1
|
Atchison EB, Croft SN, Mathew C, Brookes DW, Coates M, Ito K, Ghildyal R. Interaction Between the Matrix Protein and the Polymerase Complex of Respiratory Syncytial Virus. Viruses 2024; 16:1881. [PMCID: PMC11680393 DOI: 10.3390/v16121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025] Open
Abstract
The global burden of respiratory syncytial virus (RSV) and severe associated disease is prodigious. RSV-specific vaccines have been launched recently but there is no antiviral medicine commercially available. RSV polymerase (L) protein is one of the promising antiviral targets, along with fusion and nucleocapsid proteins. During medicinal chemistry campaigns, two potent L-protein inhibitors (PC786 and PC751) were identified. Both compounds inhibited the RSV A/B-induced cytopathic effect in HEp-2 cells equally, but PC786 was more potent than PC751 in bronchial epithelial cells. Repeated treatment with escalating concentrations on RSV A2-infected HEp-2 cells revealed both inhibitors led to a Y1631H mutation in the L protein, but only PC786 induced a mutation in the M protein (V153A). By L protein fragment and M protein binding analysis, we showed that the M protein interacts with the 1392–1735 amino acid region of the L protein, where PC786 potentially binds. In addition, PC786 treatment or PC786-induced mutant RSV was found to increase M-protein nuclear localisation later in infection, concomitant with delayed fusion protein localisation at the budding viral filaments. As M protein is known to play a key role in virus assembly and budding late in infection, our data suggests that disrupting the interaction between the M and L proteins could provide a novel target for antiviral development.
Collapse
Affiliation(s)
- Elliot B. Atchison
- Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia; (E.B.A.); (S.N.C.); (C.M.)
| | - Sarah N. Croft
- Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia; (E.B.A.); (S.N.C.); (C.M.)
| | - Cynthia Mathew
- Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia; (E.B.A.); (S.N.C.); (C.M.)
| | | | - Matthew Coates
- Pulmocide Ltd., London WC2A 1AP, UK; (D.W.B.); (M.C.); (K.I.)
| | - Kazuhiro Ito
- Pulmocide Ltd., London WC2A 1AP, UK; (D.W.B.); (M.C.); (K.I.)
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Reena Ghildyal
- Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia; (E.B.A.); (S.N.C.); (C.M.)
| |
Collapse
|
2
|
Citron MP, Zang X, Leithead A, Meng S, Rose Ii WA, Murray E, Fontenot J, Bilello JP, Beshore DC, Howe JA. Evaluation of a non-nucleoside inhibitor of the RSV RNA-dependent RNA polymerase in translatable animals models. J Infect 2024; 89:106325. [PMID: 39454831 DOI: 10.1016/j.jinf.2024.106325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Respiratory Syncytial Virus (RSV) causes severe respiratory infections and concomitant disease resulting in significant morbidity and mortality in infants, elderly, and immunocompromised adults. Vaccines, monoclonal antibodies, and small-molecule antivirals are now either available or in development to prevent and treat RSV infections. Although rodent and non-rodent preclinical animal models have been used to evaluate these emerging agents, there is still a need to improve our understanding of the pharmacokinetic (PK)-pharmacodynamic (PD) relationships within and between animal models to enable better design of human challenge studies and clinical trials. Herein, we report a PKPD evaluation of MRK-1, a novel small molecule non-nucleoside inhibitor of the RSV L polymerase protein, in the semi-permissive cotton rat and African green monkey models of RSV infection. These studies demonstrate a strong relationship between in vitro activity, in vivo drug exposure, and pharmacodynamic efficacy as well as revealing limitations of the cotton rat RSV model. Additionally, we report unexpected horizontal transmission of human RSV between co-housed African green monkeys, as well as a lack of drug specific resistant mutant generation. Taken together these studies further our understanding of these semi-permissive animal models and offer the potential for expansion of their preclinical utility in evaluating novel RSV therapeutic agents.
Collapse
Affiliation(s)
- Michael P Citron
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States.
| | - Xiaowei Zang
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States
| | - Andrew Leithead
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States
| | - Shi Meng
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States
| | - William A Rose Ii
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States
| | - Edward Murray
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States
| | - Jane Fontenot
- The University of Louisiana New Iberia Research Center, New Iberia, LA 70560, United States
| | - John P Bilello
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States
| | - Douglas C Beshore
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States
| | - John A Howe
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States
| |
Collapse
|
3
|
Wolf JD, Sirrine MR, Cox RM, Plemper RK. Structural basis of paramyxo- and pneumovirus polymerase inhibition by non-nucleoside small-molecule antivirals. Antimicrob Agents Chemother 2024; 68:e0080024. [PMID: 39162479 PMCID: PMC11459973 DOI: 10.1128/aac.00800-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Small-molecule antivirals can be used as chemical probes to stabilize transitory conformational stages of viral target proteins, facilitating structural analyses. Here, we evaluate allosteric pneumo- and paramyxovirus polymerase inhibitors that have the potential to serve as chemical probes and aid the structural characterization of short-lived intermediate conformations of the polymerase complex. Of multiple inhibitor classes evaluated, we discuss in-depth distinct scaffolds that were selected based on well-understood structure-activity relationships, insight into resistance profiles, biochemical characterization of the mechanism of action, and photoaffinity-based target mapping. Each class is thought to block structural rearrangements of polymerase domains albeit target sites and docking poses are distinct. This review highlights validated druggable targets in the paramyxo- and pneumovirus polymerase proteins and discusses discrete structural stages of the polymerase complexes required for bioactivity.
Collapse
Affiliation(s)
- Josef D. Wolf
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Michael R. Sirrine
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Robert M. Cox
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Richard K. Plemper
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Grosse S, Cooymans L, Embrechts W, McGowan D, Jacoby E, Stoops B, Gupta K, Ackermann M, Alnajjar S, Guillemont J, Jin Z, Kesteleyn B, Matcha K, Sriboonyapirat P, Truong A, Van Den Berg J, Yu X, Herschke F, Roymans D, Raboisson P, Rigaux P, Jonckers THM. Discovery of gem-Dimethyl-hydroxymethylpyridine Derivatives as Potent Non-nucleoside RSV Polymerase Inhibitors. J Med Chem 2024; 67:13723-13736. [PMID: 39105710 DOI: 10.1021/acs.jmedchem.4c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Respiratory syncytial virus (RSV) is an RNA virus infecting the upper and lower respiratory tract and is recognized as a major respiratory health threat, particularly to older adults, immunocompromised individuals, and young children. Around 64 million children and adults are infected every year worldwide. Despite two vaccines and a new generation monoclonal antibody recently approved, no effective antiviral treatment is available. In this manuscript, we present the medicinal chemistry efforts resulting in the identification of compound 28 (JNJ-8003), a novel RSV non-nucleoside inhibitor displaying subnanomolar activity in vitro as well as prominent efficacy in mice and a neonatal lamb models.
Collapse
Affiliation(s)
- Sandrine Grosse
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Ludwig Cooymans
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Werner Embrechts
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | | | - Edgar Jacoby
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Bart Stoops
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Kusum Gupta
- Neuron23 Inc. 343 Oyster Point Blvd, South San Francisco, California 94080, United States
| | | | - Sarhad Alnajjar
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, U.K
| | | | - Zhinan Jin
- Janssen Pharmaceutica NV, Brisbane, California 94005, United States
| | - Bart Kesteleyn
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Kiran Matcha
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | | | - Anh Truong
- Neuron23 Inc. 343 Oyster Point Blvd, South San Francisco, California 94080, United States
| | - Joke Van Den Berg
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Xiaodi Yu
- Janssen Pharmaceutica NV, Spring House, Pennsylvania 19477 United States
| | - Florence Herschke
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Dirk Roymans
- DNS Life Sciences Consulting, Brandhoefstraat 63, 2300 Turnhout, Belgium
| | - Pierre Raboisson
- Galapagos, General De Wittelaan L112, A3, 2800 Mechelen, Belgium
| | - Peter Rigaux
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Tim H M Jonckers
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| |
Collapse
|
5
|
Felicetti T, Sarnari C, Gaito R, Tabarrini O, Manfroni G. Recent Progress toward the Discovery of Small Molecules as Novel Anti-Respiratory Syncytial Virus Agents. J Med Chem 2024; 67:11543-11579. [PMID: 38970494 DOI: 10.1021/acs.jmedchem.4c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Respiratory syncytial virus (RSV) stands as the foremost cause of infant hospitalization globally, ranking second only to malaria in terms of infant mortality. Although three vaccines have recently been approved for the prophylaxis of adults aged 60 and above, and pregnant women, there is currently no effective antiviral drug for treating RSV infections. The only preventive measure for infants at high risk of severe RSV disease is passive immunization through monoclonal antibodies. This Perspective offers an overview of the latest advancements in RSV drug discovery of small molecule antivirals, with particular focus on the promising findings from agents targeting the fusion and polymerase proteins. A comprehensive reflection on the current state of RSV research is also given, drawing inspiration from the lessons gleaned from HCV and HIV, while also considering the impact of the recent approval of the three vaccines.
Collapse
Affiliation(s)
- Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Chiara Sarnari
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Roberta Gaito
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| |
Collapse
|
6
|
Oraby A, Bilawchuk L, West FG, Marchant DJ. Structure-Based Discovery of Allosteric Inhibitors Targeting a New Druggable Site in the Respiratory Syncytial Virus Polymerase. ACS OMEGA 2024; 9:22213-22229. [PMID: 38799318 PMCID: PMC11112712 DOI: 10.1021/acsomega.4c01207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024]
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory infections for which effective treatment options remain limited. Herein, we employed a computational structure-based design strategy aimed at identifying potential targets for a new class of allosteric inhibitors. Our investigation led to the discovery of a previously undisclosed allosteric binding site within the RSV polymerase, the large (L) protein. This discovery was achieved through a combination of virtual screening and molecular dynamics simulations. Subsequently, we identified two inhibitors, 6a and 10b, which both exhibited promising antiviral activity in the low micromolar range. Resistance profiling revealed a distinctive pattern in how RSV evaded treatment with this class of inhibitors. This pattern strongly suggested that this class of small molecules was targeting a new binding site in the RSV L protein, aligning with the computational predictions made in our study. This study paves the way for the development of more potent inhibitors for combating RSV infections by targeting a new druggable pocket within the RdRp which does not overlap with previously known resistance sites.
