1
|
Liu Y, Ai H. Current research update on group B streptococcal infection related to obstetrics and gynecology. Front Pharmacol 2024; 15:1395673. [PMID: 38953105 PMCID: PMC11215423 DOI: 10.3389/fphar.2024.1395673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Group B streptococcal (GBS) is a Gram-positive bacterium that is commonly found in the gastrointestinal tract and urogenital tract. GBS infestation during pregnancy is a significant contributor to maternal and neonatal morbidity and mortality globally. This article aims to discuss the infectious diseases caused by GBS in the field of obstetrics and gynecology, as well as the challenges associated with the detection, treatment, and prevention of GBS.
Collapse
Affiliation(s)
| | - Hao Ai
- Liaoning Provincial Key Laboratory of Follicular Development and Reproductive Health, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
2
|
Liang B, Chen H, Yu D, Zhao W, Cai X, Qiu H, Xu L. Molecular Epidemiology of Group B Streptococcus Isolates from Pregnant Women with Premature Rupture of Membranes in Fuzhou, China. Infect Drug Resist 2023; 16:269-278. [PMID: 36683909 PMCID: PMC9849789 DOI: 10.2147/idr.s393935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/17/2022] [Indexed: 01/15/2023] Open
Abstract
Objective This study investigated the molecular epidemiology of Group B Streptococcus (GBS) in pregnant women with premature rupture of membranes (PROM) in Fuzhou region of China as a source of clinical reference. Methods GBS isolates were obtained from pregnant women with PROM. All isolates were genotyped, serotyped, and tested for drug-resistance and virulence genes using PCR and DNA sequencing. Antibiotic susceptibility testing was performed using the Vitek® 2 automated system. Results Among the 140 GBS isolates, seventeen sequence types (STs) were identified, of which ST19 (20.0%) was the most prevalent, followed by ST862, ST10, and ST12. Three clonal complexes (CC19, CC10 and CC1) were identified. The predominant serotype was III (45.7%), followed by V (23.6%), Ib (18.6%), Ia (7.1%), and II (3.6%). The prevalence of multidrug resistance was 72.8% (102/140). All isolates were susceptible to penicillin G, ampicillin, quinupristin, linezolid, vancomycin, and tigecycline. The majority of isolates were resistant to erythromycin (70.0%), clindamycin (72.1%), and tetracycline (81.4%), and 28.6% of isolates were resistant to levofloxacin and moxifloxacin. Of the 98 erythromycin-resistant strains, mreA, ermB, mefA, mefE, ermA, and ermTR were detected in 100%, 70.4%, 49.0%, 22.4%, 13.3%, and 9.2%, respectively. No linB was detected among 101 clindamycin-resistant strains. Of the 114 tetracycline-resistant strains, tetM, tetK, tetL and tetO were detected in 52.6%, 61.4%, 7.9%, and 23.7%, respectively. Regarding virulence genes, all strains carried rib and hylB, followed by scpB (98.6%), and bca (80.7%), whereas only one strain carried bac. Conclusion ST19/III and ST862/III were the most prevalent GBS subtypes. Penicillin G remains a first-line antibiotic for intrapartum antibiotic prophylaxis and treatment of GBS infections. The prevalence of resistance to clindamycin, erythromycin, and tetracycline is high among GBS isolates in the Fuzhou region. ST862 and ST651 are emerging animal origin STs in human infections, and may become potential zoonotic threats.
Collapse
Affiliation(s)
- Bin Liang
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Huiyu Chen
- Laboratory Department, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Donghong Yu
- Fujian Obstetrics and Gynecology Hospital, Fuzhou, Fujian, People’s Republic of China,Medical Research Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Wantong Zhao
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People’s Republic of China,Fujian Obstetrics and Gynecology Hospital, Fuzhou, Fujian, People’s Republic of China
| | - Xiaoling Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People’s Republic of China,Fujian Obstetrics and Gynecology Hospital, Fuzhou, Fujian, People’s Republic of China
| | - Huahong Qiu
- Laboratory Department, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People’s Republic of China,Correspondence: Liangpu Xu; Huahong Qiu, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, People’s Republic of China, Tel +86-0591-87554929; +86-0591-87604121, Email ;
| |
Collapse
|
3
|
Kawaguchiya M, Urushibara N, Aung MS, Shimada S, Nakamura M, Ito M, Habadera S, Kobayashi N. Molecular characterization and antimicrobial resistance of Streptococcus agalactiae isolated from pregnant women in Japan, 2017–2021. IJID REGIONS 2022; 4:143-145. [PMID: 35923645 PMCID: PMC9340534 DOI: 10.1016/j.ijregi.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022]
Abstract
Group B streptococcus (GBS) in pregnant women was studied in northern Japan. Colonizing GBS was isolated from 7.0% (n=76/1090) of the pregnant women. Capsular serotype III/ST335, Ia/ST23, III/ST17, and V/ST1 lineages were dominant. Levofloxacin resistance was found in 15.8%, with serotype Ib being the most common. Most levofloxacin-resistant isolates belonged to serotype Ib/CC10 or V/CC19.
Objectives This study aimed to elucidate the molecular characteristics and antimicrobial resistance of Streptococcus agalactiae (group B streptococcus, GBS) colonizing pregnant women in Japan. Methods GBS isolates obtained from screening of pregnant women from 2017 to 2021 were analyzed for capsular serotype, sequence type (ST), and antimicrobial susceptibility. For levofloxacin-resistant isolates, mutations in the quinolone resistance-determining regions (QRDRs) of the gyrA, gyrB, and parC genes were analyzed. Results Seventy-six GBS isolates were recovered from 1090 women (isolation rate: 7.0%). Of the 76 isolates, serotype III (31.6%) was the most prevalent, followed by V (19.7%), Ia (17.1%), and Ib (10.5%). Among the 22 STs identified, capsular serotype III/ST335-clonal complex (CC) 19 lineage was dominant (13.2%), followed by Ia/ST23, III/ST17, and V/ST1. Levofloxacin resistance was detected in 15.8% (n=12) of all the isolates, with serotype Ib being the most common. Most levofloxacin resistant isolates belonged to serotype Ib/CC10 or serotype V/CC19, with double mutations in the QRDRs, Ser81Leu in GyrA and Ser79Phe in ParC. Conclusions The present study indicates the prevalence of the serotype III/ST335 (CC19) lineage, and the spread of serotype Ib/CC10 and serotype V/CC19 lineages, which are responsible for levofloxacin resistance in colonizing GBS in pregnant women in Japan.
