1
|
Torchelsen FKVDS, Mazzeti AL, Mosqueira VCF. Drugs in preclinical and early clinical development for the treatment of Chagas´s disease: the current status. Expert Opin Investig Drugs 2024; 33:575-590. [PMID: 38686546 DOI: 10.1080/13543784.2024.2349289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Chagas disease is spreading faster than expected in different countries, and little progress has been reported in the discovery of new drugs to combat Trypanosoma cruzi infection in humans. Recent clinical trials have ended with small hope. The pathophysiology of this neglected disease and the genetic diversity of parasites are exceptionally complex. The only two drugs available to treat patients are far from being safe, and their efficacy in the chronic phase is still unsatisfactory. AREAS COVERED This review offers a comprehensive examination and critical review of data reported in the last 10 years, and it is focused on findings of clinical trials and data acquired in vivo in preclinical studies. EXPERT OPINION The in vivo investigations classically in mice and dog models are also challenging and time-consuming to attest cure for infection. Poorly standardized protocols, availability of diagnosis methods and disease progression markers, the use of different T. cruzi strains with variable benznidazole sensitivities, and animals in different acute and chronic phases of infection contribute to it. More synchronized efforts between research groups in this field are required to put in evidence new promising substances, drug combinations, repurposing strategies, and new pharmaceutical formulations to impact the therapy.
Collapse
Affiliation(s)
- Fernanda Karoline Vieira da Silva Torchelsen
- School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Brazil
- Post-Graduation Program in Pharmaceutical Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Lia Mazzeti
- Department of Biomedical Sciences and Health, Academic Unit of Passos, University of Minas Gerais State, Passos, Brazil
| | | |
Collapse
|
2
|
Pinto AF, Nunes JS, Severino Martins JE, Leal AC, Silva CCVC, da Silva AJFS, da Cruz Olímpio DS, da Silva ETN, Campos TA, Lima Leite AC. Thiazole, Isatin and Phthalimide Derivatives Tested in vivo against Cancer Models: A Literature Review of the Last Six Years. Curr Med Chem 2024; 31:2991-3032. [PMID: 37170994 DOI: 10.2174/0929867330666230426154055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Cancer is a disease characterized by the abnormal multiplication of cells and is the second leading cause of death in the world. The search for new effective and safe anticancer compounds is ongoing due to factors such as low selectivity, high toxicity, and multidrug resistance. Thus, heterocyclic compounds derived from isatin, thiazole and phthalimide that have achieved promising in vitro anticancer activity have been tested in vivo and in clinical trials. OBJECTIVE This review focused on the compilation of promising data from thiazole, isatin, and phthalimide derivatives, reported in the literature between 2015 and 2022, with in vivo anticancer activity and clinical trials. METHODS A bibliographic search was carried out in the PUBMED, MEDLINE, ELSEVIER, and CAPES PERIODIC databases, selecting relevant works for each pharmacophoric group with in vivo antitumor activity in the last 6 years. RESULTS In our study, 68 articles that fit the scope were selected and critically analyzed. These articles were organized considering the type of antitumor activity and their year of publication. Some compounds reported here demonstrated potent antitumor activity against several tumor types. CONCLUSION This review allowed us to highlight works that reported promising structures for the treatment of various cancer types and also demonstrated that the privileged structures thiazole, isatin and phthalimide are important in the design of new syntheses and molecular optimization of compounds with antitumor activity.
Collapse
Affiliation(s)
- Aline Ferreira Pinto
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Janine Siqueira Nunes
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - José Eduardo Severino Martins
- Regulatory Affairs Advisory, Empresa Brasileira de Hemoderivados e Biotecnologia (HEMOBRAS), CEP 51021-410, Recife, PE, Brazil
| | - Amanda Calazans Leal
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Carla Cauanny Vieira Costa Silva
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Anderson José Firmino Santos da Silva
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Daiane Santiago da Cruz Olímpio
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Elineide Tayse Noberto da Silva
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Thiers Araújo Campos
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Ana Cristina Lima Leite
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| |
Collapse
|
3
|
Vieira da Silva Torchelsen FK, Fernandes Pedrosa TC, Rodrigues MP, de Aguiar AR, de Oliveira FM, Amarante GW, Sales-Junior PA, Branquinho RT, Gomes da Silva SP, Talvani A, Fonseca Murta SM, Martins FT, Braun RL, Teixeira RR, Furtado Mosqueira VC, Lana MD. Novel diamides inspired by protein kinase inhibitors as anti- Trypanosoma cruzi agents: in vitro and in vivo evaluations. Future Med Chem 2023; 15:1469-1489. [PMID: 37650735 DOI: 10.4155/fmc-2023-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Background: Chagas disease is a life-threatening illness caused by Trypanosoma cruzi. The involvement of serine-/arginine-rich protein kinase in the T. cruzi life cycle is significant. Aims: To synthesize, characterize and evaluate the trypanocidal activity of diamides inspired by kinase inhibitor, SRPIN340. Material & Methods: Synthesis using a three-step process and characterization by infrared, nuclear magnetic resonance and high-resolution mass spectrometry were conducted. The selectivity index was obtained by the ratio of CC50/IC50 in two in vitro models. The most active compound, 3j, was evaluated using in vitro cytokine assays and assessing in vivo trypanocidal activity. Results: 3j activity in the macrophage J774 lineage showed an anti-inflammatory profile, and mice showed significantly reduced parasitemia and morbidity at low compound dosages. Conclusion: Novel diamide is active against T. cruzi in vitro and in vivo.
Collapse
Affiliation(s)
| | - Tamiles Caroline Fernandes Pedrosa
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | | | - Alex Ramos de Aguiar
- Departamento de Química, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 30130-171, Brazil
| | | | - Giovanni Wilson Amarante
- Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | | | - Renata Tupinambá Branquinho
- Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Sirlaine Pio Gomes da Silva
- Programa de pós-graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - André Talvani
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
- Programa de pós-graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | | | - Felipe Terra Martins
- Departamento de Química, Universidade Federal de Goiás, Goiânia, Goiás, 74001-970, Brazil
| | - Rodrigo Ligabue Braun
- Departamento de Ciências Farmacêuticas, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Róbson Ricardo Teixeira
- Departamento de Química, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 30130-171, Brazil
| | - Vanessa Carla Furtado Mosqueira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Marta de Lana
- Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| |
Collapse
|
4
|
Cruz Filho IJDA, Oliveira JFDE, Santos ACS, Pereira VRA, Lima MCADE. Synthesis of 4-(4-chlorophenyl)thiazole compounds: in silico and in vitro evaluations as leishmanicidal and trypanocidal agents. AN ACAD BRAS CIENC 2023; 95:e20220538. [PMID: 37132749 DOI: 10.1590/0001-3765202320220538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/23/2023] [Indexed: 05/04/2023] Open
Abstract
Neglected tropical diseases are a diverse group of communicable pathologies that mainly prevail in tropical and subtropical regions. Thus, the objective of this work was to evaluate the biological potential of eight 4-(4-chlorophenyl)thiazole compounds. Tests were carried out in silico to evaluate the pharmacokinetic properties, the antioxidant, cytotoxic activities in animal cells and antiparasitic activities were evaluated against the different forms of Leishmania amazonensis and Trypanosoma cruzi in vitro. The in silico study showed that the evaluated compounds showed good oral availability. In a preliminary in vitro study, the compounds showed moderate to low antioxidant activity. Cytotoxicity assays show that the compounds showed moderate to low toxicity. In relation to leishmanicidal activity, the compounds presented IC50 values that ranged from 19.86 to 200 µM for the promastigote form, while for the amastigote forms, IC50 ranged from 101 to more than 200 µM. The compounds showed better results against the forms of T. cruzi with IC50 ranging from 1.67 to 100 µM for the trypomastigote form and 1.96 to values greater than 200 µM for the amastigote form. This study showed that thiazole compounds can be used as future antiparasitic agents.