Collapse
Affiliation(s)
- Ahmed
K. Oraby
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department
of Pharmaceutical Organic Chemistry, College of Pharmaceutical Sciences
and Drug Manufacturing, Misr University
for Science and Technology, 6th
of October City P.O. Box 77,Egypt
| | - Leanne Bilawchuk
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Frederick G. West
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - David J. Marchant
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
7
|
Zou G, Cao S, Gao Z, Yie J, Wu JZ. Current state and challenges in respiratory syncytial virus drug discovery and development. Antiviral Res 2024; 221:105791. [PMID: 38160942 DOI: 10.1016/j.antiviral.2023.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Human respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infections (LRTI) in young children and elderly people worldwide. Recent significant progress in our understanding of the structure and function of RSV proteins has led to the discovery of several clinical candidates targeting RSV fusion and replication. These include both the development of novel small molecule interventions and the isolation of potent monoclonal antibodies. In this review, we summarize the state-of-the-art of RSV drug discovery, with a focus on the characteristics of the candidates that reached the clinical stage of development. We also discuss the lessons learned from failed and discontinued clinical developments and highlight the challenges that remain for development of RSV therapies.
Collapse
Affiliation(s)
- Gang Zou
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China.
| | - Sushan Cao
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Zhao Gao
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Junming Yie
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Jim Zhen Wu
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| |
Collapse
|
8
|
Huang G, Hucek D, Cierpicki T, Grembecka J. Applications of oxetanes in drug discovery and medicinal chemistry. Eur J Med Chem 2023; 261:115802. [PMID: 37713805 DOI: 10.1016/j.ejmech.2023.115802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
The compact and versatile oxetane motifs have gained significant attention in drug discovery and medicinal chemistry campaigns. This review presents an overview of the diverse applications of oxetanes in clinical and preclinical drug candidates targeting various human diseases, including cancer, viral infections, autoimmune disorders, neurodegenerative conditions, metabolic disorders, and others. Special attention is given to biologically active oxetane-containing compounds and their disease-related targets, such as kinases, epigenetic and non-epigenetic enzymes, and receptors. The review also details the effect of the oxetane motif on important properties, including aqueous solubility, lipophilicity, pKa, P-glycoprotein (P-gp) efflux, metabolic stability, conformational preferences, toxicity profiles (e.g., cytochrome P450 (CYP) suppression and human ether-a-go-go related gene (hERG) inhibition), pharmacokinetic (PK) properties, potency, and target selectivity. We anticipate that this work will provide valuable insights that can drive future discoveries of novel bioactive oxetane-containing small molecules, enabling their effective application in combating a wide range of human diseases.
Collapse
Affiliation(s)
- Guang Huang
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Devon Hucek
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
9
|
Yu X, Abeywickrema P, Bonneux B, Behera I, Anson B, Jacoby E, Fung A, Adhikary S, Bhaumik A, Carbajo RJ, De Bruyn S, Miller R, Patrick A, Pham Q, Piassek M, Verheyen N, Shareef A, Sutto-Ortiz P, Ysebaert N, Van Vlijmen H, Jonckers THM, Herschke F, McLellan JS, Decroly E, Fearns R, Grosse S, Roymans D, Sharma S, Rigaux P, Jin Z. Structural and mechanistic insights into the inhibition of respiratory syncytial virus polymerase by a non-nucleoside inhibitor. Commun Biol 2023; 6:1074. [PMID: 37865687 PMCID: PMC10590419 DOI: 10.1038/s42003-023-05451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
The respiratory syncytial virus polymerase complex, consisting of the polymerase (L) and phosphoprotein (P), catalyzes nucleotide polymerization, cap addition, and cap methylation via the RNA dependent RNA polymerase, capping, and Methyltransferase domains on L. Several nucleoside and non-nucleoside inhibitors have been reported to inhibit this polymerase complex, but the structural details of the exact inhibitor-polymerase interactions have been lacking. Here, we report a non-nucleoside inhibitor JNJ-8003 with sub-nanomolar inhibition potency in both antiviral and polymerase assays. Our 2.9 Å resolution cryo-EM structure revealed that JNJ-8003 binds to an induced-fit pocket on the capping domain, with multiple interactions consistent with its tight binding and resistance mutation profile. The minigenome and gel-based de novo RNA synthesis and primer extension assays demonstrated that JNJ-8003 inhibited nucleotide polymerization at the early stages of RNA transcription and replication. Our results support that JNJ-8003 binding modulates a functional interplay between the capping and RdRp domains, and this molecular insight could accelerate the design of broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- Xiaodi Yu
- Johnson & Johnson Innovative Medicine, Spring House, Pennsylvania, PA, 19477, USA.
| | - Pravien Abeywickrema
- Johnson & Johnson Innovative Medicine, Spring House, Pennsylvania, PA, 19477, USA
| | - Brecht Bonneux
- Janssen Infectious Diseases and Vaccines, 2340, Beerse, Belgium
- University of Antwerp, Antwerp, Belgium
| | - Ishani Behera
- Johnson & Johnson Innovative Medicine, Brisbane, CA, 94005, USA
| | - Brandon Anson
- Johnson & Johnson Innovative Medicine, Brisbane, CA, 94005, USA
| | - Edgar Jacoby
- Johnson & Johnson Innovative Medicine, Beerse, Belgium
| | - Amy Fung
- Johnson & Johnson Innovative Medicine, Brisbane, CA, 94005, USA
| | - Suraj Adhikary
- Johnson & Johnson Innovative Medicine, Spring House, Pennsylvania, PA, 19477, USA
| | - Anusarka Bhaumik
- Johnson & Johnson Innovative Medicine, Spring House, Pennsylvania, PA, 19477, USA
| | - Rodrigo J Carbajo
- Johnson & Johnson Innovative Medicine, Janssen-Cilag, Discovery Chemistry S.A. Río Jarama, 75A, 45007, Toledo, Spain
| | | | - Robyn Miller
- Johnson & Johnson Innovative Medicine, Spring House, Pennsylvania, PA, 19477, USA
| | - Aaron Patrick
- Johnson & Johnson Innovative Medicine, Spring House, Pennsylvania, PA, 19477, USA
| | - Quyen Pham
- Johnson & Johnson Innovative Medicine, Brisbane, CA, 94005, USA
| | - Madison Piassek
- Johnson & Johnson Innovative Medicine, Spring House, Pennsylvania, PA, 19477, USA
| | - Nick Verheyen
- Janssen Infectious Diseases and Vaccines, 2340, Beerse, Belgium
| | - Afzaal Shareef
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | | | - Nina Ysebaert
- Janssen Infectious Diseases and Vaccines, 2340, Beerse, Belgium
| | | | | | | | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Etienne Decroly
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
| | - Rachel Fearns
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | | | - Dirk Roymans
- Janssen Infectious Diseases and Vaccines, 2340, Beerse, Belgium
| | - Sujata Sharma
- Johnson & Johnson Innovative Medicine, Spring House, Pennsylvania, PA, 19477, USA
| | - Peter Rigaux
- Janssen Infectious Diseases and Vaccines, 2340, Beerse, Belgium
| | - Zhinan Jin
- Johnson & Johnson Innovative Medicine, Brisbane, CA, 94005, USA.
| |
Collapse
|
10
|
Cadena-Cruz C, Villarreal Camacho JL, De Ávila-Arias M, Hurtado-Gomez L, Rodriguez A, San-Juan-Vergara H. Respiratory syncytial virus entry mechanism in host cells: A general overview. Mol Microbiol 2023; 120:341-350. [PMID: 37537859 DOI: 10.1111/mmi.15133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023]
Abstract
Respiratory syncytial virus (RSV) is a virus that causes acute respiratory infections in neonates and older adults. To infect host cells, the attachment glycoprotein (G) interacts with a cell surface receptor. This interaction determines the specific cell types that are susceptible to infection. RSV possesses a type I fusion protein F. Type I fusion proteins are metastable when rearrangement of the prefusion F occurs; the fusion peptide is exposed transforming the protein into postfusion form. The transition between the prefusion form and its postfusion form facilitates the viral envelope and the host cell membrane to fuse, enabling the virus to enter the host cell. Understanding the entry mechanism employed by RSV is crucial for developing effective antiviral therapies. In this review, we will discuss the various types of viral fusion proteins and explore the potential entry mechanisms utilized by RSV. A deeper understanding of these mechanisms will provide valuable insights for the development of novel approaches to treat RSV infections.
Collapse
Affiliation(s)
- C Cadena-Cruz
- División Ciencias de la Salud, Universidad del Norte Barranquilla, Barranquilla, Colombia
- Facultad de Ciencias de la Salud, Programa de Medicina, Universidad Libre Seccional Barranquilla, Barranquilla, Colombia
| | - J L Villarreal Camacho
- Facultad de Ciencias de la Salud, Programa de Medicina, Universidad Libre Seccional Barranquilla, Barranquilla, Colombia
| | - Marcio De Ávila-Arias
- División Ciencias de la Salud, Universidad del Norte Barranquilla, Barranquilla, Colombia
| | - Leidy Hurtado-Gomez
- División Ciencias de la Salud, Universidad del Norte Barranquilla, Barranquilla, Colombia
| | - Alexander Rodriguez
- División Ciencias de la Salud, Universidad del Norte Barranquilla, Barranquilla, Colombia
| | | |
Collapse
|
11
|
Kleiner VA, O Fischmann T, Howe JA, Beshore DC, Eddins MJ, Hou Y, Mayhood T, Klein D, Nahas DD, Lucas BJ, Xi H, Murray E, Ma DY, Getty K, Fearns R. Conserved allosteric inhibitory site on the respiratory syncytial virus and human metapneumovirus RNA-dependent RNA polymerases. Commun Biol 2023; 6:649. [PMID: 37337079 DOI: 10.1038/s42003-023-04990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/26/2023] [Indexed: 06/21/2023] Open
Abstract
Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are related RNA viruses responsible for severe respiratory infections and resulting disease in infants, elderly, and immunocompromised adults1-3. Therapeutic small molecule inhibitors that bind to the RSV polymerase and inhibit viral replication are being developed, but their binding sites and molecular mechanisms of action remain largely unknown4. Here we report a conserved allosteric inhibitory site identified on the L polymerase proteins of RSV and HMPV that can be targeted by a dual-specificity, non-nucleoside inhibitor, termed MRK-1. Cryo-EM structures of the inhibitor in complexes with truncated RSV and full-length HMPV polymerase proteins provide a structural understanding of how MRK-1 is active against both viruses. Functional analyses indicate that MRK-1 inhibits conformational changes necessary for the polymerase to engage in RNA synthesis initiation and to transition into an elongation mode. Competition studies reveal that the MRK-1 binding pocket is distinct from that of a capping inhibitor with an overlapping resistance profile, suggesting that the polymerase conformation bound by MRK-1 may be distinct from that involved in mRNA capping. These findings should facilitate optimization of dual RSV and HMPV replication inhibitors and provide insights into the molecular mechanisms underlying their polymerase activities.