Collapse
Affiliation(s)
- Mitsuyo Kawaguchiya
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
- Corresponding author; Mitsuyo Kawaguchiya, Department of Hygiene, Sapporo Medical University School of Medicine, S-1 W-17, Chuo-ku, Sapporo 060-8556, Japan, Tel: +81-11-611-2111 (ext.27330).
| | - Noriko Urushibara
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Meiji Soe Aung
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | - Masahiko Ito
- Sapporo Clinical Laboratory, Inc., Sapporo, Japan
| | | | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
4
|
Oliveira LMA, Simões LC, Costa NS, Zadoks RN, Pinto TCA. The landscape of antimicrobial resistance in the neonatal and multi-host pathogen group B Streptococcus: review from a One Health perspective. Front Microbiol 2022; 13:943413. [PMID: 35966683 PMCID: PMC9365930 DOI: 10.3389/fmicb.2022.943413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Group B Streptococcus (GBS) stands out as a major agent of pediatric disease in humans, being responsible for 392,000 invasive disease cases and 91,000 deaths in infants each year across the world. Moreover, GBS, also known as Streptococcus agalactiae, is an important agent of infections in animal hosts, notably cattle and fish. GBS population structure is composed of multiple clades that differ in virulence, antimicrobial resistance (AMR), and niche adaptation; however, there is growing evidence of interspecies transmission, both from evolutionary analysis and from disease investigations. The prevention of GBS infections through vaccination is desirable in humans as well as animals because it reduces the burden of GBS disease and reduces our reliance on antimicrobials, and the risk of adverse reactions or selection for AMR. In this perspective article, we navigate through the landscape of AMR in the pediatric and multi-host pathogen GBS under the One Health perspective and discuss the use of antimicrobials to control GBS disease, the evolution of AMR in the GBS population, and the future perspectives of resistant GBS infections in the post-pandemic era.
Collapse
Affiliation(s)
- Laura M. A. Oliveira
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Leandro C. Simões
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Natalia S. Costa
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ruth N. Zadoks
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW, Australia
| | - Tatiana C. A. Pinto
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Maeda T, Tsuyuki Y, Goto M, Yoshida H, Fujita T, Takahashi T. Dog/cat-origin quinolone-resistant Streptococcus agalactiae isolates with point mutations in quinolone resistance-determining regions: Relatedness with clonal complex 10. J Infect Chemother 2021; 28:389-395. [PMID: 34848122 DOI: 10.1016/j.jiac.2021.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/06/2021] [Accepted: 11/16/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE We aimed to investigate dog/cat-origin quinolone-resistant Streptococcus agalactiae isolates with point mutations in quinolone resistance-determining regions (QRDRs) and to define the relatedness between quinolone-resistant isolates and their microbiological features of capsular genotype, sequence type (ST)/clonal complex (CC), and antimicrobial resistance (AMR) gene. METHODS With dog/cat-origin 22 isolates, type strain, and human-origin 6 isolates, we performed antimicrobial susceptibility testing by agar plate dilution method using levofloxacin, ciprofloxacin, and moxifloxacin. We also determined amino acid sequences in QRDRs of gyrA/gyrB/parC/parE genes and their point mutations. We conducted capsular genotyping, multilocus sequence typing, and AMR genotyping in our previous investigations. Correlations between quinolone-resistant population and their microbiological features were examined. RESULTS We found dog/cat-origin seven (31.8%) quinolone-resistant isolates harboring minimum inhibitory concentrations (MICs) of levofloxacin 16-32 μg/mL, ciprofloxacin 32 μg/mL, and moxifloxacin 2-4 μg/mL: human three isolates indicated MICs of levofloxacin 16-64 μg/mL, ciprofloxacin 32 μg/mL, and moxifloxacin 2-16 μg/mL. Point mutations Ser81Leu in gyrA and Ser79Phe/Ser79Tyr/Asp83Asn/Gly128Asp in parC were observed among these resistant isolates: mutations Leu495Ile/Val503Ile in parE was found among quinolone-nonresistant isolates. There was a significant correlation between dog/cat-origin quinolone-resistant population and ST10 (p = 0.023)/CC10 (p = 0.021). CONCLUSION To our best knowledge, this is the first report assessing dog/cat-origin quinolone-resistant S. agalactiae. Our observations could be applied in future, by veterinarians while treating dogs and cats with clinical symptoms/signs suggestive of streptococcal infections.
Collapse
Affiliation(s)
- Takahiro Maeda
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuzo Tsuyuki
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Division of Clinical Laboratory, Sanritsu Zelkova Veterinary Laboratory, 3-5-5 Ogibashi, Koto-ku, Tokyo, 135-0011, Japan
| | - Mieko Goto
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Haruno Yoshida
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tomohiro Fujita
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Department of Clinical Laboratory, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama, 364-8501, Japan
| | - Takashi Takahashi
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
6
|
Yuan XY, Liu HZ, Liu JF, Sun Y, Song Y. Pathogenic mechanism, detection methods and clinical significance of group B Streptococcus. Future Microbiol 2021; 16:671-685. [PMID: 34098731 DOI: 10.2217/fmb-2020-0189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Group B Streptococcus (GBS) is the main pathogen of perinatal infection. It can lead to adverse pregnancy, maternal infection, premature delivery, abortion, stillbirth and a series of adverse maternal and infant outcomes such as neonatal sepsis, meningitis or pneumonia during delivery. In order to reduce the infection of perinatal pregnant and the adverse pregnancy outcome, more attention should be paid in the clinical practice, screening efforts, universal detection of GBS infection for pregnant women and preventive treatment for the possible mother infant infection. In this study, the biological characteristics, immunophenotype, major pathogenic mechanism, laboratory test methods and clinical significance of GBS are summarized.
