1
|
de Oliveira AA, Carmo Silva LD, Neves BJ, Fiaia Costa VA, Muratov EN, Andrade CH, de Almeida Soares CM, Alves VM, Pereira M. Cheminformatics-driven discovery of hit compounds against Paracoccidioides spp. Future Med Chem 2023; 15:1553-1567. [PMID: 37727967 DOI: 10.4155/fmc-2022-0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Aims: The development of safe and effective therapies for treating paracoccidioidomycosis using computational strategies were employed to discover anti-Paracoccidioides compounds. Materials & methods: We 1) collected, curated and integrated the largest library of compounds tested against Paracoccidioides spp.; 2) employed a similarity search to virtually screen the ChemBridge database and select nine compounds for experimental evaluation; 3) performed an experimental evaluation to determine the minimum inhibitory concentration and minimum fungicidal concentration as well as cytotoxicity; and 4) employed computational tools to identify potential targets for the most active compounds. Seven compounds presented activity against Paracoccidioides spp. Conclusion: These compounds are new hits with a predicted mechanisms of action, making them potentially attractive to develop new compounds.
Collapse
Affiliation(s)
- Amanda Alves de Oliveira
- Institute of Tropical Pathology & Public Health, Federal University of Goiás, Goiânia, 74690-900, Brazil
- Laboratory for Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, 74690-900, Brazil
| | - Lívia do Carmo Silva
- Laboratory for Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, 74690-900, Brazil
| | - Bruno Junior Neves
- Laboratory of Cheminformatics, Faculty of Pharmacy, Federal University of Goiás, 74690-900, Brazil
| | | | - Eugene N Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology & Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
- Department of Pharmaceutical Sciences, Federal University of Paraiba, Joao Pessoa, 58051-900, Brazil
| | - Carolina Horta Andrade
- Laboratory for Molecular Modeling & Design, Faculty of Pharmacy, Federal University of Goiás, 74690-900, Brazil
| | | | - Vinicius M Alves
- Laboratory for Molecular Modeling, Division of Chemical Biology & Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
- Laboratory for Molecular Modeling & Design, Faculty of Pharmacy, Federal University of Goiás, 74690-900, Brazil
| | - Maristela Pereira
- Laboratory for Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, 74690-900, Brazil
| |
Collapse
|
2
|
New Methylcitrate Synthase Inhibitor Induces Proteolysis, Lipid Degradation and Pyruvate Excretion in Paracoccidioides brasiliensis. J Fungi (Basel) 2023; 9:jof9010108. [PMID: 36675929 PMCID: PMC9865517 DOI: 10.3390/jof9010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Paracoccidioidomycosis is a systemic mycosis caused by the inhalation of conidia of the genus Paracoccidioides. During the infectious process, fungal cells use several carbon sources, leading to the production of propionyl-CoA. The latter is metabolized by the methylcitrate synthase, a key enzyme of the methylcitrate cycle. We identified an inhibitor compound (ZINC08964784) that showed antifungal activity against P. brasiliensis. METHODS This work aimed to understand the fungal metabolic response of P. brasiliensis cells exposed to ZINC08964784 through a proteomics approach. We used a glucose-free medium supplemented with propionate in order to simulate the environment found by the pathogen during the infection. We performed pyruvate dosage, proteolytic assay, dosage of intracellular lipids and quantification of reactive oxygen species in order to validate the proteomic results. RESULTS The proteomic analysis indicated that the fungal cells undergo a metabolic shift due to the inhibition of the methylcitrate cycle and the generation of reactive species. Proteolytic enzymes were induced, driving amino acids into degradation for energy production. In addition, glycolysis and the citric acid cycle were down-regulated while ß-oxidation was up-regulated. The accumulation of pyruvate and propionyl-CoA led the cells to a state of oxidative stress in the presence of ZINC08964784. CONCLUSIONS The inhibition of methylcitrate synthase caused by the compound promoted a metabolic shift in P. brasiliensis damaging energy production and generating oxidative stress. Hence, the compound is a promising alternative for developing new strategies of therapies against paracoccidioidomycosis.
Collapse
|
3
|
Silva LDC, Silva KSFE, Rocha OB, Barbosa KLB, Rozada AMF, Gauze GDF, Soares CMDA, Pereira M. Proteomic Response of Paracoccidioides brasiliensis Exposed to the Antifungal 4-Methoxynaphthalene-N-acylhydrazone Reveals Alteration in Metabolism. J Fungi (Basel) 2022; 9:jof9010066. [PMID: 36675887 PMCID: PMC9865261 DOI: 10.3390/jof9010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Background: Paracoccidioidomycosis is a neglected mycosis with a high socioeconomic impact that requires long-term treatment with antifungals that have limitations in their use. The development of antifungals targeting essential proteins that are present exclusively in the fungus points to a potentially promising treatment. Methods: The inhibitor of the enzyme homoserine dehydrogenase drove the synthesis of N'-(2-hydroxybenzylidene)-4-methoxy-1-naphthohydrazide (AOS). This compound was evaluated for its antifungal activity in different species of Paracoccidioides and the consequent alteration in the proteomic profile of Paracoccidioides brasiliensis. Results: The compound showed a minimal inhibitory concentration ranging from 0.75 to 6.9 μM with a fungicidal effect on Paracoccidioides spp. and high selectivity index. AOS differentially regulated proteins related to glycolysis, TCA, the glyoxylate cycle, the urea cycle and amino acid metabolism, including homoserine dehydrogenase. In addition, P. brasiliensis inhibited protein synthesis and stimulated reactive oxygen species in the presence of AOS. Conclusions: AOS is a promising antifungal agent for the treatment of PCM, targeting important metabolic processes of the fungus.
