1
|
Gomaa MM, Nabil El Achy S, Hezema NN. Could metformin modulate the outcome of chronic murine toxoplasmosis? Acta Trop 2024; 258:107339. [PMID: 39084481 DOI: 10.1016/j.actatropica.2024.107339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Toxoplasmosis is a pervasive parasitic infection possessing a chief impact on both public health and veterinary medicine. Unfortunately, the commercially-available anti-Toxoplasma agents have either serious side effects or diminished efficiency, specifically on the Toxoplasma tissue cysts. In the present study, metformin (The first-line treatment for type 2 diabetes mellitus) was investigated for the first time against chronic cerebral toxoplasmosis in mice model experimentally-infected with ME49 strain versus spiramycin. Two metformin regimens were applied; starting one week before the infection and four weeks PI. Parasitological, ultrastructural, histopathological, immunohistochemical, immunological, and biochemical assessments were performed. The anti-parasitic effect of metformin was granted by the statistically-significant reduction in tissue-cyst burden in both treatment regimens. This was accompanied by markedly-mutilated ultrastructure and profound amelioration of the cerebral histopathology with remarkable decline in the brain CD4+ and CD8+ T cell count. Besides, diminution of anti-Toxoplasma IgG and brain GSH levels was evident. Ultimately, the present findings highlighted the powerful promising therapeutic role of metformin in the management of chronic toxoplasmosis on a basis of anti-parasitic, anti-inflammatory, and anti-oxidant possessions.
Collapse
Affiliation(s)
- Maha Mohamed Gomaa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Samar Nabil El Achy
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nehal Nassef Hezema
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
2
|
Semeraro M, Boubaker G, Scaccaglia M, Müller J, Vigneswaran A, Hänggeli KPA, Amdouni Y, Kramer LH, Vismarra A, Genchi M, Pelosi G, Bisceglie F, Heller M, Uldry AC, Braga-Lagache S, Hemphill A. Transient Adaptation of Toxoplasma gondii to Exposure by Thiosemicarbazone Drugs That Target Ribosomal Proteins Is Associated with the Upregulated Expression of Tachyzoite Transmembrane Proteins and Transporters. Int J Mol Sci 2024; 25:9067. [PMID: 39201756 PMCID: PMC11354806 DOI: 10.3390/ijms25169067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Thiosemicarbazones and their metal complexes have been studied for their biological activities against bacteria, cancer cells and protozoa. Short-term in vitro treatment with one gold (III) complex (C3) and its salicyl-thiosemicarbazone ligand (C4) selectively inhibited proliferation of T. gondii. Transmission Electron Microscopy (TEM) detected transient structural alterations in the parasitophorous vacuole membrane and the tachyzoite cytoplasm, but the mitochondrial membrane potential appeared unaffected by these compounds. Proteins potentially interacting with C3 and C4 were identified using differential affinity chromatography coupled with mass spectrometry (DAC-MS). Moreover, long-term in vitro treatment was performed to investigate parasitostatic or parasiticidal activity of the compounds. DAC-MS identified 50 ribosomal proteins binding both compounds, and continuous drug treatments for up to 6 days caused the loss of efficacy. Parasite tolerance to both compounds was, however, rapidly lost in their absence and regained shortly after re-exposure. Proteome analyses of six T. gondii ME49 clones adapted to C3 and C4 compared to the non-adapted wildtype revealed overexpression of ribosomal proteins, of two transmembrane proteins involved in exocytosis and of an alpha/beta hydrolase fold domain-containing protein. Results suggest that C3 and C4 may interfere with protein biosynthesis and that adaptation may be associated with the upregulated expression of tachyzoite transmembrane proteins and transporters, suggesting that the in vitro drug tolerance in T. gondii might be due to reversible, non-drug specific stress-responses mediated by phenotypic plasticity.
Collapse
Affiliation(s)
- Manuela Semeraro
- Department of Veterinary Medicine Sciences, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (M.S.); (L.H.K.); (A.V.); (M.G.)
| | - Ghalia Boubaker
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (A.V.); (K.P.A.H.); (Y.A.)
| | - Mirco Scaccaglia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124 Parma, Italy; (M.S.); (G.P.); (F.B.)
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (A.V.); (K.P.A.H.); (Y.A.)
| | - Anitha Vigneswaran
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (A.V.); (K.P.A.H.); (Y.A.)
| | - Kai Pascal Alexander Hänggeli
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (A.V.); (K.P.A.H.); (Y.A.)
| | - Yosra Amdouni
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (A.V.); (K.P.A.H.); (Y.A.)
| | - Laura Helen Kramer
- Department of Veterinary Medicine Sciences, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (M.S.); (L.H.K.); (A.V.); (M.G.)
| | - Alice Vismarra
- Department of Veterinary Medicine Sciences, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (M.S.); (L.H.K.); (A.V.); (M.G.)
| | - Marco Genchi
- Department of Veterinary Medicine Sciences, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (M.S.); (L.H.K.); (A.V.); (M.G.)
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124 Parma, Italy; (M.S.); (G.P.); (F.B.)
| | - Franco Bisceglie
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124 Parma, Italy; (M.S.); (G.P.); (F.B.)
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (M.H.); (A.-C.U.); (S.B.-L.)
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (M.H.); (A.-C.U.); (S.B.-L.)
| | - Sophie Braga-Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (M.H.); (A.-C.U.); (S.B.-L.)
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (A.V.); (K.P.A.H.); (Y.A.)
| |
Collapse
|
3
|
Mady RF, El-Temsahy MM, Issa YA, Zaghloul AS, Khedr SI. MicroRNA mmu-miR-511-5p: A promising Diagnostic Biomarker in Experimental Toxoplasmosis Using Different Strains and Infective Doses in Mice with Different Immune States Before and After Treatment. Acta Parasitol 2024; 69:1253-1266. [PMID: 38743178 PMCID: PMC11182863 DOI: 10.1007/s11686-024-00851-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE Searching for a novel early diagnostic biomarker for toxoplasmosis, real-time-PCR was currently used to measure the serum mmu-miR-511-5p level in male Swiss-albino mice infected with either; ME49 or RH Toxoplasma gondii (T. gondii) strains. METHODS Three mice groups were used; (GI) constituted the non-infected control group, while (GII) and (GIII) were experimentally infected with ME49 or RH strains, respectively. GII mice were orally infected using 10 or 20 ME49 cysts (ME-10 and ME-20), both were subdivided into; non-treated (ME-10-NT and ME-20-NT) and were further subdivided into; immunocompetent (ME-10-IC and ME-20-IC) [euthanized 3-days, 1, 2, 6 or 8-weeks post-infection (PI)], and immunosuppressed using two Endoxan® injections (ME-10-IS and ME-20-IS) [euthanized 6- or 8-weeks PI], and spiramycin-treated (ME-10-SP and ME-20-SP) that received daily spiramycin, for one-week before euthanasia. GIII mice individually received 2500 intraperitoneal RH strain tachyzoites, then, were subdivided into; non-treated (RH-NT) [euthanized 3 or 5-days PI], and spiramycin-treated (RH-SP) that were euthanized 5 or 10-days PI (refer to the graphical abstract). RESULTS Revealed significant upregulation of mmu-miR-511-5p in GII, one-week PI, with gradually increased expression, reaching its maximum 8-weeks PI, especially in ME-20-NT group that received the higher infective dose. Immunosuppression increased the upregulation. Contrarily, treatment caused significant downregulation. GIII recorded significant upregulation 3-days PI, yet, treatment significantly decreased this expression. CONCLUSION Serum mmu-miR-511-5p is a sensitive biomarker for early diagnosis of ME49 and RH infection (as early as one-week and 3-days, respectively), and its expression varies according to T. gondii infective dose, duration of infection, spiramycin-treatment and host immune status.
Collapse
Affiliation(s)
- Rasha Fadly Mady
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, 2nd Floor, El Mowasah Medical and Educational Complex, Alexandria, Egypt
| | - Mona Mohamed El-Temsahy
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, 2nd Floor, El Mowasah Medical and Educational Complex, Alexandria, Egypt
| | - Yasmine Amr Issa
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Medical Biochemistry, College of Medicine, Arab Academy of Science, Technology and Maritime transport, New Alamein campus, Egypt
| | - Aya Saied Zaghloul
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, 2nd Floor, El Mowasah Medical and Educational Complex, Alexandria, Egypt
| | - Safaa Ibrahim Khedr
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, 2nd Floor, El Mowasah Medical and Educational Complex, Alexandria, Egypt.
| |
Collapse
|
4
|
Diethelm LTH, Ramos ABDSB, de Lorena GB, Trajano BI, do Espírito Santo RD, de Menezes RPB, Scotti MT, Colombo FA, Marques MJ, Correia CRD, Reimão JQ. First Description of Marinoquinoline Derivatives' Activity against Toxoplasma gondii. Pharmaceutics 2024; 16:262. [PMID: 38399316 PMCID: PMC10891983 DOI: 10.3390/pharmaceutics16020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Toxoplasmosis is a globally prevalent zoonotic disease with significant clinical implications, including neurotoxoplasmosis, a leading cause of cerebral lesions in AIDS patients. The current pharmacological treatments for toxoplasmosis face clinical limitations, necessitating the urgent development of new therapeutics. Natural sources have yielded diverse bioactive compounds, serving as the foundation for clinically used derivatives. The exploration of marine bacteria-derived natural products has led to marinoquinolines, which feature a pyrroloquinoline core and demonstrate in vitro and in vivo anti-Plasmodium activity. This study investigates the in vitro anti-Toxoplasma gondii potential of six marinoquinoline derivatives. Additionally, it conducts absorption, distribution, metabolism, excretion, and toxicity (ADMET) predictions, and evaluates the in vivo efficacy of one selected compound. The compounds displayed half-maximal effective concentration (EC50) values between 1.31 and 3.78 µM and half-maximal cytotoxic concentration (CC50) values ranging from 4.16 to 30.51 µM, resulting in selectivity indices (SI) from 3.18 to 20.85. MQ-1 exhibiting the highest in vitro SI, significantly reduced tachyzoite numbers in the peritoneum of RH-infected Swiss mice when it was orally administered at 12.5 mg/kg/day for eight consecutive days. Also, MQ-1 significantly reduced the cerebral parasite burden in chronically ME49 infected C57BL/6 mice when it was orally administered at 25 mg/kg/day for 10 consecutive days. These findings underscore the promising anti-T. gondii activity of marinoquinolines and their potential as novel therapeutic agents against this disease.