Collapse
Affiliation(s)
- Iranildo José DA Cruz Filho
- Federal University of Pernambuco (UFPE), Department of Antibiotics, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Jamerson F DE Oliveira
- University of International Integration of Afro-Brazilian Lusophony (UNILAB), Av. da Abolição, 3, Centro 62790-970 Redenção, CE, Brazil
| | - Aline Caroline S Santos
- Oswaldo Cruz Pernambuco Foundation (Fiocruz/PE), Department of Immunology, Av. Prof. Moraes Rego, 1235, Cidade Universitária 50670-901 Recife, PE, Brazil
| | - Valéria R A Pereira
- Oswaldo Cruz Pernambuco Foundation (Fiocruz/PE), Department of Immunology, Av. Prof. Moraes Rego, 1235, Cidade Universitária 50670-901 Recife, PE, Brazil
| | - Maria Carmo A DE Lima
- Federal University of Pernambuco (UFPE), Department of Antibiotics, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| |
Collapse
|
5
|
Aguilera E, Sánchez C, Cruces ME, Dávila B, Minini L, Mosquillo F, Pérez-Díaz L, Serna E, Torres S, Schini A, Sanabria L, Vera de Bilbao NI, Yaluff G, Zolessi FR, Ceilas LF, Cerecetto H, Alvarez G. Preclinical Studies and Drug Combination of Low-Cost Molecules for Chagas Disease. Pharmaceuticals (Basel) 2022; 16:ph16010020. [PMID: 36678516 PMCID: PMC9863266 DOI: 10.3390/ph16010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Chagas disease is caused by the protozoan Trypanosoma cruzi (T. cruzi). It remains the major parasitic disease in Latin America and is spreading worldwide, affecting over 10 million people. Hundreds of new compounds with trypanosomicidal action have been identified from different sources such as synthetic or natural molecules, but they have been deficient in several stages of drug development (toxicology, scaling-up, and pharmacokinetics). Previously, we described a series of compounds with simple structures, low cost, and environmentally friendly production with potent trypanosomicidal activity in vitro and in vivo. These molecules are from three different families: thiazolidenehydrazines, diarylideneketones, and steroids. From this collection, we explored their capacity to inhibit the triosephosphate isomerase and cruzipain of T. cruzi. Then, the mechanism of action was explored using NMR metabolomics and computational molecular dynamics. Moreover, the mechanism of death was studied by flow cytometry. Consequently, five compounds, 314, 793, 1018, 1019, and 1260, were pre-clinically studied and their pharmacologic profiles indicated low unspecific toxicity. Interestingly, synergetic effects of diarylideneketones 793 plus 1018 and 793 plus 1019 were evidenced in vitro and in vivo. In vivo, the combination of compounds 793 plus 1018 induced a reduction of more than 90% of the peak of parasitemia in the acute murine model of Chagas disease.
Collapse
Affiliation(s)
- Elena Aguilera
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Carina Sánchez
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - María Eugenia Cruces
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Belén Dávila
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Lucía Minini
- Laboratorio de Química Teórica y Computacional, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Florencia Mosquillo
- Laboratorio de Interacciones Moleculares, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Leticia Pérez-Díaz
- Laboratorio de Interacciones Moleculares, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Elva Serna
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 2169, Paraguay
| | - Susana Torres
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 2169, Paraguay
| | - Alicia Schini
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 2169, Paraguay
| | - Luis Sanabria
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 2169, Paraguay
| | - Ninfa I. Vera de Bilbao
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 2169, Paraguay
| | - Gloria Yaluff
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo 2169, Paraguay
| | - Flavio R. Zolessi
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República and Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | | | - Hugo Cerecetto
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
- Correspondence: (H.C.); (G.A.)
| | - Guzmán Alvarez
- Laboratorio de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Rute 3 km 363, Paysandú 60000, Uruguay
- Correspondence: (H.C.); (G.A.)
| |
Collapse
|
6
|
Identification of 2-(4-N,N-Dimethylaminophenyl)-5-methyl-1-phenethyl-1H-benzimidazole targeting HIV-1 CA capsid protein and inhibiting HIV-1 replication in cellulo. BMC Pharmacol Toxicol 2022; 23:43. [PMID: 35765101 PMCID: PMC9241302 DOI: 10.1186/s40360-022-00581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
The capsid (CA) subunit of the HIV-1 Gag polyprotein is involved in several steps of the viral cycle, from the assembly of new viral particles to the protection of the viral genome until it enters into the nucleus of newly infected cells. As such, it represents an interesting therapeutic target to tackle HIV infection. In this study, we screened hundreds of compounds with a low cost of synthesis for their ability to interfere with Gag assembly in vitro. Representatives of the most promising families of compounds were then tested for their ability to inhibit HIV-1 replication in cellulo. From these molecules, a hit compound from the benzimidazole family with high metabolic stability and low toxicity, 2-(4-N,N-dimethylaminophenyl)-5-methyl-1-phenethyl-1H-benzimidazole (696), appeared to block HIV-1 replication with an IC50 of 3 µM. Quantitative PCR experiments demonstrated that 696 does not block HIV-1 infection before the end of reverse transcription, and molecular docking confirmed that 696 is likely to bind at the interface between two monomers of CA and interfere with capsid oligomerization. Altogether, 696 represents a promising lead molecule for the development of a new series of HIV-1 inhibitors.
Collapse
|
7
|
Rubio-Hernández M, Alcolea V, Pérez-Silanes S. Potential of sulfur-selenium isosteric replacement as a strategy for the development of new anti-chagasic drugs. Acta Trop 2022; 233:106547. [PMID: 35667455 DOI: 10.1016/j.actatropica.2022.106547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Current treatment for Chagas disease is based on only two drugs: benznidazole and nifurtimox. Compounds containing sulfur (S) in their structure have shown promising results in vitro and in vivo against Trypanosoma cruzi, the parasite causing Chagas disease. Notably, some reports show that the isosteric replacement of S by selenium (Se) could be an interesting strategy for the development of new compounds for the treatment of Chagas disease. To date, the activity against T. cruzi of three Se- containing groups has been compared with their S counterparts: selenosemicarbazones, selenoquinones, and selenocyanates. More studies are needed to confirm the positive results of Se compounds. Therefore, we have investigated S compounds described in the literature tested against T. cruzi. We focused on those tested in vivo that allowed isosteric replacement to propose their Se counterparts as promising compounds for the future development of new drugs against Chagas disease.
Collapse
|
8
|
Chagas disease: Immunology of the disease at a glance. Cytokine Growth Factor Rev 2021; 62:15-22. [PMID: 34696979 DOI: 10.1016/j.cytogfr.2021.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022]
Abstract
Chagas disease is an important neglected disease that affects 6-7 million people worldwide. The disease has two phases: acute and chronic, in which there are different clinical symptoms. Controlling the infection depends on innate and acquired immune responses, which are activated during the initial infection and are critical for host survival. Furthermore, the immune system plays an important role in the therapeutic success. Here we summarize the importance of the immune system cytokines in the pathology outcome, as well as in the treatment.
Collapse
|
9
|
Vázquez-Jiménez LK, Moreno-Herrera A, Juárez-Saldivar A, González-González A, Ortiz-Pérez E, Paz-González AD, Palos-Pizarro I, Ramírez-Moreno E, Rivera G. Recent Advances in the Development of Triose Phosphate Isomerase Inhibitors as Antiprotozoal Agents. Curr Med Chem 2021; 29:2504-2529. [PMID: 34517794 DOI: 10.2174/0929867328666210913090928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/10/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Parasitic diseases caused by protozoa such as Chagas disease, leishmaniasis, malaria, African trypanosomiasis, amebiasis, trichomoniasis, and giardiasis are considered serious public health problems in developing countries. Drug-resistance among parasites justifies the search for new therapeutic drugs and the identification of new targets becomes a valuable approach. In this scenario, glycolysis pathway which consists of the conversion of glucose into pyruvate plays an important role in the protozoa energy supply and it is therefore considered as a promising target. In this pathway, triose phosphate isomerase (TIM) plays an essential role in efficient energy production. Furthermore, protozoa TIM show structural differences with human enzyme counterparts suggesting the possibility of obtaining selective inhibitors. Therefore, TIM is considered a valid approach to develop new antiprotozoal agents, inhibiting the glycolysis in the parasite. OBJECTIVE In this review, we discuss the drug design strategies, structure-activity relationship, and binding modes of outstanding TIM inhibitors against Trypanosoma cruzi, Trypanosoma brucei, Plasmodium falciparum, Giardia lamblia, Leishmania mexicana, Trichomonas vaginalis, and Entamoeba histolytica. RESULTS TIM inhibitors showed mainly aromatic systems and symmetrical structure, where the size and type of heteroatom are important for enzyme inhibition. This inhibition is mainly based on the interaction with i) the interfacial region of TIM inducing changes on the quaternary and tertiary structure or ii) with the TIM catalytic region were the main pathways that disabled the catalytic activity of the enzyme. CONCLUSION Benzothiazole, benzoxazole, benzimidazole, and sulfhydryl derivatives stand out as TIM inhibitors. In silico and in vitro studies demonstrate that the inhibitors bind mainly at the TIM dimer interface. In this review, the development of new TIM inhibitors as antiprotozoal drugs is demonstrated as an important pharmaceutical strategy that may lead to new therapies for these ancient parasitic diseases.
