1
|
Takashita E, Shimizu K, Usuku S, Senda R, Okubo I, Morita H, Nagata S, Fujisaki S, Miura H, Kishida N, Nakamura K, Shirakura M, Ichikawa M, Matsuzaki Y, Watanabe S, Takahashi Y, Hasegawa H. An outbreak of influenza A(H1N1)pdm09 antigenic variants exhibiting cross-resistance to oseltamivir and peramivir in an elementary school in Japan, September 2024. Euro Surveill 2024; 29. [PMID: 39668762 DOI: 10.2807/1560-7917.es.2024.29.50.2400786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
An outbreak of influenza A(H1N1)pdm09 viruses exhibiting cross-resistance to oseltamivir and peramivir occurred in Yokohama, Japan, in September 2024. Among 24 students in a class, 11 were diagnosed with influenza or influenza-like illness, and viruses harbouring the NA H275Y and HA Q210H substitutions were isolated from four. Deep sequencing analysis confirmed the clonal spread of these mutants. Antigenic analysis revealed differences from the vaccine strain. Continued monitoring is crucial to assess the potential for further spread of these mutant viruses.
Collapse
Affiliation(s)
- Emi Takashita
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo, Japan
- These authors contributed equally to this work and share first authorship
| | - Kohei Shimizu
- Yokohama City Institute of Public Health, Kanagawa, Japan
- These authors contributed equally to this work and share first authorship
| | - Shuzo Usuku
- Yokohama City Institute of Public Health, Kanagawa, Japan
| | - Ryuichi Senda
- Yokohama City Institute of Public Health, Kanagawa, Japan
| | - Ichiro Okubo
- Yokohama City Institute of Public Health, Kanagawa, Japan
| | - Hiroko Morita
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shiho Nagata
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Seiichiro Fujisaki
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideka Miura
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriko Kishida
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuya Nakamura
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Shirakura
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Yoko Matsuzaki
- Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Shinji Watanabe
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Hasegawa
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
2
|
Xu D, Gong Y, Zhang L, Xiao F, Wang X, Qin J, Tan L, Yang T, Lin Z, Xu Z, Liu X, Xiao F, Zhang F, Tang F, Zuo J, Luo X, Huang W, Yang L, Yang W. Modular Biomimetic Strategy Enables Discovery and SAR Exploration of Oxime Macrocycles as Influenza A Virus (H1N1) Inhibitors. J Med Chem 2024; 67:8201-8224. [PMID: 38736187 DOI: 10.1021/acs.jmedchem.4c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Although vaccination remains the prevalent prophylactic means for controlling Influenza A virus (IAV) infections, novel structural antivirus small-molecule drugs with new mechanisms of action for treating IAV are highly desirable. Herein, we describe a modular biomimetic strategy to expeditiously achieve a new class of macrocycles featuring oxime, which might target the hemagglutinin (HA)-mediated IAV entry into the host cells. SAR analysis revealed that the size and linker of the macrocycles play an important role in improving potency. Particularly, as a 14-membered macrocyclic oxime, 37 exhibited potent inhibitory activity against IAV H1N1 with an EC50 value of 23 nM and low cytotoxicity, which alleviated cytopathic effects and protected cell survival obviously after H1N1 infection. Furthermore, 37 showed significant synergistic activity with neuraminidase inhibitor oseltamivir in vitro.
Collapse
Affiliation(s)
- Dandan Xu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Gong
- Laboratory of Immunopharmacology, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianju Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu Xiao
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinran Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ji Qin
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Tan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teng Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeng Lin
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongliang Xu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiujuan Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuling Xiao
- Laboratory of Immunopharmacology, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feili Zhang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Tang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianping Zuo
- Laboratory of Immunopharmacology, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaomin Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Yang
- Laboratory of Immunopharmacology, State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibo Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Matsuda M, Hirai-Yuki A, Kotani O, Kataoka M, Zheng X, Yamane D, Yokoyama M, Ishii K, Muramatsu M, Suzuki R. Loxapine inhibits replication of hepatitis A virus in vitro and in vivo by targeting viral protein 2C. PLoS Pathog 2024; 20:e1012091. [PMID: 38478584 PMCID: PMC10962851 DOI: 10.1371/journal.ppat.1012091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/25/2024] [Accepted: 03/02/2024] [Indexed: 03/26/2024] Open
Abstract
No antiviral drugs currently are available for treatment of infection by hepatitis A virus (HAV), a causative agent of acute hepatitis, a potentially life-threatening disease. Chemical screening of a small-compound library using nanoluciferase-expressing HAV identified loxapine succinate, a selective dopamine receptor D2 antagonist, as a potent inhibitor of HAV propagation in vitro. Loxapine succinate did not inhibit viral entry nor internal ribosome entry site (IRES)-dependent translation, but exhibited strong inhibition of viral RNA replication. Blind passage of HAV in the presence of loxapine succinate resulted in the accumulation of viruses containing mutations in the 2C-encoding region, which contributed to resistance to loxapine succinate. Analysis of molecular dynamics simulations of the interaction between 2C and loxapine suggested that loxapine binds to the N-terminal region of 2C, and that resistant mutations impede these interactions. We further demonstrated that administration of loxapine succinate to HAV-infected Ifnar1-/- mice (which lack the type I interferon receptor) results in decreases in the levels of fecal HAV RNA and of intrahepatic HAV RNA at an early stage of infection. These findings suggest that HAV protein 2C is a potential target for antivirals, and provide novel insights into the development of drugs for the treatment of hepatitis A.
Collapse
Affiliation(s)
- Mami Matsuda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Asuka Hirai-Yuki
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Osamu Kotani
- Pathogen Genomics Center, National Institute for Infectious Diseases, Tokyo, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Xin Zheng
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Daisuke Yamane
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masaru Yokoyama
- Pathogen Genomics Center, National Institute for Infectious Diseases, Tokyo, Japan
| | - Koji Ishii
- Department of Quality Assurance, Radiation Safety, and Information System, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Infectious Disease Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
4
|
Matthys A, Saelens X. Promises and challenges of single-domain antibodies to control influenza. Antiviral Res 2024; 222:105807. [PMID: 38219914 DOI: 10.1016/j.antiviral.2024.105807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
The World Health Organization advices the use of a quadrivalent vaccine as prophylaxis against influenza, to prevent severe influenza-associated disease and -mortality, and to keep up with influenza antigenic diversity. Different small molecule antivirals to treat influenza have become available. However, emergence of drug resistant influenza viruses has been observed upon use of these antivirals. An appealing alternative approach to prevent or treat influenza is the use of antibody-based antivirals, such as conventional monoclonal antibodies and single-domain antibodies (sdAbs). The surface of the influenza A and B virion is decorated with hemagglutinin molecules, which act as receptor-binding and membrane fusion proteins and represent the main target of neutralizing antibodies. SdAbs that target influenza A and B hemagglutinin have been described. In addition, sdAbs directed against the influenza A virus neuraminidase have been reported, whereas no sdAbs targeting influenza B neuraminidase have been described to date. SdAbs directed against influenza A matrix protein 2 or its ectodomain have been reported, while no sdAbs have been described targeting the influenza B matrix protein 2. Known for their high specificity, ease of production and formatting, sdAb-based antivirals could be a major leap forward in influenza control.
Collapse
Affiliation(s)
- Arne Matthys
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
5
|
Meseko C, Sanicas M, Asha K, Sulaiman L, Kumar B. Antiviral options and therapeutics against influenza: history, latest developments and future prospects. Front Cell Infect Microbiol 2023; 13:1269344. [PMID: 38094741 PMCID: PMC10716471 DOI: 10.3389/fcimb.2023.1269344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023] Open
Abstract
Drugs and chemotherapeutics have helped to manage devastating impacts of infectious diseases since the concept of 'magic bullet'. The World Health Organization estimates about 650,000 deaths due to respiratory diseases linked to seasonal influenza each year. Pandemic influenza, on the other hand, is the most feared health disaster and probably would have greater and immediate impact on humanity than climate change. While countermeasures, biosecurity and vaccination remain the most effective preventive strategies against this highly infectious and communicable disease, antivirals are nonetheless essential to mitigate clinical manifestations following infection and to reduce devastating complications and mortality. Continuous emergence of the novel strains of rapidly evolving influenza viruses, some of which are intractable, require new approaches towards influenza chemotherapeutics including optimization of existing anti-infectives and search for novel therapies. Effective management of influenza infections depend on the safety and efficacy of selected anti-infective in-vitro studies and their clinical applications. The outcomes of therapies are also dependent on understanding diversity in patient groups, co-morbidities, co-infections and combination therapies. In this extensive review, we have discussed the challenges of influenza epidemics and pandemics and discoursed the options for anti-viral chemotherapies for effective management of influenza virus infections.
Collapse
Affiliation(s)
- Clement Meseko
- Regional Centre for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Melvin Sanicas
- Medical and Clinical Development, Clover Biopharmaceuticals, Boston, MA, United States
| | - Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Lanre Sulaiman
- Regional Centre for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Binod Kumar
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
6
|
Kiso M, Yamayoshi S, Kawaoka Y. Efficacy of favipiravir against influenza virus resistant to both baloxavir and neuraminidase inhibitors. J Antimicrob Chemother 2023; 78:1649-1657. [PMID: 37209424 PMCID: PMC10320054 DOI: 10.1093/jac/dkad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/19/2023] [Indexed: 05/22/2023] Open
Abstract
OBJECTIVES Widespread resistance of influenza viruses to neuraminidase (NA) inhibitor or polymerase inhibitor, baloxavir, is a major public health concern. The amino acid mutations R152K in NA and I38T in polymerase acidic (PA) are responsible for resistance to NA inhibitors and baloxavir, respectively. METHODS We generated recombinant A(H1N1)pdm09 viruses possessing NA-R152K, PA-I38T or both mutations by using a plasmid-based reverse genetics system, characterized their virological properties in vitro and in vivo, and examined whether oseltamivir, baloxavir and favipiravir are effective against these mutant viruses. RESULTS The three mutant viruses showed similar or superior growth kinetics and virulence to those of wild-type virus. Although oseltamivir and baloxavir blocked the replication of the wild-type virus in vitro, oseltamivir and baloxavir failed to suppress the replication of the NA-R152K and PA-I38T viruses in vitro, respectively. Mutant virus possessing both mutations grew in the presence of oseltamivir or baloxavir in vitro. Baloxavir treatment protected mice from lethal infection with wild-type or NA-R152K virus, but failed to protect mice from lethal infection with PA-I38T or PA-I38T/NA-R152K virus. Favipiravir treatment protected mice from lethal infection with all viruses tested, whereas oseltamivir treatment did not protect at all. CONCLUSIONS Our findings indicate that favipiravir should be used to treat patients with suspected baloxavir-resistant virus infection.
Collapse
Affiliation(s)
- Maki Kiso
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison WI, USA
| |
Collapse
|
7
|
Li J, Wagatsuma K, Sun Y, Sato I, Kawashima T, Saito T, Shimada Y, Ono Y, Kakuya F, Nagata N, Minato M, Kodo N, Suzuki E, Kitano A, Tanaka T, Aoki S, Chon I, Phyu WW, Watanabe H, Saito R. Factors associated with viral RNA shedding and evaluation of potential viral infectivity at returning to school in influenza outpatients after treatment with baloxavir marboxil and neuraminidase inhibitors during 2013/2014-2019/2020 seasons in Japan: an observational study. BMC Infect Dis 2023; 23:188. [PMID: 36991360 PMCID: PMC10054210 DOI: 10.1186/s12879-023-08140-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND This study assessed the differences in daily virus reduction and the residual infectivity after the recommended home stay period in Japan in patients infected with influenza and treated with baloxavir (BA), laninamivir (LA), oseltamivir (OS), and zanamivir (ZA). METHODS We conducted an observational study on children and adults at 13 outpatient clinics in 11 prefectures in Japan during seven influenza seasons from 2013/2014 to 2019/2020. Virus samples were collected twice from influenza rapid test-positive patients at the first and second visit 4-5 days after the start of treatment. The viral RNA shedding was quantified using quantitative RT-PCR. Neuraminidase (NA) and polymerase acidic (PA) variant viruses that reduce susceptibility to NA inhibitors and BA, respectively, were screened using RT-PCR and genetic sequencing. Daily estimated viral reduction was evaluated using univariate and multivariate analyses for the factors such as age, treatment, vaccination status, or the emergence of PA or NA variants. The potential infectivity of the viral RNA shedding at the second visit samples was determined using the Receiver Operator Curve based on the positivity of virus isolation. RESULTS Among 518 patients, 465 (80.0%) and 116 (20.0%) were infected with influenza A (189 with BA, 58 with LA, 181 with OS, 37 with ZA) and influenza B (39 with BA, 10 with LA, 52 with OS, 15 with ZA). The emergence of 21 PA variants in influenza A was detected after BA treatment, but NA variants were not detected after NAIs treatment. Multiple linear regression analysis showed that the daily viral RNA shedding reduction in patients was slower in the two NAIs (OS and LA) than in BA, influenza B infection, aged 0-5 years, or the emergence of PA variants. The residual viral RNA shedding potentially infectious was detected in approximately 10-30% of the patients aged 6-18 years after five days of onset. CONCLUSIONS Viral clearance differed by age, type of influenza, choice of treatment, and susceptibility to BA. Additionally, the recommended homestay period in Japan seemed insufficient, but reduced viral spread to some extent since most school-age patients became non-infectious after 5 days of onset.