Collapse
Affiliation(s)
- Lívia do Carmo Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiás 74690-900, Brazil
- Correspondence: (L.d.C.S.); (M.P.); (K.S.F.e.S.); Tel.: +55-6235211110 (K.S.F.e.S.)
| | - Kleber Santiago Freitas e Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiás 74690-900, Brazil
- Correspondence: (L.d.C.S.); (M.P.); (K.S.F.e.S.); Tel.: +55-6235211110 (K.S.F.e.S.)
| | - Olívia Basso Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiás 74690-900, Brazil
| | | | | | | | - Célia Maria de Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiás 74690-900, Brazil
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiás 74690-900, Brazil
- Correspondence: (L.d.C.S.); (M.P.); (K.S.F.e.S.); Tel.: +55-6235211110 (K.S.F.e.S.)
| |
Collapse
|
4
|
Dai JK, Dan WJ, Wan JB. Natural and synthetic β-carboline as a privileged antifungal scaffolds. Eur J Med Chem 2021; 229:114057. [PMID: 34954591 DOI: 10.1016/j.ejmech.2021.114057] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 01/04/2023]
Abstract
The discovery of antifungal agents with novel structure, broad-spectrum, low toxicity, and high efficiency has been the focus of medicinal chemists. Over the past decades, β-carboline scaffold has attracted extensive attention in the scientific community due to its potent and diverse biological activities with nine successfully marketed β-carboline-based drugs. In this review, we summarized the current states and advances in the antifungal activity of natural and synthetic β-carbolines. Additionally, the structure-activity relationships and their antifungal mechanisms targeting biofilm, cell wall, cell membrane, and fungal intracellular targets were also systematically discussed. In summary, β-carbolines have the great potential to develop new efficient scaffolds to combat fungal infections.
Collapse
Affiliation(s)
- Jiang-Kun Dai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China; College of Veterinary Medicine, Northwest A&F University, Shaanxi, China; School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Wen-Jia Dan
- School of Life Science and Technology, Weifang Medical University, Shandong, China.
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
5
|
Vieira SAPB, Dos Santos BM, Santos Júnior CD, de Paula VF, Gomes MSR, Ferreira GM, Gonçalves RL, Hirata MH, da Silva RA, Brandeburgo MIH, Mendes MM. Isohemigossypolone: Antiophidic properties of a naphthoquinone isolated from Pachira aquatica Aubl. Comp Biochem Physiol C Toxicol Pharmacol 2021; 245:109028. [PMID: 33676005 DOI: 10.1016/j.cbpc.2021.109028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 01/17/2023]
Abstract
We investigated the antiophidic properties of isohemigossypolone (ISO), a naphthoquinone isolated from the outer bark of the Pachira aquatic Aubl. The inhibition of phospholipase A2, coagulant, fibrinogenolytic, hemorrhagic and myotoxic activities induced by Bothrops pauloensis venom (Pb) was investigated. For this, we use samples resulting from the incubation of Pb with ISO in different concentrations (1:1, 1:5 and 1:10 w/w), we also evaluated the condition of treatment using ISO after 15 min of venom inoculation. The activities of phospholipase A2, coagulant, fibrinogenolytic, hemorrhagic and myotoxic induced by the B. pauloensis venom were significantly inhibited when the ISO was pre-incubated with the crude venom. For in vivo neutralization tests, the results were observed even when the ISO was applied after 15 min of inoculation of the venom or metalloprotease (BthMP). Also, to identify the inhibition mechanism, we performed in silico assays, across simulations of molecular coupling and molecular dynamics, it was possible to identify the modes of interaction between ISO and bothropic toxins BmooMPα-I, Jararacussin-I and BNSP-7. The present study shows that naphthoquinone isohemigossypolone isolated from the P. aquatica plant inhibited part of the local and systemic damage caused by venom proteins, demonstrating the pharmacological potential of this compound in neutralizing the harmful effects caused by snakebites.
Collapse
Affiliation(s)
| | - Benedito Matheus Dos Santos
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Célio Dias Santos Júnior
- Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Vanderlúcia Fonseca de Paula
- Laboratory of Natural Products, Department of Sciences and Technology, State University of Bahia Southwest (UESB), Jequié, BA, Brazil
| | - Mario Sergio Rocha Gomes
- Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | | | - Mirian Machado Mendes
- Special Academic Unit of Biosciences, Federal University of Goiás (UFG), Jataí, GO, Brazil.