Collapse
Affiliation(s)
- Victoria A Kleiner
- Department of Virology, Immunology & Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | | | | | | | | | - Yan Hou
- MRL, Merck & Co., Inc., Rahway, NJ, USA
| | | | | | | | | | - He Xi
- MRL, Merck & Co., Inc., Rahway, NJ, USA
| | | | | | | | - Rachel Fearns
- Department of Virology, Immunology & Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
12
|
Xu E, Park S, Calderon J, Cao D, Liang B. In Silico Identification and In Vitro Validation of Repurposed Compounds Targeting the RSV Polymerase. Microorganisms 2023; 11:1608. [PMID: 37375110 DOI: 10.3390/microorganisms11061608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Respiratory Syncytial Virus (RSV) is the top cause of infant hospitalization globally, with no effective treatments available. Researchers have sought small molecules to target the RNA-dependent RNA Polymerase (RdRP) of RSV, which is essential for replication and transcription. Based on the cryo-EM structure of the RSV polymerase, in silico computational analysis including molecular docking and the protein-ligand simulation of a database, including 6554 molecules, is currently undergoing phases 1-4 of clinical trials and has resulted in the top ten repurposed compound candidates against the RSV polymerase, including Micafungin, Totrombopag, and Verubecestat. We performed the same procedure to evaluate 18 small molecules from previous studies and chose the top four compounds for comparison. Among the top identified repurposed compounds, Micafungin, an antifungal medication, showed significant inhibition and binding affinity improvements over current inhibitors such as ALS-8112 and Ribavirin. We also validated Micafungin's inhibition of the RSV RdRP using an in vitro transcription assay. These findings contribute to RSV drug development and hold promise for broad-spectrum antivirals targeting the non-segmented negative-sense (NNS) RNA viral polymerases, including those of rabies (RABV) and Ebola (EBOV).
Collapse
Affiliation(s)
- Eric Xu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Seohyun Park
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Juan Calderon
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dongdong Cao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
13
|
Sutto-Ortiz P, Eléouët JF, Ferron F, Decroly E. Biochemistry of the Respiratory Syncytial Virus L Protein Embedding RNA Polymerase and Capping Activities. Viruses 2023; 15:v15020341. [PMID: 36851554 PMCID: PMC9960070 DOI: 10.3390/v15020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The human respiratory syncytial virus (RSV) is a negative-sense, single-stranded RNA virus. It is the major cause of severe acute lower respiratory tract infection in infants, the elderly population, and immunocompromised individuals. There is still no approved vaccine or antiviral treatment against RSV disease, but new monoclonal prophylactic antibodies are yet to be commercialized, and clinical trials are in progress. Hence, urgent efforts are needed to develop efficient therapeutic treatments. RSV RNA synthesis comprises viral transcription and replication that are catalyzed by the large protein (L) in coordination with the phosphoprotein polymerase cofactor (P), the nucleoprotein (N), and the M2-1 transcription factor. The replication/transcription is orchestrated by the L protein, which contains three conserved enzymatic domains: the RNA-dependent RNA polymerase (RdRp), the polyribonucleotidyl transferase (PRNTase or capping), and the methyltransferase (MTase) domain. These activities are essential for the RSV replicative cycle and are thus considered as attractive targets for the development of therapeutic agents. In this review, we summarize recent findings about RSV L domains structure that highlight how the enzymatic activities of RSV L domains are interconnected, discuss the most relevant and recent antivirals developments that target the replication/transcription complex, and conclude with a perspective on identified knowledge gaps that enable new research directions.
Collapse
Affiliation(s)
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris Saclay, F78350 Jouy en Josas, France
| | - François Ferron
- Aix Marseille Université, CNRS, AFMB, UMR, 7257 Marseille, France
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Etienne Decroly
- Aix Marseille Université, CNRS, AFMB, UMR, 7257 Marseille, France
- Correspondence:
| |
Collapse
|
14
|
Pyasi S, Jonniya NA, Sk MF, Nayak D, Kar P. Finding potential inhibitors against RNA-dependent RNA polymerase (RdRp) of bovine ephemeral fever virus (BEFV): an in- silico study. J Biomol Struct Dyn 2022; 40:10403-10421. [PMID: 34238122 DOI: 10.1080/07391102.2021.1946714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The bovine ephemeral fever virus (BEFV) is an enzootic agent that affects millions of bovines and causes major economic losses. Though the virus is seasonally reported with a very high morbidity rate (80-100%) from African, Australian, and Asiatic continents, it remains a neglected pathogen in many of its endemic areas, with no proper therapeutic drugs or vaccines presently available for treatment. The RNA-dependent RNA polymerase (RdRp) catalyzes the viral RNA synthesis and is an appropriate candidate for antiviral drug developments. We utilized integrated computational tools to build the 3D model of BEFV-RdRp and then predicted its probable active binding sites. The virtual screening and optimization against these active sites, using several small-molecule inhibitors from a different category of Life Chemical database and FDA-approved drugs from the ZINC database, was performed. We found nine molecules that have docking scores varying between -6.84 to -10.43 kcal/mol. Furthermore, these complexes were analyzed for their conformational dynamics and thermodynamic stability using molecular dynamics simulations in conjunction with the molecular mechanics generalized Born surface area (MM-GBSA) scheme. The binding free energy calculations depict that the electrostatic interactions play a dominant role in the RdRp-inhibitor binding. The hot spot residues, such as Arg565, Asp631, Glu633, Asp740, and Glu707, were found to control the RdRp-inhibitor interaction. The ADMET analysis strongly suggests favorable pharmacokinetics of these compounds that may prove useful for treating the BEFV ailment. Overall, we anticipate that these findings would help explore and develop a wide range of anti-BEFV therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shruti Pyasi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Debasis Nayak
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
15
|
Soto JA, Galvez NMS, Rivera DB, Díaz FE, Riedel CA, Bueno SM, Kalergis AM. From animal studies into clinical trials: the relevance of animal models to develop vaccines and therapies to reduce disease severity and prevent hRSV infection. Expert Opin Drug Discov 2022; 17:1237-1259. [PMID: 36093605 DOI: 10.1080/17460441.2022.2123468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Human respiratory syncytial virus (hRSV) is an important cause of lower respiratory tract infections in the pediatric and the geriatric population worldwide. There is a substantial economic burden resulting from hRSV disease during winter. Although no vaccines have been approved for human use, prophylactic therapies are available for high-risk populations. Choosing the proper animal models to evaluate different vaccine prototypes or pharmacological treatments is essential for developing efficient therapies against hRSV. AREAS COVERED This article describes the relevance of using different animal models to evaluate the effect of antiviral drugs, pharmacological molecules, vaccine prototypes, and antibodies in the protection against hRSV. The animal models covered are rodents, mustelids, bovines, and nonhuman primates. Animals included were chosen based on the available literature and their role in the development of the drugs discussed in this manuscript. EXPERT OPINION Choosing the correct animal model is critical for exploring and testing treatments that could decrease the impact of hRSV in high-risk populations. Mice will continue to be the most used preclinical model to evaluate this. However, researchers must also explore the use of other models such as nonhuman primates, as they are more similar to humans, prior to escalating into clinical trials.
Collapse
Affiliation(s)
- J A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - N M S Galvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - D B Rivera
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F E Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - S M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
16
|
Sourimant J, Lieber CM, Yoon JJ, Toots M, Govindarajan M, Udumula V, Sakamoto K, Natchus MG, Patti J, Vernachio J, Plemper RK. Orally efficacious lead of the AVG inhibitor series targeting a dynamic interface in the respiratory syncytial virus polymerase. SCIENCE ADVANCES 2022; 8:eabo2236. [PMID: 35749502 PMCID: PMC9232112 DOI: 10.1126/sciadv.abo2236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory infections in infants and the immunocompromised, yet no efficient therapeutic exists. We have identified the AVG class of allosteric inhibitors of RSV RNA synthesis. Here, we demonstrate through biolayer interferometry and in vitro RNA-dependent RNA polymerase (RdRP) assays that AVG compounds bind to the viral polymerase, stalling the polymerase in initiation conformation. Resistance profiling revealed a unique escape pattern, suggesting a discrete docking pose. Affinity mapping using photoreactive AVG analogs identified the interface of polymerase core, capping, and connector domains as a molecular target site. A first-generation lead showed nanomolar potency against RSV in human airway epithelium organoids but lacked in vivo efficacy. Docking pose-informed synthetic optimization generated orally efficacious AVG-388, which showed potent efficacy in the RSV mouse model when administered therapeutically. This study maps a druggable target in the RSV RdRP and establishes clinical potential of the AVG chemotype against RSV disease.
Collapse
Affiliation(s)
- Julien Sourimant
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Carolin M. Lieber
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Jeong-Joong Yoon
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Mart Toots
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | | | - Venkata Udumula
- Emory Institute for Drug Development, Emory University, Atlanta, GA 30322, USA
| | - Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Michael G. Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, GA 30322, USA
| | - Joseph Patti
- Aviragen Therapeutics Inc, Alpharetta, GA 30009, USA
| | | | - Richard K. Plemper
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
17
|
Discovery of a Novel Respiratory Syncytial Virus Replication Inhibitor. Antimicrob Agents Chemother 2021; 65:AAC.02576-20. [PMID: 33782012 PMCID: PMC8316115 DOI: 10.1128/aac.02576-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/18/2021] [Indexed: 11/20/2022] Open
Abstract
A high-throughput screen of a Roche internal chemical library based on inhibition of the respiratory syncytial virus (RSV)-induced cytopathic effect (CPE) on HEp-2 cells was performed to identify RSV inhibitors. Over 2,000 hits were identified and confirmed to be efficacious against RSV infection in vitro Here, we report the discovery of a triazole-oxadiazole derivative, designated triazole-1, as an RSV replication inhibitor, and we characterize its mechanism of action. Triazole-1 inhibited the replication of both RSV A and B subtypes with 50% inhibitory concentration (IC50) values of approximately 1 μM, but it was not effective against other viruses, including influenza virus A, human enterovirus 71 (EV71), and vaccinia virus. Triazole-1 was shown to inhibit RSV replication when added at up to 8 h after viral entry, suggesting that it inhibits RSV after viral entry. In a minigenome reporter assay in which RSV transcription regulatory sequences flanking a luciferase gene were cotransfected with RSV N/P/L/M2-1 genes into HEp-2 cells, triazole-1 demonstrated specific and dose-dependent RSV transcription inhibitory effects. Consistent with these findings, deep sequencing of the genomes of triazole-1-resistant mutants revealed a single point mutation (A to G) at nucleotide 13546 of the RSV genome, leading to a T-to-A change at amino acid position 1684 of the L protein, which is the RSV RNA polymerase for both viral transcription and replication. The effect of triazole-1 on minigenome transcription, which was mediated by the L protein containing the T1684A mutation, was significantly reduced, suggesting that the T1684A mutation alone conferred viral resistance to triazole-1.
