of clinical strains indicate that homologous recombination plays a major role in the acquisition of antibiotic resistance genes, the underlying mechanisms of horizontal gene transfer often remain speculative. Our understanding of the acquisition of antibiotic resistance is hampered by the lack of experimental systems able to reproduce genomic observations. We here report the detection of recombination events occurring spontaneously in mixed bacterial populations and which can result in the acquisition of resistance to carbapenems. We show that natural transformation is the main driver of intrastrain but also interstrain recombination events between A. baumannii clinical isolates and pathogenic species of Acinetobacter. We observed that interbacterial natural transformation in mixed populations is more efficient at promoting the acquisition of large resistance islands (AbaR4 and AbaR1) than when the same bacteria are supplied with large amounts of purified genomic DNA. Importantly, analysis of the genomes of the recombinant progeny revealed large recombination tracts (from 13 to 123 kb) similar to those observed in the genomes of clinical isolates. Moreover, we highlight that transforming DNA availability is a key determinant of the rate of recombinants and results from both spontaneous release and interbacterial predatory behavior. In the light of our results, natural transformation should be considered a leading mechanism of genome recombination and horizontal gene transfer of antibiotic resistance genes in Acinetobacter baumannii.
Collapse
|
16
|
Javkar K, Rand H, Hoffmann M, Luo Y, Sarria S, Thirunavukkarasu N, Pillai CA, McGann P, Johnson JK, Strain E, Pop M. Whole-Genome Assessment of Clinical Acinetobacter baumannii Isolates Uncovers Potentially Novel Factors Influencing Carbapenem Resistance. Front Microbiol 2021; 12:714284. [PMID: 34659144 PMCID: PMC8518998 DOI: 10.3389/fmicb.2021.714284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
Carbapenems-one of the important last-line antibiotics for the treatment of gram-negative infections-are becoming ineffective for treating Acinetobacter baumannii infections. Studies have identified multiple genes (and mechanisms) responsible for carbapenem resistance. In some A. baumannii strains, the presence/absence of putative resistance genes is not consistent with their resistance phenotype-indicating the genomic factors underlying carbapenem resistance in A. baumannii are not fully understood. Here, we describe a large-scale whole-genome genotype-phenotype association study with 349 A. baumannii isolates that extends beyond the presence/absence of individual antimicrobial resistance genes and includes the genomic positions and pairwise interactions of genes. Ten known resistance genes exhibited statistically significant associations with resistance to imipenem, a type of carbapenem: blaOXA-23, qacEdelta1, sul1, mphE, msrE, ant(3")-II, aacC1, yafP, aphA6, and xerD. A review of the strains without any of these 10 genes uncovered a clade of isolates with diverse imipenem resistance phenotypes. Finer resolution evaluation of this clade revealed the presence of a 38.6 kbp conserved chromosomal region found exclusively in imipenem-susceptible isolates. This region appears to host several HTH-type DNA binding transcriptional regulators and transporter genes. Imipenem-susceptible isolates from this clade also carried two mutually exclusive plasmids that contain genes previously known to be specific to imipenem-susceptible isolates. Our analysis demonstrates the utility of using whole genomes for genotype-phenotype correlations in the context of antibiotic resistance and provides several new hypotheses for future research.