Collapse
Affiliation(s)
- Lenci K Vázquez-Jiménez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| | - Antonio Moreno-Herrera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| | - Alfredo Juárez-Saldivar
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| | - Alonzo González-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| | - Eyra Ortiz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| | - Alma D Paz-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| | - Isidro Palos-Pizarro
- Unidad Académica Multidisciplinaria Reynosa-Rodhe, Universidad Autónoma de Tamaulipas, 88779 Reynosa. Mexico
| | - Esther Ramírez-Moreno
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, 07320 Ciudad de México. Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| |
Collapse
|
10
|
Preclinical Studies in Anti- Trypanosomatidae Drug Development. Pharmaceuticals (Basel) 2021; 14:ph14070644. [PMID: 34358070 PMCID: PMC8308625 DOI: 10.3390/ph14070644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
The trypanosomatid parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania are the causative agents of human African trypanosomiasis, Chagas Disease and Leishmaniasis, respectively. These infections primarily affect poor, rural communities in the developing world, and are responsible for trapping sufferers and their families in a disease/poverty cycle. The development of new chemotherapies is a priority given that existing drug treatments are problematic. In our search for novel anti-trypanosomatid agents, we assess the growth-inhibitory properties of >450 compounds from in-house and/or "Pathogen Box" (PBox) libraries against L. infantum, L. amazonensis, L.braziliensis, T. cruzi and T. brucei and evaluate the toxicities of the most promising agents towards murine macrophages. Screens using the in-house series identified 17 structures with activity against and selective toward Leishmania: Compounds displayed 50% inhibitory concentrations between 0.09 and 25 μM and had selectivity index values >10. For the PBox library, ~20% of chemicals exhibited anti-parasitic properties including five structures whose activity against L. infantum had not been reported before. These five compounds displayed no toxicity towards murine macrophages over the range tested with three being active in an in vivo murine model of the cutaneous disease, with 100% survival of infected animals. Additionally, the oral combination of three of them in the in vivo Chagas disease murine model demonstrated full control of the parasitemia. Interestingly, phenotyping revealed that the reference strain responds differently to the five PBox-derived chemicals relative to parasites isolated from a dog. Together, our data identified one drug candidate that displays activity against Leishmania and other Trypanosomatidae in vitro and in vivo, while exhibiting low toxicity to cultured mammalian cells and low in vivo acute toxicity.
Collapse
|
11
|
Mazzeti AL, Capelari-Oliveira P, Bahia MT, Mosqueira VCF. Review on Experimental Treatment Strategies Against Trypanosoma cruzi. J Exp Pharmacol 2021; 13:409-432. [PMID: 33833592 PMCID: PMC8020333 DOI: 10.2147/jep.s267378] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi. Currently, only nitroheterocyclic nifurtimox (NFX) and benznidazole (BNZ) are available for the treatment of Chagas disease, with limitations such as variable efficacy, long treatment regimens and toxicity. Different strategies have been used to discover new active molecules for the treatment of Chagas disease. Target-based and phenotypic screening led to thousands of compounds with anti-T. cruzi activity, notably the nitroheterocyclic compounds, fexinidazole and its metabolites. In addition, drug repurposing, drug combinations, re-dosing regimens and the development of new formulations have been evaluated. The CYP51 antifungal azoles, as posaconazole, ravuconazole and its prodrug fosravuconazole presented promising results in experimental Chagas disease. Drug combinations of nitroheterocyclic and azoles were able to induce cure in murine infection. New treatment schemes using BNZ showed efficacy in the experimental chronic stage, including against dormant forms of T. cruzi. And finally, sesquiterpene lactone formulated in nanocarriers displayed outstanding efficacy against different strains of T. cruzi, susceptible or resistant to BNZ, the reference drug. These pre-clinical results are encouraging and provide interesting evidence to improve the treatment of patients with Chagas disease.
Collapse
Affiliation(s)
- Ana Lia Mazzeti
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil.,Laboratório de Doenças Parasitárias, Escola de Medicina & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Patricia Capelari-Oliveira
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Maria Terezinha Bahia
- Laboratório de Doenças Parasitárias, Escola de Medicina & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Vanessa Carla Furtado Mosqueira
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| |
Collapse
|
12
|
J B, M BM, Chanda K. An Overview on the Therapeutics of Neglected Infectious Diseases-Leishmaniasis and Chagas Diseases. Front Chem 2021; 9:622286. [PMID: 33777895 PMCID: PMC7994601 DOI: 10.3389/fchem.2021.622286] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/14/2021] [Indexed: 12/20/2022] Open
Abstract
Neglected tropical diseases (NTDs) as termed by WHO include twenty different infectious diseases that are caused by bacteria, viruses, and parasites. Among these NTDs, Chagas disease and leishmaniasis are reported to cause high mortality in humans and are further associated with the limitations of existing drugs like severe toxicity and drug resistance. The above hitches have rendered researchers to focus on developing alternatives and novel therapeutics for the treatment of these diseases. In the past decade, several target-based drugs have emerged, which focus on specific biochemical pathways of the causative parasites. For leishmaniasis, the targets such as nucleoside analogs, inhibitors targeting nucleoside phosphate kinases of the parasite’s purine salvage pathway, 20S proteasome of Leishmania, mitochondria, and the associated proteins are reviewed along with the chemical structures of potential drug candidates. Similarly, in case of therapeutics for Chagas disease, several target-based drug candidates targeting sterol biosynthetic pathway (C14-ademethylase), L-cysteine protease, heme peroxidation, mitochondria, farnesyl pyrophosphate, etc., which are vital and unique to the causative parasite are discussed. Moreover, the use of nano-based formulations towards the therapeutics of the above diseases is also discussed.
Collapse
Affiliation(s)
- Brindha J
- Division of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai, India
| | - Balamurali M M
- Division of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai, India
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
13
|
Castillo-Garit JA, Barigye SJ, Pham-The H, Pérez-Doñate V, Torrens F, Pérez-Giménez F. Computational identification of chemical compounds with potential anti-Chagas activity using a classification tree. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:71-83. [PMID: 33455460 DOI: 10.1080/1062936x.2020.1863857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Chagas disease is endemic to 21 Latin American countries and is a great public health problem in that region. Current chemotherapy remains unsatisfactory; consequently the need to search for new drugs persists. Here we present a new approach to identify novel compounds with potential anti-chagasic action. A large dataset of 584 compounds, obtained from the Drugs for Neglected Diseases initiative, was selected to develop the computational model. Dragon software was used to calculate the molecular descriptors and WEKA software to obtain the classification tree. The best model shows accuracy greater than 93.4% for the training set; the tree was also validated using a 10-fold cross-validation procedure and through a test set, achieving accuracy values over 90.5% and 92.2%, correspondingly. The values of sensitivity and specificity were around 90% in all series; also the false alarm rate values were under 10.5% for all sets. In addition, a simulated ligand-based virtual screening for several compounds recently reported as promising anti-chagasic agents was carried out, yielding good agreement between predictions and experimental results. Finally, the present work constitutes an example of how this rational computer-based method can help reduce the cost and increase the rate in which novel compounds are developed against Chagas disease.