Collapse
Affiliation(s)
- Xiao-Yan Yuan
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| | - Hai-Zhu Liu
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| | - Jia-Fei Liu
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China.,Department of Medical Laboratory Sciences, Weifang Medical University, Weifang, Shandong, 261000, PR China
| | - Yong Sun
- Department of Clinical Lab, Yantai Laiyang Central Hospital, Yantai, Shandong, 264200, PR China
| | - Yu Song
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| |
Collapse
|
7
|
Gao K, Gao C, Huang L, Guan X, Ji W, Chang CY, McIver DJ, Deng Q, Zhong H, Xie Y, Deng L, Gao F, Zeng L, Liu H. Predominance of III/ST19 and Ib/ST10 Lineages With High Multidrug Resistance in Fluoroquinolone-Resistant Group B Streptococci Isolates in Which a New Integrative and Conjugative Element Was Identified. Front Microbiol 2021; 11:609526. [PMID: 33569045 PMCID: PMC7868321 DOI: 10.3389/fmicb.2020.609526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/11/2020] [Indexed: 01/31/2023] Open
Abstract
Fluoroquinolone (FQ)-resistant Group B Streptococcus (GBS) has been reported with considerable cross-resistance, worsening the crisis of multidrug-resistant (MDR) GBS in clinical settings. However, national epidemiological data on FQ-resistant GBS in mainland China have not been well-characterized. This study aimed to determine the prevalence of FQ resistance among GBS from neonatal invasive infections and maternal colonization in northern and southern China, to investigate the serotyping, multilocus sequence typing, and antibiotic cross-resistance, and to characterize the mutations in gyrA and parC genes in quinolone resistance-determining region (QRDR). In order to provide a comprehensive view of the location and structure of resistance genes, whole-genome sequencing on III/ST19 MDR isolates were performed. Among 426 GBS, 138 (32.4%) were FQ resistant, with higher prevalence in northern China than in southern China in both neonates (57.8%, 37/64 vs. 21.7%, 39/180) and pregnant women (50.9%, 29/57 vs. 26.4%, 33/125). Serotypes were distributed as III (48.5%), Ib (39.9%), V (6.5%), and Ia (5.1%). Sequence types were mainly ST19 (53.6%) and ST10 (39.1%), followed by ST12 (1.4%), ST17 (1.4%), ST23 (1.4%), and 0.7% each of ST27, ST188, ST197, and ST597. ST19 isolates were more prevalent in southern China than in northern China in both neonates (64.1%, 25/39 vs. 27.0%, 10/37) and pregnant women (81.8%, 27/33 vs. 41.4%, 12/29), whereas ST10 isolates were more common in northern China than in southern China in both neonates (64.9%, 24/37 vs. 20.5%, 8/39) and pregnant women (58.6%, 17/29 vs. 15.2%, 5/33). Serotype III isolates were mainly ST19 (89.6%, 60/67), while Ib isolates were largely ST10 (94.5%, 52/55). Sequencing data revealed several mutations in QRDR, including Ser81Leu in gyrA (99.2%, 130/131), Ser79Phe or Tyr in parC (76.2%, 48/63), and a previously unreported Ile218Thr and Ile219Phe double mutation pattern (49.2%, 31/63) in parC. ST10 isolates were associated with Ser79Phe (84%, 21/25), while ST19 isolates were limited to Ser79Tyr (95.7%, 22/23). A new integrative and conjugative element (ICE) harboring tetM and gyrA genes was identified in a III/ST19 isolate. This study investigates the molecular characteristics of FQ-resistant GBS in northern and southern China, emphasizing the need for continuous surveillance geographically and further research to characterize the mechanisms of ICE transfer.
Collapse
Affiliation(s)
- Kankan Gao
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chunyan Gao
- Clinical Laboratory, Tangshan Municipal Women and Children's Hospital, Tangshan, China
| | - Lianfen Huang
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaoshan Guan
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wenjing Ji
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Center for Drug Safety and Policy Research, Xi'an Jiaotong University, Xi'an, China
| | - Chien-Yi Chang
- School of Dental Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - David J McIver
- Global Health Group, Institute for Global Health Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Qiulian Deng
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huamin Zhong
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yongqiang Xie
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lei Deng
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fei Gao
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lanlan Zeng
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Haiying Liu
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Pieranski M, Sitkiewicz I, Grinholc M. Increased photoinactivation stress tolerance of Streptococcus agalactiae upon consecutive sublethal phototreatments. Free Radic Biol Med 2020; 160:657-669. [PMID: 32916279 DOI: 10.1016/j.freeradbiomed.2020.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023]
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is a common commensal bacterium in adults but remains a leading source of invasive infections in newborns, pregnant women, and the elderly, and more recently, causes an increased incidence of invasive disease in nonpregnant adults. Reduced penicillin susceptibility and emerging resistance to non-β-lactams pose challenges for the development and implementation of novel, nonantimicrobial strategies to reduce the burden of GBS infections. Antimicrobial photodynamic inactivation (aPDI) via the production of singlet oxygen or other reactive oxygen species leads to the successful eradication of pathogenic bacteria, affecting numerous cellular targets of microbial pathogens and indicating a low risk of resistance development. Nevertheless, we have previously reported possible aPDI tolerance development upon repeated sublethal aPDI applications; thus, the current work was aimed at investigating whether aPDI tolerance could be observed for GBS and what mechanisms could cause it. To address this problem, 10 cycles of sublethal aPDI treatments employing rose bengal as a photosensitizer, were applied to the S. agalactiae ATCC 27956 reference strain and two clinical isolates (2306/02 and 2974/07, serotypes III and V, respectively). We demonstrated aPDI tolerance development and stability after 5 cycles of subculturing with no aPDI exposure. Though the treatment resulted in a stable phenotype, no increases in mutation rate or accumulated genetic alterations were observed (employing a RIF-, CIP-, STR-resistant mutant selection assay and cyl sequencing, respectively). qRT-PCR analysis demonstrated that 10 sublethal aPDI exposures led to increased expression of all tested major oxidative stress response elements; changes in sodA, ahpC, npx, cylE, tpx and recA expression indicate possible mechanisms of developed tolerance. Increased expression upon sublethal aPDI treatment was reported for all but two genes, namely, ahpC and cylE. aPDI targeting cylE was further supported by colony morphology changes induced with 10 cycles of aPDI (increased SCV population, increased hemolysis, increased numbers of dark- and unpigmented colonies). In oxidant killing assays, aPDI-tolerant strains demonstrated no increased tolerance to hypochlorite, superoxide (paraquat), singlet oxygen (new methylene blue) or oxidative stress induced by aPDI employing a structurally different photosensitizer, i.e., zinc phthalocyanine, indicating a lack of cross resistance. The results indicate that S. agalactiae may develop stable aPDI tolerance but not resistance when subjected to multiple sublethal phototreatments, and this risk should be considered significant when defining efficient anti-S. agalactiae aPDI protocols.