| |
Collapse
|
6
|
Lima RM, Freitas E Silva KS, Silva LDC, Ribeiro JFR, Neves BJ, Brock M, Soares CMDA, da Silva RA, Pereira M. A structure-based approach for the discovery of inhibitors against methylcitrate synthase of Paracoccidioides lutzii. J Biomol Struct Dyn 2021; 40:9361-9373. [PMID: 34060981 DOI: 10.1080/07391102.2021.1930584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis, endemic in Latin America, caused by fungi of the genus Paracoccidioides. The treatment of PCM is complex, requiring a long treatment period, which often results in serious side effects. The aim of this study was to screen for inhibitors of a specific target of the fungus that is absent in humans. Methylcitrate synthase (MCS) is a unique enzyme of microorganisms and is responsible for the synthesis of methylcitrate at the beginning of the propionate degradation pathway. This pathway is essential for several microorganisms, since the accumulation of propionyl-CoA can impair virulence and prevent the development of the pathogen. We performed the modeling and molecular dynamics of the structure of Paracoccidioides lutzii MCS (PlMCS) and performed a virtual screening on 89,415 compounds against the active site of the enzyme. The compounds were selected according to the affinity and efficiency criteria of in vitro tests. Six compounds were able to inhibit the enzymatic activity of recombinant PlMCS but only the compound ZINC08964784 showed fungistatic and fungicidal activity against Paracoccidioides spp. cells. The analysis of the interaction profile of this compound with PlMCS showed its effectiveness in terms of specificity and stability when compared to the substrate (propionyl-CoA) of the enzyme. In addition, this compound did not show cytotoxicity in mammalian cells, with an excellent selectivity index. Our results suggest that the compound ZINC08964784 may become a promising alternative antifungal against Paracoccidioides spp. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Raisa Melo Lima
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil.,Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | | | - Lívia do Carmo Silva
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | | | - Bruno Junior Neves
- Faculty of Pharmacy, Laboratory for Molecular Modeling and Drug Design, Federal University of Goiás, Goiânia, Brazil
| | - Matthias Brock
- School of Life Science, Fungal Biology Group, University of Nottingham, Nottingham, UK
| | | | - Roosevelt Alves da Silva
- Collaborative Nucleus of Biosystems, Institute of Exact Sciences, Federal University of Jataí, Jataí, Brazil
| | - Maristela Pereira
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil.,Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
7
|
Seki Kioshima E, de Souza Bonfim de Mendonça P, de Melo Teixeira M, Grenier Capoci IR, Amaral A, Vilugron Rodrigues-Vendramini FA, Lauton Simões B, Rodrigues Abadio AK, Fernandes Matos L, Soares Felipe MS. One Century of Study: What We Learned about Paracoccidioides and How This Pathogen Contributed to Advances in Antifungal Therapy. J Fungi (Basel) 2021; 7:106. [PMID: 33540749 PMCID: PMC7913102 DOI: 10.3390/jof7020106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 02/08/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a notable fungal infection restricted to Latin America. Since the first description of the disease by Lutz up to the present day, Brazilian researchers have contributed to the understanding of the life cycle of this pathogen and provided the possibility of new targets for antifungal therapy based on the structural and functional genomics of Paracoccidioides. In this context, in silico approaches have selected molecules that act on specific targets, such as the thioredoxin system, with promising antifungal activity against Paracoccidioides. Some of these are already in advanced development stages. In addition, the application of nanostructured systems has addressed issues related to the high toxicity of conventional PCM therapy. Thus, the contribution of molecular biology and biotechnology to the advances achieved is unquestionable. However, it is still necessary to transcend the boundaries of synthetic chemistry, pharmaco-technics, and pharmacodynamics, aiming to turn promising molecules into newly available drugs for the treatment of fungal diseases.
Collapse
Affiliation(s)
- Erika Seki Kioshima
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Patrícia de Souza Bonfim de Mendonça
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Marcus de Melo Teixeira
- Faculty of Medicine, University of Brasília (UnB), Brasilia, Distrito Federal 70910-900, Brazil;
| | - Isis Regina Grenier Capoci
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - André Amaral
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74690-900, Brazil;
| | - Franciele Abigail Vilugron Rodrigues-Vendramini
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Bruna Lauton Simões
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Ana Karina Rodrigues Abadio
- Faculty of Agricultural Social Sciences, Mato Grosso State University, Nova Mutum, Mato Grosso 78450-000, Brazil;
| | - Larissa Fernandes Matos
- Faculty of Ceilandia, University of Brasília (UnB), Brasília, Distrito Federal 72220-275, Brazil;
- Program in Microbial Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Maria Sueli Soares Felipe
- Program of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasília 70790-160, Brazil;
| |
Collapse
|
8
|
do Carmo Silva L, de Oliveira AA, de Souza DR, Barbosa KLB, Freitas e Silva KS, Carvalho Júnior MAB, Rocha OB, Lima RM, Santos TG, Soares CMDA, Pereira M. Overview of Antifungal Drugs against Paracoccidioidomycosis: How Do We Start, Where Are We, and Where Are We Going? J Fungi (Basel) 2020; 6:jof6040300. [PMID: 33228010 PMCID: PMC7712482 DOI: 10.3390/jof6040300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Paracoccidioidomycosis is a neglected disease that causes economic and social impacts, mainly affecting people of certain social segments, such as rural workers. The limitations of antifungals, such as toxicity, drug interactions, restricted routes of administration, and the reduced bioavailability in target tissues, have become evident in clinical settings. These factors, added to the fact that Paracoccidioidomycosis (PCM) therapy is a long process, lasting from months to years, emphasize the need for the research and development of new molecules. Researchers have concentrated efforts on the identification of new compounds using numerous tools and targeting important proteins from Paracoccidioides, with the emphasis on enzymatic pathways absent in humans. This review aims to discuss the aspects related to the identification of compounds, methodologies, and perspectives when proposing new antifungal agents against PCM.
Collapse
Affiliation(s)
- Lívia do Carmo Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
- Correspondence: (L.d.C.S.); (M.P.); Tel./Fax: +55-62-3521-1110 (M.P.)
| | - Amanda Alves de Oliveira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Dienny Rodrigues de Souza
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Katheryne Lohany Barros Barbosa
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Kleber Santiago Freitas e Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Marcos Antonio Batista Carvalho Júnior
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Olívia Basso Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Raisa Melo Lima
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Thaynara Gonzaga Santos
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Célia Maria de Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Correspondence: (L.d.C.S.); (M.P.); Tel./Fax: +55-62-3521-1110 (M.P.)