Collapse
Affiliation(s)
- J A Castillo-Garit
- Unidad de Toxicología Experimental, Universidad de Ciencias Médicas de Villa Clara , Villa Clara, Cuba
- Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia, Universitat de València , Valencia, Spain
| | - S J Barigye
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM) , Madrid, Spain
| | - H Pham-The
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy , Hanoi, Viet-nam
| | - V Pérez-Doñate
- Departamento de Microbiología, Hospital Universitario de la Ribera , Valencia, Spain
| | - F Torrens
- Institut Universitari de Ciència Molecular, Universitat de València, Edifici d'Instituts de Paterna , València, Spain
| | - F Pérez-Giménez
- Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia, Universitat de València , Valencia, Spain
| |
Collapse
|
14
|
Novel and selective inactivators of Triosephosphate isomerase with anti-trematode activity. Sci Rep 2020; 10:2587. [PMID: 32054976 PMCID: PMC7018972 DOI: 10.1038/s41598-020-59460-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Trematode infections such as schistosomiasis and fascioliasis cause significant morbidity in an estimated 250 million people worldwide and the associated agricultural losses are estimated at more than US$ 6 billion per year. Current chemotherapy is limited. Triosephosphate isomerase (TIM), an enzyme of the glycolytic pathway, has emerged as a useful drug target in many parasites, including Fasciola hepatica TIM (FhTIM). We identified 21 novel compounds that selectively inhibit this enzyme. Using microscale thermophoresis we explored the interaction between target and compounds and identified a potent interaction between the sulfonyl-1,2,4-thiadiazole (compound 187) and FhTIM, which showed an IC50 of 5 µM and a Kd of 66 nM. In only 4 hours, this compound killed the juvenile form of F. hepatica with an IC50 of 3 µM, better than the reference drug triclabendazole (TCZ). Interestingly, we discovered in vitro inhibition of FhTIM by TCZ, with an IC50 of 7 µM suggesting a previously uncharacterized role of FhTIM in the mechanism of action of this drug. Compound 187 was also active against various developmental stages of Schistosoma mansoni. The low toxicity in vitro in different cell types and lack of acute toxicity in mice was demonstrated for this compound, as was demonstrated the efficacy of 187in vivo in F. hepatica infected mice. Finally, we obtained the first crystal structure of FhTIM at 1.9 Å resolution which allows us using docking to suggest a mechanism of interaction between compound 187 and TIM. In conclusion, we describe a promising drug candidate to control neglected trematode infections in human and animal health.
Collapse
|
15
|
Bodio E, Denat F, Goze C. BODIPYS and aza-BODIPY derivatives as promising fluorophores for in vivo molecular imaging and theranostic applications. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619501268] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since their discovery in 1968, the BODIPYs dyes (4,4-difluoro-4-bora-3a, 4a diaza-s-indacene) have found an exponentially increasing number of applications in a large variety of scientific fields. In particular, studies reporting bioapplications of BODIPYs have increased dramatically. However, most of the time, only in vitro investigations have been reported. The in vivo potential of BODIPYs and aza-BODIPYs is more recent, but considering the number of in vivo studies with BODIPY and aza-BODIPY which have been reported in the last five years, we can now affirm that this family of fluorophores can be considered important as cyanine dyes for future in vivo and even clinical applications. This review aims to present representative examples of recent in vivo applications of BODIPYs or aza-BODIPYs, and to highlight the potential of these dyes for optical molecular imaging.
Collapse
Affiliation(s)
- Ewen Bodio
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 Avenue A. Savary, 21078 Dijon Cedex, France
| | - Franck Denat
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 Avenue A. Savary, 21078 Dijon Cedex, France
| | - Christine Goze
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 Avenue A. Savary, 21078 Dijon Cedex, France
| |
Collapse
|
16
|
Aguilera E, Perdomo C, Espindola A, Corvo I, Faral-Tello P, Robello C, Serna E, Benítez F, Riveros R, Torres S, Vera de Bilbao NI, Yaluff G, Alvarez G. A Nature-Inspired Design Yields a New Class of Steroids Against Trypanosomatids. Molecules 2019; 24:molecules24203800. [PMID: 31652542 PMCID: PMC6832524 DOI: 10.3390/molecules24203800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/08/2019] [Accepted: 10/12/2019] [Indexed: 12/24/2022] Open
Abstract
Chagas disease and Leishmaniasis are neglected endemic protozoan diseases recognized as public health problems by the World Health Organization. These diseases affect millions of people around the world however, efficient and low-cost treatments are not available. Different steroid molecules with antimicrobial and antiparasitic activity were isolated from diverse organisms (ticks, plants, fungi). These molecules have complex structures that make de novo synthesis extremely difficult. In this work, we designed new and simpler compounds with antiparasitic potential inspired in natural steroids and synthesized a series of nineteen steroidal arylideneketones and thiazolidenehydrazines. We explored their biological activity against Leishmania infantum, Leishmania amazonensis, and Trypanosoma cruzi in vitro and in vivo. We also assayed their genotoxicity and acute toxicity in vitro and in mice. The best compound, a steroidal thiosemicarbazone compound 8 (ID_1260) was active in vitro (IC50 200 nM) and in vivo (60% infection reduction at 50 mg/kg) in Leishmania and T. cruzi. It also has low toxicity in vitro and in vivo (LD50 >2000 mg/kg) and no genotoxic effects, being a promising compound for anti-trypanosomatid drug development.
Collapse
Affiliation(s)
- Elena Aguilera
- Grupo de Química Medicinal-Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Montevideo C.P. 11400, Uruguay.
| | - Cintya Perdomo
- Laboratorio de Moléculas Bioactivas, CENUR Litoral Norte, Universidad de la República, Ruta 3 (km 363), Paysandú C.P. 60000, Uruguay.
| | - Alejandra Espindola
- Laboratorio de Moléculas Bioactivas, CENUR Litoral Norte, Universidad de la República, Ruta 3 (km 363), Paysandú C.P. 60000, Uruguay.
| | - Ileana Corvo
- Laboratorio de Moléculas Bioactivas, CENUR Litoral Norte, Universidad de la República, Ruta 3 (km 363), Paysandú C.P. 60000, Uruguay.
| | - Paula Faral-Tello
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo C.P. 11400, Uruguay.
| | - Carlos Robello
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo C.P. 11400, Uruguay.
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11200, Uruguay.
| | - Elva Serna
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo C.P. 2169., Paraguay.
| | - Fátima Benítez
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo C.P. 2169., Paraguay.
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo C.P. 2169., Paraguay.
| | - Rocío Riveros
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo C.P. 2169., Paraguay.
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo C.P. 2169., Paraguay.
| | - Susana Torres
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo C.P. 2169., Paraguay.
| | - Ninfa I Vera de Bilbao
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo C.P. 2169., Paraguay.
| | - Gloria Yaluff
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo C.P. 2169., Paraguay.
| | - Guzmán Alvarez
- Laboratorio de Moléculas Bioactivas, CENUR Litoral Norte, Universidad de la República, Ruta 3 (km 363), Paysandú C.P. 60000, Uruguay.
| |
Collapse
|
17
|
Leite ACL, Espíndola JWP, de Oliveira Cardoso MV, de Oliveira Filho GB. Privileged Structures in the Design of Potential Drug Candidates for Neglected Diseases. Curr Med Chem 2019; 26:4323-4354. [DOI: 10.2174/0929867324666171023163752] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 11/22/2022]
Abstract
Background:
Privileged motifs are recurring in a wide range of biologically
active compounds that reach different pharmaceutical targets and pathways and could represent
a suitable start point to access potential candidates in the neglected diseases field.
The current therapies to treat these diseases are based in drugs that lack of the desired effectiveness,
affordable methods of synthesis and allow a way to emergence of resistant
strains. Due the lack of financial return, only few pharmaceutical companies have been
investing in research for new therapeutics for neglected diseases (ND).