Collapse
Affiliation(s)
- Kiran Javkar
- Department of Computer Science, University of Maryland, College Park, MD, United States.,Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, MD, United States
| | - Hugh Rand
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Health and Human Services, College Park, MD, United States
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Health and Human Services, College Park, MD, United States
| | - Yan Luo
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Health and Human Services, College Park, MD, United States
| | - Saul Sarria
- Center for Veterinary Medicine, United States Food and Drug Administration, Department of Health and Human Services, Laurel, MD, United States
| | - Nagarajan Thirunavukkarasu
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Health and Human Services, College Park, MD, United States
| | - Christine A Pillai
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Health and Human Services, College Park, MD, United States
| | - Patrick McGann
- Multidrug Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - J Kristie Johnson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Errol Strain
- Center for Veterinary Medicine, United States Food and Drug Administration, Department of Health and Human Services, Laurel, MD, United States
| | - Mihai Pop
- Department of Computer Science, University of Maryland, College Park, MD, United States
| |
Collapse
|
17
|
Sanz-García F, Gil-Gil T, Laborda P, Ochoa-Sánchez LE, Martínez JL, Hernando-Amado S. Coming from the Wild: Multidrug Resistant Opportunistic Pathogens Presenting a Primary, Not Human-Linked, Environmental Habitat. Int J Mol Sci 2021; 22:8080. [PMID: 34360847 PMCID: PMC8347278 DOI: 10.3390/ijms22158080] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022] Open
Abstract
The use and misuse of antibiotics have made antibiotic-resistant bacteria widespread nowadays, constituting one of the most relevant challenges for human health at present. Among these bacteria, opportunistic pathogens with an environmental, non-clinical, primary habitat stand as an increasing matter of concern at hospitals. These organisms usually present low susceptibility to antibiotics currently used for therapy. They are also proficient in acquiring increased resistance levels, a situation that limits the therapeutic options for treating the infections they cause. In this article, we analyse the most predominant opportunistic pathogens with an environmental origin, focusing on the mechanisms of antibiotic resistance they present. Further, we discuss the functions, beyond antibiotic resistance, that these determinants may have in the natural ecosystems that these bacteria usually colonize. Given the capacity of these organisms for colonizing different habitats, from clinical settings to natural environments, and for infecting different hosts, from plants to humans, deciphering their population structure, their mechanisms of resistance and the role that these mechanisms may play in natural ecosystems is of relevance for understanding the dissemination of antibiotic resistance under a One-Health point of view.
Collapse
Affiliation(s)
| | | | | | | | - José L. Martínez
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain; (F.S.-G.); (T.G.-G.); (P.L.); (L.E.O.-S.); (S.H.-A.)
| | | |
Collapse
|
18
|
Octavia S, Xu W, Ng OT, Marimuthu K, Venkatachalam I, Cheng B, Lin RTP, Teo JWP. Identification of AbaR4 Acinetobacter baumannii resistance island in clinical isolates of blaOXA-23-positive Proteus mirabilis. J Antimicrob Chemother 2021; 75:521-525. [PMID: 31725155 DOI: 10.1093/jac/dkz472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/01/2019] [Accepted: 10/14/2019] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES bla OXA-23 is a class D carbapenemase-encoding gene typical of the Acinetobacter genus. However, its occurrence in the Enterobacteriaceae is uncommon. Here we provide the genome characterization of blaOXA-23-positive Proteus mirabilis. METHODS In Singapore, a national surveillance of carbapenem non-susceptible clinical Enterobacteriaceae has enabled the collection of OXA-23 bearing isolates. Three clinical P. mirabilis were whole-genome sequenced using Oxford Nanopore MinION and Illumina platforms. The sequence accuracy of MinION long-read contigs was enhanced by polishing with Illumina-derived short-read data. RESULTS In two P. mirabilis genomes, blaOXA-23 was detected as two copies, present on the chromosome and on a 60018 bp plasmid. blaOXA-23 was associated with the classic Acinetobacter composite transposon Tn2006, bounded by two copies of ISAba1 bracketing the carbapenemase gene. The Tn2006 itself was embedded within an Acinetobacter baumannii AbaR4 resistance island. In the chromosome, the AbaR4 was found integrated into the comM gene, which is also the preferred 'hotspot' in A. baumannii. In the plasmid, AbaR4 integrated into a putative colicin gene. CONCLUSIONS Our description of an A. baumannii AbaR4 encoding blaOXA-23 in P. mirabilis is to our knowledge the first description of an Acinetobacter resistance island in Proteus and suggests that P. mirabilis may be a reservoir for this class D carbapenemase gene.