| |
Collapse
|
9
|
da Silva IR, Parise MR, Pereira M, da Silva RA. Prospecting for new catechol- O-methyltransferase (COMT) inhibitors as a potential treatment for Parkinson's disease: a study by molecular dynamics and structure-based virtual screening. J Biomol Struct Dyn 2020; 39:5872-5891. [PMID: 32691671 DOI: 10.1080/07391102.2020.1794963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative, chronic, and progressive disease, common in the elderly. The catechol-O-methyltransferase (COMT) is a monomeric enzyme involved in dopamine (DA) degradation, the neurotransmitter in deficit in patients with PD. The reference treatment of PD consists of levodopa (L-dopa) administration, which is the precursor of DA. The inhibition of COMT is an adjuvant treatment in PD since it keeps DA levels constant. The goal of this study was to identify drug candidates capable of inhibiting COMT for the treatment of PD and identify important fragments of these molecules. Initially, we analyzed the flexibility of COMT and defined its main conformations in solution regarding the absence (system I) and presence of the S-adenosyl-L-methionine (SAM) cofactor (system II) through molecular dynamics (MD) simulations. Two regions in these structures were selected for molecular docking, firstly the entire cavity where the cofactor and substrates are bound and secondly the specific biding region of the enzyme substrates. Based on the conformations of the MD, the virtual screening (VS) was performed against FDA Approved and Zinc Natural Products databases aiming at the selection of the best compounds. Subsequently, the absorption, distribution, metabolization, excretion, and toxicity (ADMET) properties, as well as drug-score and drug-likeness indexes of the most promising compounds were analyzed. After a detailed analysis of the compounds selected by structure-based VS, it was possible to highlight the fragments most frequently involved in their stability: 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole, 9H-Benz(c)indole(3,2,1-ij)(1,5)naphthyridin-9-one and (10R,13S)-10,13-dimethyl-1,2,6,7,8,9,11,12,14,15,16,17dodecahydrocyclopenta[a]phenanthren-3-one. The identification of these potential fragments is essential for the prospection of more specific inhibitors against COMT using the technique of Fragment-based lead discovery (FBLD). Besides, this study allowed us to identify the potential COMT inhibitors through a complete understanding of molecular-level interactions based on the flexibility of this protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Michelle Rocha Parise
- Laboratório de Farmacologia e Fisiologia, Universidade Federal de Jataí, Jataí, Brasil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Universidade Federal de Goiás, Goiânia, Brasil
| | | |
Collapse
|
10
|
Capistrano G, Sousa-Junior AA, Silva RA, Mello-Andrade F, Cintra ER, Santos S, Nunes AD, Lima RM, Zufelato N, Oliveira AS, Pereira M, Castro CH, Lima EM, Cardoso CG, Silveira-Lacerda E, Mendanha SA, Bakuzis AF. IR-780-Albumin-Based Nanocarriers Promote Tumor Regression Not Only from Phototherapy but Also by a Nonirradiation Mechanism. ACS Biomater Sci Eng 2020; 6:4523-4538. [DOI: 10.1021/acsbiomaterials.0c00164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Gustavo Capistrano
- Instituto de Física, Universidade Federal de Goiás, 74690-900 Goiânia−GO, Brasil
| | | | - Roosevelt A. Silva
- Nucleo Colaborativo de BioSistemas, Universidade Federal de Goiás, 75804-020 Jataí−GO, Brasil
| | - Francyelli Mello-Andrade
- Departamento de Química, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, 74055-110 Goiânia−GO, Brasil
| | - Emilio R. Cintra
- Faculdade de Farmácia, Universidade Federal de Goiás, 74605-220 Goiânia−GO, Brasil
| | - Sônia Santos
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia−GO, Brasil
| | - Allancer D. Nunes
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia−GO, Brasil
| | - Raisa M. Lima
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia−GO, Brasil
| | - Nicholas Zufelato
- Instituto de Física, Universidade Federal de Goiás, 74690-900 Goiânia−GO, Brasil
| | - André S. Oliveira
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia−GO, Brasil
| | - Maristela Pereira
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia−GO, Brasil
| | - Carlos H. Castro
- Instituto de Ciências Biológicas, Laboratório Integrado de Fisiopatologia Cardiovascular e Neurológica, Universidade Federal de Goiás, 74001-970 Goiânia−GO, Brasil
| | - Eliana M. Lima
- Faculdade de Farmácia, Universidade Federal de Goiás, 74605-220 Goiânia−GO, Brasil
| | - Clever G. Cardoso
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia−GO, Brasil
| | | | | | - Andris F. Bakuzis
- Instituto de Física, Universidade Federal de Goiás, 74690-900 Goiânia−GO, Brasil
| |
Collapse
|
11
|
de Lima Menezes G, da Silva RA. Identification of potential drugs against SARS-CoV-2 non-structural protein 1 (nsp1). J Biomol Struct Dyn 2020; 39:5657-5667. [PMID: 32657643 PMCID: PMC7443570 DOI: 10.1080/07391102.2020.1792992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Non-structural protein 1 (nsp1) is found in all Betacoronavirus genus, an important viral group that causes severe respiratory
human diseases. This protein has significant role in pathogenesis and it is considered a
probably major virulence factor. As it is absent in humans, it becomes an interesting
target of study, especially when it comes to the rational search for drugs, since it
increases the specificity of the target and reduces possible adverse effects that may be
caused to the patient. Using approaches in silico we seek to
study the behavior of nsp1 in solution to obtain its most stable conformation and find
possible drugs with affinity to all of them. For this purpose, complete model of nsp1 of
SARS-CoV-2 were predicted and its stability analyzed by molecular dynamics simulations in