Collapse
Affiliation(s)
- Luiza Tamie Hirata Diethelm
- Laboratory of Preclinical Assays and Research of Alternative Sources of Innovative Therapy for Toxoplasmosis and Other Sicknesses (PARASITTOS), Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí, Jundiaí 13202-550, Brazil
| | - Amanda Bruno da Silva Bellini Ramos
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Brazil; (A.B.d.S.B.R.); (F.A.C.); (M.J.M.)
| | - Giovanna Braga de Lorena
- Laboratory of Preclinical Assays and Research of Alternative Sources of Innovative Therapy for Toxoplasmosis and Other Sicknesses (PARASITTOS), Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí, Jundiaí 13202-550, Brazil
| | - Bruna Inácio Trajano
- Institute of Chemistry, State University of Campinas, Campinas 13083-970, Brazil (R.D.d.E.S.); (C.R.D.C.)
| | | | - Renata Priscila Barros de Menezes
- Programa de Pós-Graduacão em Produtos Naturais e Sintéticos Bioativos (PgPNSB), Instituto de Pesquisa em Fármacos e Medicamentos (IPeFarM), Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil (M.T.S.)
| | - Marcus Tullius Scotti
- Programa de Pós-Graduacão em Produtos Naturais e Sintéticos Bioativos (PgPNSB), Instituto de Pesquisa em Fármacos e Medicamentos (IPeFarM), Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil (M.T.S.)
| | - Fabio Antonio Colombo
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Brazil; (A.B.d.S.B.R.); (F.A.C.); (M.J.M.)
| | - Marcos José Marques
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Brazil; (A.B.d.S.B.R.); (F.A.C.); (M.J.M.)
| | | | - Juliana Quero Reimão
- Laboratory of Preclinical Assays and Research of Alternative Sources of Innovative Therapy for Toxoplasmosis and Other Sicknesses (PARASITTOS), Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí, Jundiaí 13202-550, Brazil
| |
Collapse
|
5
|
Almurshidi BH, Fahmy Z, El-Shennawy A, Selim EAH, Hammam OA, Okasha H, Al-Hajj W, Mahmoud SA, Abuelenain GL. A multimodality therapeutic application on Toxoplasma gondii encephalitis utilizing Spiramycin and 'de novo' Ferula asafetida in immunodeficient mice. Parasite Immunol 2023; 45:e13014. [PMID: 37807942 DOI: 10.1111/pim.13014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
This study investigated a 'de Novo' medicinal herb, Ferula asafetida (FA), against toxoplasma encephalitis either alone or combined with spiramycin (SP). Female Swiss-Webster mice (n = 72) were divided into three batches. Batch-I received no DMS to serve as an immunocompetent control, batch-II was immune-suppressed with the DMS (0.25 mg/g/day) for 14 days pre-infection, whilst batch-III was immune-suppressed with the DMS on the same day of infection. All experimental mice were inoculated with Toxoplasma gondii ME49 cysts (n = 75). Each batch was split into four subgroups: Mono-SP, mono-FA, combined drug (SP + FA), or neither. Therapies were administered on day zero of infection in batches (I and II) and 35 days post-infection in batch (III). Treatments lasted for 14 days, and mice were sacrificed 60 days post-infection. Histopathological changes, cysts load, and CD4 and CD8 T-cells were counted in brain tissues. The cyst-load count in mice receiving SP + FA was significantly (p < .0001) the least compared to the mono treatments in all protocols. Interestingly, the combined therapy demolished the T-cell subsets to zero in immunocompetent and immunocompromised infected mice. In conclusion, F. asafetida might be a powerfully natural, safe vehicle of SP in the digestive system and/or across the brain-blood barrier to control toxoplasmosis even through immunodeficient conditions.
Collapse
Affiliation(s)
| | - Zeinab Fahmy
- Immunology and Therapeutic Evaluation Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Amal El-Shennawy
- Immunology and Therapeutic Evaluation Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Eman A H Selim
- Immunology and Therapeutic Evaluation Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Olfat Ali Hammam
- Pathology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Hend Okasha
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | | | - Salma Awad Mahmoud
- Fatima College of Health Sciences, IAT, Abu Dhabi, UAE
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Gehan Labib Abuelenain
- Immunology and Therapeutic Evaluation Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
6
|
Peyvandi A, Gorgani-Firouzjaee T, Najafzadehvarzi H, Jafarzadeh J. Urtica dioica Extract Leads to Cyst Reduction, Enhanced Cell-Mediated Immune Response, and Antioxidant Activity in Experimental Toxoplasmosis. Acta Parasitol 2023; 68:880-890. [PMID: 37924457 DOI: 10.1007/s11686-023-00727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Toxoplasmosis is a cosmopolitan parasitic infection caused by Toxoplasma gondii which is commonly treated by pyrimethamine (PYR) plus sulfadiazine (SDZ) with several adverse side effects. The present study evaluated the therapeutic effects of Urtica dioica L. aqueous extract (UDE) on acute and chronic toxoplasmosis in mice. METHODS For this purpose, mice were infected with 20 cysts (acute infection) or 10 cysts (chronic infection) of T. gondii (Me49 strain). The mice were treated with 200 mg/kg of UDE intraperitoneally (IP) and intragastric route (IG). The UDE-treated mice were compared with the PYR + SDZ treatment. The histopathological changes, cyst count, total antioxidant capacity (TAC), malondialdehyde (MDA) assay, and serum INF-γ were also evaluated. RESULTS In the acute toxoplasmosis, UDE by IP and IG administration significantly reduced the number of brain cysts by 93.74 and 92.55%, respectively, and increased the survival rate to 80% compared with 60% in untreated controls. In the chronic infection, cyst burden decreased at 88.2 and 83.4%, respectively, for IP and IG treatments. Moreover, UDE significantly increased INF- γ levels in acute and chronic toxoplasmosis. Tissue inflammatory lesions were reduced in the UDE-treated subgroups compared to the untreated group. UDE treatment significantly reduced MDA levels and elevated TAC in both acute and chronic infections. CONCLUSION The results show that U. dioica possesses significant immunostimulant and antioxidant activity with a higher cyst reduction in the brain during acute toxoplasmosis. Further studies are required to investigate the fractionations of UDE against T. gondii and its combination with other standard drugs.
Collapse
Affiliation(s)
- Ali Peyvandi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Tahmineh Gorgani-Firouzjaee
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Ganj-Afroz Ave., Babol, Iran.