Collapse
|
18
|
EDP-938, a novel nucleoprotein inhibitor of respiratory syncytial virus, demonstrates potent antiviral activities in vitro and in a non-human primate model. PLoS Pathog 2021; 17:e1009428. [PMID: 33720995 PMCID: PMC7993833 DOI: 10.1371/journal.ppat.1009428] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/25/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
EDP-938 is a novel non-fusion replication inhibitor of respiratory syncytial virus (RSV). It is highly active against all RSV-A and B laboratory strains and clinical isolates tested in vitro in various cell lines and assays, with half-maximal effective concentrations (EC50s) of 21, 23 and 64 nM against Long (A), M37 (A) and VR-955 (B) strains, respectively, in the primary human bronchial epithelial cells (HBECs). EDP-938 inhibits RSV at a post-entry replication step of the viral life cycle as confirmed by time-of-addition study, and the activity appears to be mediated by viral nucleoprotein (N). In vitro resistance studies suggest that EDP-938 presents a higher barrier to resistance compared to viral fusion or non-nucleoside L polymerase inhibitors with no cross-resistance observed. Combinations of EDP-938 with other classes of RSV inhibitors lead to synergistic antiviral activity in vitro. Finally, EDP-938 has also been shown to be efficacious in vivo in a non-human primate model of RSV infection. Respiratory syncytial virus (RSV) is a ubiquitous viral pathogen which inflicts a significant healthcare burden and is responsible for thousands of deaths annually. Currently no vaccine or targeted therapeutic exists. This work characterizes a newly discovered small molecule inhibitor of the virus, EDP-938, whose activity is mediated through the viral nucleoprotein. EDP-938 has potent in vitro activities against laboratory strains and clinical isolates of the virus, presents a high-barrier to resistance, can work synergistically with other known fusion or L protein inhibitors, and displays strong in vivo efficacy in a non-human primate model for RSV infection. EDP-938 is currently under evaluation in Phase 2 clinical studies.
Collapse
|
19
|
Cox RM, Sourimant J, Govindarajan M, Natchus MG, Plemper RK. Therapeutic targeting of measles virus polymerase with ERDRP-0519 suppresses all RNA synthesis activity. PLoS Pathog 2021; 17:e1009371. [PMID: 33621266 PMCID: PMC7935272 DOI: 10.1371/journal.ppat.1009371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/05/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
Morbilliviruses, such as measles virus (MeV) and canine distemper virus (CDV), are highly infectious members of the paramyxovirus family. MeV is responsible for major morbidity and mortality in non-vaccinated populations. ERDRP-0519, a pan-morbillivirus small molecule inhibitor for the treatment of measles, targets the morbillivirus RNA-dependent RNA-polymerase (RdRP) complex and displayed unparalleled oral efficacy against lethal infection of ferrets with CDV, an established surrogate model for human measles. Resistance profiling identified the L subunit of the RdRP, which harbors all enzymatic activity of the polymerase complex, as the molecular target of inhibition. Here, we examined binding characteristics, physical docking site, and the molecular mechanism of action of ERDRP-0519 through label-free biolayer interferometry, photoaffinity cross-linking, and in vitro RdRP assays using purified MeV RdRP complexes and synthetic templates. Results demonstrate that unlike all other mononegavirus small molecule inhibitors identified to date, ERDRP-0519 inhibits all phosphodiester bond formation in both de novo initiation of RNA synthesis at the promoter and RNA elongation by a committed polymerase complex. Photocrosslinking and resistance profiling-informed ligand docking revealed that this unprecedented mechanism of action of ERDRP-0519 is due to simultaneous engagement of the L protein polyribonucleotidyl transferase (PRNTase)-like domain and the flexible intrusion loop by the compound, pharmacologically locking the polymerase in pre-initiation conformation. This study informs selection of ERDRP-0519 as clinical candidate for measles therapy and identifies a previously unrecognized druggable site in mononegavirus L polymerase proteins that can silence all synthesis of viral RNA. The mononegavirus order contains major established and recently emerged human pathogens. Despite the threat to human health, antiviral therapeutics directed against this order remain understudied. The mononegavirus polymerase complex represents a promising drug target due to its central importance for both virus replication and viral mitigation of the innate host antiviral response. In this study, we have mechanistically characterized a clinical candidate small-molecule MeV polymerase inhibitor. The compound blocked all phosphodiester bond formation activity, a unique mechanism of action unlike all other known mononegavirus polymerase inhibitors. Photocrosslinking-based target site mapping demonstrated that this class-defining prototype inhibitor stabilizes a pre-initiation conformation of the viral polymerase complex that sterically cannot accommodate template RNA. Function-equivalent druggable sites exist in all mononegavirus polymerases. In addition to its direct anti-MeV impact, the insight gained in this study can therefore serve as a blueprint for indication spectrum expansion through structure-informed scaffold engineering or targeted drug discovery.
Collapse
Affiliation(s)
- Robert M. Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Julien Sourimant
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Mugunthan Govindarajan
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, United States of America
| | - Michael G. Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, United States of America
| | - Richard K. Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
20
|
Elawar F, Oraby AK, Kieser Q, Jensen LD, Culp T, West FG, Marchant DJ. Pharmacological targets and emerging treatments for respiratory syncytial virus bronchiolitis. Pharmacol Ther 2020; 220:107712. [PMID: 33121940 DOI: 10.1016/j.pharmthera.2020.107712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022]
Abstract
RSV infection of the lower respiratory tract in infants is the leading cause of pediatric hospitalizations and second to malaria in causing infant deaths worldwide. RSV also causes substantial morbidity in immunocompromised and elderly populations. The only available therapeutic is a prophylactic drug called Palivizumab that is a humanized monoclonal antibody, given to high-risk infants. However, this intervention is expensive and has a limited impact on annual hospitalization rates caused by RSV. No vaccine is available, nor are efficacious antivirals to treat an active infection, and there is still no consensus on how infants with bronchiolitis should be treated during hospital admission. In this comprehensive review, we briefly outline the function of the RSV proteins and their suitability as therapeutic targets. We then discuss the most promising drug candidates, their inhibitory mechanisms, and whether they are in the process of clinical trials. We also briefly discuss the reasons for some of the failures in RSV therapeutics and vaccines. In summary, we provide insight into current antiviral development and the considerations toward producing licensed antivirals and therapeutics.
Collapse
Affiliation(s)
- Farah Elawar
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Ahmed K Oraby
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Misr University for Science &Technology, Al-Motamayez District, 6th of October City, P.O. Box 77, Egypt
| | - Quinten Kieser
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Lionel D Jensen
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Tyce Culp
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Frederick G West
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - David J Marchant
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
21
|
Cox RM, Sourimant J, Toots M, Yoon JJ, Ikegame S, Govindarajan M, Watkinson RE, Thibault P, Makhsous N, Lin MJ, Marengo JR, Sticher Z, Kolykhalov AA, Natchus MG, Greninger AL, Lee B, Plemper RK. Orally efficacious broad-spectrum allosteric inhibitor of paramyxovirus polymerase. Nat Microbiol 2020; 5:1232-1246. [PMID: 32661315 PMCID: PMC7529989 DOI: 10.1038/s41564-020-0752-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Paramyxoviruses such as human parainfluenza virus type-3 (HPIV3) and measles virus (MeV) are a substantial health threat. In a high-throughput screen for inhibitors of HPIV3 (a major cause of acute respiratory infection), we identified GHP-88309-a non-nucleoside inhibitor of viral polymerase activity that possesses unusual broad-spectrum activity against diverse paramyxoviruses including respiroviruses (that is, HPIV1 and HPIV3) and morbilliviruses (that is, MeV). Resistance profiles of distinct target viruses overlapped spatially, revealing a conserved binding site in the central cavity of the viral polymerase (L) protein that was validated by photoaffinity labelling-based target mapping. Mechanistic characterization through viral RNA profiling and in vitro MeV polymerase assays identified a block in the initiation phase of the viral polymerase. GHP-88309 showed nanomolar potency against HPIV3 isolates in well-differentiated human airway organoid cultures, was well tolerated (selectivity index > 7,111) and orally bioavailable, and provided complete protection against lethal infection in a Sendai virus mouse surrogate model of human HPIV3 disease when administered therapeutically 48 h after infection. Recoverees had acquired robust immunoprotection against reinfection, and viral resistance coincided with severe attenuation. This study provides proof of the feasibility of a well-behaved broad-spectrum allosteric antiviral and describes a chemotype with high therapeutic potential that addresses major obstacles of anti-paramyxovirus drug development.
Collapse
Affiliation(s)
- Robert M Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Julien Sourimant
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Mart Toots
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Jeong-Joong Yoon
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Satoshi Ikegame
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ruth E Watkinson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patricia Thibault
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Negar Makhsous
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Michelle J Lin
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Jose R Marengo
- Emory Institute for Drug Development, Emory University, Atlanta, GA, USA
| | - Zachary Sticher
- Emory Institute for Drug Development, Emory University, Atlanta, GA, USA
| | | | - Michael G Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, GA, USA
| | - Alexander L Greninger
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
22
|
Hannemann H. Viral replicons as valuable tools for drug discovery. Drug Discov Today 2020; 25:1026-1033. [PMID: 32272194 PMCID: PMC7136885 DOI: 10.1016/j.drudis.2020.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/28/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022]
Abstract
RNA viruses can cause severe diseases such as dengue, Lassa, chikungunya and Ebola. Many of these viruses can only be propagated under high containment levels, necessitating the development of low containment surrogate systems such as subgenomic replicons and minigenome systems. Replicons are self-amplifying recombinant RNA molecules expressing proteins sufficient for their own replication but which do not produce infectious virions. Replicons can persist in cells and are passed on during cell division, enabling quick, efficient and high-throughput testing of drug candidates that act on viral transcription, translation and replication. This review will explore the history and potential for drug discovery of hepatitis C virus, dengue virus, respiratory syncytial virus, Ebola virus and norovirus replicon and minigenome systems.
Collapse
Affiliation(s)
- Holger Hannemann
- The Native Antigen Company, Langford Locks, Kidlington OX5 1LH, UK.
| |
Collapse
|
23
|
Bergeron HC, Tripp RA. Emerging small and large molecule therapeutics for respiratory syncytial virus. Expert Opin Investig Drugs 2020; 29:285-294. [PMID: 32096420 DOI: 10.1080/13543784.2020.1735349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Respiratory syncytial virus (RSV) causes lower respiratory tract infections and can lead to morbidity and mortality in the infant, elderly and immunocompromised. There is no vaccine and therapeutic interventions are limited. RSV disease research has yielded the development of several prophylactic and therapeutic treatments. Several promising candidates are currently under investigation.Areas covered: Small and large molecule approaches to RSV treatment were examined and categorized by their mechanism of action using data from PubMed, clinicaltrials.gov, and from the sponsoring organizations publicly available pipeline information. These results are prefaced by an overview of RSV to provide the context for rational therapy development.Expert opinion: While small molecule drugs show promise for RSV treatment, we believe that large molecule therapy using anti-RSV G and F protein monoclonal antibodies (mAbs) will most efficaciously and safely ameliorate RSV disease.