five different replicas. After main pocket validation using two control drugs and the main
conformations of nsp1, molecular docking based on virtual screening were performed to
identify novel potential inhibitors from DrugBank database. It has been found 16 molecules
in common to all five nsp1 replica conformations. Three of them was ranked as the best
compounds among them and showed better energy score than control molecules that have
in vitro activity against nsp1 from SARS-CoV-2. The
results pointed out here suggest new potential drugs for therapy to aid the rational drug
search against COVID-19. Communicated by Ramaswamy H. Sarma
Collapse
|
12
|
Freitas e Silva KS, C. Silva L, Gonçales RA, Neves BJ, Soares CM, Pereira M. Setting New Routes for Antifungal Drug Discovery Against Pathogenic Fungi. Curr Pharm Des 2020; 26:1509-1520. [DOI: 10.2174/1381612826666200317125956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/11/2020] [Indexed: 01/08/2023]
Abstract
:Fungal diseases are life-threatening to human health and responsible for millions of deaths around the world. Fungal pathogens lead to a high number of morbidity and mortality. Current antifungal treatment comprises drugs, such as azoles, echinocandins, and polyenes and the cure is not guaranteed. In addition, such drugs are related to severe side effects and the treatment lasts for an extended period. Thus, setting new routes for the discovery of effective and safe antifungal drugs should be a priority within the health care system. The discovery of alternative and efficient antifungal drugs showing fewer side effects is time-consuming and remains a challenge. Natural products can be a source of antifungals and used in combinatorial therapy. The most important natural products are antifungal peptides, antifungal lectins, antifungal plants, and fungi secondary metabolites. Several proteins, enzymes, and metabolic pathways could be targets for the discovery of efficient inhibitor compounds and recently, heat shock proteins, calcineurin, salinomycin, the trehalose biosynthetic pathway, and the glyoxylate cycle have been investigated in several fungal species. HSP protein inhibitors and echinocandins have been shown to have a fungicidal effect against azole-resistant fungi strains. Transcriptomic and proteomic approaches have advanced antifungal drug discovery and pointed to new important specific-pathogen targets. Certain enzymes, such as those from the glyoxylate cycle, have been a target of antifungal compounds in several fungi species. Natural and synthetic compounds inhibited the activity of such enzymes and reduced the ability of fungal cells to transit from mycelium to yeast, proving to be promisor antifungal agents. Finally, computational biology has developed effective approaches, setting new routes for early antifungal drug discovery since normal approaches take several years from discovery to clinical use. Thus, the development of new antifungal strategies might reduce the therapeutic time and increase the quality of life of patients.
Collapse
Affiliation(s)
- Kleber S. Freitas e Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Lívia C. Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Relber A. Gonçales
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Bruno J. Neves
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-510, Brazil
| | - Célia M.A. Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
13
|
Shady NH, Khattab AR, Ahmed S, Liu M, Quinn RJ, Fouad MA, Kamel MS, Muhsinah AB, Krischke M, Mueller MJ, Abdelmohsen UR. Hepatitis C Virus NS3 Protease and Helicase Inhibitors from Red Sea Sponge ( Amphimedon) Species in Green Synthesized Silver Nanoparticles Assisted by in Silico Modeling and Metabolic Profiling. Int J Nanomedicine 2020; 15:3377-3389. [PMID: 32494136 PMCID: PMC7231760 DOI: 10.2147/ijn.s233766] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Background Hepatitis C virus (HCV) infection is a major cause of hepatic diseases all over the world. This necessitates the need to discover novel anti-HCV drugs to overcome emerging drug resistance and liver complications. Purpose Total extract and petroleum ether fraction of the marine sponge (Amphimedon spp.) were used for silver nanoparticle (SNP) synthesis to explore their HCV NS3 helicase- and protease-inhibitory potential. Methods Characterization of the prepared SNPs was carried out with ultraviolet-visible spectroscopy, transmission electron microscopy, and Fourier-transform infrared spectroscopy. The metabolomic profile of different Amphimedon fractions was assessed using liquid chromatography coupled with high-resolution mass spectrometry. Fourteen known compounds were isolated and their HCV helicase and protease activities assessed using in silico modeling of their interaction with both HCV protease and helicase enzymes to reveal their anti-HCV mechanism of action. In vitro anti-HCV activity against HCV NS3 helicase and protease was then conducted to validate the computation results and compared to that of the SNPs. Results Transmission electron–microscopy analysis of NPs prepared from Amphimedon total extract and petroleum ether revealed particle sizes of 8.22–14.30 nm and 8.22–9.97 nm, and absorption bands at λmax of 450 and 415 nm, respectively. Metabolomic profiling revealed the richness of Amphimedon spp. with different phytochemical classes. Bioassay-guided isolation resulted in the isolation of 14 known compounds with anti-HCV activity, initially revealed by docking studies. In vitro anti–HCV NS3 helicase and protease assays of both isolated compounds and NPs further confirmed the computational results. Conclusion Our findings indicate that Amphimedon, total extract, petroleum ether fraction, and derived NPs are promising biosources for providing anti-HCV drug candidates, with nakinadine B and 3,4-dihydro-6-hydroxymanzamine A the most potent anti-HCV agents, possessing good oral bioavailability and penetration power.