| | - Hossein Najafzadehvarzi
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Jalal Jafarzadeh
- Department of Mycology and Parasitology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
7
|
El Naggar HM, Anwar MM, Khayyal AE, Abdelhameed RM, Barakat AM, Sadek SAS, Elashkar AM. Application of honeybee venom loaded nanoparticles for the treatment of chronic toxoplasmosis: parasitological, histopathological, and immunohistochemical studies. J Parasit Dis 2023; 47:591-607. [PMID: 37520202 PMCID: PMC10382463 DOI: 10.1007/s12639-023-01602-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/27/2023] [Indexed: 08/01/2023] Open
Abstract
Toxoplasma gondii is an opportunistic intracellular protozoon which may cause severe disease in the immunocompromised patients. Unfortunately, the majority of treatments on the market work against tachyzoites in the acute infection but can't affect tissue cysts in the chronic phase. So, this study aimed to evaluate the effect of bee venom (BV) loaded metal organic frameworks (MOFs) nanoparticles (NPs) for the treatment of chronic murine toxoplasmosis. Ninety laboratory Swiss Albino mice were divided into 9 groups (10 mice each); GI (negative control), GII (infected control), GIII-GXI (infected with Me49 strain of Toxoplasma and treated); GIII (MOFs-NPs), GIV and GV (BV alone and loaded on MOFs-NPs), GVI and GVII (spiramycin alone and loaded on MOFs-NPs), GVIII and GIX (ciprofloxacin alone and loaded on MOFs-NPs). Parasitological examination of brain cyst count, histopathological study of brain, retina, liver, and kidney tissue sections and immunohistochemical (IHC) evaluation of liver was performed. Counting of Toxoplasma brain cysts showed high statistically significant difference between the infected treated groups and GII. GV showed the least count of brain cysts; mean ± SD (281 ± 29.5). Histopathological examination revealed a marked ameliorative effect of BV administration when used alone or loaded MOFs-NPs. It significantly reduced tissue inflammation, degeneration, and fibrosis. IHC examination of liver sections revealed high density CD8+ infiltration in GII, low density CD8+ infiltration in GIII, GVI, GVII, GVIII, and GIX while GIV and GV showed intermediate density CD8+ infiltration. BV is a promising Apitherapy against chronic toxoplasmosis. This effect is markedly enhanced by MOFs-NPs. Graphical abstract
Collapse
Affiliation(s)
- Heba M. El Naggar
- Department of Medical Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mona M Anwar
- Department of Medical Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amira E. Khayyal
- Department of Medical Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Reda M Abdelhameed
- Department of Applied Organic Chemistry, Chemical Industries Research Division, National Research Centre, Giza, Egypt
| | - Ashraf M. Barakat
- Department of Zoonotic Diseases, National Research Centre, Giza, Egypt
| | - Sabry A. S. Sadek
- Department of Zoonotic Diseases, National Research Centre, Giza, Egypt
| | - Ayman M. Elashkar
- Department of Medical Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha, KSA Saudi Arabia
| |
Collapse
|
8
|
Sanchez SG, Bassot E, Cerutti A, Mai Nguyen H, Aïda A, Blanchard N, Besteiro S. The apicoplast is important for the viability and persistence of Toxoplasma gondii bradyzoites. Proc Natl Acad Sci U S A 2023; 120:e2309043120. [PMID: 37590416 PMCID: PMC10450435 DOI: 10.1073/pnas.2309043120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 08/19/2023] Open
Abstract
Toxoplasma gondii is responsible for toxoplasmosis, a disease that can be serious when contracted during pregnancy, but can also be a threat for immunocompromised individuals. Acute infection is associated with the tachyzoite form that spreads rapidly within the host. However, under stress conditions, some parasites can differentiate into cyst-forming bradyzoites, residing mainly in the central nervous system, retina and muscle. Because this latent form of the parasite is resistant to all currently available treatments, and is central to persistence and transmission of the parasite, specific therapeutic strategies targeting this developmental stage need to be found. T. gondii contains a plastid of endosymbiotic origin called the apicoplast, which is an appealing drug target because it is essential for tachyzoite viability and contains several key metabolic pathways that are largely absent from the mammalian host. Its function in bradyzoites, however, is unknown. Our objective was thus to study the contribution of the apicoplast to the viability and persistence of bradyzoites during chronic toxoplasmosis. We have used complementary strategies based on stage-specific promoters to generate conditional bradyzoite mutants of essential apicoplast genes. Our results show that specifically targeting the apicoplast in both in vitro or in vivo-differentiated bradyzoites leads to a loss of long-term bradyzoite viability, highlighting the importance of this organelle for this developmental stage. This validates the apicoplast as a potential area to look for therapeutic targets in bradyzoites, with the aim to interfere with this currently incurable parasite stage.
Collapse
Affiliation(s)
- Syrian G. Sanchez
- Laboratory of Pathogens and Host Immunity, CNRS, University of Montpellier, 34095Montpellier, France
| | - Emilie Bassot
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, University of Toulouse, CNRS, Inserm, Université Paul Sabatier, 31059Toulouse, France
| | - Aude Cerutti
- Laboratory of Pathogens and Host Immunity, CNRS, University of Montpellier, 34095Montpellier, France
| | - Hoa Mai Nguyen
- Laboratory of Pathogens and Host Immunity, CNRS, University of Montpellier, 34095Montpellier, France
| | - Amel Aïda
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, University of Toulouse, CNRS, Inserm, Université Paul Sabatier, 31059Toulouse, France
| | - Nicolas Blanchard
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, University of Toulouse, CNRS, Inserm, Université Paul Sabatier, 31059Toulouse, France
| | - Sébastien Besteiro
- Laboratory of Pathogens and Host Immunity, CNRS, University of Montpellier, 34095Montpellier, France
| |
Collapse
|
9
|
Biglari-Moghadam N, Najafzadehvarzi H, Gorgani-Firouzjaee T, Ghasemi-Kasman M. Efficacy of clofazimine against acute and chronic Toxoplasma gondii infection in mice. Microb Pathog 2023:106206. [PMID: 37331670 DOI: 10.1016/j.micpath.2023.106206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/25/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Toxoplasmosis is a zoonotic protozoal disease affecting approximately one-third of the world's population. The lack of current treatment options necessitates the development of drugs with good tolerance and effectiveness on the active and cystic stages of the parasite. The present study was established to investigate, for the first time, the potential potency of clofazimine (CFZ) against acute and chronic experimental toxoplasmosis. For this purpose, the type II T. gondii (Me49 strain) was used for induction acute (20 cysts in each mouse) and chronic (10 cysts in each mouse) experimental toxoplasmosis. The mice were treated with 20 mg/kg of CFZ intraperitoneally and orally. The histopathological changes, brain cyst count, total Antioxidant Capacity (TAC), malondialdehyde (MDA) assay, and the level of INF-γ were also evaluated. In the acute toxoplasmosis, both IP and oral administration of CFZ induced a significant reduction in brain parasite burden by 90.2 and 89%, respectively, and increased the survival rate to 100% compared with 60% in untreated controls. In the chronic infection, cyst burden decreased at 85.71 and 76.18% in CFZ-treated subgroups in comparison to infected untreated controls. In addition, 87.5% and 100% of CFZ-treated subgroups survived versus untreated control 62.5%. Moreover, CFZ significantly increased INF-γ levels in acute and chronic toxoplasmosis. Tissue inflammatory lesions were considerably reduced in the CFZ-treated chronic subgroups. CFZ treatment significantly reduced MDA levels and elevated TAC in both acute and chronic infections. In conclusion, CFZ showed a promising finding regarding the ability to reduce cyst burden in acute and chronic infection. Further studies are needed to investigate the therapeutic role of CFZ on toxoplasmosis using the long-term treatment and more advanced approaches. In addition, clofazimine may need to be accompanied by another drug to augment its effect and prevent the regrowth of parasites.
Collapse
Affiliation(s)
| | - Hossein Najafzadehvarzi
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, Babol University of Medical Sciences, Babol, Iran.
| | - Tahmineh Gorgani-Firouzjaee
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
10
|
Zoghroban HS, Elmansory BM, Issa YA, Eltokhy AK, Abo Safia HS, El Maghraby GM, Salama AM. Novel insights on the therapeutic effect of levamisole on the chronic toxoplasmosis in mice model. Exp Parasitol 2023; 248:108515. [PMID: 36958594 DOI: 10.1016/j.exppara.2023.108515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/02/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Latent toxoplasmosis mostly reactivates which could result in acute encephalitis. Chronic toxoplasmosis treatments are severely constrained by Toxoplasma cyst resistance. Novel therapeutic approaches are therefore becoming more essential. In this study, the effects of levamisole (LEVA) and spiramycin on the early and late stages of experimental toxoplasmosis are investigated. MATERIALS AND METHODS Seventy-five Me49 Toxoplasma gondii infected Swiss albino mice were divided into five groups; (GI): noninfected control group; (GII): infected untreated control group; (GIII): infected- LEVA treated group; (GIV): infected and received combination of spiramycin and LEVA and (GV): infected-spiramycin treated group. The impact was assessed through brain cyst count by Quantitative Real-Time Polymerase Chain Reaction (PCR), interferon gamma (IFN-γ) assay, histopathological study, and total blood counts. RESULTS The progression of chronic toxoplasmosis could only be partially controlled by using either levamisole or spiramycin as a separate drug. The combined spiramycin and levamisole treatment significantly decreased the burden of Toxoplasma brain cyst, increased IFN-γ level, total blood parameters and improved the histopathological features especially at the late stage of infection. IN CONCLUSION Levamisole effectively modulated Toxoplasma-induced immune responses, resulting in chronic toxoplasmosis remission. Further clinical trials will be needed to study the effect of these combination in HIV/AIDS (human immunodeficiency virus) patients with toxoplasmosis.
Collapse
Affiliation(s)
- Hager S Zoghroban
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Basma M Elmansory
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Yasmine Amr Issa
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Medical Biochemistry, College of Medicine, Arab Academy for Science, Technology and Maritime Transport, New Alamein, Egypt
| | - Amira K Eltokhy
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hend S Abo Safia
- Department of Medical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Amina M Salama
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
11
|
Spiramycin Disarms Pseudomonas aeruginosa without Inhibiting Growth. Antibiotics (Basel) 2023; 12:antibiotics12030499. [PMID: 36978366 PMCID: PMC10044227 DOI: 10.3390/antibiotics12030499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Spiramycin is a 16-membered macrolide antibiotic currently used in therapy to treat infections caused by Gram-positive bacteria responsible for respiratory tract infections, and it is also effective against some Gram-negative bacteria and against Toxoplasma spp. In contrast, Pseudomonas aeruginosa, which is one of the pathogens of most concern globally, is intrinsically resistant to spiramycin. In this study we show that spiramycin inhibits the expression of virulence determinants in P. aeruginosa in the absence of any significant effect on bacterial multiplication. In vitro experiments demonstrated that production of pyoverdine and pyocyanin by an environmental strain of P. aeruginosa was markedly reduced in the presence of spiramycin, as were biofilm formation, swarming motility, and rhamnolipid production. Moreover, treatment of P. aeruginosa with spiramycin sensitized the bacterium to H2O2 exposure. The ability of spiramycin to dampen the virulence of the P. aeruginosa strain was confirmed in a Galleria mellonella animal model. The results demonstrated that when G. mellonella larvae were infected with P. aeruginosa, the mortality after 24 h was >90%. In contrast, when the spiramycin was injected together with the bacterium, the mortality dropped to about 50%. Furthermore, marked reduction in transcript levels of the antimicrobial peptides gallerimycin, gloverin and moricin, and lysozyme was found in G. mellonella larvae infected with P. aeruginosa and treated with spiramycin, compared to the larvae infected without spiramycin treatment suggesting an immunomodulatory activity of spiramycin. These results lay the foundation for clinical studies to investigate the possibility of using the spiramycin as an anti-virulence and anti-inflammatory drug for a more effective treatment of P. aeruginosa infections, in combination with other antibiotics.