Collapse
Affiliation(s)
- Jiaming Li
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan.
| | - Keita Wagatsuma
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Yuyang Sun
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Irina Chon
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Wint Wint Phyu
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Hisami Watanabe
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Reiko Saito
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| |
Collapse
|
8
|
Stannard HL, Mifsud EJ, Wildum S, Brown SK, Koszalka P, Shishido T, Kojima S, Omoto S, Baba K, Kuhlbusch K, Hurt AC, Barr IG. Assessing the fitness of a dual-antiviral drug resistant human influenza virus in the ferret model. Commun Biol 2022; 5:1026. [PMID: 36171475 PMCID: PMC9517990 DOI: 10.1038/s42003-022-04005-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022] Open
Abstract
Influenza antivirals are important tools in our fight against annual influenza epidemics and future influenza pandemics. Combinations of antivirals may reduce the likelihood of drug resistance and improve clinical outcomes. Previously, two hospitalised immunocompromised influenza patients, who received a combination of a neuraminidase inhibitor and baloxavir marboxil, shed influenza viruses resistant to both drugs. Here-in, the replicative fitness of one of these A(H1N1)pdm09 virus isolates with dual resistance mutations (NA-H275Y and PA-I38T) was similar to wild type virus (WT) in vitro, but reduced in the upper respiratory tracts of challenged ferrets. The dual-mutant virus transmitted well between ferrets in an airborne transmission model, but was outcompeted by the WT when the two viruses were co-administered. These results indicate the dual-mutant virus had a moderate loss of viral fitness compared to the WT virus, suggesting that while person-to-person transmission of the dual-resistant virus may be possible, widespread community transmission is unlikely.
Collapse
Affiliation(s)
- Harry L Stannard
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Edin J Mifsud
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | - Sook Kwan Brown
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Paulina Koszalka
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | | | | | | | | | | | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, the University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Predicting Permissive Mutations That Improve the Fitness of A(H1N1)pdm09 Viruses Bearing the H275Y Neuraminidase Substitution. J Virol 2022; 96:e0091822. [PMID: 35867563 PMCID: PMC9364793 DOI: 10.1128/jvi.00918-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Oseltamivir-resistant influenza viruses arise due to amino acid mutations in key residues of the viral neuraminidase (NA). These changes often come at a fitness cost; however, it is known that permissive mutations in the viral NA can overcome this cost. This result was observed in former seasonal A(H1N1) viruses in 2007 which expressed the H275Y substitution (N1 numbering) with no apparent fitness cost and lead to widespread oseltamivir resistance. Therefore, this study aims to predict permissive mutations that may similarly enable fit H275Y variants to arise in currently circulating A(H1N1)pdm09 viruses. The first approach in this study utilized in silico analyses to predict potentially permissive mutations. The second approach involved the generation of a virus library which encompassed all possible NA mutations while keeping H275Y fixed. Fit variants were then selected by serially passaging the virus library either through ferrets by transmission or passaging once in vitro. The fitness impact of selected substitutions was further evaluated experimentally. The computational approach predicted three candidate permissive NA mutations which, in combination with each other, restored the replicative fitness of an H275Y variant. The second approach identified a stringent bottleneck during transmission between ferrets; however, three further substitutions were identified which may improve transmissibility. A comparison of fit H275Y variants in vitro and in experimentally infected animals showed a statistically significant correlation in the variants that were positively selected. Overall, this study provides valuable tools and insights into potential permissive mutations that may facilitate the emergence of a fit H275Y A(H1N1)pdm09 variant. IMPORTANCE Oseltamivir (Tamiflu) is the most widely used antiviral for the treatment of influenza infections. Therefore, resistance to oseltamivir is a public health concern. This study is important as it explores the different evolutionary pathways available to current circulating influenza viruses that may lead to widespread oseltamivir resistance. Specifically, this study develops valuable experimental and computational tools to evaluate the fitness landscape of circulating A(H1N1)pmd09 influenza viruses bearing the H275Y mutation. The H275Y substitution is most commonly reported to confer oseltamivir resistance but also leads to loss of virus replication and transmission fitness, which limits its spread. However, it is known from previous influenza seasons that influenza viruses can evolve to overcome this loss of fitness. Therefore, this study aims to prospectively predict how contemporary A(H1N1)pmd09 influenza viruses may evolve to overcome the fitness cost of bearing the H275Y NA substitution, which could result in widespread oseltamivir resistance.
Collapse
|
10
|
Govorkova EA, Takashita E, Daniels RS, Fujisaki S, Presser LD, Patel MC, Huang W, Lackenby A, Nguyen HT, Pereyaslov D, Rattigan A, Brown SK, Samaan M, Subbarao K, Wong S, Wang D, Webby RJ, Yen HL, Zhang W, Meijer A, Gubareva LV. Global update on the susceptibilities of human influenza viruses to neuraminidase inhibitors and the cap-dependent endonuclease inhibitor baloxavir, 2018–2020. Antiviral Res 2022; 200:105281. [PMID: 35292289 PMCID: PMC9254721 DOI: 10.1016/j.antiviral.2022.105281] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/19/2022]
Abstract
Global analysis of the susceptibility of influenza viruses to neuraminidase (NA) inhibitors (NAIs) and the polymerase acidic (PA) inhibitor (PAI) baloxavir was conducted by five World Health Organization Collaborating Centres for Reference and Research on Influenza during two periods (May 2018–May 2019 and May 2019–May 2020). Combined phenotypic and NA sequence-based analysis revealed that the global frequency of viruses displaying reduced or highly reduced inhibition (RI or HRI) or potential to show RI/HRI by NAIs remained low, 0.5% (165/35045) and 0.6% (159/26010) for the 2018–2019 and 2019–2020 periods, respectively. The most common amino acid substitution was NA-H275Y (N1 numbering) conferring HRI by oseltamivir and peramivir in A(H1N1)pdm09 viruses. Combined phenotypic and PA sequence-based analysis showed that the global frequency of viruses showing reduced susceptibility to baloxavir or carrying substitutions associated with reduced susceptibility was low, 0.5% (72/15906) and 0.1% (18/15692) for the 2018–2019 and 2019–2020 periods, respectively. Most (n = 61) of these viruses had I38→T/F/M/S/L/V PA amino acid substitutions. In Japan, where baloxavir use was highest, the rate was 4.5% (41/919) in the 2018–2019 period and most of the viruses (n = 32) had PA-I38T. Zoonotic viruses isolated from humans (n = 32) in different countries did not contain substitutions in NA associated with NAI RI/HRI phenotypes. One A(H5N6) virus had a dual substitution PA-I38V + PA-E199G, which may reduce susceptibility to baloxavir. Therefore, NAIs and baloxavir remain appropriate choices for the treatment of influenza virus infections, but close monitoring of antiviral susceptibility is warranted.
Collapse
Affiliation(s)
- Elena A Govorkova
- WHO Collaborating Centre for Studies on the Ecology of Influenza in Animals and Birds, St. Jude Children's Research Hospital, Memphis, TN, 38105-3678, USA.
| | - Emi Takashita
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo, 208-0011, Japan
| | - Rod S Daniels
- WHO Collaborating Centre for Reference and Research on Influenza, The Francis Crick Institute, Worldwide Influenza Centre, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Seiichiro Fujisaki
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo, 208-0011, Japan
| | - Lance D Presser
- National Institute for Public Health and the Environment, PO Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Mira C Patel
- WHO Collaborating Centre for Surveillance, Epidemiology and Control of Influenza, Centres for Disease Control and Prevention, 1600 Clifton RD NE, MS H17-5, Atlanta, GA, 30329, USA
| | - Weijuan Huang
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Angie Lackenby
- National Infection Service, Public Health England, London, NW9 5HT, United Kingdom
| | - Ha T Nguyen
- WHO Collaborating Centre for Surveillance, Epidemiology and Control of Influenza, Centres for Disease Control and Prevention, 1600 Clifton RD NE, MS H17-5, Atlanta, GA, 30329, USA
| | - Dmitriy Pereyaslov
- Global Influenza Programme, World Health Organization, Avenue Appia 20, 1211, Geneva, 27, Switzerland
| | - Aine Rattigan
- WHO Collaborating Centre for Reference and Research on Influenza, The Francis Crick Institute, Worldwide Influenza Centre, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Sook Kwan Brown
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Magdi Samaan
- Global Influenza Programme, World Health Organization, Avenue Appia 20, 1211, Geneva, 27, Switzerland
| | - Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Sun Wong
- Public Health Laboratory Centre, 382 Nam Cheong Street, Hong Kong, China
| | - Dayan Wang
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Richard J Webby
- WHO Collaborating Centre for Studies on the Ecology of Influenza in Animals and Birds, St. Jude Children's Research Hospital, Memphis, TN, 38105-3678, USA
| | - Hui-Ling Yen
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wenqing Zhang
- Global Influenza Programme, World Health Organization, Avenue Appia 20, 1211, Geneva, 27, Switzerland
| | - Adam Meijer
- National Institute for Public Health and the Environment, PO Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Larisa V Gubareva
- WHO Collaborating Centre for Surveillance, Epidemiology and Control of Influenza, Centres for Disease Control and Prevention, 1600 Clifton RD NE, MS H17-5, Atlanta, GA, 30329, USA
| |
Collapse
|
11
|
Abstract
The neuraminidase (NA) of influenza A and B viruses plays a distinct role in viral replication and has a highly conserved catalytic site. Numerous sialic (neuraminic) acid analogs that competitively bind to the NA active site and potently inhibit enzyme activity have been synthesized and tested. Four NA inhibitors are now licensed in various parts of the world (zanamivir, oseltamivir, peramivir, and laninamivir) to treat influenza A and B infections. NA changes, naturally occurring or acquired under selective pressure, have been shown to reduce drug binding, thereby affecting the effectiveness of NA inhibitors. Drug resistance and other drawbacks have prompted the search for the next-generation NA-targeting therapeutics. One of the promising approaches is the identification of monoclonal antibodies (mAbs) targeting the conserved NA epitopes. Anti-NA mAbs demonstrate Fab-based antiviral activity supplemented with Fc-mediated immune effector functions. Antiviral Fc-conjugates offer another cutting-edge strategy that is based on a multimodal mechanism of action. These novel antiviral agents are composed of a small-molecule NA inhibitor and an Fc-region that simultaneously engages the immune system. The significant advancements made in recent years further support the value of NA as an attractive target for the antiviral development.
Collapse
Affiliation(s)
- Larisa Gubareva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329-4027, USA
| | - Teena Mohan
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329-4027, USA
| |
Collapse
|
12
|
Sato M, Hashimoto K, Hosoya M. Population analysis of oseltamivir-resistant variants for the rapid prediction of drug susceptibility by real-time reverse transcription polymerase chain reaction. Fukushima J Med Sci 2022; 68:153-159. [PMID: 36047170 PMCID: PMC9840889 DOI: 10.5387/fms.2022-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This study investigated whether quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), using specific probes composed of locked nucleic acids (LNA/qRT-PCR), designed to evaluate H1N1 pdm09 H275Y, H3N2 E119V and R292K variant populations, could replace a neuraminidase (NA) inhibition assay to determine the 50% inhibitory concentration (IC50) of NA activity.For H1N1 pdm09, when the H275Y variant RNA load was 50% or 70% and the infective H275Y variant load was 40% or 70%, the IC50 were >10- and 100-fold higher, respectively, than that of the wild-type (WT) strain. For H3N2, when the E119V RNA load and infective E119V variant load were >90% and >60%, respectively, the IC50 of the mixed sample was >10-fold higher than that of the WT strain. The variant-mixed samples with a 70% or 80% R292K variant RNA load and a 60% or 70% infective R292K variant load exhibited >10- and 100-fold decreased susceptibility, respectively, compared with that of the WT. A positive correlation between the variant RNA load and infective variant load populations was observed.The LNA/qRT-PCR method can be used to improve the treatment and management of patients during antiviral therapy for influenza virus infection.