Collapse
Affiliation(s)
- Nourhan Hisham Shady
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, Minia 61111, Egypt
| | - Amira R Khattab
- Department of Pharmacognosy, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt
| | - Safwat Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt 41522
| | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Mostafa A Fouad
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Mohamed Salah Kamel
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Markus Krischke
- Department of Pharmaceutical Biology, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Würzburg 97082, Germany
| | - Martin J Mueller
- Department of Pharmaceutical Biology, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Würzburg 97082, Germany
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, Minia 61111, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
14
|
Chen X, Zhang Z, Chen Z, Li Y, Su S, Sun S. Potential Antifungal Targets Based on Glucose Metabolism Pathways of Candida albicans. Front Microbiol 2020; 11:296. [PMID: 32256459 PMCID: PMC7093590 DOI: 10.3389/fmicb.2020.00296] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/10/2020] [Indexed: 01/04/2023] Open
Abstract
In recent years, fungal infections have become a serious health problem. Candida albicans are considered as the fourth most common isolates associated with approximately 40% mortality in bloodstream infections among hospitalized patients. Due to various limitations of classical antifungals used currently, such as limited kinds of drugs, inevitable toxicities, and high price, there is an urgent need to explore new antifungal agents based on novel targets. Generally, nutrient metabolism is involved with fungal virulence, and glucose is one of the important nutrients in C. albicans. C. albicans can obtain and metabolize glucose through a variety of pathways; in theory, many enzymes in these pathways can be potential targets for developing new antifungal agents, and several studies have confirmed that compounds which interfere with alpha-glucosidase, acid trehalase, trehalose-6-phosphate synthase, class II fructose bisphosphate aldolases, and glucosamine-6-phosphate synthase in these pathways do have antifungal activities. In this review, the glucose metabolism pathways in C. albicans, the potential antifungal targets based on these pathways, and some compounds which have antifungal activities by inhibiting several enzymes in these pathways are summarized. We believe that our review will be helpful to the exploration of new antifungal drugs with novel antifungal targets.
Collapse
Affiliation(s)
- Xueqi Chen
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zewen Zhang
- Department of Imaging Medicine and Nuclear Medicine, Qilu Medical College, Shandong University, Jinan, China
| | - Zuozhong Chen
- Department of Pharmacy, Zibo Central Hospital, Zibo, China
| | - Yiman Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shan Su
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shujuan Sun
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
15
|
da Silva LS, Barbosa UR, Silva LDC, Soares CMA, Pereira M, da Silva RA. Identification of a new antifungal compound against isocitrate lyase of Paracoccidioides brasiliensis. Future Microbiol 2019; 14:1589-1606. [DOI: 10.2217/fmb-2019-0166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: To perform virtual screening of compounds based on natural products targeting isocitrate lyase of Paracoccidioides brasiliensis. Materials & methods: Homology modeling and molecular dynamics simulations were applied in order to obtain conformational models for virtual screening. The selected hits were tested in vitro against enzymatic activity of ICL of the dimorphic fungus P. brasiliensis and growth of the Paracoccidioides spp. The cytotoxicity and selectivity index of the compounds were defined. Results & conclusion: Carboxamide, lactone and β-carboline moieties were identified as interesting chemical groups for the design of new antifungal compounds. The compounds inhibited ICL of the dimorphic fungus P. brasiliensis activity. The compound 4559339 presented minimum inhibitory concentration of 7.3 μg/ml in P. brasiliensis with fungicidal effect at this concentration. Thus, a new potential antifungal against P. brasiliensis is proposed.
Collapse
Affiliation(s)
- Luciane S da Silva
- LBM – Laboratory of Molecular Biology, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
- Collaborative Nucleus of Biosystems, Universidade Federal de Goiás, Jataí, Goiás, 75804-020, Brazil
| | - Uessiley R Barbosa
- Collaborative Nucleus of Biosystems, Universidade Federal de Goiás, Jataí, Goiás, 75804-020, Brazil
- UNIFIMES, Centro Universitário de Mineiros, Mineiros, Goiás, 75833-130, Brazil
| | - Lívia do C Silva
- LBM – Laboratory of Molecular Biology, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Célia MA Soares
- LBM – Laboratory of Molecular Biology, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Maristela Pereira
- LBM – Laboratory of Molecular Biology, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Roosevelt A da Silva
- Collaborative Nucleus of Biosystems, Universidade Federal de Goiás, Jataí, Goiás, 75804-020, Brazil
| |
Collapse
|
16
|
Rodrigues-Vendramini FAV, Faria DR, Arita GS, Capoci IRG, Sakita KM, Caparroz-Assef SM, Becker TCA, de Souza Bonfim-Mendonça P, Felipe MS, Svidzinski TIE, Maigret B, Kioshima ÉS. Antifungal activity of two oxadiazole compounds for the paracoccidioidomycosis treatment. PLoS Negl Trop Dis 2019; 13:e0007441. [PMID: 31163021 PMCID: PMC6548352 DOI: 10.1371/journal.pntd.0007441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/06/2019] [Indexed: 01/04/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a neglected disease present in Latin America with difficulty in treatment and occurrence of serious sequelae. Thus, the development of alternative therapies is imperative. In the current work, two oxadiazole compounds (LMM5 and LMM11) presented fungicidal activity against Paracoccidioides spp. The minimum inhibitory and fungicidal concentration values ranged from 1 to 32 μg/mL, and a synergic effect was observed for both compounds when combined with Amphotericin B. LMM5 and LMM11 were able to reduce CFU counts (≥2 log10) on the 5th and 7th days of time-kill curve, respectively. The fungicide effect was confirmed by fluorescence microscopy (FUN-1/FUN-2). The hippocratic screening and biochemical analysis were performed in Balb/c male mice that received a high dose of each compound, and the compounds showed no in vivo toxicity. The treatment of experimental PCM with the new oxadiazoles led to significant reduction in CFU (≥1 log10). Histopathological analysis of the groups treated exhibited control of inflammation, as well as preserved lung areas. These findings suggest that LMM5 and LMM11 are promising hits structures, opening the door for implementing new PCM therapies.