Collapse
Affiliation(s)
- Michal Pieranski
- Intercollegiate Faculty of Biotechnology, Laboratory of Molecular Diagnostics, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Izabela Sitkiewicz
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, Chelmska 30/34, 00-725, Warszawa, Poland
| | - Mariusz Grinholc
- Intercollegiate Faculty of Biotechnology, Laboratory of Molecular Diagnostics, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| |
Collapse
|
9
|
Ali MM, Woldeamanuel Y, Asrat D, Fenta DA, Beall B, Schrag S, McGee L. Features of Streptococcus agalactiae strains recovered from pregnant women and newborns attending different hospitals in Ethiopia. BMC Infect Dis 2020; 20:848. [PMID: 33198686 PMCID: PMC7668015 DOI: 10.1186/s12879-020-05581-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Background Streptococcus agalactiae (Group B Streptococcus, GBS) serotypes, sequence types, and antimicrobial resistance profile vary across different geographic locations affecting disease patterns in newborns. These differences are important considerations for vaccine development efforts and data from large countries in Africa is limited. The aim of this study was to determine serotypes and genotypes of GBS isolates from pregnant women and their newborns in Ethiopia. Methods A hospital based cross-sectional study was conducted at three hospitals in Ethiopia from June 2014 to September 2015. Out of 225 GBS isolates, 121 GBS were recovered, confirmed and characterized at CDC’s Streptococcus Laboratory using conventional microbiology methods and whole genome sequencing. Results Of the 121 isolates, 87 were from rectovaginal samples of pregnant women, 32 from different body parts of their newborns and 2 from blood of newborns with suspected sepsis. There were 25 mother-infant pairs and 24 pairs had concordant strains. The most prevalent serotypes among mothers and/or their babies were II, Ia and V (41.5, 20.6, 19.5 and 40.6%, 25 and 15.6%, respectively). Multilocus sequence typing (MLST) on 83 isolates showed ST10 (24; 28.9%) and ST2 (12; 14.5%) as most predominant sequence types. All GBS strains were susceptible to penicillin, cefotaxime and vancomycin, which correlated to the presence of wildtype PBP2x types and the lack of known vancomycin-resistance genes. Tetracycline resistance was high (73; 88%, associated primarily with tetM, but also tetO and tetL). Five isolates (6%) were resistant to erythromycin and clindamycin and 3 isolates were fluoroquinolone-resistant, containing associated mutations in gyrA and parC genes. All isolates were positive for one of four homologous Alpha/Rib family determinants and 1–2 of the three main pilus types. Conclusions Predominant serotypes were II, Ia, and V. A limited number of clonal types were identified with two STs accounting for about half of the isolates. All strains collected in this study were susceptible to beta-lactam antibiotics and vancomycin. Typical of most GBS, these isolates were positive for single alpha-like family protein, serine-rich repeat gene, as well as 1–2 pilus determinants. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-020-05581-8.
Collapse
Affiliation(s)
- Musa Mohammed Ali
- Hawassa University College of Medicine and Health Sciences, School of Medical laboratory Science, Hawassa, Ethiopia.
| | - Yimtubezinash Woldeamanuel
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University College of Health Science, Addis Ababa, Ethiopia
| | - Daniel Asrat
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University College of Health Science, Addis Ababa, Ethiopia
| | - Demissie Assegu Fenta
- Hawassa University College of Medicine and Health Sciences, School of Medical laboratory Science, Hawassa, Ethiopia
| | - Bernard Beall
- Respiratory Diseases Branch, Centers of Disease Control and Prevention (CDC), Atlanta, USA
| | - Stephanie Schrag
- Respiratory Diseases Branch, Centers of Disease Control and Prevention (CDC), Atlanta, USA
| | - Lesley McGee
- Respiratory Diseases Branch, Centers of Disease Control and Prevention (CDC), Atlanta, USA
| |
Collapse
|
10
|
Hirai N, Kasahara K, Nakano R, Ogawa Y, Suzuki Y, Ogawa M, Hishiya N, Nakano A, Ichimura S, Yano H, Yoshikawa M. Clinical characteristics and molecular epidemiology of invasive Streptococcus agalactiae infections between 2007 and 2016 in Nara, Japan. PLoS One 2020; 15:e0240590. [PMID: 33075112 PMCID: PMC7571711 DOI: 10.1371/journal.pone.0240590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/30/2020] [Indexed: 11/25/2022] Open
Abstract
Invasive Streptococcus agalactiae (GBS) infections are increasingly common among neonates and the elderly. Therefore, GBS surveillance for better antibiotic treatment and prophylaxis strategies are needed. We retrospectively evaluated the clinical aspects of invasive infections and the phenotypic and genetic diversity of infectious isolates from Nara, Japan, collected between 2007 and 2016, by using information from hospital records. GBS strains collected from the blood and cerebrospinal fluid cultures were evaluated for capsular types, multi-locus sequence typing (MLST), antibiotic susceptibility, antibiotics resistance gene, and pulsed-field gel electrophoresis. Forty GBS isolates (10 from children and 30 from adults) were analyzed, and the distribution of molecular serotype and allelic profiles varied between children and adults. We found the rates of early-onset disease in neonates with birth complications to be higher than that of previous reports, indicating that there could be relevance between complications at birth and early-onset disease. Standard antibiotic prophylaxis strategies may need to be reconsidered in patients with birth complications. In adults, the mean age of the patients was 68 years (male: 63%). Primary bacteremia was the most common source of infection. In the neonates, six had early-onset diseases and four had late-onset diseases. The most frequently identified strains were molecular serotype Ia ST23 (40%) and molecular serotype Ib ST10 (20%) in children and molecular serotype Ib ST10 (17%), molecular serotype VI ST1 (13%), and molecular serotype V ST1 (13%) in adults. Levofloxacin-resistant molecular serotype Ib strains and molecular serotypes V and VI ST1 were common causes of GBS infection in adults but were rarely found in children. Furthermore, pulsed-field gel electrophoresis in our study showed that specific clone isolates, that tend to have antibiotics resistance were widespread horizontally for a decade. Continuous surveillance and molecular investigation are warranted to identify the transmission route and improve antibiotic treatment strategies.