Collapse
Affiliation(s)
- Sophie Octavia
- National Public Health Laboratory, Ministry of Health, Singapore.,National Centre for Infectious Diseases, Singapore
| | - Weizhen Xu
- National Centre for Infectious Diseases, Singapore.,Tan Tock Seng Hospital, Department of Infectious Diseases, Singapore
| | - Oon Tek Ng
- National Public Health Laboratory, Ministry of Health, Singapore.,National Centre for Infectious Diseases, Singapore.,Tan Tock Seng Hospital, Department of Infectious Diseases, Singapore.,Nanyang Technological University, Lee Kong Chian School of Medicine, Singapore
| | - Kalisvar Marimuthu
- National Centre for Infectious Diseases, Singapore.,Tan Tock Seng Hospital, Department of Infectious Diseases, Singapore.,National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Indumathi Venkatachalam
- Singapore General Hospital, Department of Infectious Diseases and Department of Infection Prevention & Epidemiology, Singapore
| | - Bernadette Cheng
- National University Hospital, Department of Laboratory Medicine, Singapore
| | - Raymond T P Lin
- National Public Health Laboratory, Ministry of Health, Singapore.,National Centre for Infectious Diseases, Singapore.,National University Hospital, Department of Laboratory Medicine, Singapore
| | - Jeanette W P Teo
- National University Hospital, Department of Laboratory Medicine, Singapore
| |
Collapse
|
19
|
Hirabayashi A, Yanagisawa H, Takahashi H, Yahara K, Boeing P, Wolfenden B, Nov V, Lorn V, Veng M, Ann V, Darapheak C, Shibayama K, Suzuki M. On-Site Genomic Epidemiological Analysis of Antimicrobial-Resistant Bacteria in Cambodia With Portable Laboratory Equipment. Front Microbiol 2021; 12:675463. [PMID: 34054783 PMCID: PMC8158813 DOI: 10.3389/fmicb.2021.675463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/22/2021] [Indexed: 11/29/2022] Open
Abstract
The rapid emergence of carbapenemase-producing gram-negative bacteria (CPGNB) is a global threat due to the high mortality of infection and limited treatment options. Although there have been many reports of CPGNB isolated from Southeast Asian countries, to date there has been no genetic analysis of CPGNB isolated from Cambodia. Sequence-based molecular epidemiological analysis enables a better understanding of the genotypic characteristics and epidemiological significance of antimicrobial-resistant (AMR) bacteria in each country, and allows countries to enact measures related to AMR issues. In this study, we performed on-site genomic epidemiological analysis of CPGNB isolated in Cambodia using a portable laboratory equipment called Bento Lab, which combines a PCR thermal cycler, microcentrifuge, gel electrophoresis apparatus, and LED transilluminator, along with the MinION nanopore sequencer. PCR targeting of major carbapenemase genes using Bento Lab revealed that two Escherichia coli isolates and one Acinetobacter baumannii isolate harbored carbapenemase genes: blaNDM, blaOXA–48, and blaOXA–23, respectively. The results of phenotypic diagnostic tests for CPGNB, such as the carbapenem inactivation method and double-disk diffusion test using a specific inhibitor of metallo-β-lactamases, were consistent with their AMR genotypes. Whole-genome sequencing analysis using MinION revealed that blaNDM–5 gene was carried on a 93.9-kb plasmid with IncFIA/IncFIB/IncFII/IncQ1 replicons, and blaOXA–181 gene was carried on a 51.5-kb plasmid with the IncX3 replicon in E. coli isolates. blaOXA–23 was encoded in two locations on the chromosome of A. baumannii. Plasmids carrying blaNDM–5 or blaOXA–181 in E. coli were highly structurally identical to plasmids prevalent in Enterobacterales in China and other countries, suggesting that they disseminated from a common evolutionary origin. Our findings demonstrate the potential impact of portable laboratory equipment on AMR bacteria research in hospitals and research centers with limited research facilities, and provide the first glimpse into the genomic epidemiology of CPGNB in Cambodia.
Collapse
Affiliation(s)
- Aki Hirabayashi
- AMR Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Hiromizu Takahashi
- Department of General Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Koji Yahara
- AMR Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | - Vandarith Nov
- National Institute of Public Health, Phnom Penh, Cambodia
| | - Vichet Lorn
- National Institute of Public Health, Phnom Penh, Cambodia
| | - Mom Veng
- National Institute of Public Health, Phnom Penh, Cambodia
| | - Vuth Ann
- National Institute of Public Health, Phnom Penh, Cambodia
| | - Chau Darapheak
- National Institute of Public Health, Phnom Penh, Cambodia
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masato Suzuki
- AMR Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
20
|
McCarthy RR, Larrouy-Maumus GJ, Meiqi Tan MGC, Wareham DW. Antibiotic Resistance Mechanisms and Their Transmission in Acinetobacter baumannii. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:135-153. [PMID: 34661894 DOI: 10.1007/978-3-030-67452-6_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The discovery of penicillin over 90 years ago and its subsequent uptake by healthcare systems around the world revolutionised global health. It marked the beginning of a golden age in antibiotic discovery with new antibiotics readily discovered from natural sources and refined into therapies that saved millions of lives. Towards the end of the last century, the rate of discovery slowed to a near standstill. The lack of discovery is compounded by the rapid emergence and spread of bacterial pathogens that exhibit resistance to multiple antibiotic therapies and threaten the sustainability of global healthcare systems. Acinetobacter baumannii is an opportunistic pathogen whose prevalence and impact has grown significantly over the last 20 years. It is recognised as a barometer of the antibiotic resistance crisis due to the diverse array of mechanisms by which it can become resistant.