Collapse
Affiliation(s)
| | - Daniella Renata Faria
- Department of Clinical and Biomedical Analysis, State University of Maringá, Maringá, Brazil
| | - Glaucia Sayuri Arita
- Department of Clinical and Biomedical Analysis, State University of Maringá, Maringá, Brazil
| | | | - Karina Mayumi Sakita
- Department of Clinical and Biomedical Analysis, State University of Maringá, Maringá, Brazil
| | | | | | | | - Maria Sueli Felipe
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brazil
| | | | | | - Érika Seki Kioshima
- Department of Clinical and Biomedical Analysis, State University of Maringá, Maringá, Brazil
| |
Collapse
|
17
|
Cavalcanti ÉB, Félix MB, Scotti L, Scotti MT. Virtual Screening of Natural Products to Select Compounds with Potential Anticancer Activity. Anticancer Agents Med Chem 2019; 19:154-171. [DOI: 10.2174/1871520618666181119110934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/29/2017] [Accepted: 03/21/2018] [Indexed: 12/28/2022]
Abstract
Cancer is the main cause of death, so the search for active agents to be used in the therapy of this
disease, is necessary. According to studies conducted, substances derived from natural products have shown to
be promising in this endeavor. To these researches, one can associate with the aid of computational chemistry,
which is increasingly gaining popularity, due to the possibility of developing alternative strategies that could
help in choosing an appropriate set of compounds, avoiding unnecessary expenses with resources that would
generate unwanted substance. Thus, the objective of this study was to carry out an approach to several studies
that apply different methods of virtual screening to select natural products with potential anticancer activity.
This review presents reports of studies conducted with some natural products, such as coumarin, quinone, tannins,
alkaloids, flavonoids and terpenes.
Collapse
Affiliation(s)
- Élida B.V.S. Cavalcanti
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - Mayara B. Félix
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - Luciana Scotti
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - Marcus T. Scotti
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, 58051-900, João Pessoa-PB, Brazil
| |
Collapse
|
18
|
e Silva KSF, da S Neto BR, Zambuzzi-Carvalho PF, de Oliveira CMA, Pires LB, Kato L, Bailão AM, Parente-Rocha JA, Hernández O, Ochoa JGM, de A Soares CM, Pereira M. Response of Paracoccidioides lutzii to the antifungal camphene thiosemicarbazide determined by proteomic analysis. Future Microbiol 2018; 13:1473-1496. [DOI: 10.2217/fmb-2018-0176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aim: To perform the proteomic profile of Paracoccidioides lutzii after treatment with the compound camphene thiosemicarbazide (TSC-C) in order to study its mode of action. Methods: Proteomic analysis was carried out after cells were incubated with TSC-C in a subinhibitory concentration. Validation of the proteomic results comprised the azocasein assay, western blot and determination of the susceptibility of a mutant to the compound. Results: Proteins related to metabolism, energy and protein fate were regulated after treatment. In addition, TSC-C reduces the proteolytic activity of the protein extract similarly to different types of protease inhibitors. Conclusion: TSC-C showed encouraging antifungal activity, working as a protease inhibitor and downregulating important pathways impairing the ability of the fungi cells to produce important precursors.
Collapse
Affiliation(s)
- Kleber SF e Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Benedito R da S Neto
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Patrícia F Zambuzzi-Carvalho
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Cecília MA de Oliveira
- Laboratório de Produtos Naturais, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Ludmila B Pires
- Laboratório de Produtos Naturais, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Lucilia Kato
- Laboratório de Produtos Naturais, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Alexandre M Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Juliana A Parente-Rocha
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Orville Hernández
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas (CIB) & Escuela de Microbiología Universidad de Antioquia, Medellín, Colombia
| | - Juan GM Ochoa
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas (CIB) & Facultad de Medicina Universidad de Antioquia, Medellín, Colombia
| | - Célia M de A Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
19
|
Chemoproteomic identification of molecular targets of antifungal prototypes, thiosemicarbazide and a camphene derivative of thiosemicarbazide, in Paracoccidioides brasiliensis. PLoS One 2018; 13:e0201948. [PMID: 30148835 PMCID: PMC6110461 DOI: 10.1371/journal.pone.0201948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/25/2018] [Indexed: 12/30/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a neglected human systemic disease caused by species of the genus Paracoccidioides. The disease attacks the host’s lungs and may disseminate to many other organs. Treatment involves amphotericin B, sulfadiazine, trimethoprim-sulfamethoxazole, itraconazole, ketoconazole, or fluconazole. The treatment duration is usually long, from 6 months to 2 years, and many adverse effects may occur in relation to the treatment; co-morbidities and poor treatment adherence have been noted. Therefore, the discovery of more effective and less toxic drugs is needed. Thiosemicarbazide (TSC) and a camphene derivative of thiosemicarbazide (TSC-C) were able to inhibit P. brasiliensis growth at a low dosage and were not toxic to fibroblast cells. In order to investigate the mode of action of those compounds, we used a chemoproteomic approach to determine which fungal proteins were bound to each of these compounds. The compounds were able to inhibit the activities of the enzyme formamidase and interfered in P. brasiliensis dimorphism. In comparison with the transcriptomic and proteomic data previously obtained by our group, we determined that TSC and TSC-C were multitarget compounds that exerted effects on the electron-transport chain and cell cycle regulation, increased ROS formation, inhibited proteasomes and peptidases, modulated glycolysis, lipid, protein and carbohydrate metabolisms, and caused suppressed the mycelium to yeast transition.