Collapse
|
12
|
Mefloquine loaded niosomes as a promising approach for the treatment of acute and chronic toxoplasmosis. Acta Trop 2023; 239:106810. [PMID: 36581225 DOI: 10.1016/j.actatropica.2022.106810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/09/2022] [Accepted: 12/25/2022] [Indexed: 12/27/2022]
Abstract
Toxoplasmosis is a disease with a worldwide distribution and significant morbidity and mortality. In search of effective treatment, mefloquine (MQ) was repurposed and loaded with niosomes to treat acute and chronic phases of toxoplasmosis in experimental mice. Mice were orally inoculated with 20 cysts of Toxoplasma gondii (ME 49 strain) for the acute model of infection and 10 cysts for the chronic model of infection. Infected mice were dosed with MQ solution or MQ-niosomes at 50 mg/kg/day, starting from the second day post-infection (PI) (acute model) or the fifth week PI (chronic model), and this was continued for six consecutive days. The effects of MQ solution and MQ-niosomes were compared with a pyrimethamine/sulfadiazine (PYR/SDZ) dosing combination as mortality rates, brain cyst number, inflammatory score, and immunohistochemical studies that included an estimation of apoptotic cells (TUNEL assays). In the acute infection model, MQ solution and MQ-niosomes significantly reduced the mortality rate from 45% to 25 and 10%, respectively, compared with infected untreated controls, and decreased the number of brain cysts by 51.5% and 66.9%, respectively. In the chronic infection model, cyst reduction reached 80.9% and 12.3% for MQ solution and MQ-niosomes treatments, respectively. MQ-niosomes significantly decreased inflammation induced by acute or chronic T. gondii infection. Additionally, immunohistochemical analysis revealed that MQ solution and MQ-niosomes significantly increased the number of TUNEL-positive cells in brain tissue, indicative of induction of apoptosis. Collectively, these results indicate that MQ-niosomes may provide a useful delivery strategy to treat both acute and chronic toxoplasmosis.
Collapse
|
13
|
Barakat AM, Fadaly HAME, Gareh A, Abd El-Razik KA, Ali FAZ, Saleh AA, Sadek SAS, Dahran N, El-Gendy AENG, El-Khadragy MF, Elmahallawy EK. Wheat Germ Oil and Propolis Decrease Parasite Burden and Restore Marked Histopathological Changes in Liver and Lung in Mice with Chronic Toxoplasmosis. Animals (Basel) 2022; 12:ani12223069. [PMID: 36428297 PMCID: PMC9686545 DOI: 10.3390/ani12223069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Toxoplasmosis is a parasitic zoonotic disease with a worldwide distribution. Its effects can be critical in immunocompromised patients. However, there is a limited availability of effective, low-toxicity drugs against this disease, particularly in its chronic form. The present study evaluated the effect of propolis and wheat germ oil (WGO) as safe, natural products to reduce Toxoplasma cysts in experimentally infected mice. For the experiment, five groups (10 mice per group) were examined: Group 1: negative control (noninfected, nontreated); Group 2: positive control (infected, nontreated); Group 3: infected and treated with WGO at a dose of 0.2 mg/1.5 mL per kg body weight/day; Group 4: infected and treated with 0.1 mL propolis extract/day; and Group 5: infected and treated with a combination of WGO and propolis at the same doses as Group 3 and 4. After the mice were sacrificed, liver and lung specimens underwent histopathological examination, and the parasite burden was investigated by parasitological methods and quantified using real-time polymerase chain reaction. Notably, the results showed a substantial decrease in parasitic burden in Group 5 compared to the control group. These results were further confirmed by molecular analysis and quantification of the DNA concentration of the Toxoplasma P29 gene after treatment in all tested samples. Furthermore, the combination of propolis and WGO restored all histopathological changes in the liver and lungs. Taken together, these findings provide remarkably promising evidence of the effects of the combination of WGO and propolis against chronic toxoplasmosis in mice.
Collapse
Affiliation(s)
- Ashraf Mohamed Barakat
- Department of Zoonotic Diseases, National Research Centre, El Buhouth St., Dokki, Giza 12622, Egypt
| | | | - Ahmed Gareh
- Department of Parasitology, Faculty of Veterinary Medicine, Aswan University, Aswan 24101, Egypt
| | - Khaled A. Abd El-Razik
- Department of Animal Reproduction, Veterinary Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Amira A. Saleh
- Department of Human Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sabry A. S. Sadek
- Department of Zoonotic Diseases, National Research Centre, El Buhouth St., Dokki, Giza 12622, Egypt
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Abd El-Nasser G. El-Gendy
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Manal F. El-Khadragy
- Department of biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
- Correspondence:
| |
Collapse
|
14
|
Allam AF, Hagras NAE, Farag HF, Osman MM, Shalaby TI, Kazem AH, Shehab AY, Mogahed NMFH. Remarkable histopathological improvement of experimental toxoplasmosis after receiving spiramycin-chitosan nanoparticles formulation. J Parasit Dis 2022; 46:166-177. [PMID: 35299902 PMCID: PMC8901813 DOI: 10.1007/s12639-021-01431-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 08/01/2021] [Indexed: 11/28/2022] Open
Abstract
The present study investigated the anti-Toxoplasma effect of chitosan nanoparticles [CS NPs], spiramycin, spiramycin co-administered with metronidazole and spiramycin-CS NPs formulation on the parasite burden and histopathological changes in the liver, spleen and brain in experimentally infected mice. Seventy male Swiss albino mice were classified into seven equal groups: healthy control (I), infected untreated control (II), infected group receiving CS NPs (III), spiramycin administered infected group (IV), infected group receiving spiramycin-metronidazole (V), infected receiving 400 mg/kg spiramycin-CS NPs (VI) and infected treated with spiramycin-loaded CS NPs 100 mg/kg (VII). All groups were inoculated intraperitoneally with 2500 T. gondii tachyzoites RH strain except the healthy control group. All groups were sacrificed on the 8th day after infection. Density of the parasite and histopathological examination of the liver, spleen and brain of all treated mice revealed reduction in the mean tachyzoites count as well as decreased inflammation, congestion and necrosis within tissue sections. Spiramycin-loaded NPs displayed the highest significant reduction in the pathological insult tailed by spiramycin-metronidazole and CS NPs. In conclusion, spiramycin-loaded CS NPs showed a promising synergistic combination in the treatment of the histopathology caused by toxoplasmosis.
Collapse
Affiliation(s)
- Amal Farahat Allam
- Department of Parasitology, Medical Research Institute, Alexandria University, 165 El Horreya Avenue, El Hadara, Alexandria, Egypt
| | - Nancy Abd-elkader Hagras
- Department of Medical Laboratory, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Hoda Fahmy Farag
- Department of Parasitology, Medical Research Institute, Alexandria University, 165 El Horreya Avenue, El Hadara, Alexandria, Egypt
| | - Mervat Mostafa Osman
- Department of Parasitology, Medical Research Institute, Alexandria University, 165 El Horreya Avenue, El Hadara, Alexandria, Egypt
| | - Thanaa Ibrahim Shalaby
- Department of Medical Biophysics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amani Hussein Kazem
- Department of Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amel Youssef Shehab
- Department of Parasitology, Medical Research Institute, Alexandria University, 165 El Horreya Avenue, El Hadara, Alexandria, Egypt
| | | |
Collapse
|
15
|
Hagras NAE, Mogahed NMFH, Sheta E, Darwish AAE, El-hawary MA, Hamed MT, Elwakil BH. The powerful synergistic effect of spiramycin/propolis loaded chitosan/alginate nanoparticles on acute murine toxoplasmosis. PLoS Negl Trop Dis 2022; 16:e0010268. [PMID: 35294434 PMCID: PMC8926208 DOI: 10.1371/journal.pntd.0010268] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/19/2022] [Indexed: 01/12/2023] Open
Abstract
The novel formula of spiramycin/propolis loaded chitosan (CS)/alginate (Alg) nanoparticles (NPs) was assessed for Toxoplasma gondii (T. gondii) treatment in comparison with the commercially available spiramycin regarding tissue penetration and blood brain barrier (BBB) passage. Swiss Albino mice were inoculated intraperitoneally by 2500 tachyzoites of the virulent T. gondii RH strain. The experimental groups were treated with oral spiramycin, propolis, CS/Alg NPs, spiramycin loaded CS/Alg NPs, propolis loaded CS/Alg NPs, and spiramycin/propolis loaded CS/Alg NPs. The results demonstrated that spiramycin/propolis loaded CS/Alg NPs exerted the longest survival time with no mortality on the sacrifice day (8th) in addition to representing the highest significant parasite percent reduction of (≥96% reduction) in liver, spleen and brain designating successful tissue penetration and BBB passage. Tachyzoites treated with spiramycin/propolis loaded CS/Alg NPs demonstrated the most disfigured rapturing organism via scanning electron microscope examination along with representing an overall remarkable improvement of the histopathological pictures of liver, spleen and brain. In conclusion, spiramycin/propolis loaded CS/Alg NPs showed the uppermost efficacy in the treatment of acute murine toxoplasmosis. The safe nature and the anti-parasitic effect of each of CS, Alg, spiramycin and propolis encourage the synergistic use of spiramycin/propolis loaded CS/Alg NPs as a potent treatment for human toxoplasmosis.