Methods:
Based on the literature search from 2002 to 2016, we discuss how six privileged
motifs, focusing phthalimide, isatin, indole, thiosemicarbazone, thiazole, and thiazolidinone
are particularly recurrent in compounds active against some of neglected diseases.
Results:
It was observed that attention was paid particularly for Chagas disease, malaria,
tuberculosis, schistosomiasis, leishmaniasis, dengue, African sleeping sickness (Human
African Trypanosomiasis - HAT) and toxoplasmosis. It was possible to verify that, among
the ND, antitrypanosomal and antiplasmodial activities were between the most searched.
Besides, thiosemicarbazone moiety seems to be the most versatile and frequently explored
scaffold. As well, phthalimide, isatin, thiazole, and thiazolidone nucleus have been also
explored in the ND field.
Conclusion:
Some described compounds, appear to be promising drug candidates, while
others could represent a valuable inspiration in the research for new lead compounds.
Collapse
Affiliation(s)
- Ana Cristina Lima Leite
- Departamento de Ciencias Farmaceuticas, Centro de Ciencias da Saude, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | - José Wanderlan Pontes Espíndola
- Departamento de Ciencias Farmaceuticas, Centro de Ciencias da Saude, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | | | - Gevanio Bezerra de Oliveira Filho
- Departamento de Ciencias Farmaceuticas, Centro de Ciencias da Saude, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| |
Collapse
|
18
|
Cardoso MVDO, Oliveira Filho GBD, Siqueira LRPD, Espíndola JWP, Silva EBD, Mendes APDO, Pereira VRA, Castro MCABD, Ferreira RS, Villela FS, Costa FMRD, Meira CS, Moreira DRM, Soares MBP, Leite ACL. 2-(phenylthio)ethylidene derivatives as anti-Trypanosoma cruzi compounds: Structural design, synthesis and antiparasitic activity. Eur J Med Chem 2019; 180:191-203. [DOI: 10.1016/j.ejmech.2019.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/06/2019] [Indexed: 12/16/2022]
|
19
|
Kryshchyshyn A, Kaminskyy D, Karpenko O, Gzella A, Grellier P, Lesyk R. Thiazolidinone/thiazole based hybrids - New class of antitrypanosomal agents. Eur J Med Chem 2019; 174:292-308. [PMID: 31051403 DOI: 10.1016/j.ejmech.2019.04.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/22/2022]
Abstract
Different compounds have been investigated as potent drugs for trypanosomiasis treatment, but no new drug has been marketed in the past 3 decades. 4-Thiazolidinone/thiazole as privileged structures and thiosemicarbazides cyclic analogs are well known scaffolds in novel antitrypanosomal agent design. We present here the design and synthesis of new hybrid molecules bearing thiazolidinone/thiazole cores linked by the hydrazone group with various molecular fragments. Structure optimization led to compounds with phenyl-indole or phenyl-imidazo[2,1-b][1,3,4]thiadiazole moieties showing excellent antitrypanosomal activity towards Trypanosoma brucei brucei and Trypanosoma brucei gambiense. Biological study allowed identifying compounds with the submicromolar levels of IC50, good selectivity indexes and relatively low cytotoxicity upon human primary fibroblasts as well as low acute toxicity.
Collapse
Affiliation(s)
- Anna Kryshchyshyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | | | - Andrzej Gzella
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, Poznan, 60-780, Poland
| | - Philippe Grellier
- National Museum of Natural History, UMR 7245 CNRS-MNHN, Team BAMEE, CP 52, 57 Rue Cuvier, 75005, Paris, France
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine; Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| |
Collapse
|
20
|
Risi G, Aguilera E, Ladós E, Suárez G, Carrera I, Álvarez G, Salinas G. Caenorhabditis elegans Infrared-Based Motility Assay Identified New Hits for Nematicide Drug Development. Vet Sci 2019; 6:vetsci6010029. [PMID: 30884899 PMCID: PMC6466232 DOI: 10.3390/vetsci6010029] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Nematode parasites have a profound impact on humankind, infecting nearly one-quarter of the world’s population, as well as livestock. There is a pressing need for discovering nematicides due to the spread of resistance to currently used drugs. The free-living nematode Caenorhabditis elegans is a formidable experimentally tractable model organism that offers key advantages in accelerating nematicide discovery. We report the screening of drug-like libraries using an overnight high-throughput C. elegans assay, based on an automated infrared motility reader. As a proof of concept, we screened the “Pathogen Box” library, and identical results to a previous screen using Haemonchus contortus were obtained. We then screened an in-house library containing a diversity of compound families. Most active compounds had a conjugation of an unsaturation with an electronegative atom (N, O, or S) and an aromatic ring. Importantly, we identified symmetric arylidene ketones and aryl hydrazine derivatives as novel nematicides. Furthermore, one of these compounds, (1E,2E)-1,2-bis(thiophen-3-ylmethylene)hydrazine, was active as a nematicide at 25 µm, but innocuous to the vertebrate model zebrafish at 50 µm. Our results identified novel nematicidal scaffolds and illustrate the value of C. elegans in accelerating nematicide discovery using a nonlabor-intensive automated assay that provides a simple overnight readout.
Collapse
Affiliation(s)
- Gastón Risi
- Worm Biology Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.
| | - Elena Aguilera
- Grupo de Química Medicinal, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| | - Enrique Ladós
- Worm Biology Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.
| | - Gonzalo Suárez
- Área Farmacología, Departamento de Fisiología, Facultad de Veterinaria, Universidad de la República, Montevideo 11600, Uruguay.
| | - Inés Carrera
- Worm Biology Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.
- Departamento de Ciencias Farmacéuticas, Área Farmacología, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay.
| | - Guzmán Álvarez
- Laboratorio de Moléculas Bioactivas-CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay.
| | - Gustavo Salinas
- Worm Biology Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.
- Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo 11400, Uruguay.
| |
Collapse
|
21
|
Chen MM, Shao LY, Lun LJ, Wu YL, Fu XP, Ji YF. Palladium-catalyzed late-stage mono-aroylation of the fully substituted pyrazoles via aromatic C–H bond activation. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Mabkhot YN, Al-Showiman SS, Barakat A, Soliman SM, Kheder NA, Alharbi MM, Asayari A, Muhsinah AB, Ullah A, Badshah SL. Computational studies of 2-(4-oxo-3-phenylthiazolidin-2-ylidene)malononitrile. BMC Chem 2019; 13:25. [PMID: 31384774 PMCID: PMC6661733 DOI: 10.1186/s13065-019-0542-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 02/01/2019] [Indexed: 11/10/2022] Open
Abstract
The molecular structure of the 2-(4-oxo-3-phenylthiazolidin-2-ylidene) malononitrile (3) is calculated using DFT B3LYP/6-311G(d, p) method. The calculated geometric parameters are in good agreement with the experimental data. The NBO calculations were performed to predict the natural atomic charges at the different atomic sites and study the different intramolecular charge transfer (ICT) interactions occurring in the studied system. The BD(2)C17-C19 → BD*(2)C14-C15, LP(2)O2 → BD*(1)N5-C9 and LP(1)N5 → BD*(2)C10-C11 ICT interactions causing stabilization of the system by 23.30, 30.63 and 52.48 kcal/mol, respectively. The two intense electronic transition bands observed experimentally at 249 nm and 296 nm are predicted using the TD-DFT calculations at 237.9 nm (f = 0.1618) and 276.4 nm (f = 0.3408), respectively. These electronic transitions are due to H-3 → L (94%) and H → L (95%) excitations, respectively.