Collapse
Affiliation(s)
- Masatoki Sato
- Department of Pediatrics, Fukushima Medical University
| | | | | |
Collapse
|
13
|
McKimm-Breschkin JL, Hay AJ, Cao B, Cox RJ, Dunning J, Moen AC, Olson D, Pizzorno A, Hayden FG. COVID-19, Influenza and RSV: Surveillance-informed prevention and treatment - Meeting report from an isirv-WHO virtual conference. Antiviral Res 2021; 197:105227. [PMID: 34933044 PMCID: PMC8684224 DOI: 10.1016/j.antiviral.2021.105227] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022]
Abstract
The International Society for Influenza and other Respiratory Virus Diseases (isirv) and the WHO held a joint virtual conference from 19th-21st October 2021. While there was a major focus on the global response to the SARS-CoV-2 pandemic, including antivirals, vaccines and surveillance strategies, papers were also presented on treatment and prevention of influenza and respiratory syncytial virus (RSV). Potential therapeutics for SARS-CoV-2 included host-targeted therapies baricitinib, a JAK inhibitor, tocilizumab, an IL-6R inhibitor, verdinexor and direct acting antivirals ensovibep, S-217622, AT-527, and monoclonal antibodies casirivimab and imdevimab, directed against the spike protein. Data from trials of nirsevimab, a monoclonal antibody with a prolonged half-life which binds to the RSV F-protein, and an Ad26.RSV pre-F vaccine were also presented. The expanded role of the WHO Global Influenza Surveillance and Response System to address the SARS-CoV-2 pandemic was also discussed. This report summarizes the oral presentations given at this meeting for the benefit of the broader medical and scientific community involved in surveillance, treatment and prevention of respiratory virus diseases.
Collapse
Affiliation(s)
- Jennifer L McKimm-Breschkin
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.
| | - Alan J Hay
- The Francis Crick Institute, London, UK.
| | - Bin Cao
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.
| | - Rebecca J Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Jake Dunning
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| | - Ann C Moen
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Daniel Olson
- University of Colorado School of Medicine and Colorado School of Public Health, Anschutz Medical Campus, Aurora, CO, USA.
| | - Andrés Pizzorno
- International Center for Research in Infectious Diseases, University of Lyon, Lyon, France.
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
14
|
Ison MG, Hayden FG, Hay AJ, Gubareva LV, Govorkova EA, Takashita E, McKimm-Breschkin JL. Influenza polymerase inhibitor resistance: Assessment of the current state of the art - A report of the isirv Antiviral group. Antiviral Res 2021; 194:105158. [PMID: 34363859 PMCID: PMC9012257 DOI: 10.1016/j.antiviral.2021.105158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
It is more than 20 years since the neuraminidase inhibitors, oseltamivir and zanamivir were approved for the treatment and prevention of influenza. Guidelines for global surveillance and methods for evaluating resistance were established initially by the Neuraminidase Inhibitor Susceptibility Network (NISN), which merged 10 years ago with the International Society for influenza and other Respiratory Virus Diseases (isirv) to become the isirv-Antiviral Group (isirv-AVG). With the ongoing development of new influenza polymerase inhibitors and recent approval of baloxavir marboxil, the isirv-AVG held a closed meeting in August 2019 to discuss the impact of resistance to these inhibitors. Following this meeting and review of the current literature, this article is intended to summarize current knowledge regarding the clinical impact of resistance to polymerase inhibitors and approaches for surveillance and methods for laboratory evaluation of resistance, both in vitro and in animal models. We highlight limitations and gaps in current knowledge and suggest some strategies for addressing these gaps, including the need for additional clinical studies of influenza antiviral drug combinations. Lessons learned from influenza resistance monitoring may also be helpful for establishing future drug susceptibility surveillance and testing for SARS-CoV-2.
Collapse
Affiliation(s)
- Michael G Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Alan J Hay
- The Francis Crick Institute, London, UK.
| | - Larisa V Gubareva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Elena A Govorkova
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Emi Takashita
- National Institute of Infectious Diseases, Tokyo, Japan.
| | - Jennifer L McKimm-Breschkin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia.
| |
Collapse
|
15
|
Kotani O, Suzuki Y, Saito S, Ainai A, Ueno A, Hemmi T, Sano K, Tabata K, Yokoyama M, Suzuki T, Hasegawa H, Sato H. Structure-Guided Creation of an Anti-HA Stalk Antibody F11 Derivative That Neutralizes Both F11-Sensitive and -Resistant Influenza A(H1N1)pdm09 Viruses. Viruses 2021; 13:v13091733. [PMID: 34578314 PMCID: PMC8473006 DOI: 10.3390/v13091733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/05/2022] Open
Abstract
The stalk domain of influenza virus envelope glycoprotein hemagglutinin (HA) constitutes the axis connecting the head and transmembrane domains, and plays pivotal roles in conformational rearrangements of HA for virus infection. Here we characterized molecular interactions between the anti-HA stalk neutralization antibody F11 and influenza A(H1N1)pdm09 HA to understand the structural basis of the actions and modifications of this antibody. In silico structural analyses using a model of the trimeric HA ectodomain indicated that the F11 Fab fragment has physicochemical properties, allowing it to crosslink two HA monomers by binding to a region near the proteolytic cleavage site of the stalk domain. Interestingly, the F11 binding allosterically caused a marked suppression of the structural dynamics of the HA cleavage loop and flanking regions. Structure-guided mutagenesis of the F11 antibody revealed a critical residue in the F11 light chain for the F11-mediated neutralization. Finally, the mutagenesis led to identification of a unique F11 derivative that can neutralize both F11-sensitive and F11-resistant A(H1N1)pdm09 viruses. These results raise the possibility that F11 sterically and physically disturbs proteolytic cleavage of HA for the ordered conformational rearrangements and suggest that in silico guiding experiments can be useful to create anti-HA stalk antibodies with new phenotypes.
Collapse
Affiliation(s)
- Osamu Kotani
- Center for Pathogen Genomics, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (M.Y.); (H.S.)
- Correspondence: (O.K.); (S.S.)
| | - Yasushi Suzuki
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (Y.S.); (H.H.)
| | - Shinji Saito
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (A.A.); (A.U.); (T.H.); ka-- (K.S.); (K.T.); (T.S.)
- Correspondence: (O.K.); (S.S.)
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (A.A.); (A.U.); (T.H.); ka-- (K.S.); (K.T.); (T.S.)
| | - Akira Ueno
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (A.A.); (A.U.); (T.H.); ka-- (K.S.); (K.T.); (T.S.)
| | - Takuya Hemmi
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (A.A.); (A.U.); (T.H.); ka-- (K.S.); (K.T.); (T.S.)
| | - Kaori Sano
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (A.A.); (A.U.); (T.H.); ka-- (K.S.); (K.T.); (T.S.)
| | - Koshiro Tabata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (A.A.); (A.U.); (T.H.); ka-- (K.S.); (K.T.); (T.S.)
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Hokkaido 001-0020, Japan
| | - Masaru Yokoyama
- Center for Pathogen Genomics, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (M.Y.); (H.S.)
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (A.A.); (A.U.); (T.H.); ka-- (K.S.); (K.T.); (T.S.)
| | - Hideki Hasegawa
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (Y.S.); (H.H.)
| | - Hironori Sato
- Center for Pathogen Genomics, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (M.Y.); (H.S.)
| |
Collapse
|
16
|
Okada N, Fujiwara N, Azuma M, Tsujinaka K, Chuma M, Yagi K, Hamano H, Aizawa F, Goda M, Kirino Y, Nakamura T, Zamami Y, Hashimoto I, Ishizawa K. Assessment of Adherence to Post-exposure Prophylaxis with Oseltamivir in Healthcare Workers: A Retrospective Questionnaire-Based Study. Biol Pharm Bull 2021; 44:869-874. [PMID: 34078819 DOI: 10.1248/bpb.b21-00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Post-exposure prophylaxis (PEP) for healthcare workers is one of the effective strategies for preventing nosocomial outbreaks of influenza. However, PEP adherence in healthcare workers is rarely analysed, and no strategies have been established to improve adherence to PEP for healthcare workers. We aimed to retrospectively analyse adherence to PEP and the factors associated with non-adherence in healthcare workers. A survey of 221 healthcare workers who were eligible for PEP at Tokushima University Hospital in the 2016/2017 season was conducted. Once-daily oseltamivir (75 mg for 10 d) was used as the PEP regimen. Of the 221 healthcare workers, 175 received PEP and were surveyed for adherence using a questionnaire. Of the 130 healthcare workers who responded to the questionnaire, 121 (93.1%) had been vaccinated. In this survey, 82 healthcare workers (63.1%) did not fully complete PEP. Multiple logistic regression analysis revealed that physicians (odds ratio: 4.62, 95% confidence interval [CI]: 2.08-10.25) and non-vaccination (odds ratio: 9.60, 95% CI: 1.12-82.25) were the factors for non-adherence to PEP. Of the 47 healthcare workers who responded to the item regarding reasons for non-adherence, 36 (76.6%) reported forgetting to take oseltamivir or discontinuing it due to a misguided self-decision that continuation of PEP was unnecessary, and 5 (10.6%) reported discontinuing treatment due to adverse effects. In conclusion, healthcare workers, particularly physicians, had low PEP adherence owing to forgetting or stopping to take oseltamivir due to a misguided self-decision. To obtain the maximum preventive effect of PEP, medication education should be provided to endorse PEP compliance.
Collapse
Affiliation(s)
- Naoto Okada
- Department of Pharmacy, Tokushima University Hospital.,Department of Infection Control and Prevention, Tokushima University Hospital
| | - Noriko Fujiwara
- Department of Infection Control and Prevention, Tokushima University Hospital
| | - Momoyo Azuma
- Department of Infection Control and Prevention, Tokushima University Hospital
| | | | - Masayuki Chuma
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital
| | - Kenta Yagi
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital
| | - Hirofumi Hamano
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
| | - Fuka Aizawa
- Department of Pharmacy, Tokushima University Hospital
| | - Mitsuhiro Goda
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital
| | | | | | - Yoshito Zamami
- Department of Pharmacy, Tokushima University Hospital.,Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
| | - Ichiro Hashimoto
- Department of Infection Control and Prevention, Tokushima University Hospital.,Department of Plastic and Reconstructive Surgery, Tokushima University Graduate School of Biomedical Sciences
| | - Keisuke Ishizawa
- Department of Pharmacy, Tokushima University Hospital.,Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences
| |
Collapse
|
17
|
Lee LY, Zhou J, Koszalka P, Frise R, Farrukee R, Baba K, Miah S, Shishido T, Galiano M, Hashimoto T, Omoto S, Uehara T, Mifsud EJ, Collinson N, Kuhlbusch K, Clinch B, Wildum S, Barclay WS, Hurt AC. Evaluating the fitness of PA/I38T-substituted influenza A viruses with reduced baloxavir susceptibility in a competitive mixtures ferret model. PLoS Pathog 2021; 17:e1009527. [PMID: 33956888 PMCID: PMC8130947 DOI: 10.1371/journal.ppat.1009527] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/18/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Baloxavir is approved in several countries for the treatment of uncomplicated influenza in otherwise-healthy and high-risk patients. Treatment-emergent viruses with reduced susceptibility to baloxavir have been detected in clinical trials, but the likelihood of widespread occurrence depends on replication capacity and onward transmission. We evaluated the fitness of A/H3N2 and A/H1N1pdm09 viruses with the polymerase acidic (PA) I38T-variant conferring reduced susceptibility to baloxavir relative to wild-type (WT) viruses, using a competitive mixture ferret model, recombinant viruses and patient-derived virus isolates. The A/H3N2 PA/I38T virus showed a reduction in within-host fitness but comparable between-host fitness to the WT virus, while the A/H1N1pdm09 PA/I38T virus had broadly similar within-host fitness but substantially lower between-host fitness. Although PA/I38T viruses replicate and transmit between ferrets, our data suggest that viruses with this amino acid substitution have lower fitness relative to WT and this relative fitness cost was greater in A/H1N1pdm09 viruses than in A/H3N2 viruses. Influenza viruses are associated with considerable disease burden and circulate annually causing seasonal epidemics. Antiviral drugs can be used to treat influenza infections and help reduce the disease burden. Occasionally, treatment can lead to the emergence of viruses with reduced antiviral susceptibility. Normally such viruses have reduced ‘fitness’, meaning they do not tend to spread or transmit widely, however on rare occasions, oseltamivir-resistant variants have become widespread in the community, thereby reducing the utility of the drug for treatment. Baloxavir is an antiviral recently licensed in many parts of the world for the treatment of influenza. Viruses with reduced susceptibility to baloxavir have been observed in clinical trials, but the frequency of such variants in the community has remained low (<0.1% globally since 2017–2018). We evaluated the fitness of viruses in ferrets and found that although A/H1N1 and A/H3N2 viruses with reduced baloxavir susceptibility were able to replicate and transmit among ferrets, they had a moderate reduction in fitness compared to normal ‘wild-type’ viruses, suggesting a reduced likelihood of spread. Surveillance to monitor for the frequency of viruses with reduced baloxavir susceptibility remains important.