Collapse
Affiliation(s)
- Nancy Abd-elkader Hagras
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| | | | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Amira Abd-elfattah Darwish
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Mohamed Ali El-hawary
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Moaaz Tarek Hamed
- Department of Botany & Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Bassma Hassan Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
16
|
Pinatel E, Calcagnile M, Talà A, Damiano F, Siculella L, Peano C, De Benedetto GE, Pennetta A, De Bellis G, Alifano P. Interplay between non-coding RNA transcription, stringent phenotype and antibiotic production in Streptomyces. J Biotechnol 2022:S0168-1656(22)00029-3. [PMID: 35182607 DOI: 10.1016/j.jbiotec.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/12/2022] [Indexed: 11/26/2022]
Abstract
While in recent years the key role of non-coding RNAs (ncRNAs) in regulation of gene expression has become increasingly evident, their interaction with the global regulatory circuits is still obscure. Here we analyzed the structure and organization of the transcriptome of Streptomyces ambofaciens, the producer of spiramycin. We identified ncRNAs including 45 small-RNAs (sRNAs) and 119 antisense-RNAs (asRNAs I) that appear transcribed from dedicated promoters. Some sRNAs and asRNAs are unprecedented in Streptomyces, and were predicted to target mRNAs encoding proteins involved in transcription, translation, ribosomal structure and biogenesis, and regulation of morphological and biochemical differentiation. We then compared ncRNA expression in three strains: i.) the wild type strain; ii.) an isogenic pirA-defective mutant with central carbon metabolism imbalance, "relaxed" phenotype, and repression of antibiotic production; iii.) a pirA-derivative strain harboring a "stringent" RNA polymerase that suppresses pirA-associated phenotypes. Data indicated that expression of most ncRNAs was correlated to the stringent/relaxed phenotype suggesting novel effector mechanisms of the stringent response.
Collapse
Affiliation(s)
- Eva Pinatel
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Fabrizio Damiano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Clelia Peano
- Genomic Unit, IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Institute of Genetic and Biomedical Research, UoS of Milan, National Research Council, Rozzano, Milan, Italy
| | | | - Antonio Pennetta
- Department of Cultural Heritage, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Gianluca De Bellis
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
17
|
Synthesis, Evaluation of Anti-Toxoplasma gondii Activity in vitro and Molecular Docking of Dihydroartemisinin Derivatives. Pharm Chem J 2022. [DOI: 10.1007/s11094-021-02529-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Eid RK, Arafa MF, Ashour DS, Essa EA, Zoghroban HS, Issa YA, Nomeir HM, Abo Safia HS, El Maghraby GM. Eudragit coated microemulsion for enhanced efficacy of spiramycin against toxoplasmic encephalitis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Effect of spiramycin versus aminoguanidine and their combined use in experimental toxoplasmosis. J Parasit Dis 2021; 45:1014-1025. [PMID: 34789985 DOI: 10.1007/s12639-021-01396-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/17/2021] [Indexed: 10/21/2022] Open
Abstract
Toxoplasmosis is one of the widest spread parasitic infections which is caused by Toxoplasma gondii protozoon. Many experimental studies have evaluated the effect of aminoguanidine upon parasitic load and inflammatory process. However, few reports have illustrated the impact of combining aminoguanidine with spiramycin in the treatment of toxoplasmosis. Therefore, our study aimed to explore the possible effects of spiramycin used alone and combined with aminoguanidine against the avirulent (ME49) Toxoplasma gondii strain in experimental toxoplasmosis. Fifty-five Swiss albino mice were included in the study and were divided into five groups: (GI): non-infected control group; (GII): infected untreated control group; (GIII): infected- spiramycin treated group; (GIV): infected-aminoguanidine treated group; (GV): infected and received combination of spiramycin and aminoguanidine. Obtained results exhibited a significant increase in brain cysts numbers in aminoguanidine treated groups compared to infected untreated control groups. Histopathological studies denoted that combination between spiramycin and aminoguanidine improved the pathological features only in liver and heart tissues of the studied groups. Moreover, it was noticed that spiramycin administered alone had no effect on nitric oxide expression, whereas its combination with aminoguanidine had an inhibitory effect on inducible nitric oxide synthase enzyme in brain, liver and heart tissues of different study groups. In conclusion, the combination of spiramycin and aminoguanidine significantly reduced the parasitic burden, yet, it failed to resolve the pathological sequels in brain tissues of Toxoplasma gondii infected mice.
Collapse
|
20
|
de Salazar L, Segarra I, López-Román FJ, Torregrosa-García A, Pérez-Piñero S, Ávila-Gandía V. Increased Bioavailability of β-Alanine by a Novel Controlled-Release Powder Blend Compared to a Slow-Release Tablet. Pharmaceutics 2021; 13:1517. [PMID: 34575593 PMCID: PMC8467909 DOI: 10.3390/pharmaceutics13091517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND β-Alanine is a sport supplement with increasing popularity due to its consistent ability to improve physical performance, with the downside of requiring several weeks of supplementation as imposed to the maximum daily and single dose tolerated without side effects (i.e., paresthesia). To date, the only alternative to overcome this problem has been use of a sustained-release tablet, while powders are the most commonly used format to deliver several grams of amino acids in a single dose. In this study we assessed the bioavailability, pharmacokinetics and paresthesia effect of β-alanine after administration in a novel controlled-released powder blend (test) versus a sustained-release tablet (reference). METHODS Twelve subjects (25.6 ± 3.2 y, 50% female) participated in a randomized, single-blind, crossover study. Each participant was administered orally the test (β-alanine 8 g, l-histidine 300 mg, carnosine 100 mg) or the reference product (10 tablets to reach β-alanine 8 g, Zinc 20 mg) with a 1-week washout period. β-Alanine plasma concentrations (0-8 h) were determined by LC-MS/MS and model-independent pharmacokinetic analysis was carried out. Paresthesia intensity was evaluated using a Visual Analog Score (VAS) and the categorical Intensity Sensory Score (ISS). RESULTS The CMAX and AUC0→∞ increased 1.6- and 2.1-fold (both p < 0.001) in the test product, respectively, which yielded 2.1-fold higher bioavailability; Ka decreased in the test (0.0199 ± 0.0107 min-1) versus the reference (0.0299 ± 0.0121 min-1) product (p = 0.0834) as well as V/F and Cl/F (both p < 0.001); MRT0→last increased in the test (143 ± 19 min) versus reference (128 ± 16 min) formulation (p = 0.0449); t1/2 remained similar (test: 63.5 ± 8.7 min, reference: 68.9 ± 9.8 min). Paresthesia EMAX increased 1.7-fold using the VAS (p = 0.086) and the ISS (p = 0.009). AUEC increased 1.9-fold with the VAS (p = 0.107) and the ISS (p = 0.019) reflecting scale intrinsic differences. Pharmacokinetic-pharmacodynamic analysis showed a clockwise hysteresis loop without prediction ability between CMAX, AUC0→∞ and EMAX or AUEC. No side effects were reported (except paresthesia). CONCLUSIONS The novel controlled-release powder blend shows 100% higher bioavailability of β-alanine, opening a new paradigm that shifts from chronic to short or mid-term supplementation strategies to increase carnosine stores in sports nutrition.
Collapse
Affiliation(s)
- Lydia de Salazar
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain; (L.d.S.); (S.P.-P.); (V.Á.-G.)
| | - Ignacio Segarra
- Department of Pharmacy, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain;
- Pharmacokinetics, Patient Care and Translational Bioethics Research Group, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain
| | - Francisco Javier López-Román
- Health Sciences Department, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain;
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Antonio Torregrosa-García
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain; (L.d.S.); (S.P.-P.); (V.Á.-G.)
- Health Sciences PhD Program, Campus de los Jerónimos N° 135, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Murcia, Spain
| | - Silvia Pérez-Piñero
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain; (L.d.S.); (S.P.-P.); (V.Á.-G.)
| | - Vicente Ávila-Gandía
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain; (L.d.S.); (S.P.-P.); (V.Á.-G.)
| |
Collapse
|
21
|
Hamed EFA, Mostafa NE, Fawzy EM, Ibrahim MN, Attia R, Salama MA. The delayed death-causing nature of Rosmarinus officinalis leaf extracts and their mixture within experimental chronic toxoplasmosis: Therapeutic and prophylactic implications. Acta Trop 2021; 221:105992. [PMID: 34089696 DOI: 10.1016/j.actatropica.2021.105992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The restricted effect, significant toxicity, and emerging resistance of anti-toxoplasmosis synthetic agents impose the search for alternatives. The current research aimed to evaluate the prophylactic and therapeutic efficacy of Rosmarinus officinalis extracts and their mixtures against chronic murine toxoplasmosis and to clarify the phenomenon of delayed death. METHODS This research included two experimental designs, the first to test the preventive and curative efficacy of the extracts and the second to assess delayed death in mice infected with the ME49 strain of Toxoplasma gondii. The essential oils of the plant were analyzed by gas chromatography/mass spectrometry. RESULTS Treatment with a mixture of rosemary extracts displayed reduction rates of 81% for T. gondii cyst burden and 23% for cyst viability. The reinfected group with the pretreated cysts reported 93.4% reduction in cyst burden and 95.4% in cyst viability. Moreover, 90% reduction of the infectivity rate was obtained. The therapeutic efficacy of this mixture was superior to its valuable prophylactic effect. Histopathological examination of liver and brain tissue exhibited marked improvement. Both extracts possess free radical scavenging and antioxidant activities evidenced by high expression of iNOS stain. Our results were signified by low BAG-1 gene expression and massive mutilation of T. gondii cyst in the targeted group using scanning electron microscopy. Analysis of R. officinalis revealed the presence of isobornylformate as a novel ingredient. CONCLUSIONS R. officinalis displays a therapeutic rather than prophylactic potential, indicating the emergence of an effective safe alternative therapy.