Collapse
Affiliation(s)
- Yahia N Mabkhot
- 1Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, 61441 Saudi Arabia
| | - Salim S Al-Showiman
- 2Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - A Barakat
- 2Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia.,3Department of Chemistry, Faculty of Science, Alexandria University, P.O Box 426, Ibrahimia Alexandria, 21321 Egypt
| | - S M Soliman
- 3Department of Chemistry, Faculty of Science, Alexandria University, P.O Box 426, Ibrahimia Alexandria, 21321 Egypt.,4Department of Chemistry, Rabigh College of Science and Art, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Nabila A Kheder
- 5Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Mohammed M Alharbi
- 2Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Abdulrahman Asayari
- 6Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 61441 Saudi Arabia
| | - Abdullatif Bin Muhsinah
- 6Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 61441 Saudi Arabia
| | - Asad Ullah
- 7Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120 KPK Pakistan
| | - Syed Lal Badshah
- 7Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120 KPK Pakistan
| |
Collapse
|
23
|
Scarim CB, Jornada DH, Machado MGM, Ferreira CMR, Dos Santos JL, Chung MC. Thiazole, thio and semicarbazone derivatives against tropical infective diseases: Chagas disease, human African trypanosomiasis (HAT), leishmaniasis, and malaria. Eur J Med Chem 2018; 162:378-395. [PMID: 30453246 DOI: 10.1016/j.ejmech.2018.11.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/18/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022]
Abstract
Thiazole, thiosemicarbazone and semicarbazone moieties are privileged scaffolds (acting as primary pharmacophores) in many compounds that are useful to treat several diseases, mainly tropical infectious diseases. In this review article, we critically analyzed the contribution of these scaffolds to medicinal chemistry in the last five years, focusing on tropical infectious diseases, such as Chagas disease, human African trypanosomiasis (HAT), leishmaniasis, and malaria. We also present perspectives for their use in drug design in order to contribute to the development of new drugs.
Collapse
Affiliation(s)
- Cauê Benito Scarim
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.
| | | | | | | | - Jean Leandro Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Man Chin Chung
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.
| |
Collapse
|
24
|
Kaushik R, Chand M, Rashid M, Jain SC. Synthesis of novel 2-acetamidothiazoles tethered with 1,2,3-triazole and pyridine pharmacophores. HETEROATOM CHEMISTRY 2018. [DOI: 10.1002/hc.21447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Reena Kaushik
- Department of Chemistry; University of Delhi; Delhi India
| | - Mahesh Chand
- Department of Chemistry; University of Delhi; Delhi India
| | - Mohd. Rashid
- Department of Chemistry; University of Delhi; Delhi India
| | | |
Collapse
|
25
|
Novel and Selective Rhipicephalus microplus Triosephosphate Isomerase Inhibitors with Acaricidal Activity. Vet Sci 2018; 5:vetsci5030074. [PMID: 30142944 PMCID: PMC6163981 DOI: 10.3390/vetsci5030074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022] Open
Abstract
The cattle tick Rhipicephalus microplus is one of the most important ectoparasites causing significant economic losses for the cattle industry. The major tool of control is reducing the number of ticks, applying acaricides in cattle. However, overuse has led to selection of resistant populations of R. microplus to most of these products, some even to more than one active principle. Thus, exploration for new molecules with acaricidal activity in R. microplus has become necessary. Triosephosphate isomerase (TIM) is an essential enzyme in R. microplus metabolism and could be an interesting target for the development of new methods for tick control. In this work, we screened 227 compounds, from our in-house chemo-library, against TIM from R. microplus. Four compounds (50, 98, 14, and 161) selectively inhibited this enzyme with IC50 values between 25 and 50 μM. They were also able to diminish cellular viability of BME26 embryonic cells by more than 50% at 50 μM. A molecular docking study showed that the compounds bind in different regions of the protein; compound 14 interacts with the dimer interface. Furthermore, compound 14 affected the survival of partially engorged females, fed artificially, using the capillary technique. This molecule is simple, easy to produce, and important biological data—including toxicological information—are available for it. Our results imply a promising role for compound 14 as a prototype for development of a new acaricidal involving selective TIM inhibition.
Collapse
|
26
|
Scarim CB, Jornada DH, Chelucci RC, de Almeida L, Dos Santos JL, Chung MC. Current advances in drug discovery for Chagas disease. Eur J Med Chem 2018; 155:824-838. [PMID: 30033393 DOI: 10.1016/j.ejmech.2018.06.040] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022]
Abstract
Chagas disease, also known as American trypanosomiasis, is one of the 17 neglected tropical diseases (NTDs) according to World Health Organization. It is estimated that 8-10 million people are infected worldwide, mainly in Latin America. Chagas disease is caused by the parasite Trypanosoma cruzi and is characterized by two phases: acute and chronic. The current therapy for Chagas disease is limited to drugs such as nifurtimox and benznidazole, which are effective in treating only the acute phase of the disease. In addition, several side effects ranging from hypersensitivity to bone marrow depression and peripheral polyneuropathy have been associated with these drugs. Therefore, the current challenge is to find new effective and safe drugs against this NTD. The aim of this review is to describe the advances in the medicinal chemistry of new anti-chagasic compounds reported in the literature in the last five years. We report promising prototypes for drug discovery identified through target-based and phenotype-based strategies and present some important targets for the development of new synthetic compounds.
Collapse
Affiliation(s)
- Cauê Benito Scarim
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil.
| | - Daniela Hartmann Jornada
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil
| | - Rafael Consolin Chelucci
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil
| | - Leticia de Almeida
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, USP, Brazil
| | - Jean Leandro Dos Santos
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil
| | - Man Chin Chung
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Araraquara, SP, Brazil
| |
Collapse
|
27
|
Aguilera E, Varela J, Serna E, Torres S, Yaluff G, Bilbao NVD, Cerecetto H, Alvarez G, González M. Looking for combination of benznidazole and Trypanosoma cruzi-triosephosphate isomerase inhibitors for Chagas disease treatment. Mem Inst Oswaldo Cruz 2018; 113:153-160. [PMID: 29412353 PMCID: PMC5804306 DOI: 10.1590/0074-02760170267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The current chemotherapy for Chagas disease is based on monopharmacology with low efficacy and drug tolerance. Polypharmacology is one of the strategies to overcome these limitations. OBJECTIVES Study the anti-Trypanosoma cruzi activity of associations of benznidazole (Bnz) with three new synthetic T. cruzi-triosephosphate isomerase inhibitors, 2, 3, and 4, in order to potentiate their actions. METHODS The in vitro effect of the drug combinations were determined constructing the corresponding isobolograms. In vivo activities were assessed using an acute murine model of Chagas disease evaluating parasitaemias, mortalities and IgG anti-T. cruzi antibodies. FINDINGS The effect of Bnz combined with each of these compounds, on the growth of epimastigotes, indicated an additive action or a synergic action, when combining it with 2 or 3, respectively, and an antagonic action when combining it with 4. In vivo studies, for the two chosen combinations, 2 or 3 plus one fifth equivalent of Bnz, showed that Bnz can also potentiate the in vivo therapeutic effects. For both combinations a decrease in the number of trypomastigote and lower levels of anti-T. cruzi IgG-antibodies were detected, as well clear protection against death. MAIN CONCLUSIONS These results suggest the studied combinations could be used in the treatment of Chagas disease.
Collapse
Affiliation(s)
- Elena Aguilera
- Universidad de la República, Facultad de Ciencias, Grupo de Química Medicinal, Montevideo, Uruguay
| | - Javier Varela
- Universidad de la República, Facultad de Ciencias, Grupo de Química Medicinal, Montevideo, Uruguay
| | - Elva Serna
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, Departamento de Medicina Tropical, Asunción, Paraguay
| | - Susana Torres
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, Departamento de Medicina Tropical, Asunción, Paraguay
| | - Gloria Yaluff
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, Departamento de Medicina Tropical, Asunción, Paraguay
| | - Ninfa Vera de Bilbao
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, Departamento de Medicina Tropical, Asunción, Paraguay
| | - Hugo Cerecetto
- Universidad de la República, Facultad de Ciencias, Grupo de Química Medicinal, Montevideo, Uruguay.,Universidad de la República, Facultad de Ciencias, Centro de Investigaciones Nucleares, Área de Radiofarmacia, Montevideo, Uruguay
| | - Guzmán Alvarez
- Universidad de la República, Facultad de Ciencias, Grupo de Química Medicinal, Montevideo, Uruguay.,Universidad de la República, Centro Universitario Regional Litoral Norte, Laboratorio de Moléculas Bioactivas, Paysandú, Uruguay
| | - Mercedes González
- Universidad de la República, Centro Universitario Regional Litoral Norte, Laboratorio de Moléculas Bioactivas, Paysandú, Uruguay
| |
Collapse
|
28
|
Álvarez Touron GI. Bioguided Design of Trypanosomicidal Compounds: A Successful Strategy in Drug Discovery. Methods Mol Biol 2018; 1824:139-163. [PMID: 30039405 DOI: 10.1007/978-1-4939-8630-9_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Drug development is a long and expensive process that takes about 15 years and is mostly carried out by the pharmaceutical industry. In the case of the diseases produced by trypanosomatids, this development is poorly performed by the pharmaceutical industry. As a result the academia is the one that take a leading role with the drug development process. More effective and economic methodologies to obtain safe compounds and with strong trypanosomicidal activity are urgently needed. In this work, a series of methods are described to obtain bioactive molecules with antiparasitic activity and good pharmacological profiles.