Collapse
Affiliation(s)
- Leo Y Lee
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jie Zhou
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Paulina Koszalka
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Biomedicine Discovery Institute & Department of Microbiology, Monash University, Victoria, Australia
| | - Rebecca Frise
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Rubaiyea Farrukee
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | | | | | | | | | | | | | | | - Edin J Mifsud
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | | | | | - Barry Clinch
- Roche Products Ltd, Welwyn Garden City, United Kingdom
| | | | - Wendy S Barclay
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Australia.,F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
18
|
Antivirals Targeting the Surface Glycoproteins of Influenza Virus: Mechanisms of Action and Resistance. Viruses 2021; 13:v13040624. [PMID: 33917376 PMCID: PMC8067422 DOI: 10.3390/v13040624] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/25/2022] Open
Abstract
Hemagglutinin and neuraminidase, which constitute the glycoprotein spikes expressed on the surface of influenza A and B viruses, are the most exposed parts of the virus and play critical roles in the viral lifecycle. As such, they make prominent targets for the immune response and antiviral drugs. Neuraminidase inhibitors, particularly oseltamivir, constitute the most commonly used antivirals against influenza viruses, and they have proved their clinical utility against seasonal and emerging influenza viruses. However, the emergence of resistant strains remains a constant threat and consideration. Antivirals targeting the hemagglutinin protein are relatively new and have yet to gain global use but are proving to be effective additions to the antiviral repertoire, with a relatively high threshold for the emergence of resistance. Here we review antiviral drugs, both approved for clinical use and under investigation, that target the influenza virus hemagglutinin and neuraminidase proteins, focusing on their mechanisms of action and the emergence of resistance to them.
Collapse
|
19
|
Abstract
Influenza poses a significant burden on society and health care systems. Although antivirals are an integral tool in effective influenza management, the potential for the emergence of antiviral-resistant viruses can lead to uncertainty and hesitation among front-line prescribers and policy makers. Here, we provide an overview of influenza antiviral resistance in context, exploring the key concepts underlying its development and clinical impact. Due to the acute nature of influenza in immunocompetent patients, resistant viruses that develop during antiviral treatment of a single patient ("treatment-emergent resistance") are usually cleared in a relatively short time, with no impact on future antiviral efficacy. In addition, although available data are limited by small numbers of patients, they show that antiviral treatment still provides clinical benefit to the patient within whom resistance emerges. In contrast, the sustained community transmission of resistant variants in the absence of treatment ("acquired resistance") is of greater concern and can potentially render front-line antivirals ineffective. Importantly, however, resistant viruses are usually associated with reduced fitness such that their widespread transmission is relatively rare. Influenza antivirals are an essential part of effective influenza management due to their ability to reduce the risk of complications and death in infected patients. Although antiviral resistance should be taken seriously and requires continuous careful monitoring, it is not comparable to antibiotic resistance in bacteria, which can become permanent and widespread, with far-reaching medical consequences. The benefits of antiviral treatment far outweigh concerns of potential resistance, which in the vast majority of cases does not have a significant clinical impact.
Collapse
|
20
|
Ginex T, Luque FJ. Searching for effective antiviral small molecules against influenza A virus: A patent review. Expert Opin Ther Pat 2020; 31:53-66. [PMID: 33012213 DOI: 10.1080/13543776.2020.1831471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Introduction: Despite the current interest caused by SARS-Cov-2, influenza continues to be one of the most serious health concerns, with an estimated 1 billion cases across the globe, including 3-5 million severe cases and 290,000-650,000 deaths worldwide. Areas covered: This manuscript reviews the efforts made in the development of small molecules for the treatment of influenza virus, primarily focused on patent applications in the last 5 years. Attention is paid to compounds targeting key functional viral proteins, such as the M2 channel, neuraminidase, and hemagglutinin, highlighting the evolution toward new ligands and scaffolds motivated by the emergence of resistant strains. Finally, the discovery of compounds against novel viral targets, such as the RNA-dependent RNA polymerase, is discussed. Expert opinion: The therapeutic potential of antiviral agents is limited by the increasing presence of resistant strains. This should encourage research on novel strategies for therapeutic intervention. In this context, the discovery of arbidol and JNJ7918 against hemagglutinin, and current efforts on RNA-dependent RNA polymerase have disclosed novel opportunities for therapeutic treatment. Studies should attempt to expand the therapeutic arsenal of anti-flu agents, often in combined therapies, to prevent future health challenges caused by influenza virus. Abbreviations: AlphaLISA: amplified luminescent proximity homogeneous assay; HA: hemagglutinin; NA: neuraminidase; RBD: receptor binding domain; RdRp: RNA-dependent RNA polymerase; SA: sialic Acid; TBHQ: tert-butyl hydroquinone; TEVC: two-electrode voltage clamp.
Collapse
Affiliation(s)
- Tiziana Ginex
- Translational Medicinal and Biological Chemistry Group, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Biológicas (CIB-CSIC) , Madrid, Spain
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona , Santa Coloma de Gramanet, Spain
| |
Collapse
|
21
|
In Vitro Characterization of Multidrug-Resistant Influenza A(H1N1)pdm09 Viruses Carrying a Dual Neuraminidase Mutation Isolated from Immunocompromised Patients. Pathogens 2020; 9:pathogens9090725. [PMID: 32887429 PMCID: PMC7559125 DOI: 10.3390/pathogens9090725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/19/2022] Open
Abstract
Influenza A(H1N1)pdm09 viruses carrying a dual neuraminidase (NA) substitution were isolated from immunocompromised patients after administration of one or more NA inhibitors. These mutant viruses possessed an H275Y/I223R, H275Y/I223K, or H275Y/G147R substitution in their NA and showed enhanced cross-resistance to oseltamivir and peramivir and reduced susceptibility to zanamivir compared to single H275Y mutant viruses. Baloxavir could be a treatment option against the multidrug-resistant viruses because these dual H275Y mutant viruses showed susceptibility to this drug. The G147R substitution appears to stabilize the NA structure, with the fitness of the H275Y/G147R mutant virus being similar or somewhat better than that of the wild-type virus. Since the multidrug-resistant viruses may be able to transmit between humans, surveillance of these viruses must continue to improve clinical management and to protect public health.
Collapse
|
22
|
Differential Viral-Host Immune Interactions Associated with Oseltamivir-Resistant H275Y and Wild-Type H1N1 A(pdm09) Influenza Virus Pathogenicity. Viruses 2020; 12:v12080794. [PMID: 32721992 PMCID: PMC7472233 DOI: 10.3390/v12080794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/26/2022] Open
Abstract
Oseltamivir is a common therapy against influenza A virus (IAV) infections. The acquisition of oseltamivir resistance (OR) mutations, such as H275Y, hampers viral fitness. However, OR H1N1 viruses have demonstrated the ability to spread throughout different populations. The objective of this work was to compare the fitness of two strains of OR (R6 and R7) containing the H275Y mutation, and a wild-type (F) pandemic influenza A (H1N1) 2009 (pdm09) virus both in vitro and in vivo in mice and to select one OR strain for a comparison with F in ferrets. R6 showed faster replication and pathogenicity than R7 in vitro and in mice. Subsequently, R6 was selected for the fitness comparison with the F strain in ferrets. Ferrets infected with the F virus showed more severe clinical signs, histopathological lung lesions, and viral quantification when compared to OR R6-infected animals. More importantly, differential viral kinetics correlated with differential pro-inflammatory host immune responses in the lungs of infected ferrets, where OR-infected animals developed a protective higher expression of type I IFN and Retinoid acid Inducible Gene I (RIG-I) genes early after infection, resulting in the development of milder disease. These results suggest the presence of early specific viral-host immune interactions relevant in the development of influenza-associated lung pathology.
Collapse
|
23
|
Farrukee R, Tai CMK, Oh DY, Anderson DE, Gunalan V, Hibberd M, Lau GYF, Barr IG, von Messling V, Maurer-Stroh S, Hurt AC. Utilising animal models to evaluate oseltamivir efficacy against influenza A and B viruses with reduced in vitro susceptibility. PLoS Pathog 2020; 16:e1008592. [PMID: 32555740 PMCID: PMC7326275 DOI: 10.1371/journal.ppat.1008592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/30/2020] [Accepted: 05/02/2020] [Indexed: 11/19/2022] Open
Abstract
The neuraminidase (NA) inhibitor (NAI) oseltamivir (OST) is the most widely used influenza antiviral drug. Several NA amino acid substitutions are reported to reduce viral susceptibility to OST in in vitro assays. However, whether there is a correlation between the level of reduction in susceptibility in vitro and the efficacy of OST against these viruses in vivo is not well understood. In this study, a ferret model was utilised to evaluate OST efficacy against circulating influenza A and B viruses with a range of in vitro generated 50% inhibitory concentrations (IC50) values for OST. OST efficacy against an A(H1N1)pdm09 and an A(H1N1)pdm09 virus with the H275Y substitution in neuraminidase was also tested in the macaque model. The results from this study showed that OST had a significant impact on virological parameters compared to placebo treatment of ferrets infected with wild-type influenza A viruses with normal IC50 values (~1 nM). However, this efficacy was lower against wild-type influenza B and other viruses with higher IC50 values. Differing pathogenicity of the viruses made evaluation of clinical parameters difficult, although some effect of OST in reducing clinical signs was observed with influenza A(H1N1) and A(H1N1)pdm09 (H275Y) viruses. Viral titres in macaques were too low to draw conclusive results. Analysis of the ferret data revealed a correlation between IC50 and OST efficacy in reducing viral shedding but highlighted that the current WHO guidelines/criteria for defining normal, reduced or highly reduced inhibition in influenza B viruses based on in vitro data are not well aligned with the low in vivo OST efficacy observed for both wild-type influenza B viruses and those with reduced OST susceptibility.