Collapse
Affiliation(s)
- Nobuyasu Hirai
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
- Center for Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Kei Kasahara
- Center for Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
- * E-mail:
| | - Ryuichi Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Yoshihiko Ogawa
- Center for Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Yuki Suzuki
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Miho Ogawa
- BML Biomedical Laboratories R&D Center, Inc., Kawagoe, Saitama, Japan
| | - Naokuni Hishiya
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Akiyo Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Sadahiro Ichimura
- BML Biomedical Laboratories R&D Center, Inc., Kawagoe, Saitama, Japan
| | - Hisakazu Yano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan
| | - Masahide Yoshikawa
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
11
|
Genovese C, D'Angeli F, Di Salvatore V, Tempera G, Nicolosi D. Streptococcus agalactiae in pregnant women: serotype and antimicrobial susceptibility patterns over five years in Eastern Sicily (Italy). Eur J Clin Microbiol Infect Dis 2020; 39:2387-2396. [PMID: 32700131 PMCID: PMC7669783 DOI: 10.1007/s10096-020-03992-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022]
Abstract
Streptococcus agalactiae (also known Group B Streptococcus or GBS) represents the main pathogen responsible for early- and late-onset infections in newborns. The present study aimed to determine the antimicrobial susceptibility pattern and the capsular serotypes of GBS isolated in Eastern Sicily over 5 years, from January 2015 to December 2019. A total of 3494 GBS were isolated from vaginal swabs of pregnant women (37–39 weeks), as recommended by the Centers for Disease Control and Prevention. Capsular polysaccharide’s typing of GBS was determined by a commercial latex agglutination test containing reagents to serotypes I–IX. The antimicrobial resistance pattern of GBS was determined through the disk diffusion method (Kirby-Bauer) and the double-disk diffusion test on Mueller-Hinton agar plates supplemented with 5% defibrinated sheep blood, according to the guidelines of the Clinical and Laboratory Standards Institute. Serotypes III (1218, 34.9%) and V (1069, 30.6%) were the prevalent colonizers, followed by not typable (570, 16.3%) and serotypes Ia (548, 15.7%), Ib (47, 1.3%), II (40, 1.1%), and IV (2, 0.1%). All 3494 clinical isolates were susceptible to cefditoren and vancomycin. Resistance to penicillin, ampicillin, levofloxacin, clindamycin, and erythromycin was observed in 6 (0.2%), 5 (0.1%), 161 (4.6%), 1090 (31.2%), and 1402 (40.1%) of the strains, respectively. Most of erythromycin-resistant GBS (1090/1402) showed the cMLSB phenotype, 276 the M phenotype, and 36 the iMLSB phenotype. Our findings revealed a higher prevalence of serotype III and a relevant resistance rate, among GBS strains, to the most frequently used antibiotics in antenatal screening.
Collapse
Affiliation(s)
- Carlo Genovese
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, Catania, 95123, Italy.,Nacture S.r.l, Spin-off University of Catania, Catania, 95123, Italy
| | - Floriana D'Angeli
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Catania, 95123, Italy. .,Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166, Rome, Italy.
| | - Valentina Di Salvatore
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology and Functional Genomics, Section of General and Clinical Pathology and Oncology, University of Catania, Catania, 95123, Italy
| | - Gianna Tempera
- Nacture S.r.l, Spin-off University of Catania, Catania, 95123, Italy
| | - Daria Nicolosi
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, Catania, 95123, Italy.,Nacture S.r.l, Spin-off University of Catania, Catania, 95123, Italy
| |
Collapse
|
12
|
Multidrug-Resistant Streptococcus agalactiae Strains Found in Human and Fish with High Penicillin and Cefotaxime Non-Susceptibilities. Microorganisms 2020; 8:microorganisms8071055. [PMID: 32708529 PMCID: PMC7409034 DOI: 10.3390/microorganisms8071055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 11/17/2022] Open
Abstract
Penicillin non-susceptible Streptococcus agalactiae (PEN-NS GBS) has been increasingly reported, with multidrug-resistant (MDR) GBS documented in Japan. Here we identified two PEN-NS GBS strains during our surveillance studies: one from a patient's wound and the other from a tilapia. The patient's GBS (H21) and fish GBS (F49) were serotyped and tested for antibiotic susceptibility. Whole-genome sequencing was performed to find the sequence type, antimicrobial resistance genes, and mutations in penicillin-binding proteins (PBPs) and fluoroquinolone (FQ) resistance genes. H21 and F49 belonged to ST651, serotype Ib, and ST7, serotype Ia, respectively. H21 showed PEN and cefotaxime minimum inhibitory concentrations (MICs) of 2.0 mg/L. F49 showed PEN MIC 0.5 mg/L. H21 was MDR with ermB, lnuB, tetS, ant6-Ia, sat4a, and aph3-III antimicrobial resistance genes observed. Alignment of PBPs showed the combination of PBP1B (A95D) and 2B mutations (V80A, S147A, S160A) in H21 and a novel mutation in F49 at N192S in PBP2B. Alignment of FQ-resistant determinants revealed mutation sites on gyrA, gyrB, and parC and E in H21. To our knowledge, this is the first report of GBS isolates with such high penicillin and cefotaxime MICs. This raises the concern of emergence of MDR and PEN-NS GBS in and beyond healthcare facilities.