Collapse
|
22
|
Interplay between Non-Coding RNA Transcription, Stringent/Relaxed Phenotype and Antibiotic Production in Streptomyces ambofaciens. Antibiotics (Basel) 2021; 10:antibiotics10080947. [PMID: 34438997 PMCID: PMC8388888 DOI: 10.3390/antibiotics10080947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/25/2022] Open
Abstract
While in recent years the key role of non-coding RNAs (ncRNAs) in the regulation of gene expression has become increasingly evident, their interaction with the global regulatory circuits is still obscure. Here we analyzed the structure and organization of the transcriptome of Streptomyces ambofaciens, the producer of spiramycin. We identified ncRNAs including 45 small-RNAs (sRNAs) and 119 antisense-RNAs (asRNAs I) that appear transcribed from dedicated promoters. Some sRNAs and asRNAs are unprecedented in Streptomyces and were predicted to target mRNAs encoding proteins involved in transcription, translation, ribosomal structure and biogenesis, and regulation of morphological and biochemical differentiation. We then compared ncRNA expression in three strains: (i) the wild-type strain; (ii) an isogenic pirA-defective mutant with central carbon metabolism imbalance, “relaxed” phenotype, and repression of antibiotic production; and (iii) a pirA-derivative strain harboring a “stringent” RNA polymerase that suppresses pirA-associated phenotypes. Data indicated that the expression of most ncRNAs was correlated to the stringent/relaxed phenotype suggesting novel effector mechanisms of the stringent response.
Collapse
|
23
|
Synthesis and Antiparasitic Activity of New Conjugates—Organic Drugs Tethered to Trithiolato-Bridged Dinuclear Ruthenium(II)–Arene Complexes. INORGANICS 2021. [DOI: 10.3390/inorganics9080059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tethering known drugs to a metalorganic moiety is an efficient approach for modulating the anticancer, antibacterial, and antiparasitic activity of organometallic complexes. This study focused on the synthesis and evaluation of new dinuclear ruthenium(II)–arene compounds linked to several antimicrobial compounds such as dapsone, sulfamethoxazole, sulfadiazine, sulfadoxine, triclosan, metronidazole, ciprofloxacin, as well as menadione (a 1,4-naphtoquinone derivative). In a primary screen, 30 compounds (17 hybrid molecules, diruthenium intermediates, and antimicrobials) were assessed for in vitro activity against transgenic T. gondii tachyzoites constitutively expressing β-galactosidase (T. gondii β-gal) at 0.1 and 1 µM. In parallel, the cytotoxicity in noninfected host cells (human foreskin fibroblasts, HFF) was determined by an alamarBlue assay. When assessed at 1 µM, five compounds strongly impaired parasite proliferation by >90%, and HFF viability was retained at 50% or more, and they were further subjected to T. gondii β-gal dose-response studies. Two compounds, notably 11 and 13, amide and ester conjugates with sulfadoxine and metronidazole, exhibited low IC50 (half-maximal inhibitory concentration) values 0.063 and 0.152 µM, and low or intermediate impairment of HFF viability at 2.5 µM (83 and 64%). The nature of the anchored drug as well as that of the linking unit impacted the biological activity.
Collapse
|
24
|
Rosuvastatin revert memory impairment and anxiogenic-like effect in mice infected with the chronic ME-49 strain of Toxoplasma gondii. PLoS One 2021; 16:e0250079. [PMID: 33857221 PMCID: PMC8049280 DOI: 10.1371/journal.pone.0250079] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/30/2021] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to investigate the effect of rosuvastatin treatment on memory impairment, and anxiogenic-like effects in mice chronically infected with Toxoplasma gondii. For this, Balb/c mice were infected orally with chronic ME-49 strain of Toxoplasma gondii. Oral treatment with rosuvastatin (40mg/kg/day) started on the 51st day post-infection and was performed daily for 21 days. After completion of treatment, anxiety-like effects and locomotion were investigated in the open field (OF) test, whereas novel object recognition (NOR) test was used for evaluation of short- and long-term memory. At the end of the experiments, the brain was collected for Toxoplasma gondii DNA quantification and histopathological analysis. Infection with ME-49 strain decreased the time spent in the center of OF, indicating an anxiogenic effect, without affecting total and peripheral locomotion. Rosuvastatin treatment inhibited the change in the center time. Besides, pharmacological treatment increased total and central locomotion in both non-infected and infected animals. Infection also impaired both short- and long-term memory in the NOR test, and these effects were reverted by rosuvastatin treatment. In addition to effects in behavioral changes, rosuvastatin also reduced parasite load in the brain and attenuated signs of brain inflammation such as perivascular cuffs, inflammatory cell infiltration and tissue damage. These findings indicate for the first time the efficacy of rosuvastatin in treatment of memory impairment and anxiogenic effect evoked by infection with Toxoplasma gondii. These effects might be mediated by reduced cyst load, which in turn decrease inflammation and damage in the brain.
Collapse
|
25
|
Toxoplasma gondii: AnUnderestimated Threat? Trends Parasitol 2020; 36:959-969. [PMID: 33012669 DOI: 10.1016/j.pt.2020.08.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
Abstract
Traditionally, the protozoan parasite Toxoplasma gondii has been thought of as relevant to public health primarily within the context of congenital toxoplasmosis or postnatally acquired disease in immunocompromised patients. However, latent T.gondii infection has been increasingly associated with a wide variety of neuropsychiatric disorders and, more recently, causal frameworks for these epidemiological associations have been proposed. We present assimilated evidence on the associations between T.gondii and various human neuropsychiatric disorders and outline how these may be explained within a unifying causal framework. We argue that the occult effects of latent T.gondii infection likely outweigh the recognised overt morbidity caused by toxoplasmosis, substantially raising the public health importance of this parasite.
Collapse
|
26
|
Effect of nitazoxanide and spiramycin metronidazole combination in acute experimental toxoplasmosis. Heliyon 2020; 6:e03661. [PMID: 32322704 PMCID: PMC7171529 DOI: 10.1016/j.heliyon.2020.e03661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/17/2019] [Accepted: 03/20/2020] [Indexed: 11/23/2022] Open
Abstract
Successful treatment of Toxoplasma gondii infection is difficult to attain. This study was designed to evaluate the efficacy of sulfamethoxazole-trimethoprim (SMZ-TMP), as the reference drug, nitazoxanide (NTZ), spiramycin (SP) and SP-metronidazole against the virulent RH T. gondii strain in acute experimental toxoplasmosis. One hundred Swiss albino mice were divided into control and experimental groups. Each mouse was infected with 2500 tachyzoites. Twenty infected untreated mice were used as control. The experimental group was subdivided into four subgroups (20 mice each); IIa SMZ-TMP, IIb NTZ, IIc SP and IId SP-metronidazole. All drugs were in tablet form, and were administered orally in suspension, for a period of seven days. Assessment of each drug efficacy was achieved through the study of mice survival time, mortality rate, parasite load, viability and morphological studies of tachyzoites by scanning electron microscope (SEM). The obtained results showed that SMZ-TMP, SP and SP-metronidazole were effective against acute murine toxoplasmosis and caused deformities in the tachyzoites ultrastructure. SP-metronidazole gave the best results on both mice survival rate and parasite load in the brain and liver. SMZ-TMP induced formation of prominent filaments extending from the deformed tachyzoites. NTZ showed little effect. In conclusion, all used drugs succeeded to prolong the survival time of the mice. SP-metronidazole gave the foremost effect on both mice survival rate and parasite load in the liver, spleen and brain. As this combination is nontoxic to human, it is promising for the treatment of human toxoplasmosis.
Collapse
|
27
|
Successful treatment of acute experimental toxoplasmosis by spiramycin-loaded chitosan nanoparticles. Exp Parasitol 2019; 204:107717. [DOI: 10.1016/j.exppara.2019.107717] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023]
|
28
|
Chorlton SD. Adjunctive bradyzoite-directed therapy for reducing complications of congenital toxoplasmosis. Med Hypotheses 2019; 133:109376. [PMID: 31472369 DOI: 10.1016/j.mehy.2019.109376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/18/2019] [Indexed: 11/25/2022]
Abstract
Congenital toxoplasmosis is caused by in utero infection of the fetus with the intracellular parasite Toxoplasma gondii. Upon infection, the parasite forms life-long cysts in fetal brain and eyes which are resistant to the currently accepted therapy of pyrimethamine and sulfadiazine. These cysts commonly reactivate later in life causing chorioretinitis and visual impairment, and rarely cause neurological complications. I hypothesize that adjunctive, bradyzoite-directed therapies have the potential to alleviate a significant burden of disease by reducing cyst burden in neonatal brain and eyes. Atovaquone is perhaps the most promising drug for further evaluation given its low side-effect profile, established safety, and efficacy in animal models reducing cyst burden. Very limited observational data in humans suggests atovaquone may prevent Toxoplasma-associated chorioretinitis recurrence. Clinical trials are needed to evaluate it and other potential drugs as adjunctive treatment in congenital toxoplasmosis.