Collapse
Affiliation(s)
- Rubaiyea Farrukee
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Celeste Ming-Kay Tai
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ding Yuan Oh
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- School of Health and Life Sciences, Federation University, Churchill, Victoria, Australia
| | | | - Vithiagaran Gunalan
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Martin Hibberd
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Gary Yuk-Fai Lau
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Ian G. Barr
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- School of Health and Life Sciences, Federation University, Churchill, Victoria, Australia
| | - Veronika von Messling
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Veterinary Medicine Division, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
- National Public Health Laboratories, National Centre for Infectious Diseases, Ministry of Health, Singapore
- Department of Biological Sciences, National University Singapore, Singapore
| | - Aeron C. Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Takashita E, Yasui Y, Nagata S, Morita H, Fujisaki S, Miura H, Shirakura M, Kishida N, Nakamura K, Kuwahara T, Sugawara H, Sato A, Akimoto M, Kaido T, Watanabe S, Hasegawa H. Detection of a Peramivir-Resistant Influenza B/Yamagata-Lineage Virus Imported from Indonesia in Aichi, Japan, March 2019. Jpn J Infect Dis 2020; 73:386-390. [PMID: 32475875 DOI: 10.7883/yoken.jjid.2020.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Emi Takashita
- Influenza Virus Research Center, National Institute of Infectious Diseases, Murayama Branch, Japan
| | | | - Shiho Nagata
- Influenza Virus Research Center, National Institute of Infectious Diseases, Murayama Branch, Japan
| | - Hiroko Morita
- Influenza Virus Research Center, National Institute of Infectious Diseases, Murayama Branch, Japan
| | - Seiichiro Fujisaki
- Influenza Virus Research Center, National Institute of Infectious Diseases, Murayama Branch, Japan
| | - Hideka Miura
- Influenza Virus Research Center, National Institute of Infectious Diseases, Murayama Branch, Japan
| | - Masayuki Shirakura
- Influenza Virus Research Center, National Institute of Infectious Diseases, Murayama Branch, Japan
| | - Noriko Kishida
- Influenza Virus Research Center, National Institute of Infectious Diseases, Murayama Branch, Japan
| | - Kazuya Nakamura
- Influenza Virus Research Center, National Institute of Infectious Diseases, Murayama Branch, Japan
| | - Tomoko Kuwahara
- Influenza Virus Research Center, National Institute of Infectious Diseases, Murayama Branch, Japan
| | - Hiromi Sugawara
- Influenza Virus Research Center, National Institute of Infectious Diseases, Murayama Branch, Japan
| | - Aya Sato
- Influenza Virus Research Center, National Institute of Infectious Diseases, Murayama Branch, Japan
| | - Miki Akimoto
- Influenza Virus Research Center, National Institute of Infectious Diseases, Murayama Branch, Japan
| | | | - Shinji Watanabe
- Influenza Virus Research Center, National Institute of Infectious Diseases, Murayama Branch, Japan
| | - Hideki Hasegawa
- Influenza Virus Research Center, National Institute of Infectious Diseases, Murayama Branch, Japan
| | | |
Collapse
|
25
|
Uehara T, Hayden FG, Kawaguchi K, Omoto S, Hurt AC, De Jong MD, Hirotsu N, Sugaya N, Lee N, Baba K, Shishido T, Tsuchiya K, Portsmouth S, Kida H. Treatment-Emergent Influenza Variant Viruses With Reduced Baloxavir Susceptibility: Impact on Clinical and Virologic Outcomes in Uncomplicated Influenza. J Infect Dis 2019; 221:346-355. [DOI: 10.1093/infdis/jiz244] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023] Open
Abstract
Abstract
Background
Single-dose baloxavir rapidly reduces influenza virus titers and symptoms in patients with uncomplicated influenza, but viruses with reduced in vitro susceptibility due to amino acid substitutions at position 38 of polymerase acidic protein (PA/I38X) sometimes emerge.
Methods
We evaluated the kinetics, risk factors, and effects on clinical and virologic outcomes of emergence of PA/I38X-substituted viruses.
Results
Viruses containing PA/I38X substitutions were identified 3–9 days after baloxavir treatment in 9.7% (36/370) of patients, of whom 85.3% had transient virus titer rises. Median time to sustained cessation of infectious virus detection was 192, 48, and 96 hours in the baloxavir recipients with PA/I38X-substituted viruses, without PA/I38X-substituted viruses, and placebo recipients, respectively. The corresponding median times to alleviation of symptoms were 63.1, 51.0, and 80.2 hours, respectively. After day 5, symptom increases occurred in 11.5%, 8.0%, and 13.0%, respectively, and in 8.9% of oseltamivir recipients. Variant virus emergence was associated with lower baseline neutralizing antibody titers.
Conclusions
The emergence of viruses with PA/I38X substitutions following baloxavir treatment was associated with transient rises in infectious virus titers, prolongation of virus detectability, initial delay in symptom alleviation, and uncommonly with symptom rebound. The potential transmissibility of PA/I38X-substituted viruses requires careful study.
Clinical Trial Registration
NCT02954354.
Collapse
Affiliation(s)
| | | | | | | | - Aeron C Hurt
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
| | - Menno D De Jong
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, the Netherlands
| | | | - Norio Sugaya
- Department of Pediatrics, Keiyu Hospital, Yokohama, Japan
| | - Nelson Lee
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada
| | | | | | | | | | - Hiroshi Kida
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| |
Collapse
|
26
|
Behzadi MA, Leyva-Grado VH. Overview of Current Therapeutics and Novel Candidates Against Influenza, Respiratory Syncytial Virus, and Middle East Respiratory Syndrome Coronavirus Infections. Front Microbiol 2019; 10:1327. [PMID: 31275265 PMCID: PMC6594388 DOI: 10.3389/fmicb.2019.01327] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/28/2019] [Indexed: 01/26/2023] Open
Abstract
Emergence and re-emergence of respiratory virus infections represent a significant threat to global public health, as they occur seasonally and less frequently (such as in the case of influenza virus) as pandemic infections. Some of these viruses have been in the human population for centuries and others had recently emerged as a public health problem. Influenza viruses have been affecting the human population for a long time now; however, their ability to rapidly evolve through antigenic drift and antigenic shift causes the emergence of new strains. A recent example of these events is the avian-origin H7N9 influenza virus outbreak currently undergoing in China. Human H7N9 influenza viruses are resistant to amantadines and some strains are also resistant to neuraminidase inhibitors greatly limiting the options for treatment. Respiratory syncytial virus (RSV) may cause a lower respiratory tract infection characterized by bronchiolitis and pneumonia mainly in children and the elderly. Infection with RSV can cause severe disease and even death, imposing a severe burden for pediatric and geriatric health systems worldwide. Treatment for RSV is mainly supportive since the only approved therapy, a monoclonal antibody, is recommended for prophylactic use in high-risk patients. The Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly emerging respiratory virus. The virus was first recognized in 2012 and it is associated with a lower respiratory tract disease that is more severe in patients with comorbidities. No licensed vaccines or antivirals have been yet approved for the treatment of MERS-CoV in humans. It is clear that the discovery and development of novel antivirals that can be used alone or in combination with existing therapies to treat these important respiratory viral infections are critical. In this review, we will describe some of the novel therapeutics currently under development for the treatment of these infections.
Collapse
Affiliation(s)
- Mohammad Amin Behzadi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Victor H Leyva-Grado
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
27
|
Destabilization of the human RED-SMU1 splicing complex as a basis for host-directed antiinfluenza strategy. Proc Natl Acad Sci U S A 2019; 116:10968-10977. [PMID: 31076555 DOI: 10.1073/pnas.1901214116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
New therapeutic strategies targeting influenza are actively sought due to limitations in current drugs available. Host-directed therapy is an emerging concept to target host functions involved in pathogen life cycles and/or pathogenesis, rather than pathogen components themselves. From this perspective, we focused on an essential host partner of influenza viruses, the RED-SMU1 splicing complex. Here, we identified two synthetic molecules targeting an α-helix/groove interface essential for RED-SMU1 complex assembly. We solved the structure of the SMU1 N-terminal domain in complex with RED or bound to one of the molecules identified to disrupt this complex. We show that these compounds inhibiting RED-SMU1 interaction also decrease endogenous RED-SMU1 levels and inhibit viral mRNA splicing and viral multiplication, while preserving cell viability. Overall, our data demonstrate the potential of RED-SMU1 destabilizing molecules as an antiviral therapy that could be active against a wide range of influenza viruses and be less prone to drug resistance.
Collapse
|
28
|
Bragstad K, Hungnes O, Litleskare I, Nyrerød HC, Dorenberg DH, Hauge SH. Community spread and late season increased incidence of oseltamivir-resistant influenza A(H1N1) viruses in Norway 2016. Influenza Other Respir Viruses 2019; 13:372-381. [PMID: 30834715 PMCID: PMC6586177 DOI: 10.1111/irv.12637] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 11/26/2022] Open
Abstract
Background Antiviral resistance in Norwegian influenza viruses is rare. Only one A(H1N1)pdm09 virus from May 2015 had been found resistant to oseltamivir since the introduction of these viruses in 2009. Objectives Surveillance of antiviral resistance is part of the Norwegian surveillance system, to rapidly detect the development of antiviral‐resistant viruses and spread in the community. We describe the spread of oseltamivir‐resistant A(H1N1)pdm09 viruses in Norway in the 2016‐17 season, found as part of the routine surveillance. Methods Influenza H1N1 viruses were analysed for antiviral resistance by pyrosequencing, neuraminidase susceptibility assay and by Sanger sequencing of the HA and NA genes. Results During the 2015‐16 influenza season, 3% of all A(H1N1)pdm09 viruses screened for resistance in Norway were resistant to oseltamivir, possessing the H275Y substitution in the neuraminidase protein. In comparison, the overall frequency in Europe was 0.87%. Out of these, 37% (n = 10) were reported from Norway. Most cases in Norway were not related to antiviral treatment, and the cases were from several different locations of southern Norway. Genetic analysis revealed that resistant virus emerged independently on several occasions and that there was some spread of oseltamivir‐resistant influenza A(H1N1)6B.1 viruses in the community, characterised by a N370S substitution in the haemagglutinin and T48I in the neuraminidase. Conclusions Our findings emphasise the importance of antiviral resistance surveillance in the community, not only in immunocompromised patients or other patients undergoing antiviral treatment.
Collapse
Affiliation(s)
- Karoline Bragstad
- Department of Influenza, Norwegian Institute of Public Health, Oslo, Norway
| | - Olav Hungnes
- Department of Influenza, Norwegian Institute of Public Health, Oslo, Norway
| | - Irene Litleskare
- Department of Drug Statistics, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Dagny H Dorenberg
- Department of Influenza, Norwegian Institute of Public Health, Oslo, Norway
| | - Siri H Hauge
- Department of Influenza, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
29
|
McAuley JL, Gilbertson BP, Trifkovic S, Brown LE, McKimm-Breschkin JL. Influenza Virus Neuraminidase Structure and Functions. Front Microbiol 2019; 10:39. [PMID: 30761095 PMCID: PMC6362415 DOI: 10.3389/fmicb.2019.00039] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/10/2019] [Indexed: 12/31/2022] Open
Abstract
With the constant threat of emergence of a novel influenza virus pandemic, there must be continued evaluation of the molecular mechanisms that contribute to virulence. Although the influenza A virus surface glycoprotein neuraminidase (NA) has been studied mainly in the context of its role in viral release from cells, accumulating evidence suggests it plays an important, multifunctional role in virus infection and fitness. This review investigates the various structural features of NA, linking these with functional outcomes in viral replication. The contribution of evolving NA activity to viral attachment, entry and release of virions from infected cells, and maintenance of functional balance with the viral hemagglutinin are also discussed. Greater insight into the role of this important antiviral drug target is warranted.
Collapse
Affiliation(s)
- Julie L McAuley
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Brad P Gilbertson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sanja Trifkovic
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, United States
| | - Lorena E Brown
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jennifer L McKimm-Breschkin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Chong Y, Matsumoto S, Kang D, Ikematsu H. Consecutive influenza surveillance of neuraminidase mutations and neuraminidase inhibitor resistance in Japan. Influenza Other Respir Viruses 2018; 13:115-122. [PMID: 30548432 PMCID: PMC6379637 DOI: 10.1111/irv.12624] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 01/07/2023] Open
Abstract
Background The large consumption of neuraminidase inhibitors (NAIs) for the treatment of influenza virus infections places Japan at risk of becoming the epicenter of the global spread of NAI‐resistant viruses. Objective To clarify NA amino acid mutations of epidemic influenza viruses in Japan and their related NAI resistance. Methods A total of 1791 samples, including 396 A/H1N1pdm09, 1117 A/H3N2, and 278 B isolates, were collected to determine of their 50% inhibitory concentration (IC50) values by NAIs (oseltamivir, zanamivir, peramivir, and laninamivir) during the Japanese seasons from 2011‐2012 to 2016‐2017. Then, 380 samples including 49 A/H1N1pdm09, 251 A/H3N2, and 80 B isolates were sequenced for the entire NA genes. Results Neuraminidase inhibitor‐resistant A/H1N1pdm09 viruses were detected at a frequency of 1.3% (5/396 isolates) in the epidemic seasons. None of the A/H3N2 and B viruses developed resistance to any of the four NAIs during the six seasons. Only five and 13 AA mutations were detected in the NA catalytic sites of A/H1N1pdm09 and A/H3N2 viruses, respectively. No mutations were observed in the catalytic sites of B viruses. Four of the five mutations in the catalytic sites of A/H1N1pdm09 consisted of H275Y, which was related to high resistance to oseltamivir and peramivir. Most (10/13) of the catalytic site mutations in A/H3N2 were associated with MDCK‐passaged induction (D151G/N). Finally, no mutations related to substantial NAI resistance were detected in the A/H3N2 and B viruses examined. Conclusion These findings suggest that the NA catalytic sites of influenza viruses are well preserved. Even in Japan, no spread of NAI‐resistant viruses has been observed, and A/H1N1pdm09 viruses carrying H275Y remain limited.