Collapse
Affiliation(s)
- Ronan R McCarthy
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK.
| | - Gerald J Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Mei Gei C Meiqi Tan
- Antimicrobial Research Group, Blizard Institute, Queen Mary University London, London, UK
| | - David W Wareham
- Antimicrobial Research Group, Blizard Institute, Queen Mary University London, London, UK
| |
Collapse
|
21
|
Singh M, De Silva PM, Al-Saadi Y, Switala J, Loewen PC, Hausner G, Chen W, Hernandez I, Castillo-Ramirez S, Kumar A. Characterization of Extremely Drug-Resistant and Hypervirulent Acinetobacter baumannii AB030. Antibiotics (Basel) 2020; 9:antibiotics9060328. [PMID: 32560407 PMCID: PMC7345994 DOI: 10.3390/antibiotics9060328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
Acinetobacter baumannii is an important nosocomial bacterial pathogen. Multidrug-resistant isolates of A. baumannii are reported worldwide. Some A. baumannii isolates display resistance to nearly all antibiotics, making treatment of infections very challenging. As the need for new and effective antibiotics against A. baumannii becomes increasingly urgent, there is a need to understand the mechanisms of antibiotic resistance and virulence in this organism. In this work, comparative genomics was used to understand the mechanisms of antibiotic resistance and virulence in AB030, an extremely drug-resistant and hypervirulent strain of A. baumannii that is a representative of a recently emerged lineage of A. baumannii International Clone V. In order to characterize AB030, we carried out a genomic and phenotypic comparison with LAC-4, a previously described hyper-resistant and hypervirulent isolate. AB030 contains a number of antibiotic resistance- and virulence-associated genes that are not present in LAC-4. A number of these genes are present on mobile elements. This work shows the importance of characterizing the members of new lineages of A. baumannii in order to determine the development of antibiotic resistance and virulence in this organism.
Collapse
Affiliation(s)
- Manu Singh
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.S.); (P.M.D.S.); (Y.A.-S.); (J.S.); (P.C.L.); (G.H.)
| | - P. Malaka De Silva
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.S.); (P.M.D.S.); (Y.A.-S.); (J.S.); (P.C.L.); (G.H.)
| | - Yasser Al-Saadi
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.S.); (P.M.D.S.); (Y.A.-S.); (J.S.); (P.C.L.); (G.H.)
| | - Jacek Switala
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.S.); (P.M.D.S.); (Y.A.-S.); (J.S.); (P.C.L.); (G.H.)
| | - Peter C. Loewen
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.S.); (P.M.D.S.); (Y.A.-S.); (J.S.); (P.C.L.); (G.H.)
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.S.); (P.M.D.S.); (Y.A.-S.); (J.S.); (P.C.L.); (G.H.)
| | - Wangxue Chen
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada;
| | - Ismael Hernandez
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (I.H.); (S.C.-R.)
| | - Santiago Castillo-Ramirez
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (I.H.); (S.C.-R.)
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.S.); (P.M.D.S.); (Y.A.-S.); (J.S.); (P.C.L.); (G.H.)