Collapse
Affiliation(s)
- Samuel D Chorlton
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
29
|
El-Kowrany SI, El Ghaffar AESA, Shoheib ZS, Mady RF, Gamea GAM. Evaluation of nitazoxanide as a novel drug for the treatment of acute and chronic toxoplasmosis. Acta Trop 2019; 195:145-154. [PMID: 30986380 DOI: 10.1016/j.actatropica.2019.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 01/03/2023]
Abstract
Toxoplasmosis is a widespread, neglected disease with significant morbidity and mortality. In search of an effective treatment, nitazoxanide (NTZ) was evaluated in the treatment of acute and chronic toxoplasmosis in experimental mice. For this purpose, mice were infected with 20 cysts (acute infection model) or 10 cysts (chronic infection model) of Toxoplasma gondii (ME 49 strain). Treated mice received NTZ (at doses of 100 and 150 mg/kg), starting from the third day (acute model) or the fifth week (chronic model) post-infection, which continued for 14 consecutive days. The effects of NTZ were evaluated in comparison to the pyrimethamine/sulfadiazine combination. Evaluation included mortality rates, brain cyst count, inflammatory scoring and immunological studies. The latter included estimation of interferon-gamma (IFN-γ) and induced nitric oxide synthase (iNOS). In the acute infection model, NTZ at 100 and 150 mg/kg significantly reduced the number of brain cysts by 78 and 87% compared to the infected untreated controls and reduced the mortality rate to 24 and 20%, respectively, compared with 44% in the infected untreated control. In the chronic infection model, cyst reduction reached 32 and 38% for 100 and 150 mg/kg NTZ treatments, respectively. NTZ was significantly able to reduce inflammation caused by acute and chronic T. gondii infection with slight necrosis and few infiltrating mononuclear cells. Additionally, the immunological analysis revealed that NTZ significantly increased the production of serum IFN-γ and enhanced iNOS production in brain tissue, suggesting an immunomodulatory role for the drug. Based on the findings of the present study, it can be concluded that NTZ is a potential drug for the treatment of acute and chronic toxoplasmosis.
Collapse
|
30
|
Lee DH, Chu KB, Kang HJ, Lee SH, Quan FS. Previous Infection with Plasmodium berghei Confers Resistance to Toxoplasma gondii Infection in Mice. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:93-99. [PMID: 31104401 PMCID: PMC6526213 DOI: 10.3347/kjp.2019.57.2.93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 03/25/2019] [Indexed: 11/23/2022]
Abstract
Both Plasmodium spp. and Toxoplasma gondii are important apicomplexan parasites, which infect humans worldwide. Genetic analyses have revealed that 33% of amino acid sequences of inner membrane complex from the malaria parasite Plasmodium berghei is similar to that of Toxoplasma gondii. Inner membrane complex is known to be involved in cell invasion and replication. In this study, we investigated the resistance against T. gondii (ME49) infection induced by previously infected P. berghei (ANKA) in mice. Levels of T. gondii-specific IgG, IgG1, IgG2a, and IgG2b antibody responses, CD4+ and CD8+ T cell populations were found higher in the mice infected with P. berghei (ANKA) and challenged with T. gondii (ME49) compared to that in control mice infected with T. gondii alone (ME49). P. berghei (ANKA) + T. gondii (ME49) group showed significantly reduced the number and size of T. gondii (ME49) cysts in the brains of mice, resulting in lower body weight loss compared to ME49 control group. These results indicate that previous exposure to P. berghei (ANKA) induce resistance to subsequent T. gondii (ME49) infection.
Collapse
Affiliation(s)
- Dong-Hun Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Su-Hwa Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul 02447, Korea.,Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate school, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
31
|
Hegazy MM, Elmehankar MS, Azab MS, El-Tantawy NL, Abdel-Aziz A. Sex dichotomy in the course of experimental latent toxoplasmosis. Exp Parasitol 2019; 202:15-21. [PMID: 31078550 DOI: 10.1016/j.exppara.2019.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/04/2019] [Accepted: 05/07/2019] [Indexed: 11/28/2022]
Abstract
Toxoplasma gondii is an opportunistic zoonotic protozoan that exceeds neurological and congenital impact sequence to reactivating latent toxoplasmosis especially under immunosuppression. Sex-associated hormones influence the severity of Toxoplasma infection. Thus, our study aimed to compare toxoplasmosis associated morbidity in both male and female mice and to monitor the response to anti-Toxoplasma therapeutics fortified with sex hormones in comparison to presently used drugs. Twenty male and 20 female mice were infected with ME49 Toxoplasma strain. The morbidity was assessed in the chronic stage in both sexes by estimating brain cyst burden, brain histopathological examination and monitoring serum anti-Toxoplasma IL-12 using ELISA method. Another 40 male and 40 female mice were infected with ME49 Toxoplasma strain then after 6 weeks received different treatment regimens including Atovaquone, Spiramycin, Metronidazole, Estradiol benzoate and Testoserone propionate either as a monotherapy or as a combination. Treatment response was monitored by scoring mice activity and brain cyst burden. This study showed that female mice demonstrated higher cyst burden and manifested more pathological reactions than male mice. While, the IL-12 serum level was significantly higher in male than female mice. Also, it is proved that the Toxoplasma cyst number was reduced significantly when used testosterone/atovaquone, or testosterone/spiramycin/metronidazole combined regimen in female mice groups. While for male mice, the combined therapy of spiramycin/metronidazole was the superior one. Accordingly, combined therapy with sex hormones is a promising strategy for discovering new therapeutic regimens for treating latent toxoplasmosis especially in female.
Collapse
Affiliation(s)
- Mamdouh M Hegazy
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Egypt
| | - Manar S Elmehankar
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Egypt
| | - Manar S Azab
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Egypt
| | - Nora L El-Tantawy
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Egypt.
| | - Azza Abdel-Aziz
- Department of Pathology, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
32
|
Sánchez-Sánchez R, Vázquez P, Ferre I, Ortega-Mora LM. Treatment of Toxoplasmosis and Neosporosis in Farm Ruminants: State of Knowledge and Future Trends. Curr Top Med Chem 2019; 18:1304-1323. [PMID: 30277158 PMCID: PMC6340160 DOI: 10.2174/1568026618666181002113617] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/03/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022]
Abstract
Toxoplasmosis and neosporosis are closely related protozoan diseases that lead to important economic impacts in farm ruminants. Toxoplasma gondii infection mainly causes reproductive failure in small ruminants and is a widespread zoonosis, whereas Neospora caninum infection is one of the most important causes of abortion in cattle worldwide. Vaccination has been considered the most economic measure for controlling these diseases. However, despite vaccine development efforts, only a live-attenuated T. gondii vaccine has been licensed for veterinary use, and no promising vaccines against ne-osporosis have been developed; therefore, vaccine development remains a key goal. Additionally, drug therapy could be a valuable strategy for disease control in farm ruminants, as several drugs that limit T. gondii and N. caninum proliferation and dissemination have been evaluated. This approach may also be relevant to performing an initial drug screening for potential human therapy for zoonotic parasites. Treat-ments can be applied against infections in adult ruminants to minimize the outcomes of a primo-infection or the reactivation of a chronic infection during gestation or in newborn ruminants to avoid infection chronification. In this review, the current status of drug development against toxoplasmosis and neosporo-sis in farm ruminants is presented, and in an effort to promote additional treatment options, prospective drugs that have shown efficacy in vitro and in laboratory animal models of toxoplasmosis and neosporosis are examined
Collapse
Affiliation(s)
- Roberto Sánchez-Sánchez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Patricia Vázquez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Ignacio Ferre
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| |
Collapse
|
33
|
Watson GF, Davis PH. Systematic review and meta-analysis of variation in Toxoplasma gondii cyst burden in the murine model. Exp Parasitol 2019; 196:55-62. [PMID: 30562481 PMCID: PMC6447088 DOI: 10.1016/j.exppara.2018.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 11/20/2022]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite that infects approximately 30% of the population of the United States, with worldwide distribution. The chronic (latent) infection, mediated by the bradyzoite parasite life stage, has attracted attention due to possible links to host behavioral alteration and psychomotor effects. Mice are a common model organism for studying the chronic stage, as they are natural hosts of infection. Notably, published studies demonstrate vast ranges of measured cyst burden within the murine brain tissue. The inconsistency of measured cyst burden within and between experiments makes interpretation of statistical significance difficult, potentially confounding studies of experimental anti-parasitic approaches. This review analyzes variation in measured cyst burden in a wide array of experimental mouse infections across published literature. Factors such as parasite infection strain, mouse strain, mode of infection, and infectious dose were all examined. The lowest variation in measured cyst burden occurred with the commonly available Balb/c and CBA mice undergoing infection by the ME49 strain of T. gondii. A summary of cyst variation and average cyst counts in T. gondii mouse models is presented, which may be useful for designing future experiments.