Collapse
Affiliation(s)
- Yong Chong
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shinya Matsumoto
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan.,Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
31
|
Leneva IA, Falynskova IN, Makhmudova NR, Poromov AA, Yatsyshina SB, Maleev VV. Umifenovir susceptibility monitoring and characterization of influenza viruses isolated during ARBITR clinical study. J Med Virol 2018; 91:588-597. [DOI: 10.1002/jmv.25358] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/06/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Irina A. Leneva
- Department of Experimental Virology, I. Mechnikov Research Institute for Vaccines and Sera; Moscow Russia
| | - Irina N. Falynskova
- Department of Experimental Virology, I. Mechnikov Research Institute for Vaccines and Sera; Moscow Russia
| | - Nailya R. Makhmudova
- Department of Experimental Virology, I. Mechnikov Research Institute for Vaccines and Sera; Moscow Russia
| | - Artem A. Poromov
- Department of Experimental Virology, I. Mechnikov Research Institute for Vaccines and Sera; Moscow Russia
- Department of General Ecology, Lomonosov Moscow State University; Moscow Russia
| | - Svetlana B. Yatsyshina
- Department of Molecular Diagnostic and Epidemiology, Central Research Institute for Epidemiology; Moscow Russia
| | - Viktor V. Maleev
- Department of Molecular Diagnostic and Epidemiology, Central Research Institute for Epidemiology; Moscow Russia
| |
Collapse
|
32
|
Dai X, Li N, Roller RJ. Peroxiredoxin 1 protein interacts with influenza virus ribonucleoproteins and is required for efficient virus replication. Vaccine 2018; 36:4540-4547. [PMID: 29921490 DOI: 10.1016/j.vaccine.2018.05.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022]
Abstract
Cellular proteins that support influenza virus infection represent potential therapeutic targets. Cytoplasmic egress intermediates of influenza A/WSN/33 were isolated and shown to be associated with the cellular enzymes peroxiredoxins-1 (Prdx-1) during glycerol gradient fractionation. Prdx-1 also co-localizes with influenza NP at the cell periphery late in infection. Knock-down or knockout of Prdx-1 expression inhibit influenza A replication. Inhibition of replication is not correlated with defects in initiation of infection or mRNA expression, but is correlated with inhibition of accumulation of viral proteins and vRNAs.
Collapse
Affiliation(s)
- Xiaoxia Dai
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, PR China.
| | - Na Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Richard J Roller
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
33
|
Huang W, Cheng Y, Li X, Tan M, Wei H, Zhao X, Xiao N, Dong J, Wang D. Neuraminidase inhibitor susceptibility profile of human influenza viruses during the 2016-2017 influenza season in Mainland China. J Infect Chemother 2018; 24:729-733. [PMID: 29866491 DOI: 10.1016/j.jiac.2018.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/13/2018] [Accepted: 05/08/2018] [Indexed: 01/27/2023]
Abstract
To understand the current situation of antiviral-resistance of influenza viruses to neuraminidase inhibitors (NAIs) in Mainland China, The antiviral-resistant surveillance data of the circulating influenza viruses in Mainland China during the 2016-2017 influenza season were analyzed. The total 3215 influenza viruses were studied to determine 50% inhibitory concentration (IC50) for oseltamivir and zanamivir using a fluorescence-based assay. Approximately 0.3% (n = 10) of viruses showed either highly reduced inhibition (HRI) or reduced inhibition (RI) against at least one NAI. The most common neuraminidase (NA) amino acid substitution was H275Y in A (H1N1)pdm09 virus, which confers HRI by oseltamivir. Two A (H1N1)pdm09 viruses contained a new NA amino acid substitution respectively, S110F and D151E, which confers RI by oseltamivir or/and zanamivir. Two B/Victoria-lineage viruses harbored a new NA amino acid substitution respectively, H134Q and S246P, which confers RI by zanamivir. One B/Victoria-lineage virus contained dual amino acid substitution NA P124T and V422I, which confers HRI by zanamivir. One B/Yamagata-lineage virus was a reassortant virus that haemagglutinin (HA) from B/Yamagata-lineage virus and NA from B/Victoria-lineage virus, defined as B/Yamagata-lineage virus confers RI by oseltamivir, but as B/Victoria-lineage virus confers normal inhibition by oseltamivir. All new substitutions that have not been reported before, the correlation of these substitutions and observed changes in IC50 should be further assessed. During the 2016-2017 influenza season in Mainland China the majority tested viruses were susceptible to oseltamivir and zanamivir. Hence, NAIs remain the recommended antiviral for treatment and prophylaxis of influenza virus infections.
Collapse
Affiliation(s)
- Weijuan Huang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing, 102206, PR China
| | - Yanhui Cheng
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing, 102206, PR China
| | - Xiyan Li
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing, 102206, PR China
| | - Minju Tan
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing, 102206, PR China
| | - Hejiang Wei
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing, 102206, PR China
| | - Xiang Zhao
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing, 102206, PR China
| | - Ning Xiao
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing, 102206, PR China
| | - Jie Dong
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing, 102206, PR China
| | - Dayan Wang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing, 102206, PR China.
| |
Collapse
|
34
|
Matos AR, Resende PC, Miranda MD, Garcia CC, Caetano BC, Lopes JC, Debur MC, Cury AL, Vianna LA, Lima MC, Schirmer M, Gubareva L, Hurt AC, Brown DW, Siqueira MM. Susceptibility of Brazilian influenza A(H1N1)pdm09 viruses to neuraminidase inhibitors in the 2014–2016 seasons: Identification of strains bearing mutations associated with reduced inhibition profile. Antiviral Res 2018; 154:35-43. [DOI: 10.1016/j.antiviral.2018.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/20/2018] [Accepted: 03/26/2018] [Indexed: 10/17/2022]
|
35
|
Makau JN, Watanabe K, Mohammed MMD, Nishida N. Antiviral Activity of Peanut (Arachis hypogaea L.) Skin Extract Against Human Influenza Viruses. J Med Food 2018; 21:777-784. [PMID: 29847745 DOI: 10.1089/jmf.2017.4121] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The high propensity of influenza viruses to develop resistance to antiviral drugs necessitates the continuing search for new therapeutics. Peanut skins, which are low-value byproducts of the peanut industry, are known to contain high levels of polyphenols. In this study, we investigated the antiviral activity of ethanol extracts of peanut skins against various influenza viruses using cell-based assays. Extracts with a higher polyphenol content exhibited higher antiviral activities, suggesting that the active components are the polyphenols. An extract prepared from roasted peanut skins effectively inhibited the replication of influenza virus A/WSN/33 with a half maximal inhibitory concentration of 1.3 μg/mL. Plaque assay results suggested that the extract inhibits the early replication stages of the influenza virus. It demonstrated activity against both influenza type A and type B viruses. Notably, the extract exhibited a potent activity against a clinical isolate of the 2009 H1N1 pandemic, which had reduced sensitivity to oseltamivir. Moreover, a combination of peanut skin extract with the anti-influenza drugs, oseltamivir and amantadine, synergistically increased their antiviral activity. These data demonstrate the potential application of peanut skin extract in the development of new therapeutic options for influenza management.
Collapse
Affiliation(s)
- Juliann Nzembi Makau
- 1 Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University , Nagasaki, Japan
| | - Ken Watanabe
- 1 Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University , Nagasaki, Japan
| | | | - Noriyuki Nishida
- 1 Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University , Nagasaki, Japan
| |
Collapse
|
36
|
Ikematsu H, Kawai N, Iwaki N, Kashiwagi S, Ishikawa Y, Yamaguchi H, Shiosakai K. In vitro neuraminidase inhibitory concentration (IC 50) of four neuraminidase inhibitors in the Japanese 2016-17 season: Comparison with the 2010-11 to 2015-16 seasons. J Infect Chemother 2018; 24:707-712. [PMID: 29759897 DOI: 10.1016/j.jiac.2018.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/09/2018] [Accepted: 04/12/2018] [Indexed: 10/16/2022]
Abstract
To assess the extent of susceptibility to the four most commonly used neuraminidase inhibitors (NAIs) in the viruses epidemic in the 2016-17 Japanese influenza season, we measured the 50% inhibitory concentration (IC50) of these NAIs for influenza virus isolates from patients and compared them with the results from the 2010-11 to 2015-16 seasons. Viral isolation was done with specimens obtained prior to treatment, and the type and subtype was determined by RT-PCR using type- and subtype-specific primers. The IC50 was determined by a neuraminidase inhibition assay using a fluorescent substrate. A total of 276 virus isolates, 6 A (H1N1)pdm09 (2.2%), 249 A (H3N2) (90.2%), and 21 B (7.6%), had the IC50 measured for the four NAIs. B isolates included 11 (52.4%), 9 (42.9%), and one (4.8%) of the Victoria, Yamagata, and undetermined strains, respectively. No A (H1N1)pdm09 with highly reduced sensitivity for oseltamivir was found in the 2016-17 season. No isolate with highly reduced sensitivity to the four NAIs have been found for A (H3N2) or B from the 2010-11 to 2016-17 seasons. No significant trend of increase or decrease was found in the geometric mean IC50s of the four NAIs during the seven studied seasons. These results indicate that the sensitivity to the four commonly used NAIs has been maintained and that any change in the effectiveness of these NAIs would be minute. Common usage of NAIs for patient treatment has not been a driving force in the selection of NAI resistant viruses.
Collapse
|
37
|
Cowling BJ, Chui CSL, Lim WW, Wu P, Hui CKM, Peiris JSM, Chan EW. Use of influenza antivirals in patients hospitalized in Hong Kong, 2000-2015. PLoS One 2018; 13:e0190306. [PMID: 29351330 PMCID: PMC5774686 DOI: 10.1371/journal.pone.0190306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/12/2017] [Indexed: 12/20/2022] Open
Abstract
Objectives We aimed to describe patterns in the usage of antivirals to treat influenza virus infection in hospitals in Hong Kong from 2000 through 2015. Methods We analyzed centralized electronic health records that included dispensation information and diagnosis codes. Information collected on admissions included patient age, sex, admission year and month, and medications dispensed, and were matched with the first 15 discharge diagnosis codes. We divided monthly admission episodes by relevant population denominators to obtain admission rates, and stratified analyses by drug type, age group, and diagnosis codes. Results Amantadine was used for influenza treatment in the early 2000s but changed with recommendations to avoid its use in 2006, and is now mainly used to treat Parkinson’s disease. Oseltamivir usage increased substantially in 2009 and is now commonly used, with almost 40,000 hospitalizations treated with oseltamivir in the years 2012 through 2015, 66% of which was in persons ≥65 years of age. During the entire study period, of the 98,253 admission episodes in which oseltamivir was dispensed, 40,698 (41%) included a diagnosis code for influenza, and 80,283 (82%) included any diagnosis code for respiratory illness. Conclusions The amount of oseltamivir used from 2012–15 was comparable to a separate ecological estimate of around 13,000 influenza-associated hospitalizations per year on average. We did not have access to individual patient laboratory testing data.
Collapse
Affiliation(s)
- Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Celine S L Chui
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wey Wen Lim
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Peng Wu
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Christopher K M Hui
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - J S Malik Peiris
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Centre of Influenza Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Esther W Chan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
38
|
Han J, Perez J, Schafer A, Cheng H, Peet N, Rong L, Manicassamy B. Influenza Virus: Small Molecule Therapeutics and Mechanisms of Antiviral Resistance. Curr Med Chem 2018; 25:5115-5127. [PMID: 28933281 PMCID: PMC8735713 DOI: 10.2174/0929867324666170920165926] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 03/09/2017] [Accepted: 05/26/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Influenza viruses cause severe upper respiratory illness in children and the elderly during seasonal epidemics. Influenza viruses from zoonotic reservoirs can also cause pandemics with significant loss of life in all age groups. Although vaccination is one of the most effective methods to protect against seasonal epidemics, seasonal vaccines vary in efficacy, can be ineffective in the elderly population, and do not provide protection against novel strains. Small molecule therapeutics are a critical part of our antiviral strategies to control influenza virus epidemics and pandemics as well as to ameliorate disease in elderly and immunocompromised individuals. OBJECTIVE This review aims to summarize the existing antiviral strategies for combating influenza viruses, the mechanisms of antiviral resistance for available drugs, and novel therapeutics currently in development. METHODS We systematically evaluated and synthesized the published scientific literature for mechanistic detail into therapeutic strategies against influenza viruses. RESULTS Current IAV strains have developed resistance to neuraminidase inhibitors and nearly complete resistance to M2 ion channel inhibitors, exacerbated by sub-therapeutic dosing used for treatment and chemoprophylaxis. New tactics include novel therapeutics targeting host components and combination therapy, which show potential for fighting influenza virus disease while minimizing viral resistance. CONCLUSION Antiviral drugs are crucial for controlling influenza virus disease burden, but their efficacy is limited by human misuse and the capacity of influenza viruses to circumvent antiviral barriers. To relieve the public health hardship of influenza virus, emerging therapies must be selected for their capacity to impede not only influenza virus disease, but also the development of antiviral resistance.