Collapse
|
13
|
Yoshida M, Yokokura S, Nishida T, Mochizuki K, Suzuki T, Maruyama K, Otomo T, Nishiguchi KM, Kunikata H, Nakazawa T. Endogenous endophthalmitis caused by group B streptococcus; case reports and review of 35 reported cases. BMC Ophthalmol 2020; 20:126. [PMID: 32234022 PMCID: PMC7110777 DOI: 10.1186/s12886-020-01378-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/09/2020] [Indexed: 11/22/2022] Open
Abstract
Background Group B streptococcus (GBS), a gram-positive coccus that occasionally causes neonatal sepsis or invasive infection in the elderly, has been considered a rare cause of endogenous bacterial endophthalmitis (EBE). However, the number of invasive GBS infections is increasing, particularly in elderly patients with underlying conditions such as diabetes mellitus (DM), cardiovascular disease and cancer. We report 6 cases of EBE caused by GBS and review the literature. Methods Retrospective case series and literature review. Results In the current case series, 6 eyes of 6 patients developed EBE caused by GBS. The average age was 73.5 years. The focus of infection included the urinary tract, cellulitis, arthritis, peritonitis, catheter-associated infection and endocarditis. Four patients had DM. While all 6 strains were sensitive to β-lactams (penicillins and cephems), 4 strains were resistant to levofloxacin (no data for 1 isolate). Each case was treated with the systemic antibiotic to which the individual strain was sensitive. All cases showed poor visual acuity at presentation (decimal visual acuity: less than 0.03). Vitrectomy with intravitreal antibiotics injection was performed in 4 cases. Visual acuity recovered in 4 cases and did not recover in 2 cases, even after vitrectomy. The literature review of 53 eyes of 41 patients revealed that 60% of eyes finally lost all vision, and death occurred in 2 cases. Initial visual acuity of less than counting fingers was associated with a final outcome of lost vision. Of 41 patients, 13 (32%) had DM as an underlying medical condition. The most common extra-ocular infection focus was endocarditis (37%). Conclusions DM is common in patients with EBE caused by GBS. While the 4 cases in the current report had a relatively good visual acuity outcome, despite poor initial visual acuity, the literature review indicated that EBE caused by GBS is generally a severe condition with a poor prognosis. The current study also indicates the importance of considering the possibility of endocarditis on encountering EBE caused by GBS.
Collapse
Affiliation(s)
- Masaaki Yoshida
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Shunji Yokokura
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Takashi Nishida
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kiyofumi Mochizuki
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takashi Suzuki
- Department of Ophthalmology, School of Medicine, Toho University, Tokyo, Japan
| | - Kazuichi Maruyama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Takaaki Otomo
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Koji M Nishiguchi
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Kunikata
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
14
|
Abstract
Invasive disease due to group B Streptococcus infection (Streptococcus agalactiae) results in a wide spectrum of clinical disease. In North America, serotypes Ia, Ib, II, III, and V are most frequently associated with invasive disease. Group B Streptococcus remains a continuing source of morbidity and mortality in high-risk populations, including pregnant women, neonates, and the elderly; an increasing incidence of invasive disease has been observed in nonpregnant adults. Group B Streptococcus remains the most common culture-confirmed neonatal bacterial infection in the United States and is a significant source of neonatal morbidity globally. Intrapartum antibiotic prophylaxis has reduced the incidence of early-onset neonatal disease without a notable impact on the incidence of late-onset neonatal disease. Penicillin G remains the mainstay of therapy, although reduced penicillin susceptibility has been observed in select isolates. Increased frequency of resistance to non-beta-lactam antibiotics, including clindamycin, erythromycin, and fluoroquinolones, has been observed, with some isolates demonstrating resistance to vancomycin. The development and implementation of strategies to identify hosts, treat judiciously with antimicrobials with the narrowest spectra, and prevent invasive disease, with vaccines, are essential to reduce the burden of group B Streptococcus disease.
Collapse
|
15
|
Wu CJ, Lai JF, Huang IW, Hsieh LY, Wang HY, Shiau YR, Lauderdale TL. Multiclonal emergence of levofloxacin-resistant group B Streptococcus, Taiwan. J Antimicrob Chemother 2018; 72:3263-3271. [PMID: 28961888 DOI: 10.1093/jac/dkx297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/24/2017] [Indexed: 01/16/2023] Open
Abstract
Objectives This study investigated the trend in antimicrobial resistance among group B Streptococcus (GBS) from a national surveillance programme in Taiwan and delineated characteristics of and factors associated with levofloxacin-resistant isolates. Methods Clinical isolates of all sample types and patient groups were collected from multiple hospitals biennially between 2002 and 2012. Susceptibilities to different antibiotics were determined by broth microdilution. Molecular studies of levofloxacin-resistant isolates included serotyping, PFGE, mutations in the QRDRs and MLST. Results A total of 1559 isolates were tested and all remained susceptible to penicillin, cephalosporins, meropenem and vancomycin. However, levofloxacin resistance increased from 2.2% (range 0%-3.3%) in 2002-06 to 6.2% (5.9%-7.5%) in 2008-12 (P = 0.016). Among the 88 levofloxacin-resistant isolates, the majority (79.5%) had the GyrA(S81L)+ParC(S79F/Y) double mutations and most (54.5%) were also resistant to clindamycin, erythromycin and tetracycline. The predominant genotype of the levofloxacin-resistant isolates was ST19/serotype III (43.2%). Four previously unreported genotypes, ST1 and its single-locus variants (ST920 and ST922)/serotype VI (28.4%) and ST1/serotype II (18.2%), were found to have circulated locally. Serotype III isolates were predominately from urine and female genital tract specimens and <65-year-old adult outpatients, while serotype II and VI isolates were mostly from respiratory and urine samples and >65-year-old inpatients. Multivariate analysis revealed that elderly age and respiratory samples were independent factors associated with levofloxacin resistance. Conclusions Multiclonal emergence and dissemination of levofloxacin-resistant GBS isolates occurred in healthcare and community settings in Taiwan. Continuous molecular-level surveillance is important to detect new epidemic trends.