Collapse
|
29
|
Álvarez G, Perdomo C, Coronel C, Aguilera E, Varela J, Aparicio G, Zolessi FR, Cabrera N, Vega C, Rolón M, Rojas de Arias A, Pérez-Montfort R, Cerecetto H, González M. Multi-Anti-Parasitic Activity of Arylidene Ketones and Thiazolidene Hydrazines against Trypanosoma cruzi and Leishmania spp. Molecules 2017; 22:molecules22050709. [PMID: 28481276 PMCID: PMC6154605 DOI: 10.3390/molecules22050709] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/23/2017] [Accepted: 04/25/2017] [Indexed: 11/16/2022] Open
Abstract
A series of fifty arylideneketones and thiazolidenehydrazines was evaluated against Leishmania infantum and Leishmania braziliensis. Furthermore, new simplified thiazolidenehydrazine derivatives were evaluated against Trypanosoma cruzi. The cytotoxicity of the active compounds on non-infected fibroblasts or macrophages was established in vitro to evaluate the selectivity of their anti-parasitic effects. Seven thiazolidenehydrazine derivatives and ten arylideneketones had good activity against the three parasites. The IC50 values for T. cruzi and Leishmania spp. ranged from 90 nM-25 µM. Eight compounds had multi-trypanocidal activity against T. cruzi and Leishmania spp. (the etiological agents of cutaneous and visceral forms). The selectivity of these active compounds was better than the three reference drugs: benznidazole, glucantime and miltefosine. They also had low toxicity when tested in vivo on zebrafish. Trying to understand the mechanism of action of these compounds, two possible molecular targets were investigated: triosephosphate isomerase and cruzipain. We also used a molecular stripping approach to elucidate the minimal structural requirements for their anti-T. cruzi activity.
Collapse
Affiliation(s)
- Guzmán Álvarez
- Laboratorio de Moléculas Bioactivas, CENUR Litoral Norte, Universidad de la República, Ruta 3 (km 363), Paysandú, C.P. 60000, Uruguay.
| | - Cintya Perdomo
- Laboratorio de Moléculas Bioactivas, CENUR Litoral Norte, Universidad de la República, Ruta 3 (km 363), Paysandú, C.P. 60000, Uruguay.
| | - Cathia Coronel
- Centro Para el Desarrollo de la Investigación Científica (CEDIC/FMB/Diaz Gill Medicina Laboratorial), Asunción, C.P. 1255, Paraguay.
| | - Elena Aguilera
- Grupo de Química Medicinal-Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Montevideo, C.P. 11400, Uruguay.
| | - Javier Varela
- Grupo de Química Medicinal-Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Montevideo, C.P. 11400, Uruguay.
| | - Gonzalo Aparicio
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, C.P. 11400, Uruguay.
- Cell Biology of Neural Development Laboratory, Institut Pasteur de Montevideo, Montevideo, C.P. 11400, Uruguay.
| | - Flavio R Zolessi
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, C.P. 11400, Uruguay.
- Cell Biology of Neural Development Laboratory, Institut Pasteur de Montevideo, Montevideo, C.P. 11400, Uruguay.
| | - Nallely Cabrera
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04510, Mexico.
| | - Celeste Vega
- Centro Para el Desarrollo de la Investigación Científica (CEDIC/FMB/Diaz Gill Medicina Laboratorial), Asunción, C.P. 1255, Paraguay.
| | - Miriam Rolón
- Centro Para el Desarrollo de la Investigación Científica (CEDIC/FMB/Diaz Gill Medicina Laboratorial), Asunción, C.P. 1255, Paraguay.
| | - Antonieta Rojas de Arias
- Centro Para el Desarrollo de la Investigación Científica (CEDIC/FMB/Diaz Gill Medicina Laboratorial), Asunción, C.P. 1255, Paraguay.
| | - Ruy Pérez-Montfort
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04510, Mexico.
| | - Hugo Cerecetto
- Grupo de Química Medicinal-Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Montevideo, C.P. 11400, Uruguay.
| | - Mercedes González
- Grupo de Química Medicinal-Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Montevideo, C.P. 11400, Uruguay.
| |
Collapse
|
30
|
Cruz JS, Machado FS, Ropert C, Roman-Campos D. Molecular mechanisms of cardiac electromechanical remodeling during Chagas disease: Role of TNF and TGF-β. Trends Cardiovasc Med 2017; 27:81-91. [DOI: 10.1016/j.tcm.2016.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 12/21/2022]
|
31
|
Rodríguez G, Nargoli J, López A, Moyna G, Álvarez G, Fernández M, Osorio-Martínez CA, González M, Cerecetto H. Synthesis and in vivo proof of concept of a BODIPY-based fluorescent probe as a tracer for biodistribution studies of a new anti-Chagas agent. RSC Adv 2017. [DOI: 10.1039/c6ra27851e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A BODIPY-fluorophore based probe (1-BODIPY) for compound 1 was developed and investigated for its potential as in vivo tracer.
Collapse
Affiliation(s)
- Gonzalo Rodríguez
- Grupo de Química Medicinal
- Laboratorio de Química Orgánica
- Instituto de Química Biológica
- Facultad de Ciencias
- Universidad de la República
| | - Javier Nargoli
- Grupo de Química Medicinal
- Laboratorio de Química Orgánica
- Instituto de Química Biológica
- Facultad de Ciencias
- Universidad de la República
| | - Andrés López
- Departamento de Química del Litoral
- Universidad de la República
- Paysandú 60000
- Uruguay
| | - Guillermo Moyna
- Departamento de Química del Litoral
- Universidad de la República
- Paysandú 60000
- Uruguay
| | - Guzmán Álvarez
- Grupo de Química Medicinal
- Laboratorio de Química Orgánica
- Instituto de Química Biológica
- Facultad de Ciencias
- Universidad de la República
| | - Marcelo Fernández
- Laboratorio de Experimentación Animal
- Centro de Investigaciones Nucleares
- Facultad de Ciencias
- Universidad de la República
- Uruguay
| | - Carlos A. Osorio-Martínez
- Grupo de Química Medicinal
- Laboratorio de Química Orgánica
- Instituto de Química Biológica
- Facultad de Ciencias
- Universidad de la República
| | - Mercedes González
- Grupo de Química Medicinal
- Laboratorio de Química Orgánica
- Instituto de Química Biológica
- Facultad de Ciencias
- Universidad de la República
| | - Hugo Cerecetto
- Grupo de Química Medicinal
- Laboratorio de Química Orgánica
- Instituto de Química Biológica
- Facultad de Ciencias
- Universidad de la República
| |
Collapse
|
32
|
Yu KK, Guo Y, Hu YH, Xu Z, Liu HW, Liao DH, Ji YF. Palladium-Catalyzed Diversemono-Acyloxylation of 5-Alkyl-4-aryl-thiazole-2-carboxylates. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Kun-Kun Yu
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Ying Guo
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Ya-Hua Hu
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Zhi Xu
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Hong-Wei Liu
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Dao-Hua Liao
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Ya-Fei Ji
- School of Pharmacy; East China University of Science & Technology; 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
33
|
Couto M, Sánchez C, Dávila B, Machín V, Varela J, Álvarez G, Cabrera M, Celano L, Aguirre-López B, Cabrera N, Tuena de Gómez-Puyou M, Gómez-Puyou A, Pérez-Montfort R, Cerecetto H, González M. 3-H-[1,2]Dithiole as a New Anti-Trypanosoma cruzi Chemotype: Biological and Mechanism of Action Studies. Molecules 2015; 20:14595-610. [PMID: 26274947 PMCID: PMC6332334 DOI: 10.3390/molecules200814595] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/07/2015] [Indexed: 11/16/2022] Open
Abstract
The current pharmacological Chagas disease treatments, using Nifurtimox or Benznidazole, show limited therapeutic results and are associated with potential side effects, like mutagenicity. Using random screening we have identified new chemotypes that were able to inhibit relevant targets of the Trypanosoma cruzi. We found 3H-[1,2]dithioles with the ability to inhibit Trypanosoma cruzi triosephosphate isomerase (TcTIM). Herein, we studied the structural modifications of this chemotype to analyze the influence of volume, lipophilicity and electronic properties in the anti-T. cruzi activity. Their selectivity to parasites vs. mammalian cells was also examined. To get insights into a possible mechanism of action, the inhibition of the enzymatic activity of TcTIM and cruzipain, using the isolated enzymes, and the inhibition of membrane sterol biosynthesis and excreted metabolites, using the whole parasite, were achieved. We found that this structural framework is interesting for the generation of innovative drugs for the treatment of Chagas disease.