Collapse
Affiliation(s)
- Harrison C Bergeron
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
24
|
Norris MJ, Malhi M, Duan W, Ouyang H, Granados A, Cen Y, Tseng YC, Gubbay J, Maynes J, Moraes TJ. Targeting Intracellular Ion Homeostasis for the Control of Respiratory Syncytial Virus. Am J Respir Cell Mol Biol 2019; 59:733-744. [PMID: 30095982 DOI: 10.1165/rcmb.2017-0345oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of mortality in infants and young children. Despite the RSV disease burden, no vaccine is available, and treatment remains nonspecific. New drug candidates are needed to combat RSV. Toward this goal, we screened over 2,000 compounds to identify approved drugs with novel anti-RSV activity. Cardiac glycosides, inhibitors of the membrane-bound Na+/K+-ATPase, were identified to have anti-RSV activity. Cardiac glycosides diminished RSV infection in human epithelial type 2 cells and in primary human airway epithelial cells grown at an air-liquid interface. Digoxin, a U.S. Food and Drug Administration-approved cardiac glycoside, was also able to inhibit infection of primary nasal epithelial cells with community isolates of RSV. Our results suggest that the antiviral effects of cardiac glycosides may be dependent on changes in the intracellular Na+ and K+ composition. Consistent with this mechanism, we demonstrated that the ionophoric antibiotics salinomycin, valinomycin, and monensin inhibited RSV in human epithelial type 2 cells and primary nasal epithelial cells. Our data indicate that the K+/Na+-sensitive steps in the RSV life cycle occur within the initial 4 hours of viral infection but do not include virus binding/entry. Rather, our findings demonstrated a negative effect on the RSV transcription and/or replication process. Overall, this work suggests that targeting intracellular ion concentrations offers a novel antiviral strategy.
Collapse
Affiliation(s)
- Michael J Norris
- 1 Department of Laboratory Medicine and Pathobiology and.,2 Program in Translational Medicine
| | - Manpreet Malhi
- 3 Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,4 Program in Molecular Medicine
| | | | | | - Andrea Granados
- 1 Department of Laboratory Medicine and Pathobiology and.,5 Public Health Ontario, Toronto, Ontario, Canada
| | | | | | | | - Jason Maynes
- 4 Program in Molecular Medicine.,6 Department of Anesthesia and Pain Medicine, and
| | - Theo J Moraes
- 1 Department of Laboratory Medicine and Pathobiology and.,2 Program in Translational Medicine.,7 Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada; and
| |
Collapse
|
25
|
Cockerill GS, Good JAD, Mathews N. State of the Art in Respiratory Syncytial Virus Drug Discovery and Development. J Med Chem 2018; 62:3206-3227. [DOI: 10.1021/acs.jmedchem.8b01361] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- G. Stuart Cockerill
- ReViral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, United Kingdom
| | - James A. D. Good
- ReViral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, United Kingdom
| | - Neil Mathews
- ReViral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, United Kingdom
| |
Collapse
|
26
|
Cox RM, Toots M, Yoon JJ, Sourimant J, Ludeke B, Fearns R, Bourque E, Patti J, Lee E, Vernachio J, Plemper RK. Development of an allosteric inhibitor class blocking RNA elongation by the respiratory syncytial virus polymerase complex. J Biol Chem 2018; 293:16761-16777. [PMID: 30206124 DOI: 10.1074/jbc.ra118.004862] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/10/2018] [Indexed: 12/22/2022] Open
Abstract
Respiratory syncytial virus (RSV) represents a significant health threat to infants and to elderly or immunocompromised individuals. There are currently no vaccines available to prevent RSV infections, and disease management is largely limited to supportive care, making the identification and development of effective antiviral therapeutics against RSV a priority. To identify effective chemical scaffolds for managing RSV disease, we conducted a high-throughput anti-RSV screen of a 57,000-compound library. We identified a hit compound that specifically blocked activity of the RSV RNA-dependent RNA polymerase (RdRp) complex, initially with moderate low-micromolar potency. Mechanistic characterization in an in vitro RSV RdRp assay indicated that representatives of this compound class block elongation of RSV RNA products after initial extension by up to three nucleotides. Synthetic hit-to-lead exploration yielded an informative 3D quantitative structure-activity relationship (3D-QSAR) model and resulted in analogs with more than 20-fold improved potency and selectivity indices (SIs) of >1,000. However, first-generation leads exhibited limited water solubility and poor metabolic stability. A second optimization strategy informed by the 3D-QSAR model combined with in silico pharmacokinetics (PK) predictions yielded an advanced lead, AVG-233, that demonstrated nanomolar activity against both laboratory-adapted RSV strains and clinical RSV isolates. This anti-RSV activity extended to infection of established cell lines and primary human airway cells. PK profiling in mice revealed 34% oral bioavailability of AVG-233 and sustained high drug levels in the circulation after a single oral dose of 20 mg/kg. This promising first-in-class lead warrants further development as an anti-RSV drug.
Collapse
Affiliation(s)
- Robert M Cox
- From the Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303
| | - Mart Toots
- From the Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303
| | - Jeong-Joong Yoon
- From the Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303
| | - Julien Sourimant
- From the Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303
| | - Barbara Ludeke
- the Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118, and
| | - Rachel Fearns
- the Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118, and
| | | | - Joseph Patti
- Aviragen Therapeutics, Alpharetta, Georgia 30009
| | - Edward Lee
- Aviragen Therapeutics, Alpharetta, Georgia 30009
| | | | - Richard K Plemper
- From the Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303,
| |
Collapse
|
27
|
Brookes DW, Coates M, Allen H, Daly L, Constant S, Huang S, Hows M, Davis A, Cass L, Ayrton J, Knowles I, Strong P, Rapeport G, Ito K. Late therapeutic intervention with a respiratory syncytial virus L-protein polymerase inhibitor, PC786, on respiratory syncytial virus infection in human airway epithelium. Br J Pharmacol 2018; 175:2520-2534. [PMID: 29579332 PMCID: PMC5980447 DOI: 10.1111/bph.14221] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Effective anti-respiratory syncytial virus (RSV) agents are still not available for clinical use. Current major targets are virus surface proteins, such as a fusion protein involved in viral entry, but agents effective after RSV infection is established are required. Here we have investigated the effects of late therapeutic intervention with a novel inhaled RSV polymerase inhibitor, PC786, on RSV infection in human airway epithelium. EXPERIMENTAL APPROACH Air liquid interface-cultured bronchial or small airway epithelium was infected with RSVA2. PC786 was applied apically or basolaterally once daily following peak virus load on Day 3 post inoculation. Apical wash was collected daily for determination of viral burden by PCR and plaque assay (primary endpoints) and biomarker analyses. The effects were compared with those of ALS-8112, an anti-RSV nucleoside analogue, and GS-5806, a fusion-protein inhibitor, which were treated basolaterally. KEY RESULTS Late intervention with GS-5806 did not show significant anti-viral effects, but PC786 produced potent, concentration-dependent inhibition of viral replication with viral load falling below detectable limits 3 days after treatment commenced in airway epithelium. These effects were superior to those of ALS-8112. PC786 showed inhibitory activities against RSV-induced increases of CCL5, IL-6, double-strand DNA and mucin. The effects of PC786 were also confirmed in small airway epithelium. CONCLUSION AND IMPLICATIONS Late therapeutic intervention with the RSV polymerase inhibitor, PC786, reduced the viral burden quickly in human airway epithelium. Thus, PC786 demonstrates the potential to be an effective therapeutic agent to treat active RSV infection.
Collapse
|
28
|
Rincheval V, Lelek M, Gault E, Bouillier C, Sitterlin D, Blouquit-Laye S, Galloux M, Zimmer C, Eleouet JF, Rameix-Welti MA. Functional organization of cytoplasmic inclusion bodies in cells infected by respiratory syncytial virus. Nat Commun 2017; 8:563. [PMID: 28916773 PMCID: PMC5601476 DOI: 10.1038/s41467-017-00655-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/17/2017] [Indexed: 12/23/2022] Open
Abstract
Infection of cells by respiratory syncytial virus induces the formation of cytoplasmic inclusion bodies (IBs) where all the components of the viral RNA polymerase complex are concentrated. However, the exact organization and function of these IBs remain unclear. In this study, we use conventional and super-resolution imaging to dissect the internal structure of IBs. We observe that newly synthetized viral mRNA and the viral transcription anti-terminator M2-1 concentrate in IB sub-compartments, which we term “IB-associated granules” (IBAGs). In contrast, viral genomic RNA, the nucleoprotein, the L polymerase and its cofactor P are excluded from IBAGs. Live imaging reveals that IBAGs are highly dynamic structures. Our data show that IBs are the main site of viral RNA synthesis. They further suggest that shortly after synthesis in IBs, viral mRNAs and M2-1 transiently concentrate in IBAGs before reaching the cytosol and suggest a novel post-transcriptional function for M2-1. Respiratory syncytial virus (RSV) induces formation of inclusion bodies (IBs) sheltering viral RNA synthesis. Here, Rincheval et al. identify highly dynamic IB-associated granules (IBAGs) that accumulate newly synthetized viral mRNA and the viral M2-1 protein but exclude viral genomic RNA and RNA polymerase complexes.