Collapse
Affiliation(s)
- Julianna Han
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jasmine Perez
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Adam Schafer
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Han Cheng
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Balaji Manicassamy
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
39
|
McKimm-Breschkin JL, Jiang S, Hui DS, Beigel JH, Govorkova EA, Lee N. Prevention and treatment of respiratory viral infections: Presentations on antivirals, traditional therapies and host-directed interventions at the 5th ISIRV Antiviral Group conference. Antiviral Res 2018; 149:118-142. [PMID: 29162476 PMCID: PMC7133686 DOI: 10.1016/j.antiviral.2017.11.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
The International Society for Influenza and other Respiratory Virus Diseases held its 5th Antiviral Group (isirv-AVG) Conference in Shanghai, China, in conjunction with the Shanghai Public Health Center and Fudan University from 14-16 June 2017. The three-day programme encompassed presentations on some of the clinical features, management, immune responses and virology of respiratory infections, including influenza A(H1N1)pdm09 and A(H7N9) viruses, MERS-CoV, SARS-CoV, adenovirus Type 80, enterovirus D68, metapneumovirus and respiratory syncytial virus (RSV). Updates were presented on several therapeutics currently in clinical trials, including influenza polymerase inhibitors pimodivir/JNJ6362387, S033188, favipiravir, monoclonal antibodies MHAA45449A and VIS410, and host directed strategies for influenza including nitazoxanide, and polymerase ALS-008112 and fusion inhibitors AK0529, GS-5806 for RSV. Updates were also given on the use of the currently licensed neuraminidase inhibitors. Given the location in China, there were also presentations on the use of Traditional Chinese Medicines. Following on from the previous conference, there were ongoing discussions on appropriate endpoints for severe influenza in clinical trials from regulators and clinicians, an issue which remains unresolved. The aim of this conference summary is to provide information for not only conference participants, but a detailed referenced review of the current status of clinical trials, and pre-clinical development of therapeutics and vaccines for influenza and other respiratory diseases for a broader audience.
Collapse
Affiliation(s)
| | - Shibo Jiang
- College of Basic Medical Sciences, Fudan University, Shanghai, China; Lindsley F. Kimball Research Institute, New York Blood Center, NY, USA
| | - David S Hui
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - John H Beigel
- Leidos Biomedical Research, Inc., Support to National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Elena A Govorkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, USA
| | - Nelson Lee
- Faculty of Medicine and Dentistry, University of Alberta, Canada
| |
Collapse
|
40
|
Gubareva LV, Fallows E, Mishin VP, Hodges E, Brooks A, Barnes J, Fry AM, Kramp W, Shively R, Wentworth DE, Weidemaier K, Jacobson R. Monitoring influenza virus susceptibility to oseltamivir using a new rapid assay, iART. ACTA ACUST UNITED AC 2017; 22:30529. [PMID: 28494845 PMCID: PMC5434880 DOI: 10.2807/1560-7917.es.2017.22.18.30529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/04/2017] [Indexed: 12/21/2022]
Abstract
A new rapid assay for detecting oseltamivir resistance in influenza virus, iART, was used to test 149 clinical specimens. Results were obtained for 132, with iART indicating 41 as ‘resistant’. For these, sequence analysis found known and suspected markers of oseltamivir resistance, while no such markers were detected for the remaining 91 samples. Viruses isolated from the 41 specimens showed reduced or highly reduced inhibition by neuraminidase inhibition assay. iART may facilitate broader antiviral resistance testing.
Collapse
Affiliation(s)
- Larisa V Gubareva
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Eric Fallows
- Becton Dickinson, Research Triangle Park, North Carolina, United States
| | - Vasiliy P Mishin
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Erin Hodges
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Abdullah Brooks
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States.,International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - John Barnes
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Alicia M Fry
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - William Kramp
- Biomedical Advanced Research and Development Authority (BARDA), Washington DC, United States
| | - Roxanne Shively
- Biomedical Advanced Research and Development Authority (BARDA), Washington DC, United States
| | - David E Wentworth
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | | | - Ross Jacobson
- Becton Dickinson, Research Triangle Park, North Carolina, United States
| |
Collapse
|
41
|
Abstract
Influenza is an acute respiratory illness, caused by influenza A, B, and C viruses, that occurs in local outbreaks or seasonal epidemics. Clinical illness follows a short incubation period and presentation ranges from asymptomatic to fulminant, depending on the characteristics of both the virus and the individual host. Influenza A viruses can also cause sporadic infections or spread worldwide in a pandemic when novel strains emerge in the human population from an animal host. New approaches to influenza prevention and treatment for management of both seasonal influenza epidemics and pandemics are desirable. In this Seminar, we discuss the clinical presentation, transmission, diagnosis, management, and prevention of seasonal influenza infection. We also review the animal-human interface of influenza, with a focus on current pandemic threats.
Collapse
Affiliation(s)
- Catharine Paules
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
42
|
Gubareva LV, Besselaar TG, Daniels RS, Fry A, Gregory V, Huang W, Hurt AC, Jorquera PA, Lackenby A, Leang SK, Lo J, Pereyaslov D, Rebelo-de-Andrade H, Siqueira MM, Takashita E, Odagiri T, Wang D, Zhang W, Meijer A. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2015-2016. Antiviral Res 2017; 146:12-20. [PMID: 28802866 PMCID: PMC5667636 DOI: 10.1016/j.antiviral.2017.08.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/25/2017] [Accepted: 08/08/2017] [Indexed: 01/26/2023]
Abstract
Four World Health Organization (WHO) Collaborating Centres for Reference and Research on Influenza and one WHO Collaborating Centre for the Surveillance, Epidemiology and Control of Influenza (WHO CCs) assessed antiviral susceptibility of 14,330 influenza A and B viruses collected by WHO-recognized National Influenza Centres (NICs) between May 2015 and May 2016. Neuraminidase (NA) inhibition assay was used to determine 50% inhibitory concentration (IC50) data for NA inhibitors (NAIs) oseltamivir, zanamivir, peramivir and laninamivir. Furthermore, NA sequences from 13,484 influenza viruses were retrieved from public sequence databases and screened for amino acid substitutions (AAS) associated with reduced inhibition (RI) or highly reduced inhibition (HRI) by NAIs. Of the viruses tested by WHO CCs 93% were from three WHO regions: Western Pacific, the Americas and Europe. Approximately 0.8% (n = 113) exhibited either RI or HRI by at least one of four NAIs. As in previous seasons, the most common NA AAS was H275Y in A(H1N1)pdm09 viruses, which confers HRI by oseltamivir and peramivir. Two A(H1N1)pdm09 viruses carried a rare NA AAS, S247R, shown in this study to confer RI/HRI by the four NAIs. The overall frequency of A(H1N1)pdm09 viruses containing NA AAS associated with RI/HRI was approximately 1.8% (125/6915), which is slightly higher than in the previous 2014-15 season (0.5%). Three B/Victoria-lineage viruses contained a new AAS, NA H134N, which conferred HRI by zanamivir and laninamivir, and borderline HRI by peramivir. A single B/Victoria-lineage virus harboured NA G104E, which was associated with HRI by all four NAIs. The overall frequency of RI/HRI phenotype among type B viruses was approximately 0.6% (43/7677), which is lower than that in the previous season. Overall, the vast majority (>99%) of the viruses tested by WHO CCs were susceptible to all four NAIs, showing normal inhibition (NI). Hence, NAIs remain the recommended antivirals for treatment of influenza virus infections. Nevertheless, our data indicate that it is prudent to continue drug susceptibility monitoring using both NAI assay and sequence analysis. A total of 14,330 influenza viruses were collected worldwide, May 2015–May 2016. Approximately 0.8% showed reduced inhibition by at least one NA inhibitor. The frequency of viruses with reduced inhibition was slightly higher than in 2014–15 (0.5%). NA inhibitors remain an appropriate choice for influenza treatment. Global surveillance of influenza antiviral susceptibility should be continued.
Collapse
Affiliation(s)
- Larisa V Gubareva
- WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza, Centers for Disease Control and Prevention (CDC), 1600 Clifton RD NE, MS-G16, Atlanta, GA, 30329, United States.
| | - Terry G Besselaar
- Global Influenza Programme, World Health Organization, Avenue Appia 20, 1211 Geneva 27, Switzerland
| | - Rod S Daniels
- The Francis Crick Institute, Worldwide Influenza Centre (WIC), WHO Collaborating Centre for Reference and Research on Influenza, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Alicia Fry
- WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza, Centers for Disease Control and Prevention (CDC), 1600 Clifton RD NE, MS-G16, Atlanta, GA, 30329, United States
| | - Vicki Gregory
- The Francis Crick Institute, Worldwide Influenza Centre (WIC), WHO Collaborating Centre for Reference and Research on Influenza, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Weijuan Huang
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Centre for Diagnosis and Treatment of Infectious Diseases, China CDC, Beijing, China
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, At the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia; Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Patricia A Jorquera
- WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza, Centers for Disease Control and Prevention (CDC), 1600 Clifton RD NE, MS-G16, Atlanta, GA, 30329, United States
| | - Angie Lackenby
- National Infection Service, Public Health England, London, NW9 5HT, United Kingdom
| | - Sook-Kwan Leang
- WHO Collaborating Centre for Reference and Research on Influenza, At the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Janice Lo
- Public Health Laboratory Centre, 382 Nam Cheong Street, Hong Kong, China
| | - Dmitriy Pereyaslov
- Division of Health Emergencies and Communicable Diseases, World Health Organization Regional Office for Europe, UN City, Marmorvej 51, DK-2100, Copenhagen, Denmark
| | - Helena Rebelo-de-Andrade
- Influenza Pathogenesis and Antiviral Resistance Laboratory, National Institute of Health, Av. Padre Cruz, 1649-016, Lisboa, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Av. Prof Gama Pinto, 1649-016, Lisboa, Portugal
| | - Marilda M Siqueira
- National Influenza Center, Laboratorio de Virus Respiratorios, Oswaldo Cruz Institute/FIOCRUZ, Rio de Janeiro, Brazil
| | - Emi Takashita
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo, 208-0011, Japan
| | - Takato Odagiri
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo, 208-0011, Japan
| | - Dayan Wang
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Centre for Diagnosis and Treatment of Infectious Diseases, China CDC, Beijing, China
| | - Wenqing Zhang
- Global Influenza Programme, World Health Organization, Avenue Appia 20, 1211 Geneva 27, Switzerland
| | - Adam Meijer
- National Institute for Public Health and the Environment, PO Box 1, 3720 BA, Bilthoven, The Netherlands
| |
Collapse
|
43
|
Farrukee R, Hurt AC. Antiviral Drugs for the Treatment and Prevention of Influenza. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2017. [DOI: 10.1007/s40506-017-0129-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Nakamura K, Shirakura M, Fujisaki S, Kishida N, Burke DF, Smith DJ, Kuwahara T, Takashita E, Takayama I, Nakauchi M, Chadha M, Potdar V, Bhushan A, Upadhyay BP, Shakya G, Odagiri T, Kageyama T, Watanabe S. Characterization of influenza A(H1N1)pdm09 viruses isolated from Nepalese and Indian outbreak patients in early 2015. Influenza Other Respir Viruses 2017; 11:399-403. [PMID: 28792671 PMCID: PMC5596518 DOI: 10.1111/irv.12469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2017] [Indexed: 12/03/2022] Open
Abstract
We characterized influenza A(H1N1)pdm09 isolates from large‐scale outbreaks that occurred in Nepal and India in early 2015. Although no specific viral features, which may have caused the outbreaks, were identified, an S84N substitution in hemagglutinin was frequently observed. Chronological phylogenetic analysis revealed that these Nepalese and Indian viruses possessing the S84N substitution constitute potential ancestors of the novel genetic subclade 6B.1 virus that spread globally in the following (2015/16) influenza season. Thus, active surveillance of circulating influenza viruses in the Southern Asia region, including Nepal and India, would be beneficial for detecting novel variant viruses prior to their worldwide spread.