- Correspondence:
| |
Collapse
|
22
|
Leal NC, Campos TL, Rezende AM, Docena C, Mendes-Marques CL, de Sá Cavalcanti FL, Wallau GL, Rocha IV, Cavalcanti CLB, Veras DL, Alves LR, Andrade-Figueiredo M, de Barros MPS, de Almeida AMP, de Morais MMC, Leal-Balbino TC, Xavier DE, de-Melo-Neto OP. Comparative Genomics of Acinetobacter baumannii Clinical Strains From Brazil Reveals Polyclonal Dissemination and Selective Exchange of Mobile Genetic Elements Associated With Resistance Genes. Front Microbiol 2020; 11:1176. [PMID: 32655514 PMCID: PMC7326025 DOI: 10.3389/fmicb.2020.01176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic bacterial pathogen infecting immunocompromised patients and has gained attention worldwide due to its increased antimicrobial resistance. Here, we report a comparative whole-genome sequencing and analysis coupled with an assessment of antibiotic resistance of 46 Acinetobacter strains (45 A. baumannii plus one Acinetobacter nosocomialis) originated from five hospitals from the city of Recife, Brazil, between 2010 and 2014. An average of 3,809 genes were identified per genome, although only 2,006 genes were single copy orthologs or core genes conserved across all sequenced strains, with an average of 42 new genes found per strain. We evaluated genetic distance through a phylogenetic analysis and MLST as well as the presence of antibiotic resistance genes, virulence markers and mobile genetic elements (MGE). The phylogenetic analysis recovered distinct monophyletic A. baumannii groups corresponding to five known (ST1, ST15, ST25, ST79, and ST113) and one novel ST (ST881, related to ST1). A large number of ST specific genes were found, with the ST79 strains having the largest number of genes in common that were missing from the other STs. Multiple genes associated with resistance to β-lactams, aminoglycosides and other antibiotics were found. Some of those were clearly mapped to defined MGEs and an analysis of those revealed known elements as well as a novel Tn7-Tn3 transposon with a clear ST specific distribution. An association of selected resistance/virulence markers with specific STs was indeed observed, as well as the recent spread of the OXA-253 carbapenemase encoding gene. Virulence genes associated with the synthesis of the capsular antigens were noticeably more variable in the ST113 and ST79 strains. Indeed, several resistance and virulence genes were common to the ST79 and ST113 strains only, despite a greater genetic distance between them, suggesting common means of genetic exchange. Our comparative analysis reveals the spread of multiple STs and the genomic plasticity of A. baumannii from different hospitals in a single metropolitan area. It also highlights differences in the spread of resistance markers and other MGEs between the investigated STs, impacting on the monitoring and treatment of Acinetobacter in the ongoing and future outbreaks.
Collapse
Affiliation(s)
- Nilma C Leal
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Túlio L Campos
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Antonio M Rezende
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Cássia Docena
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | | | - Felipe L de Sá Cavalcanti
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil.,Department of Pathology, Institute of Biological Sciences, University of Pernambuco, Recife, Brazil
| | - Gabriel L Wallau
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Igor V Rocha
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | | | - Dyana L Veras
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | - Lilian R Alves
- Department of Tropical Medicine, Federal University of Pernambuco, Recife, Brazil
| | | | | | | | | | | | - Danilo E Xavier
- Aggeu Magalhães Institute (IAM), Fundação Oswaldo Cruz (Fiocruz), Recife, Brazil
| | | |
Collapse
|
23
|
Comparative Analysis of AbaR-Type Genomic Islands Reveals Distinct Patterns of Genetic Features in Elements with Different Backbones. mSphere 2020; 5:5/3/e00349-20. [PMID: 32461273 PMCID: PMC7253598 DOI: 10.1128/msphere.00349-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbaR-type genomic islands (AbaRs) are well-known elements that can cause antimicrobial resistance in Acinetobacter baumannii. These elements contain diverse and complex genetic configurations involving different but related backbones with acquisition of diverse mobile genetic elements and antimicrobial resistance genes. Understanding their structural diversity is far from complete. In this study, we performed a large-scale comparative analysis of AbaRs, including nonresistance but closely related islands. Our findings offered a comprehensive and interesting view of their genetic features, which allowed us to correlate the structural modulation signatures, antimicrobial resistance patterns, insertion loci, as well as host clonal distribution of these elements to backbone types. This study provides insights into the evolution of these elements, explains the association between their antimicrobial resistance gene profiles and clonal distribution, and could facilitate establishment of a more proper nomenclature than the term “AbaR” that has been variously used. AbaR-type genomic islands (AbaRs) are prevalent and associated with multiple antimicrobial resistance in Acinetobacter baumannii. AbaRs feature varied structural configurations involving different but closely related backbones with acquisition of