Collapse
Affiliation(s)
- Vincent Rincheval
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, 78180, France
| | - Mickael Lelek
- Institut Pasteur Unité Imagerie et Modélisation, CNRS UMR 3691; C3BI, USR 3756, IP CNRS, Paris, 75015, France
| | - Elyanne Gault
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, 78180, France.,AP-HP, Laboratoire de Microbiologie, Hôpital Ambroise Paré, Boulogne-Billancourt, 92104, France
| | - Camille Bouillier
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, 78180, France
| | - Delphine Sitterlin
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, 78180, France
| | - Sabine Blouquit-Laye
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, 78180, France
| | - Marie Galloux
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, 78352, France
| | - Christophe Zimmer
- Institut Pasteur Unité Imagerie et Modélisation, CNRS UMR 3691; C3BI, USR 3756, IP CNRS, Paris, 75015, France
| | - Jean-François Eleouet
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, 78352, France
| | - Marie-Anne Rameix-Welti
- UMR1173, INSERM, Université de Versailles St. Quentin, Montigny le Bretonneux, 78180, France. .,AP-HP, Laboratoire de Microbiologie, Hôpital Ambroise Paré, Boulogne-Billancourt, 92104, France.
| |
Collapse
|
29
|
Preclinical Characterization of PC786, an Inhaled Small-Molecule Respiratory Syncytial Virus L Protein Polymerase Inhibitor. Antimicrob Agents Chemother 2017; 61:AAC.00737-17. [PMID: 28652242 PMCID: PMC5571287 DOI: 10.1128/aac.00737-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/15/2017] [Indexed: 12/14/2022] Open
Abstract
Although respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection in infants and young children, attempts to develop an effective therapy have so far proved unsuccessful. Here we report the preclinical profiles of PC786, a potent nonnucleoside RSV L protein polymerase inhibitor, designed for inhalation treatment of RSV infection. PC786 demonstrated a potent and selective antiviral activity against laboratory-adapted or clinical isolates of RSV-A (50% inhibitory concentration [IC50], <0.09 to 0.71 nM) and RSV-B (IC50, 1.3 to 50.6 nM), which were determined by inhibition of cytopathic effects in HEp-2 cells without causing detectable cytotoxicity. The underlying inhibition of virus replication was confirmed by PCR analysis. The effects of PC786 were largely unaffected by the multiplicity of infection (MOI) and were retained in the face of established RSV replication in a time-of-addition study. Persistent anti-RSV effects of PC786 were also demonstrated in human bronchial epithelial cells. In vivo intranasal once daily dosing with PC786 was able to reduce the virus load to undetectable levels in lung homogenates from RSV-infected mice and cotton rats. Treatment with escalating concentrations identified a dominant mutation in the L protein (Y1631H) in vitro. In addition, PC786 potently inhibited RSV RNA-dependent RNA polymerase (RdRp) activity in a cell-free enzyme assay and minigenome assay in HEp-2 cells (IC50, 2.1 and 0.5 nM, respectively). Thus, PC786 was shown to be a potent anti-RSV agent via inhibition of RdRp activity, making topical treatment with this compound a novel potential therapy for the treatment of human RSV infections.
Collapse
|
30
|
Discovery of novel benzothienoazepine derivatives as potent inhibitors of respiratory syncytial virus. Bioorg Med Chem Lett 2017; 27:2201-2206. [PMID: 28372911 DOI: 10.1016/j.bmcl.2017.03.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 11/22/2022]
Abstract
The development of novel non-nucleoside inhibitors of the RSV polymerase complex is of significant clinical interest. Compounds derived from the benzothienoazepine core, such as AZ-27, are potent inhibitors of RSV viruses of the A-subgroup, but are only moderately active against the B serotype and as yet have not demonstrated activity in vivo. Herein we report the discovery of several novel families of C-2 arylated benzothienoazepine derivatives that are highly potent RSV polymerase inhibitors and reveal an exemplary structure, compound 4a, which shows low nanomolar activity against both RSV A and B viral subtypes. Furthermore, this compound is effective at suppressing viral replication, when administered intranasally, in a rodent model of RSV infection. These results suggest that compounds belonging to this chemotypes have the potential to provide superior anti-RSV agents than those currently available for clinical use.
Collapse
|
31
|
Shook BC, Lin K. Recent Advances in Developing Antiviral Therapies for Respiratory Syncytial Virus. Top Curr Chem (Cham) 2017; 375:40. [DOI: 10.1007/s41061-017-0129-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/01/2017] [Indexed: 01/23/2023]
|
32
|
Drug candidates and model systems in respiratory syncytial virus antiviral drug discovery. Biochem Pharmacol 2017; 127:1-12. [DOI: 10.1016/j.bcp.2016.09.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/16/2016] [Indexed: 12/11/2022]
|
33
|
Organization, Function, and Therapeutic Targeting of the Morbillivirus RNA-Dependent RNA Polymerase Complex. Viruses 2016; 8:v8090251. [PMID: 27626440 PMCID: PMC5035965 DOI: 10.3390/v8090251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 12/16/2022] Open
Abstract
The morbillivirus genus comprises major human and animal pathogens, including the highly contagious measles virus. Morbilliviruses feature single stranded negative sense RNA genomes that are wrapped by a plasma membrane-derived lipid envelope. Genomes are encapsidated by the viral nucleocapsid protein forming ribonucleoprotein complexes, and only the encapsidated RNA is transcribed and replicated by the viral RNA-dependent RNA polymerase (RdRp). In this review, we discuss recent breakthroughs towards the structural and functional understanding of the morbillivirus polymerase complex. Considering the clinical burden imposed by members of the morbillivirus genus, the development of novel antiviral therapeutics is urgently needed. The viral polymerase complex presents unique structural and enzymatic properties that can serve as attractive candidates for druggable targets. We evaluate distinct strategies for therapeutic intervention and examine how high-resolution insight into the organization of the polymerase complex may pave the path towards the structure-based design and optimization of next-generation RdRp inhibitors.
Collapse
|
34
|
Fearns R, Deval J. New antiviral approaches for respiratory syncytial virus and other mononegaviruses: Inhibiting the RNA polymerase. Antiviral Res 2016; 134:63-76. [PMID: 27575793 DOI: 10.1016/j.antiviral.2016.08.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/27/2016] [Accepted: 08/07/2016] [Indexed: 11/16/2022]
Abstract
Worldwide, respiratory syncytial virus (RSV) causes severe disease in infants, the elderly, and immunocompromised people. No vaccine or effective antiviral treatment is available. RSV is a member of the non-segmented, negative-strand (NNS) group of RNA viruses and relies on its RNA-dependent RNA polymerase to transcribe and replicate its genome. Because of its essential nature and unique properties, the RSV polymerase has proven to be a good target for antiviral drugs, with one compound, ALS-8176, having already achieved clinical proof-of-concept efficacy in a human challenge study. In this article, we first provide an overview of the role of the RSV polymerase in viral mRNA transcription and genome replication. We then review past and current approaches to inhibiting the RSV polymerase, including use of nucleoside analogs and non-nucleoside inhibitors. Finally, we consider polymerase inhibitors that hold promise for treating infections with other NNS RNA viruses, including measles and Ebola.
Collapse
Affiliation(s)
- Rachel Fearns
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA.
| | - Jerome Deval
- Alios BioPharma, Inc., Part of the Janssen Pharmaceutical Companies, South San Francisco, CA, USA.
| |
Collapse
|
35
|
Bailly B, Richard CA, Sharma G, Wang L, Johansen L, Cao J, Pendharkar V, Sharma DC, Galloux M, Wang Y, Cui R, Zou G, Guillon P, von Itzstein M, Eléouët JF, Altmeyer R. Targeting human respiratory syncytial virus transcription anti-termination factor M2-1 to inhibit in vivo viral replication. Sci Rep 2016; 6:25806. [PMID: 27194388 PMCID: PMC4872165 DOI: 10.1038/srep25806] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/22/2016] [Indexed: 01/05/2023] Open
Abstract
Human respiratory syncytial virus (hRSV) is a leading cause of acute lower respiratory tract infection in infants, elderly and immunocompromised individuals. To date, no specific antiviral drug is available to treat or prevent this disease. Here, we report that the Smoothened receptor (Smo) antagonist cyclopamine acts as a potent and selective inhibitor of in vitro and in vivo hRSV replication. Cyclopamine inhibits hRSV through a novel, Smo-independent mechanism. It specifically impairs the function of the hRSV RNA-dependent RNA polymerase complex notably by reducing expression levels of the viral anti-termination factor M2-1. The relevance of these findings is corroborated by the demonstration that a single R151K mutation in M2-1 is sufficient to confer virus resistance to cyclopamine in vitro and that cyclopamine is able to reduce virus titers in a mouse model of hRSV infection. The results of our study open a novel avenue for the development of future therapies against hRSV infection.
Collapse
Affiliation(s)
- B Bailly
- Institut Pasteur of Shanghai - Chinese Academy of Sciences, Unit of anti-infective research, Shanghai, 200031, P.R. China.,Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia.,Shandong University-Helmholtz Institute of Biotechnology, Qingdao, 266101, P.R. China
| | - C-A Richard
- INRA, Unité de Virologie et Immunologie Moléculaires (UR892), Jouy-en-Josas, 78352, France
| | - G Sharma
- CombinatoRx-Singapore, 138667, Singapore
| | - L Wang
- Institut Pasteur of Shanghai - Chinese Academy of Sciences, Unit of anti-infective research, Shanghai, 200031, P.R. China
| | | | - J Cao
- Shandong University-Helmholtz Institute of Biotechnology, Qingdao, 266101, P.R. China.,Qingdao Municipal Center for Disease Control &Prevention, Qingdao, 266033, P.R. China
| | | | - D-C Sharma
- CombinatoRx-Singapore, 138667, Singapore
| | - M Galloux
- INRA, Unité de Virologie et Immunologie Moléculaires (UR892), Jouy-en-Josas, 78352, France
| | - Y Wang
- Institut Pasteur of Shanghai - Chinese Academy of Sciences, Unit of anti-infective research, Shanghai, 200031, P.R. China
| | - R Cui
- Institut Pasteur of Shanghai - Chinese Academy of Sciences, Unit of anti-infective research, Shanghai, 200031, P.R. China
| | - G Zou
- Institut Pasteur of Shanghai - Chinese Academy of Sciences, Unit of anti-infective research, Shanghai, 200031, P.R. China
| | - P Guillon
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - M von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - J-F Eléouët
- INRA, Unité de Virologie et Immunologie Moléculaires (UR892), Jouy-en-Josas, 78352, France
| | - R Altmeyer
- Institut Pasteur of Shanghai - Chinese Academy of Sciences, Unit of anti-infective research, Shanghai, 200031, P.R. China.,Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia.,Shandong University-Helmholtz Institute of Biotechnology, Qingdao, 266101, P.R. China.,CombinatoRx-Singapore, 138667, Singapore.,CombinatoRx, Cambridge, MA 02142, USA.,Qingdao Municipal Center for Disease Control &Prevention, Qingdao, 266033, P.R. China
| |
Collapse
|
36
|
Deval J, Fung A, Stevens SK, Jordan PC, Gromova T, Taylor JS, Hong J, Meng J, Wang G, Dyatkina N, Prhavc M, Symons JA, Beigelman L. Biochemical Effect of Resistance Mutations against Synergistic Inhibitors of RSV RNA Polymerase. PLoS One 2016; 11:e0154097. [PMID: 27163448 PMCID: PMC4862670 DOI: 10.1371/journal.pone.0154097] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/08/2016] [Indexed: 11/18/2022] Open
Abstract
ALS-8112 is the parent molecule of ALS-8176, a first-in-class nucleoside analog prodrug effective in the clinic against respiratory syncytial virus (RSV) infection. The antiviral activity of ALS-8112 is mediated by its 5'-triphosphate metabolite (ALS-8112-TP, or 2'F-4'ClCH2-cytidine triphosphate) inhibiting the RNA polymerase activity of the RSV L-P protein complex through RNA chain termination. Four amino acid mutations in the RNA-dependent RNA polymerase (RdRp) domain of L (QUAD: M628L, A789V, L795I, and I796V) confer in vitro resistance to ALS-8112-TP by increasing its discrimination relative to natural CTP. In this study, we show that the QUAD mutations specifically recognize the ClCH2 group of ALS-8112-TP. Among the four mutations, A789V conferred the greatest resistance phenotype, which was consistent with its putative position in the active site of the RdRp domain. AZ-27, a non-nucleoside inhibitor of RSV, also inhibited the RdRp activity, with decreased inhibition potency in the presence of the Y1631H mutation. The QUAD mutations had no effect on the antiviral activity of AZ-27, and the Y1631H mutation did not significantly increase the discrimination of ALS-8112-TP. Combining ALS-8112 with AZ-27 in vitro resulted in significant synergistic inhibition of RSV replication. Overall, this is the first mechanistic study showing a lack of cross-resistance between mutations selected by different classes of RSV polymerase inhibitors acting in synergy, opening the door to future potential combination therapies targeting different regions of the L protein.