Collapse
Affiliation(s)
- Chi-Jung Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.,Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jui-Fen Lai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - I-Wen Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Li-Yun Hsieh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Hui-Ying Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yih-Ru Shiau
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Tsai-Ling Lauderdale
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
16
|
Simoni S, Vincenzi C, Brenciani A, Morroni G, Bagnarelli P, Giovanetti E, Varaldo PE, Mingoia M. Molecular Characterization of Italian Isolates of Fluoroquinolone-Resistant Streptococcus agalactiae and Relationships with Chloramphenicol Resistance. Microb Drug Resist 2017; 24:225-231. [PMID: 28783417 DOI: 10.1089/mdr.2017.0139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A total number of 368 clinical isolates of Streptococcus agalactiae (group B Streptococcus, GBS) were collected in 2010-2016 from three hospitals in a region of central Italy. Fluoroquinolone (FQ)-resistant isolates were selected using levofloxacin. Levofloxacin-resistant (LR) strains (11/368, 2.99%) were characterized for several features, and their FQ resistance was analyzed phenotypically and genotypically using seven additional FQs. Their gyrA and parC quinolone resistance-determining regions were sequenced. Of the 11 LR isolates, 10 showed high-level and 1 low-level resistance. The former isolates exhibited higher minimal inhibitory concentrations also of the other FQs and all shared one amino acid substitution in ParC (Ser79Phe) and one in GyrA (Ser81Leu); only Ser79Phe in ParC was detected in the low-level LR isolate. The 11 LR strains exhibited distinctive relationships between their susceptibilities to non-FQ antibiotics and typing data. Remarkably, despite the very rare occurrence of chloramphenicol resistance in S. agalactiae, no <4 of the 11 LR isolates were chloramphenicol-resistant. Studies of GBS resistance to FQs in Europe remain scarce, notwithstanding the emergence of multidrug-resistant isolates. The incidence of LR GBS isolates is still limited in Italy, consistent with the moderate (though growing) rates reported in Europe, and much lower than the very high rates reported in East Asia. The intriguing relationships between FQ and chloramphenicol resistance deserve further investigation.
Collapse
Affiliation(s)
- Serena Simoni
- 1 Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School , Ancona, Italy
| | - Chiara Vincenzi
- 1 Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School , Ancona, Italy .,2 Clinical Microbiology Laboratory, Torrette Regional Hospital , Ancona, Italy
| | - Andrea Brenciani
- 1 Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School , Ancona, Italy
| | - Gianluca Morroni
- 1 Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School , Ancona, Italy
| | - Patrizia Bagnarelli
- 1 Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School , Ancona, Italy
| | - Eleonora Giovanetti
- 3 Department of Life and Environmental Sciences, Polytechnic University of Marche , Ancona, Italy
| | - Pietro E Varaldo
- 1 Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School , Ancona, Italy
| | - Marina Mingoia
- 1 Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School , Ancona, Italy
| |
Collapse
|
17
|
Eisenberg T, Rau J, Westerhüs U, Knauf-Witzens T, Fawzy A, Schlez K, Zschöck M, Prenger-Berninghoff E, Heydel C, Sting R, Glaeser SP, Pulami D, van der Linden M, Ewers C. Streptococcus agalactiae in elephants - A comparative study with isolates from human and zoo animal and livestock origin. Vet Microbiol 2017; 204:141-150. [PMID: 28532793 DOI: 10.1016/j.vetmic.2017.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 11/17/2022]
Abstract
Streptococcus (S.) agalactiae represents a significant pathogen for humans and animals. However, there are only a few elderly reports on S. agalactiae infections in wild and zoo elephants even though this pathogen has been isolated comparatively frequently in these endangered animal species. Consequently, between 2004 and 2015, we collected S. agalactiae isolates from African and Asian elephants (n=23) living in four different zoos in Germany. These isolates were characterised and compared with isolates from other animal species (n=20 isolates) and humans (n=3). We found that the isolates from elephants can be readily identified by classical biochemistry and MALDI-TOF mass spectrometry. Further characterisations for epidemiological issues were achieved using Fourier transform-infrared spectroscopy, capsule typing and molecular fingerprinting (PFGE, RAPD PCR). We could demonstrate that our elephant isolate collection contained at least six different lineages that were representative for their source of origin. Despite generally broad antimicrobial susceptibility of S. agalactiae, many showed tetracycline resistance in vitro. S. agalactiae plays an important role in bacterial infections not only in cattle and humans, but also in elephants. Comparative studies were able to differentiate S. agalactiae isolates from elephants into different infectious clusters based on their epidemiological background.
Collapse
Affiliation(s)
- Tobias Eisenberg
- Hessian State Laboratory, Schubertstr. 60, 35392 Giessen, Germany; Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, Frankfurter Str. 85-87, 35392 Giessen, Germany.
| | - Jörg Rau
- Chemical and Veterinary Investigation Office Stuttgart, Schaflandstraße 3/2, 70736 Fellbach, Germany.
| | - Uta Westerhüs
- Opel-Zoo, Königsteiner Straße 35, 61476 Kronberg, Germany.
| | - Tobias Knauf-Witzens
- Wilhelma - Zoological and Botanical Gardens, Wilhelma 13, 70376 Stuttgart, Germany.
| | - Ahmad Fawzy
- Hessian State Laboratory, Schubertstr. 60, 35392 Giessen, Germany; Cairo University, Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Giza Square 12211, Egypt; Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, Frankfurter Str. 85-87, 35392 Giessen, Germany.
| | - Karen Schlez
- Hessian State Laboratory, Schubertstr. 60, 35392 Giessen, Germany.
| | - Michael Zschöck
- Hessian State Laboratory, Schubertstr. 60, 35392 Giessen, Germany.
| | - Ellen Prenger-Berninghoff
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, Frankfurter Str. 85-87, 35392 Giessen, Germany.
| | - Carsten Heydel
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, Frankfurter Str. 85-87, 35392 Giessen, Germany.
| | - Reinhard Sting
- Chemical and Veterinary Investigation Office Stuttgart, Schaflandstraße 3/2, 70736 Fellbach, Germany.
| | - Stefanie P Glaeser
- Institute of Applied Microbiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany.
| | - Dipen Pulami
- Institute of Applied Microbiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany.
| | - Mark van der Linden
- National Reference Laboratory on Streptococcal Diseases, Abteilung Medizinische Mikrobiologie, Universitätsklinikum RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, Frankfurter Str. 85-87, 35392 Giessen, Germany.