diverse mobile genetic elements (MGEs) and antimicrobial resistance genes. This study aimed to understand the structural modulation patterns of AbaRs. A total of 442 intact AbaRs, including nonresistance but closely related islands, were mapped to backbones Tn6019, Tn6022, Tn6172/Tn6173, and AbGRI1-0 followed by alien sequence characterization. Genetic configurations were then examined and compared. The AbaRs fall into 53 genetic configurations, among which 26 were novel, including one Tn6019-type, nine Tn6022-type, three Tn6172/Tn6173-type, nine AbGRI1-type, and four new transposons that could not be mapped to the known backbones. The newly identified genetic configurations involved insertions of novel MGEs like ISAcsp2, ISAba42, ISAba17, and ISAba10, novel structural modulations driven by known MGEs such as ISCR2, Tn2006, and even another AbaR, and different backbone deletions. Recombination events in AbGRI1-type elements were also examined by identifying hybrid sequences from different backbones. Moreover, we found that the content and context features of AbaRs including the profiles of the MGEs driving the plasticity of these elements and the consequently acquired antimicrobial resistance genes, insertion sites, and clonal distribution displayed backbone-specific patterns. This study provides a comprehensive view of the genetic features of AbaRs. IMPORTANCE AbaR-type genomic islands (AbaRs) are well-known elements that can cause antimicrobial resistance in Acinetobacter baumannii. These elements contain diverse and complex genetic configurations involving different but related backbones with acquisition of diverse mobile genetic elements and antimicrobial resistance genes. Understanding their structural diversity is far from complete. In this study, we performed a large-scale comparative analysis of AbaRs, including nonresistance but closely related islands. Our findings offered a comprehensive and interesting view of their genetic features, which allowed us to correlate the structural modulation signatures, antimicrobial resistance patterns, insertion loci, as well as host clonal distribution of these elements to backbone types. This study provides insights into the evolution of these elements, explains the association between their antimicrobial resistance gene profiles and clonal distribution, and could facilitate establishment of a more proper nomenclature than the term “AbaR” that has been variously used.
Collapse
|
24
|
Peters JE. Targeted transposition with Tn7 elements: safe sites, mobile plasmids, CRISPR/Cas and beyond. Mol Microbiol 2019; 112:1635-1644. [PMID: 31502713 PMCID: PMC6904524 DOI: 10.1111/mmi.14383] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2019] [Indexed: 01/02/2023]
Abstract
Transposon Tn7 is notable for the control it exercises over where transposition events are directed. One Tn7 integration pathways recognizes a highly conserved attachment (att) site in the chromosome, while a second pathway specifically recognizes mobile plasmids that facilitate transfer of the element to new hosts. In this review, I discuss newly discovered families of Tn7-like elements with different targeting pathways. Perhaps the most exciting examples are multiple instances where Tn7-like elements have repurposed CRISPR/Cas systems. In these cases, the CRISPR/Cas systems have lost their canonical defensive function to destroy incoming mobile elements; instead, the systems have been naturally adapted to use guide RNAs to specifically direct transposition into these mobile elements. The new families of Tn7-like elements also include a variety of novel att sites in bacterial chromosomes where genome islands can form. Interesting families have also been revealed where proteins described in the prototypic Tn7 element are fused or otherwise repurposed for the new dual activities. This expanded understanding of Tn7-like elements broadens our view of how genetic systems are repurposed and provides potentially exciting new tools for genome modification and genomics. Future opportunities and challenges to understanding the impact of the new families of Tn7-like elements are discussed.
Collapse
Affiliation(s)
- Joseph E Peters
- Department of Microbiology, Cornell University, 175a Wing Hall, Ithaca, NY, 14853, USA
| |
Collapse
|
25
|
Rafei R, Osman M, Dabboussi F, Hamze M. Update on the epidemiological typing methods for Acinetobacter baumannii. Future Microbiol 2019; 14:1065-1080. [DOI: 10.2217/fmb-2019-0134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The outstanding ability of Acinetobacter baumannii to cause outbreaks and acquire multidrug resistance motivated the development of a plethora of typing techniques, which can help infection preventionists and hospital epidemiologists to more efficiently implement intervention controls. Nowadays, the world is witnessing a gradual transition from traditional typing methodology to whole genome sequencing-based approaches. Such approaches are opening new prospects and applications never achieved by existing typing methods. Herein, we provide the reader with an updated review on A. baumannii typing methods recapping the added value of well-established techniques previously applied for A. baumannii and detailing new ones (as clustered regularly interspaced short palindromic repeats-based typing) with a special focus on whole genome sequencing.
Collapse
Affiliation(s)
- Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| |
Collapse
|