Collapse
Affiliation(s)
- Jerome Deval
- Alios BioPharma, Inc., part of the Janssen Pharmaceutical Companies, South San Francisco, California, United States of America
- * E-mail:
| | - Amy Fung
- Alios BioPharma, Inc., part of the Janssen Pharmaceutical Companies, South San Francisco, California, United States of America
| | - Sarah K. Stevens
- Alios BioPharma, Inc., part of the Janssen Pharmaceutical Companies, South San Francisco, California, United States of America
| | - Paul C. Jordan
- Alios BioPharma, Inc., part of the Janssen Pharmaceutical Companies, South San Francisco, California, United States of America
| | - Tatiana Gromova
- Alios BioPharma, Inc., part of the Janssen Pharmaceutical Companies, South San Francisco, California, United States of America
| | - Joshua S. Taylor
- Alios BioPharma, Inc., part of the Janssen Pharmaceutical Companies, South San Francisco, California, United States of America
| | - Jin Hong
- Alios BioPharma, Inc., part of the Janssen Pharmaceutical Companies, South San Francisco, California, United States of America
| | - Jia Meng
- Alios BioPharma, Inc., part of the Janssen Pharmaceutical Companies, South San Francisco, California, United States of America
| | - Guangyi Wang
- Alios BioPharma, Inc., part of the Janssen Pharmaceutical Companies, South San Francisco, California, United States of America
| | - Natalia Dyatkina
- Alios BioPharma, Inc., part of the Janssen Pharmaceutical Companies, South San Francisco, California, United States of America
| | - Marija Prhavc
- Alios BioPharma, Inc., part of the Janssen Pharmaceutical Companies, South San Francisco, California, United States of America
| | - Julian A. Symons
- Alios BioPharma, Inc., part of the Janssen Pharmaceutical Companies, South San Francisco, California, United States of America
| | - Leo Beigelman
- Alios BioPharma, Inc., part of the Janssen Pharmaceutical Companies, South San Francisco, California, United States of America
| |
Collapse
|
37
|
Cox R, Plemper RK. Structure-guided design of small-molecule therapeutics against RSV disease. Expert Opin Drug Discov 2016; 11:543-556. [PMID: 27046051 PMCID: PMC5074927 DOI: 10.1517/17460441.2016.1174212] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION In the United States, respiratory syncytial virus (RSV) is responsible for the majority of infant hospitalizations resulting from viral infections, as well as a leading source of pneumonia and bronchiolitis in young children and the elderly. In the absence of vaccine prophylaxis or an effective antiviral for improved disease management, the development of novel anti-RSV therapeutics is critical. Several advanced drug development campaigns of the past decade have focused on blocking viral infection. These efforts have returned a chemically distinct panel of small-molecule RSV entry inhibitors, but binding sites and molecular mechanism of action appeared to share a common mechanism, resulting in comprehensive cross-resistance and calling for alternative druggable targets such as viral RNA-dependent RNA-polymerase complex. Areas Covered: In this review, the authors discuss the current status of the mechanism of action of RSV entry inhibitors. They also provide the recent structural insight into the organization of the polymerase complex that have revealed novel drug targets sites, and outline a path towards the discovery of next-generation RSV therapeutics. Expert opinion: Considering the tremendous progress experienced in our structural understanding of RSV biology in recent years and encouraging early results of a nucleoside analog inhibitor in clinical trials, there is high prospect that new generations of much needed effective anti-RSV therapeutics will become available for clinical use in the foreseeable future.
Collapse
Affiliation(s)
- Robert Cox
- Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Av, Atlanta, Georgia 30303-3222 USA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Av, Atlanta, Georgia 30303-3222 USA
| |
Collapse
|
38
|
McKimm-Breschkin JL, Fry AM. Meeting report: 4th ISIRV antiviral group conference: Novel antiviral therapies for influenza and other respiratory viruses. Antiviral Res 2016; 129:21-38. [PMID: 26872862 PMCID: PMC7132401 DOI: 10.1016/j.antiviral.2016.01.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 01/08/2023]
Abstract
The International Society for Influenza and other Respiratory Virus Diseases (isirv) held its 4th Antiviral Group Conference at the University of Texas on 2–4 June, 2015. With emerging resistance to the drugs currently licensed for treatment and prophylaxis of influenza viruses, primarily the neuraminidase inhibitor oseltamivir phosphate (Tamiflu) and the M2 inhibitors amantadine and rimantadine, and the lack of effective interventions against other respiratory viruses, the 3-day programme focused on the discovery and development of inhibitors of several virus targets and key host cell factors involved in virus replication or mediating the inflammatory response. Virus targets included the influenza haemagglutinin, neuraminidase and M2 proteins, and both the respiratory syncytial virus and influenza polymerases and nucleoproteins. Therapies for rhinoviruses and MERS and SARS coronaviruses were also discussed. With the emerging development of monoclonal antibodies as therapeutics, the potential implications of antibody-dependent enhancement of disease were also addressed. Topics covered all aspects from structural and molecular biology to preclinical and clinical studies. The importance of suitable clinical trial endpoints and regulatory issues were also discussed from the perspectives of both industry and government. This meeting summary provides an overview, not only for the conference participants, but also for those interested in the current status of antivirals for respiratory viruses. The International Society for Influenza and other Respiratory Viruses held an Antiviral Group conference in June, 2015. This report covers oral presentations, including therapies against influenza and respiratory syncytial virus infections. Therapies for rhinovirus, MERS and SARS coronavirus infections were also topics at the conference. Some speakers focused on monoclonal antibodies as therapeutics and antibody-dependent enhancement of disease. The importance of suitable clinical trial endpoints and regulatory issues were also discussed.
Collapse
Affiliation(s)
| | - Alicia M Fry
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
39
|
Abstract
Human respiratory syncytial virus (RSV) is understood to be a significant human pathogen in infants, young children, and the elderly and the immunocompromised. Over the last decade many important mechanisms contributing to RSV infection, replication, and disease pathogenesis have been revealed; however, there is still insufficient knowledge which has in part hampered vaccine development. Considerable information is accumulating regarding how RSV proteins modulate molecular signaling and immune responses to infection. Understanding how RSV interacts with its host is crucial to facilitate the development of safe and effective vaccines and therapeutic treatments.In this chapter, we provide a brief introduction into RSV replication, pathogenesis, and host immune response, and summarize the state of RSV vaccine and antiviral compounds in clinical stages of development. This chapter frames features of this book and the molecular methods used for understanding RSV interaction with the host.
Collapse
Affiliation(s)
- Patricia A Jorquera
- Department of Infectious Diseases, College of Veterinary Medicine, Animal Health Research Center, University of Georgia, 111 Carlton Street, Athens, GA, 30602, USA
| | - Lydia Anderson
- Department of Infectious Diseases, College of Veterinary Medicine, Animal Health Research Center, University of Georgia, 111 Carlton Street, Athens, GA, 30602, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, Animal Health Research Center, University of Georgia, 111 Carlton Street, Athens, GA, 30602, USA.
| |
Collapse
|
40
|
Rivera CA, Gómez RS, Díaz RA, Céspedes PF, Espinoza JA, González PA, Riedel CA, Bueno SM, Kalergis AM. Novel therapies and vaccines against the human respiratory syncytial virus. Expert Opin Investig Drugs 2015; 24:1613-30. [DOI: 10.1517/13543784.2015.1099626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Respiratory Syncytial Virus Inhibitor AZ-27 Differentially Inhibits Different Polymerase Activities at the Promoter. J Virol 2015; 89:7786-98. [PMID: 25995255 DOI: 10.1128/jvi.00530-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/11/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Respiratory syncytial virus (RSV) is the leading cause of pediatric respiratory disease. RSV has an RNA-dependent RNA polymerase that transcribes and replicates the viral negative-sense RNA genome. The large polymerase subunit (L) has multiple enzymatic activities, having the capability to synthesize RNA and add and methylate a cap on each of the viral mRNAs. Previous studies (H. Xiong et al., Bioorg Med Chem Lett, 23:6789-6793, 2013, http://dx.doi.org/10.1016/j.bmcl.2013.10.018; C. L. Tiong-Yip et al., Antimicrob Agents Chemother, 58:3867-3873, 2014, http://dx.doi.org/10.1128/AAC.02540-14) had identified a small-molecule inhibitor, AZ-27, that targets the L protein. In this study, we examined the effect of AZ-27 on different aspects of RSV polymerase activity. AZ-27 was found to inhibit equally both mRNA transcription and genome replication in cell-based minigenome assays, indicating that it inhibits a step common to both of these RNA synthesis processes. Analysis in an in vitro transcription run-on assay, containing RSV nucleocapsids, showed that AZ-27 inhibits synthesis of transcripts from the 3' end of the genome to a greater extent than those from the 5' end, indicating that it inhibits transcription initiation. Consistent with this finding, experiments that assayed polymerase activity on the promoter showed that AZ-27 inhibited transcription and replication initiation. The RSV polymerase also can utilize the promoter sequence to perform a back-priming reaction. Interestingly, addition of AZ-27 had no effect on the addition of up to three nucleotides by back-priming but inhibited further extension of the back-primed RNA. These data provide new information regarding the mechanism of inhibition by AZ-27. They also suggest that the RSV polymerase adopts different conformations to perform its different activities at the promoter. IMPORTANCE Currently, there are no effective antiviral drugs to treat RSV infection. The RSV polymerase is an attractive target for drug development, but this large enzymatic complex is poorly characterized, hampering drug development efforts. AZ-27 is a small-molecule inhibitor previously shown to target the RSV large polymerase subunit (C. L. Tiong-Yip et al., Antimicrob Agents Chemother, 58:3867-3873, 2014, http://dx.doi.org/10.1128/AAC.02540-14), but its inhibitory mechanism was unknown. Understanding this would be valuable both for characterizing the polymerase and for further development of inhibitors. Here, we show that AZ-27 inhibits an early stage in mRNA transcription, as well as genome replication, by inhibiting initiation of RNA synthesis from the promoter. However, the compound does not inhibit back priming, another RNA synthesis activity of the RSV polymerase. These findings provide insight into the different activities of the RSV polymerase and will aid further development of antiviral agents against RSV.