| |
Collapse
|
18
|
Molecular Characteristics of Group B Streptococci Isolated from Adults with Invasive Infections in Japan. J Clin Microbiol 2016; 54:2695-2700. [PMID: 27558182 DOI: 10.1128/jcm.01183-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/15/2016] [Indexed: 01/18/2023] Open
Abstract
Streptococcus agalactiae (group B streptococcus) isolates (n = 443) obtained from Japanese adults with invasive infections between April 2010 and March 2013 were analyzed for capsular serotype, multilocus sequence type (ST), antibiotic susceptibility, and resistance genes. Among these cases, bacteremia without primary focus was the most common variety of infection (49.9%), followed by cellulitis (12.9%) and pneumonia (9.0%). Concerning patient age (18 to 59, 60 to 69, 70 to 79, 80 to 89, and 90 years old or older), the incidence of pneumonia increased in patients in their 70s and 80s (P < 0.001), while younger patients (18 to 59 and 60 to 69 years old) were more likely to have abscesses (P < 0.05). The mortality rate was 10.2% for all ages. The most common capsular serotype was Ib (39.5%), followed by V (16.0%), III (13.8%), VI (9.5%), and Ia (8.6%). The main ST of serotype Ib strains was ST10, which belonged to clonal complex 10 (88.0%). The predominant clonal complexes of serotypes V and III, respectively, were 1 (78.9%) and 19 (75.4%). Among these isolates, 9 strains (2.0%) were identified as group B streptococci with reduced penicillin susceptibility, reflecting amino acid substitutions in penicillin-binding protein 2X (PBP2X). In addition, 19.2% of all strains possessed mef(A/E), erm(A), or erm(B) genes, which mediate macrolide resistance, while 40.2% of strains were resistant to quinolones resulting from amino acid substitutions in GyrA and ParC. Our data argue strongly for the continuous surveillance of microbial characteristics and judicious antibiotic use in clinical practice.
Collapse
|
19
|
Neemuchwala A, Teatero S, Patel SN, Fittipaldi N. Fluoroquinolone Resistance among Clonal Complex 1 Group B Streptococcus Strains. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2016; 2016:6403928. [PMID: 27559344 PMCID: PMC4983356 DOI: 10.1155/2016/6403928] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/14/2016] [Indexed: 11/24/2022]
Abstract
Fluoroquinolone resistance in group B Streptococcus is increasingly being reported worldwide. Here, we correlated fluoroquinolone resistance with mutations in gyrA, gyrB, parC, and parE genes, identified by mining whole-genome sequencing (WGS) data of 190 clonal complex 1 group B Streptococcus strains recovered from patients with invasive diseases in North America. We report a high prevalence of fluoroquinolone resistance (12%) among GBS strains in our collection. Our approach is the first step towards accurate prediction of fluoroquinolone resistance from WGS data in this opportunistic pathogen.
Collapse
Affiliation(s)
| | - Sarah Teatero
- Public Health Ontario Laboratory, Toronto, ON, Canada M5G 1M1
| | - Samir N. Patel
- Public Health Ontario Laboratory, Toronto, ON, Canada M5G 1M1
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A1
| | - Nahuel Fittipaldi
- Public Health Ontario Laboratory, Toronto, ON, Canada M5G 1M1
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A1
| |
Collapse
|
20
|
Yan Y, Hu H, Lu T, Fan H, Hu Y, Li G, Zhang X, Shi Y, Xia R. Investigation of serotype distribution and resistance genes profile in group B Streptococcus isolated from pregnant women: a Chinese multicenter cohort study. APMIS 2016; 124:794-9. [PMID: 27452669 DOI: 10.1111/apm.12570] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/20/2016] [Indexed: 11/29/2022]
Abstract
We surveyed the group B Streptococcus (GBS) strains isolated from four teaching hospitals during 1-year period to investigate the current serotypes and antimicrobial resistance status of these strains. A total of 231 non-duplicate colonizing GBS isolates were collected from pregnant women. Antimicrobial susceptibility of these isolates was tested by the disk diffusion method. Serotype was performed by a multiplex polymerase chain reaction (PCR) method. Analysis of the resistance mechanisms was performed by PCR amplification and DNA sequencing. Seven serotypes (Ia, Ib, II, III, V, VI, and VIII) were identified, and the prevalence ranged from 0.9 to 35.9%. All isolates were susceptible to the penicillin, ceftriaxone, and vancomycin. The resistance of all the isolates to erythromycin, clindamycin, and levofloxacin was 61.5, 51.9, and 35.5%, respectively. The erythromycin resistance was mainly associated with the genes ermB and ermB-mef(A/E) (69.8%). The most predominant phenotype was cMLSB (77.5%). Five gene panels, including gyrA, parC, parE, gyrA-parC, and gyrA-parC-parE, were detected. The most predominant genotype was gyrA-parC-parE triple mutation (69.5%). The S81L in gyrA gene, S79Y mutation in parC gene, and H225Y mutation in parE gene were discovered. The isolates with serotype III, V, and Ia were the most important clone concerning the prevalence and resistance.
Collapse
Affiliation(s)
- Yuzhong Yan
- Department of Transfusion Medicine, Shanghai Huashan Hospital, Fudan University, Shanghai, China.,Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Hua Hu
- Department of Gynaecology and Obstetrics, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Tingyan Lu
- Department of Clinical Laboratory, Shanghai International Peace Maternity & Child Health Hospital, Jiaotong University, Shanghai, China
| | - Huiqing Fan
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Yan Hu
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Gang Li
- Department of Clinical Laboratory, Shanghai Huashan Hospital, Fudan University, Shanghai, China
| | - Xianhua Zhang
- Department of Clinical Laboratory, Shanghai First Maternity & Infant Hospital, Tongji University, Shanghai, China
| | - Yi Shi
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Rong Xia
- Department of Transfusion Medicine, Shanghai Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Characterization and antibiotic susceptibility of Streptococcus agalactiae isolates causing urinary tract infections. INFECTION GENETICS AND EVOLUTION 2015; 34:1-6. [DOI: 10.1016/j.meegid.2015.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/24/2015] [Accepted: 07/01/2015] [Indexed: 11/22/2022]
|