Collapse
Affiliation(s)
- Marcos Couto
- Grupo de Química Medicinal-Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo C.P. 11400, Uruguay; E-Mails: (M.C.); (C.S.); (B.D.); (V.M.); (J.V.); (G.Á.); (M.C.)
| | - Carina Sánchez
- Grupo de Química Medicinal-Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo C.P. 11400, Uruguay; E-Mails: (M.C.); (C.S.); (B.D.); (V.M.); (J.V.); (G.Á.); (M.C.)
| | - Belén Dávila
- Grupo de Química Medicinal-Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo C.P. 11400, Uruguay; E-Mails: (M.C.); (C.S.); (B.D.); (V.M.); (J.V.); (G.Á.); (M.C.)
| | - Valentina Machín
- Grupo de Química Medicinal-Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo C.P. 11400, Uruguay; E-Mails: (M.C.); (C.S.); (B.D.); (V.M.); (J.V.); (G.Á.); (M.C.)
| | - Javier Varela
- Grupo de Química Medicinal-Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo C.P. 11400, Uruguay; E-Mails: (M.C.); (C.S.); (B.D.); (V.M.); (J.V.); (G.Á.); (M.C.)
| | - Guzmán Álvarez
- Grupo de Química Medicinal-Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo C.P. 11400, Uruguay; E-Mails: (M.C.); (C.S.); (B.D.); (V.M.); (J.V.); (G.Á.); (M.C.)
| | - Mauricio Cabrera
- Grupo de Química Medicinal-Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo C.P. 11400, Uruguay; E-Mails: (M.C.); (C.S.); (B.D.); (V.M.); (J.V.); (G.Á.); (M.C.)
| | - Laura Celano
- Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo C.P. 11400, Uruguay; E-Mail:
| | - Beatriz Aguirre-López
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; E-Mails: (B.A.-L.); (N.C.); (M.T.G.-P.); (A.G.-P.); (R.P.-M.)
| | - Nallely Cabrera
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; E-Mails: (B.A.-L.); (N.C.); (M.T.G.-P.); (A.G.-P.); (R.P.-M.)
| | - Marieta Tuena de Gómez-Puyou
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; E-Mails: (B.A.-L.); (N.C.); (M.T.G.-P.); (A.G.-P.); (R.P.-M.)
| | - Armando Gómez-Puyou
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; E-Mails: (B.A.-L.); (N.C.); (M.T.G.-P.); (A.G.-P.); (R.P.-M.)
| | - Ruy Pérez-Montfort
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; E-Mails: (B.A.-L.); (N.C.); (M.T.G.-P.); (A.G.-P.); (R.P.-M.)
| | - Hugo Cerecetto
- Grupo de Química Medicinal-Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo C.P. 11400, Uruguay; E-Mails: (M.C.); (C.S.); (B.D.); (V.M.); (J.V.); (G.Á.); (M.C.)
- Authors to whom correspondence should be addressed; E-Mails: or (H.C.); or (M.G.); Tel.: +598-2525-8618 (H.C. & M.G.); Fax: +598-2525-0749 (H.C. & M.G.)
| | - Mercedes González
- Grupo de Química Medicinal-Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo C.P. 11400, Uruguay; E-Mails: (M.C.); (C.S.); (B.D.); (V.M.); (J.V.); (G.Á.); (M.C.)
- Authors to whom correspondence should be addressed; E-Mails: or (H.C.); or (M.G.); Tel.: +598-2525-8618 (H.C. & M.G.); Fax: +598-2525-0749 (H.C. & M.G.)
| |
Collapse
|
34
|
Álvarez G, Martínez J, Varela J, Birriel E, Cruces E, Gabay M, Leal SM, Escobar P, Aguirre-López B, Cabrera N, Tuena de Gómez-Puyou M, Gómez Puyou A, Pérez-Montfort R, Yaluff G, Torres S, Serna E, Vera de Bilbao N, González M, Cerecetto H. Development of bis-thiazoles as inhibitors of triosephosphate isomerase from Trypanosoma cruzi. Identification of new non-mutagenic agents that are active in vivo. Eur J Med Chem 2015; 100:246-56. [PMID: 26094151 DOI: 10.1016/j.ejmech.2015.06.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 06/05/2015] [Accepted: 06/06/2015] [Indexed: 10/23/2022]
Abstract
The neglected disease American trypanosomiasis is one of the major health problems in Latin America. Triosephosphate isomerase from Trypanosoma cruzi (TcTIM), the etiologic agent of this disease, has been proposed as a druggable target. Some bis-benzothiazoles have been described as irreversible inhibitors of this enzyme. On the other hand, new bioactive furane-containing thiazoles have been described as excellent in vivo anti-T. cruzi agents. This encouraged us to design and develop new bis-thiazoles with potential use as drugs for American trypanosomiasis. The bis-thiazol 5, 3,3'-allyl-2,2'-bis[3-(2-furyl)-2-propenylidenehydrazono]-2,2',3,3'-tetrahydro-4,4'-bisthiazole, showed the best in vitro anti-T. cruzi profile with a higher selectivity index than the reference drugs Nifurtimox and Benznidazole against amastigote form of the parasite. This derivative displayed marginal activity against TcTIM however the bis-thiazol 14, 3-allyl-2-[3-(2-furyl)-2-propenylidenehydrazono]-3'-phenyl-2'-(3-phenyl-2-propenylidenehydrazono]-2,2',3,3'-tetrahydro-4,4'-bisthiazole, was an excellent inhibitor of the enzyme of the parasite. The absence of both in vitro mutagenic and in vivo toxicity effects, together with the activity of bis-thiazol 5in vivo, suggests that this compound is a promising anti-T. cruzi agent surpassing the "hit-to-lead" stage in the drug development process.
Collapse
Affiliation(s)
- Guzmán Álvarez
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Jennyfer Martínez
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Javier Varela
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Estefania Birriel
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Eugenia Cruces
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Martín Gabay
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Sandra M Leal
- Centro de Investigaciones de Enfermedades Tropicales, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Patricia Escobar
- Centro de Investigaciones de Enfermedades Tropicales, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Beatriz Aguirre-López
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, México
| | - Nallely Cabrera
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, México
| | - Marietta Tuena de Gómez-Puyou
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, México
| | - Armando Gómez Puyou
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, México
| | - Ruy Pérez-Montfort
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, México
| | - Gloria Yaluff
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Paraguay
| | - Susana Torres
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Paraguay
| | - Elva Serna
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Paraguay
| | - Ninfa Vera de Bilbao
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Paraguay
| | - Mercedes González
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay.
| | - Hugo Cerecetto
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay; Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|