Collapse
|
42
|
Cox R, Plemper RK. The paramyxovirus polymerase complex as a target for next-generation anti-paramyxovirus therapeutics. Front Microbiol 2015; 6:459. [PMID: 26029193 PMCID: PMC4428208 DOI: 10.3389/fmicb.2015.00459] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/27/2015] [Indexed: 12/04/2022] Open
Abstract
The paramyxovirus family includes major human and animal pathogens, including measles virus, mumps virus, and human respiratory syncytial virus (RSV), as well as the emerging zoonotic Hendra and Nipah viruses. In the U.S., RSV is the leading cause of infant hospitalizations due to viral infectious disease. Despite their clinical significance, effective drugs for the improved management of paramyxovirus disease are lacking. The development of novel anti-paramyxovirus therapeutics is therefore urgently needed. Paramyxoviruses contain RNA genomes of negative polarity, necessitating a virus-encoded RNA-dependent RNA polymerase (RdRp) complex for replication and transcription. Since an equivalent enzymatic activity is absent in host cells, the RdRp complex represents an attractive druggable target, although structure-guided drug development campaigns are hampered by the lack of high-resolution RdRp crystal structures. Here, we review the current structural and functional insight into the paramyxovirus polymerase complex in conjunction with an evaluation of the mechanism of activity and developmental status of available experimental RdRp inhibitors. Our assessment spotlights the importance of the RdRp complex as a premier target for therapeutic intervention and examines how high-resolution insight into the organization of the complex will pave the path toward the structure-guided design and optimization of much-needed next-generation paramyxovirus RdRp blockers.
Collapse
Affiliation(s)
- Robert Cox
- Institute for Biomedical Sciences, Petit Science Center, Georgia State University, Atlanta, GA USA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Petit Science Center, Georgia State University, Atlanta, GA USA
| |
Collapse
|
43
|
Plant H, Stacey C, Tiong-Yip CL, Walsh J, Yu Q, Rich K. High-Throughput Hit Screening Cascade to Identify Respiratory Syncytial Virus (RSV) Inhibitors. ACTA ACUST UNITED AC 2015; 20:597-605. [PMID: 25656237 DOI: 10.1177/1087057115569428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/31/2014] [Indexed: 12/20/2022]
Abstract
Respiratory syncytial virus (RSV) infects 99% of children by age 2 years and is a leading cause of serious lower respiratory tract infection (LRTI) and infant hospitalization in the United Kingdom. Identification of efficacious RSV therapeutics has been hindered by the lack of a robust and appropriate primary assay for high-throughput screening (HTS). Here we report an HTS cascade that identified inhibitors of RSV replication using a robust RSV replicon luminescence-reporter assay for the primary campaign. The performance of the assay was consistent and reliable at scale, with Z' of 0.55 ± 0.08 across 150 assay plates and signal-to-background ratios >40. The HTS assay was used to screen the AstraZeneca compound library of 1 million compounds at a single concentration of 10 µM. Hits specifically targeting the RSV replicon were determined using a series of hit generation assays. Compounds nonspecifically causing cell toxicity were removed, and hits were confirmed in live viral inhibition assays exhibiting greater physiological relevance than the primary assay. In summary, we developed a robust screening cascade that identified hit molecules that specifically targeted RSV replication.
Collapse
Affiliation(s)
- Helen Plant
- Discovery Sciences, AstraZeneca, Macclesfield, Cheshire, UK
| | - Clare Stacey
- Discovery Sciences, AstraZeneca, Macclesfield, Cheshire, UK
| | | | - Jarrod Walsh
- Discovery Sciences, AstraZeneca, Macclesfield, Cheshire, UK
| | - Qin Yu
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, MA, USA
| | - Kirsty Rich
- Discovery Sciences, AstraZeneca, Macclesfield, Cheshire, UK
| |
Collapse
|
44
|
Laganas VA, Dunn EF, McLaughlin RE, Tiong-Yip CL, Yuzhakov O, Isabella VM, Hill P, Yu Q. Characterization of novel respiratory syncytial virus inhibitors identified by high throughput screen. Antiviral Res 2014; 115:71-4. [PMID: 25542974 DOI: 10.1016/j.antiviral.2014.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
Abstract
Respiratory Syncytial Virus (RSV) is a major cause of lower respiratory tract infections with no effective treatment available. Finding novel inhibitors of RSV is an important first step towards developing an efficacious RSV therapy. Here we report the characterization of three novel classes of RSV replication inhibitors identified through a high throughput RSV replicon screen of ∼1million compounds in the AstraZeneca compound collection. These inhibitors, cpd 1, 2, and 3, specifically targeted RSV and were not active against other viruses tested. Resistance selection in RSV A2 with cpd 1 identified escape viruses with mutations mapped to the RSV L protein, an RNA-dependent RNA polymerase (Y1631C and I1413T). Recombinant RSV containing the L Y1631C substitution conferred resistance towards cpd 1, suggesting that the RSV polymerase is the target of this inhibitor. Interestingly, cpd 3, a nucleoside analog, induced a single resistant mutation in the P protein (D231V), indicating a novel mode of action not previously reported. cpd 2 affected host cell cycle and no frequent mutation was isolated following resistance selection, suggesting its possible involvement of a host-targeted mechanism. Taken together, we have identified three novel RSV inhibitors with different modes of action, providing new chemistry starting points for the discovery and development of future RSV therapeutic treatment.
Collapse
Affiliation(s)
- Valerie A Laganas
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Ewan F Dunn
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Robert E McLaughlin
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Choi Lai Tiong-Yip
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Olga Yuzhakov
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Vincent M Isabella
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Pamela Hill
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Qin Yu
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, United States.
| |
Collapse
|
45
|
Mechanism of action for respiratory syncytial virus inhibitor RSV604. Antimicrob Agents Chemother 2014; 59:1080-7. [PMID: 25451060 DOI: 10.1128/aac.04119-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections in young children and other high-risk populations. RSV nucleoprotein (N) is essential for virus assembly and replication as part of the viral ribonucleoprotein (RNP) complex. RSV604 was a putative N inhibitor in phase 2 clinical trials whose molecular mechanism of action (MoA) was not well understood. This study investigated the cell line-dependent potency of RSV604 and demonstrated its direct binding to the N protein in vitro, providing the first evidence of direct target engagement for this class of inhibitors reported to date. The affinity of RSV604 N binding was not affected by RSV604 resistance mutations in the N protein. RSV604 engaged in two different MoAs in HeLa cells, inhibiting both RSV RNA synthesis and the infectivity of released virus. The lack of inhibition of viral RNA synthesis in some cell lines explained the cell-type-dependent potency of the inhibitor. RSV604 did not inhibit viral RNA synthesis in the RSV subgenomic replicon cells or in the cell-free RNP assay, suggesting that it might act prior to viral replication complex formation. RSV604 did not alter N protein localization in the infected cells. Taken together, these results provide new insights leading to an understanding of the MoAs of RSV604 and other similar N inhibitors.
Collapse
|
46
|
Rameix-Welti MA, Le Goffic R, Hervé PL, Sourimant J, Rémot A, Riffault S, Yu Q, Galloux M, Gault E, Eléouët JF. Visualizing the replication of respiratory syncytial virus in cells and in living mice. Nat Commun 2014; 5:5104. [PMID: 25277263 PMCID: PMC7091779 DOI: 10.1038/ncomms6104] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 08/29/2014] [Indexed: 01/09/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the most important cause of severe lower-respiratory tract disease in calves and young children, yet no human vaccine nor efficient curative treatments are available. Here we describe a recombinant human RSV reverse genetics system in which the red fluorescent protein (mCherry) or the firefly luciferase (Luc) genes are inserted into the RSV genome. Expression of mCherry and Luc are correlated with infection rate, allowing the monitoring of RSV multiplication in cell culture. Replication of the Luc-encoding virus in living mice can be visualized by bioluminescent imaging, bioluminescence being detected in the snout and lungs of infected mice after nasal inoculation. We propose that these recombinant viruses are convenient and valuable tools for screening of compounds active against RSV, and can be used as an extremely sensitive readout for studying effects of antiviral therapeutics in living mice.
Collapse
Affiliation(s)
- Marie-Anne Rameix-Welti
- Unité de Virologie et Immunologie Moleculaires (UR892), INRA, Jouy-en-Josas, F78352 France
- Physiopathologie et diagnostic des infections microbiennes, EA3647—EPIM, UFR des Sciences de la Santé Simone Veil—UVSQ, 2 avenue de la Source de la Bièvre, Montigny-Le-Bretonneux, 78180 France
- AP-HP, Hôpital Ambroise Paré, Laboratoire de Microbiologie, Boulogne-Billancourt, 92100 France
| | - Ronan Le Goffic
- Unité de Virologie et Immunologie Moleculaires (UR892), INRA, Jouy-en-Josas, F78352 France
| | - Pierre-Louis Hervé
- Unité de Virologie et Immunologie Moleculaires (UR892), INRA, Jouy-en-Josas, F78352 France
| | - Julien Sourimant
- Unité de Virologie et Immunologie Moleculaires (UR892), INRA, Jouy-en-Josas, F78352 France
- Physiopathologie et diagnostic des infections microbiennes, EA3647—EPIM, UFR des Sciences de la Santé Simone Veil—UVSQ, 2 avenue de la Source de la Bièvre, Montigny-Le-Bretonneux, 78180 France
| | - Aude Rémot
- Unité de Virologie et Immunologie Moleculaires (UR892), INRA, Jouy-en-Josas, F78352 France
| | - Sabine Riffault
- Unité de Virologie et Immunologie Moleculaires (UR892), INRA, Jouy-en-Josas, F78352 France
| | - Qin Yu
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, USA,
| | - Marie Galloux
- Unité de Virologie et Immunologie Moleculaires (UR892), INRA, Jouy-en-Josas, F78352 France
| | - Elyanne Gault
- Physiopathologie et diagnostic des infections microbiennes, EA3647—EPIM, UFR des Sciences de la Santé Simone Veil—UVSQ, 2 avenue de la Source de la Bièvre, Montigny-Le-Bretonneux, 78180 France
- AP-HP, Hôpital Ambroise Paré, Laboratoire de Microbiologie, Boulogne-Billancourt, 92100 France
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moleculaires (UR892), INRA, Jouy-en-Josas, F78352 France
| |
Collapse
|