Collapse
Affiliation(s)
- Kazuya Nakamura
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Shirakura
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Seiichiro Fujisaki
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriko Kishida
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - David F Burke
- Center for Pathogen Evolution, University of Cambridge, Cambridge, UK
| | - Derek J Smith
- Center for Pathogen Evolution, University of Cambridge, Cambridge, UK
| | - Tomoko Kuwahara
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Emi Takashita
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ikuyo Takayama
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mina Nakauchi
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mandeep Chadha
- Influenza group, National Institute of Virology, Indian Council of Medical Research, Pune, India
| | - Varsha Potdar
- Influenza group, National Institute of Virology, Indian Council of Medical Research, Pune, India
| | - Arvind Bhushan
- Influenza group, National Institute of Virology, Indian Council of Medical Research, Pune, India
| | | | - Geeta Shakya
- Department of Health Services, National Public Health Laboratory, Kathmandu, Nepal
| | - Takato Odagiri
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsutomu Kageyama
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinji Watanabe
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
45
|
Ho BS, Chao KM. Data-driven interdisciplinary mathematical modelling quantitatively unveils competition dynamics of co-circulating influenza strains. J Transl Med 2017; 15:163. [PMID: 28754164 PMCID: PMC5534049 DOI: 10.1186/s12967-017-1269-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/20/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Co-circulation of influenza strains is common to seasonal epidemics and pandemic emergence. Competition was considered involved in the vicissitudes of co-circulating influenza strains but never quantitatively studied at the human population level. The main purpose of the study was to explore the competition dynamics of co-circulating influenza strains in a quantitative way. METHODS We constructed a heterogeneous dynamic transmission model and ran the model to fit the weekly A/H1N1 influenza virus isolation rate through an influenza season. The construction process started on the 2007-2008 single-clade influenza season and, with the contribution from the clade-based A/H1N1 epidemiological curves, advanced to the 2008-2009 two-clade influenza season. Pearson method was used to estimate the correlation coefficient between the simulated epidemic curve and the observed weekly A/H1N1 influenza virus isolation rate curve. RESULTS The model found the potentially best-fit simulation with correlation coefficient up to 96% and all the successful simulations converging to the best-fit. The annual effective reproductive number of each co-circulating influenza strain was estimated. We found that, during the 2008-2009 influenza season, the annual effective reproductive number of the succeeding A/H1N1 clade 2B-2, carrying H275Y mutation in the neuraminidase, was estimated around 1.65. As to the preceding A/H1N1 clade 2C-2, the annual effective reproductive number would originally be equivalent to 1.65 but finally took on around 0.75 after the emergence of clade 2B-2. The model reported that clade 2B-2 outcompeted for the 2008-2009 influenza season mainly because clade 2C-2 suffered from a reduction of transmission fitness of around 71% on encountering the former. CONCLUSIONS We conclude that interdisciplinary data-driven mathematical modelling could bring to light the transmission dynamics of the A/H1N1 H275Y strains during the 2007-2009 influenza seasons worldwide and may inspire us to tackle the continually emerging drug-resistant A/H1N1pdm09 strains. Furthermore, we provide a prospective approach through mathematical modelling to solving a seemingly unintelligible problem at the human population level and look forward to its application at molecular level through bridging the resolution capacities of related disciplines.
Collapse
Affiliation(s)
- Bin-Shenq Ho
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, ROC.,Public Health Bureau, Hsinchu, Taiwan, ROC.,Taiwan Centers for Disease Control, Taipei, Taiwan, ROC
| | - Kun-Mao Chao
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, ROC. .,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
46
|
Hussain M, Galvin HD, Haw TY, Nutsford AN, Husain M. Drug resistance in influenza A virus: the epidemiology and management. Infect Drug Resist 2017; 10:121-134. [PMID: 28458567 PMCID: PMC5404498 DOI: 10.2147/idr.s105473] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Influenza A virus (IAV) is the sole cause of the unpredictable influenza pandemics and deadly zoonotic outbreaks and constitutes at least half of the cause of regular annual influenza epidemics in humans. Two classes of anti-IAV drugs, adamantanes and neuraminidase (NA) inhibitors (NAIs) targeting the viral components M2 ion channel and NA, respectively, have been approved to treat IAV infections. However, IAV rapidly acquired resistance against both classes of drugs by mutating these viral components. The adamantane-resistant IAV has established itself in nature, and a majority of the IAV subtypes, especially the most common H1N1 and H3N2, circulating globally are resistant to adamantanes. Consequently, adamantanes have become practically obsolete as anti-IAV drugs. Similarly, up to 100% of the globally circulating IAV H1N1 subtypes were resistant to oseltamivir, the most commonly used NAI, until 2009. However, the 2009 pandemic IAV H1N1 subtype, which was sensitive to NAIs and has now become one of the dominant seasonal influenza virus strains, has replaced the pre-2009 oseltamivir-resistant H1N1 variants. This review traces the epidemiology of both adamantane- and NAI-resistant IAV subtypes since the approval of these drugs and highlights the susceptibility status of currently circulating IAV subtypes to NAIs. Further, it provides an overview of currently and soon to be available control measures to manage current and emerging drug-resistant IAV. Finally, this review outlines the research directions that should be undertaken to manage the circulation of IAV in intermediate hosts and develop effective and alternative anti-IAV therapies.
Collapse
Affiliation(s)
- Mazhar Hussain
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Henry D Galvin
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Tatt Y Haw
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Ashley N Nutsford
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Matloob Husain
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
47
|
Leang SK, Hurt AC. Fluorescence-based Neuraminidase Inhibition Assay to Assess the Susceptibility of Influenza Viruses to The Neuraminidase Inhibitor Class of Antivirals. J Vis Exp 2017. [PMID: 28448045 PMCID: PMC5564701 DOI: 10.3791/55570] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The neuraminidase (NA) inhibitors are the only class of antivirals approved for the treatment and prophylaxis of influenza that are effective against currently circulating strains. In addition to their use in treating seasonal influenza, the NA inhibitors have been stockpiled by a number of countries for use in the event of a pandemic. It is therefore important to monitor the susceptibility of circulating influenza viruses to this class of antivirals. There are different types of assays that can be used to assess the susceptibility of influenza viruses to the NA inhibitors, but the enzyme inhibition assays using either a fluorescent substrate or a chemiluminescent substrate are the most widely used and recommended. This protocol describes the use of a fluorescence-based assay to assess influenza virus susceptibility to NA inhibitors. The assay is based on the NA enzyme cleaving the 2′-(4-Methylumbelliferyl)-α-D-N-acetylneuraminic acid (MUNANA) substrate to release the fluorescent product 4-methylumbelliferone (4-MU). Therefore, the inhibitory effect of an NA inhibitor on the influenza virus NA is determined based on the concentration of the NA inhibitor that is required to reduce 50% of the NA activity, given as an IC50 value.
Collapse
Affiliation(s)
- Sook-Kwan Leang
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity;
| |
Collapse
|
48
|
Takashita E, Fujisaki S, Shirakura M, Nakamura K, Kishida N, Kuwahara T, Shimazu Y, Shimomura T, Watanabe S, Odagiri T. Influenza A(H1N1)pdm09 virus exhibiting enhanced cross-resistance to oseltamivir and peramivir due to a dual H275Y/G147R substitution, Japan, March 2016. ACTA ACUST UNITED AC 2017; 21:30258. [PMID: 27336226 DOI: 10.2807/1560-7917.es.2016.21.24.30258] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022]
Abstract
An influenza A(H1N1)pdm09 virus carrying a G147R substitution in combination with an H275Y substitution in the neuraminidase protein, which confers cross-resistance to oseltamivir and peramivir, was detected from an immunocompromised inpatient in Japan, March 2016. This dual H275Y/G147R mutant virus exhibited enhanced cross-resistance to both drugs compared with the single H275Y mutant virus and reduced susceptibility to zanamivir, although it showed normal inhibition by laninamivir.
Collapse
Affiliation(s)
- Emi Takashita
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Makau JN, Watanabe K, Ishikawa T, Mizuta S, Hamada T, Kobayashi N, Nishida N. Identification of small molecule inhibitors for influenza a virus using in silico and in vitro approaches. PLoS One 2017; 12:e0173582. [PMID: 28273150 PMCID: PMC5342234 DOI: 10.1371/journal.pone.0173582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/22/2017] [Indexed: 01/23/2023] Open
Abstract
Influenza viruses have acquired resistance to approved neuraminidase-targeting drugs, increasing the need for new drug targets for the development of novel anti-influenza drugs. Nucleoprotein (NP) is an attractive target since it has an indispensable role in virus replication and its amino acid sequence is well conserved. In this study, we aimed to identify new inhibitors of the NP using a structure-based drug discovery algorithm, named Nagasaki University Docking Engine (NUDE), which has been established especially for the Destination for GPU Intensive Machine (DEGIMA) supercomputer. The hit compounds that showed high binding scores during in silico screening were subsequently evaluated for anti-influenza virus effects using a cell-based assay. A 4-hydroxyquinolinone compound, designated as NUD-1, was found to inhibit the replication of influenza virus in cultured cells. Analysis of binding between NUD-1 and NP using surface plasmon resonance assay and fragment molecular orbital calculations confirmed that NUD-1 binds to NP and could interfere with NP-NP interactions essential for virus replication. Time-of-addition experiments showed that the compound inhibited the mid-stage of infection, corresponding to assembly of the NP and other viral proteins. Moreover, NUD-1 was also effective against various types of influenza A viruses including a clinical isolate of A(H1N1)pdm09 influenza with a 50% inhibitory concentration range of 1.8-2.1 μM. Our data demonstrate that the combined use of NUDE system followed by the cell-based assay is useful to obtain lead compounds for the development of novel anti-influenza drugs.
Collapse
Affiliation(s)
- Juliann Nzembi Makau
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto, Nagasaki, Japan
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Ken Watanabe
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Takeshi Ishikawa
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Satoshi Mizuta
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Tsuyoshi Hamada
- Nagasaki Advanced Computing Center, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
| | - Nobuyuki Kobayashi
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto, Nagasaki, Japan
| |
Collapse
|
50
|
Hibino A, Kondo H, Masaki H, Tanabe Y, Sato I, Takemae N, Saito T, Zaraket H, Saito R. Community- and hospital-acquired infections with oseltamivir- and peramivir-resistant influenza A(H1N1)pdm09 viruses during the 2015-2016 season in Japan. Virus Genes 2017; 53:89-94. [PMID: 27714496 PMCID: PMC5306182 DOI: 10.1007/s11262-016-1396-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/28/2016] [Indexed: 11/20/2022]
Abstract
We report five cases of community- and hospital-acquired infections with oseltamivir- and peramivir-resistant A(H1N1)pdm09 viruses possessing the neuraminidase (NA) H275Y mutation during January-February 2016 in Japan. One case was hospitalized and was receiving oseltamivir for prophylaxis. The remaining four cases were not taking antiviral drugs at the time of sampling. These cases were geographically distant and epidemiologically unrelated. The five viruses showed ~300-fold rise in IC50 values against oseltamivir and peramivir, defined as highly reduced inhibition according to the WHO definition. Overall, the prevalence of the H275Y A(H1N1)pdm09 viruses was 1.8 % (5/282). The resistant viruses possessed the V241I, N369 K, and N386 K substitutions in the NA that have been previously reported among A(H1N1)pdm09 to alter transmission fitness. Analysis of Michaelis constant (Km) revealed that two of the isolates had reduced NA affinity to MUNANA, while the other three isolates displayed a slightly decreased affinity compared to the sensitive viruses. Further studies are needed to monitor the community spread of resistant viruses and to assess their transmissibility.
Collapse
Affiliation(s)
- Akinobu Hibino
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Hiroki Kondo
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | | | - Yoshinari Tanabe
- Infection Disease Control Section, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Isamu Sato
- Yoiko-no-Syounika Sato Clinic, Niigata, Japan
| | - Nobuhiro Takemae
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Hassan Zaraket
- Department Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Disease Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Reiko Saito
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan.
| |
Collapse
|