Collapse
|
20
|
Haudecoeur R, Peuchmaur M, Pérès B, Rome M, Taïwe GS, Boumendjel A, Boucherle B. Traditional uses, phytochemistry and pharmacological properties of African Nauclea species: A review. JOURNAL OF ETHNOPHARMACOLOGY 2018; 212:106-136. [PMID: 29045823 DOI: 10.1016/j.jep.2017.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 09/28/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOALOGICAL RELEVANCE The genus Nauclea in Africa comprises seven species. Among them, N. latifolia, N. diderrichii and N. pobeguinii are widely used by the local population in traditional remedies. Preparation from various parts of plants (e.g. roots, bark, leaves) are indicated by traditional healers for a wide range of diseases including malaria, pain, digestive ailments or metabolic diseases. MATERIALS AND METHODS A literature search was conducted on African species of the genus Nauclea using scientific databases such as Google Scholar, Pubmed or SciFinder. Every document of ethnopharmacological, phytochemical or pharmacological relevance and written in English or French were analyzed. RESULTS AND DISCUSSION The Nauclea genus is used as ethnomedicine all along sub-Saharan Africa. Several local populations consider Nauclea species as a major source of remedies for malaria. In this regard, two improved traditional medicines are currently under development using extracts from N. latifolia and N. pobeguinii. Concerning the chemical composition of the Nauclea genus, indoloquinolizidines alkaloids could be considered as the major class of compounds as they are reported in every analyzed Nauclea species, with numerous structures identified. Based on traditional indications a considerable amount of pharmacological studies were conducted to ensure activity and attempt to link them to the presence of particular compounds in plant extracts. CONCLUSION Many experimental studies using plant extracts of the African species of the genus Nauclea validate traditional indications (e.g. malaria and pain). However, bioactive compounds are rarely identified and therefore, there is a clear need for further evaluations as well as for toxicity experiments. The sustainability of these plants, especially of N. diderrichii, a threatened species, should be kept in mind to adapt local uses and preparation modes of traditional remedies.
Collapse
Affiliation(s)
- Romain Haudecoeur
- Univ. Grenoble Alpes, DPM UMR 5063, F-38041 Grenoble, France; CNRS, DPM UMR 5063, F-38041 Grenoble, France
| | - Marine Peuchmaur
- Univ. Grenoble Alpes, DPM UMR 5063, F-38041 Grenoble, France; CNRS, DPM UMR 5063, F-38041 Grenoble, France
| | - Basile Pérès
- Univ. Grenoble Alpes, DPM UMR 5063, F-38041 Grenoble, France; CNRS, DPM UMR 5063, F-38041 Grenoble, France
| | - Maxime Rome
- Univ. Grenoble Alpes, SAJF UMS 3370, F-38041 Grenoble, France; CNRS, SAJF UMS 3370, F-38041 Grenoble, France
| | | | - Ahcène Boumendjel
- Univ. Grenoble Alpes, DPM UMR 5063, F-38041 Grenoble, France; CNRS, DPM UMR 5063, F-38041 Grenoble, France
| | - Benjamin Boucherle
- Univ. Grenoble Alpes, DPM UMR 5063, F-38041 Grenoble, France; CNRS, DPM UMR 5063, F-38041 Grenoble, France.
| |
Collapse
|
21
|
Liu X, Ma Z, Zhang J, Yang L. Antifungal Compounds against Candida Infections from Traditional Chinese Medicine. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4614183. [PMID: 29445739 PMCID: PMC5763084 DOI: 10.1155/2017/4614183] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/25/2017] [Accepted: 12/06/2017] [Indexed: 12/22/2022]
Abstract
Infections caused by Candida albicans, often refractory and with high morbidity and mortality, cause a heavy burden on the public health while the current antifungal drugs are limited and are associated with toxicity and resistance. Many plant-derived molecules including compounds isolated from traditional Chinese medicine (TCM) are reported to have antifungal activity through different targets such as cell membrane, cell wall, mitochondria, and virulence factors. Here, we review the recent progress in the anti-Candida compounds from TCM, as well as their antifungal mechanisms. Considering the diverse targets and structures, compounds from TCM might be a potential library for antifungal drug development.
Collapse
Affiliation(s)
- Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jingxiao Zhang
- Department of Emergency, The Second Hospital of Jilin University, Changchun 130041, China
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
22
|
Almeida TNV, de Sousa TT, da Silva RA, Fiaccadori FS, Souza M, Badr KR, de Paula Cardoso DDD. Phylogenetic analysis of G1P[8] and G12P[8] rotavirus A samples obtained in the pre- and post-vaccine periods, and molecular modeling of VP4 and VP7 proteins. Acta Trop 2017; 173:153-159. [PMID: 28606817 DOI: 10.1016/j.actatropica.2017.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 11/24/2022]
Abstract
Reduction in morbimortality rates for acute gastroenteritis (AGE) by Rotavirus A (RVA) has been observed after the introduction of vaccines, however the agent continues to circulate. The present study described the genomic characterization of the 11 dsRNA segments of two RVA samples G1P[8] obtained in the pre- and post-vaccination periods and one of G12P[8] sample (post-vaccine), compared to Rotarix™ vaccine. Analysis by molecular sequencing of the samples showed that the three samples belonged to genogroup I. In addition, the analysis of VP7 gene revealed that the samples G1 (pre-vaccine), G1 (post-vaccine) and G12 were characterized as lineages II, I and III, respectively. Regarding to VP4 and NSP4 gene it was observed that all samples belonged to lineage III, whereas for VP6 gene, the sample of the pre- and post-vaccine belonged to the lineage IV and I, respectively. Considering the VP7 gene, it was observed high nucleotide and amino acid identity for the two G1 samples when compared to Rotarix™ vaccine and lesser identity for the G12 sample. In relation to antigenic epitope of VP7 greater modifications were observed for the G12 sample in the 7-2 epitope that was confirmed by molecular modeling. On the other hand, for VP4, some changes in the 8-1 and 8-3 antigenic epitopes was observed for the three samples. This data could be interpreted as a low selective pressure exerted by vaccination in relation to G1P[8] samples and lesser protection in relation to G12P[8]. Thus, the continuous monitoring of RVA circulating samples remains important.
Collapse
|