Collapse
Affiliation(s)
| | - Paul H Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA.
| |
Collapse
|
34
|
Montazeri M, Mehrzadi S, Sharif M, Sarvi S, Shahdin S, Daryani A. Activities of anti-Toxoplasma drugs and compounds against tissue cysts in the last three decades (1987 to 2017), a systematic review. Parasitol Res 2018; 117:3045-3057. [PMID: 30088074 DOI: 10.1007/s00436-018-6027-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023]
Abstract
Currently, there is no approved therapy that can eradicate Toxoplasma gondii tissue cysts, which are responsible for chronic infection. This systematic review was performed to assess drugs or compounds that can be used as anti-T. gondii tissue cysts in vitro and in vivo. English electronic databases (i.e., PubMed, Science Direct, Scopus, Google Scholar, and Web of Science) were systematically searched for articles published up to 2017. A total of 55 papers published from 1987 to 2017 were eligible for inclusion in this systematic review. Among the drugs, atovaquone and azithromycin were found effective after long-term inoculation into mice; however, clinical cases of resistance to these drugs have been reported. Also, FR235222, QUI-11, tanshinone IIA, and hydroxyzine were shown to be effective against Toxoplasma cysts, but their effectiveness in vivo remains unknown. Additionally, compound 32, endochin-like quinolones, miltefosine, and guanabenz can be used as effective antiparasitic with the unique ability to reduce brain tissue cysts in chronically infected mice. Importantly, these antimicrobial agents are significant criteria for drug candidates. Future studies should focus on the biology and drug susceptibility of the cyst form of T. gondii in chronic toxoplasmosis patients to find more effective strategies that have sterilizing activity for eliminating T. gondii tissue cysts from the host, preventing disease relapse and potentially shortening the required duration of drug administration. Graphical abstract.
Collapse
Affiliation(s)
- Mahbobeh Montazeri
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Sharif
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Sari Branch, Islamic AZAD University, Sari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, PC 48168-95475, Iran
| | - Shayesteh Shahdin
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, PC 48168-95475, Iran.
| |
Collapse
|
35
|
Treatment of Toxoplasmosis: Historical Perspective, Animal Models, and Current Clinical Practice. Clin Microbiol Rev 2018; 31:31/4/e00057-17. [PMID: 30209035 DOI: 10.1128/cmr.00057-17] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary Toxoplasma gondii infection is usually subclinical, but cervical lymphadenopathy or ocular disease can be present in some patients. Active infection is characterized by tachyzoites, while tissue cysts characterize latent disease. Infection in the fetus and in immunocompromised patients can cause devastating disease. The combination of pyrimethamine and sulfadiazine (pyr-sulf), targeting the active stage of the infection, is the current gold standard for treating toxoplasmosis, but failure rates remain significant. Although other regimens are available, including pyrimethamine in combination with clindamycin, atovaquone, clarithromycin, or azithromycin or monotherapy with trimethoprim-sulfamethoxazole (TMP-SMX) or atovaquone, none have been found to be superior to pyr-sulf, and no regimen is active against the latent stage of the infection. Furthermore, the efficacy of these regimens against ocular disease remains uncertain. In multiple studies, systematic screening for Toxoplasma infection during gestation, followed by treatment with spiramycin for acute maternal infections and with pyr-sulf for those with established fetal infection, has been shown to be effective at preventing vertical transmission and minimizing the severity of congenital toxoplasmosis (CT). Despite significant progress in treating human disease, there is a strong impetus to develop novel therapeutics for both the acute and latent forms of the infection. Here we present an overview of toxoplasmosis treatment in humans and in animal models. Additional research is needed to identify novel drugs by use of innovative high-throughput screening technologies and to improve experimental models to reflect human disease. Such advances will pave the way for lead candidates to be tested in thoroughly designed clinical trials in defined patient populations.
Collapse
|
36
|
Oh H, Eo KY, Gumber S, Hong JJ, Kim CY, Lee HH, Jung YM, Kim J, Whang GW, Lee JM, Yeo YG, Ryu B, Ryu JS, Lee SK, Kim U, Kang SG, Park JH. An outbreak of toxoplasmosis in squirrel monkeys (Saimiri sciureus) in South Korea. J Med Primatol 2018; 47:238-246. [PMID: 29708278 DOI: 10.1111/jmp.12344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) is an intracellular protozoan parasite that can infect warm-blooded animals including humans. New World monkeys, such as squirrel monkeys, are more susceptible to T. gondii than Old World monkeys, often developing fatal disease. METHODS In this study, seven of thirteen dead squirrel monkeys at Seoul Grand Park were tested to find the cause of sudden death. RESULTS The main histopathological findings included interstitial pneumonia, necrotizing hepatitis, and splenitis. Periodic acid-Schiff staining of liver, spleen, and lung revealed cyst structures consistent with bradyzoites. Amplification of the B1 gene was detected in the liver or spleen of all monkeys. Additionally, a restriction fragment length polymorphism assay and phylogenetic analysis of the GRA6 amplicon revealed a consistent clustering with the type II strain of T. gondii. CONCLUSIONS This study is the first report of T. gondii infection of squirrel monkeys in Korea, and the first report of type II T. gondii based on GRA6 analysis in Korea.
Collapse
Affiliation(s)
- Hanseul Oh
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Kyung-Yeon Eo
- Conservation and Health Center, Seoul Zoo, Gwacheon, Gyonggido, Korea
| | - Sanjeev Gumber
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Jung Joo Hong
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea
| | - C-Yoon Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Hyun-Ho Lee
- Conservation and Health Center, Seoul Zoo, Gwacheon, Gyonggido, Korea
| | - Young-Mok Jung
- Conservation and Health Center, Seoul Zoo, Gwacheon, Gyonggido, Korea
| | - Jin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Gyu-Whan Whang
- Conservation and Health Center, Seoul Zoo, Gwacheon, Gyonggido, Korea
| | - Ji-Min Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Yong-Gu Yeo
- Conservation and Health Center, Seoul Zoo, Gwacheon, Gyonggido, Korea
| | - Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Ji-Sook Ryu
- Conservation and Health Center, Seoul Zoo, Gwacheon, Gyonggido, Korea
| | - Seul-Kee Lee
- Conservation and Health Center, Seoul Zoo, Gwacheon, Gyonggido, Korea
| | - Ukjin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Sin-Geun Kang
- Conservation and Health Center, Seoul Zoo, Gwacheon, Gyonggido, Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
37
|
Calcagnile M, Bettini S, Damiano F, Talà A, Tredici SM, Pagano R, Di Salvo M, Siculella L, Fico D, De Benedetto GE, Valli L, Alifano P. Stimulatory Effects of Methyl-β-cyclodextrin on Spiramycin Production and Physical-Chemical Characterization of Nonhost@Guest Complexes. ACS OMEGA 2018; 3:2470-2478. [PMID: 30221219 PMCID: PMC6130790 DOI: 10.1021/acsomega.7b01766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/08/2018] [Indexed: 06/08/2023]
Abstract
Spiramycin is a macrolide antibiotic and antiparasitic that is used to treat toxoplasmosis and various other infections of soft tissues. In the current study, we evaluated the effects of α-cyclodextrin, β-cyclodextrin, or methyl-β-cyclodextrin supplementation to a synthetic culture medium on biomass and spiramycin production by Streptomyces ambofaciens ATCC 23877. We found a high stimulatory effect on spiramycin production when the culture medium was supplemented with 0.5% (w/v) methyl-β-cyclodextrin, whereas α-cyclodextrin or β-cyclodextrin weakly enhanced antibiotic yields. As the stimulation of antibiotic production could be because of spiramycin complexation with cyclodextrins with effects on antibiotic stability and/or efflux, we analyzed the possible formation of complexes by physical-chemical methods. The results of Job plot experiment highlighted the formation of a nonhost@guest complex methyl-β-cyclodextrin@spiramycin I in the stoichiometric ratio of 3:1 while they excluded the formation of complex between spiramycin I and α- or β-cyclodextrin. Fourier-transform infrared spectroscopy measurements were then carried out to characterize the methyl-β-cyclodextrin@spiramycin I complex and individuate the chemical groups involved in the binding mechanism. These findings may help to improve the spiramycin fermentation process, providing at the same time a new device for better delivery of the antibiotic at the site of infection by methyl-β-cyclodextrin complexation, as it has been well-documented for other bioactive molecules.
Collapse
Affiliation(s)
- Matteo Calcagnile
- Department of Biological
and Environmental Sciences and Technologies, Department of Engineering
for Innovation, and Department of Cultural Heritage, University
of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Simona Bettini
- Department of Biological
and Environmental Sciences and Technologies, Department of Engineering
for Innovation, and Department of Cultural Heritage, University
of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Fabrizio Damiano
- Department of Biological
and Environmental Sciences and Technologies, Department of Engineering
for Innovation, and Department of Cultural Heritage, University
of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Adelfia Talà
- Department of Biological
and Environmental Sciences and Technologies, Department of Engineering
for Innovation, and Department of Cultural Heritage, University
of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Salvatore M. Tredici
- Department of Biological
and Environmental Sciences and Technologies, Department of Engineering
for Innovation, and Department of Cultural Heritage, University
of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Rosanna Pagano
- Department of Biological
and Environmental Sciences and Technologies, Department of Engineering
for Innovation, and Department of Cultural Heritage, University
of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Marco Di Salvo
- Department of Biological
and Environmental Sciences and Technologies, Department of Engineering
for Innovation, and Department of Cultural Heritage, University
of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Luisa Siculella
- Department of Biological
and Environmental Sciences and Technologies, Department of Engineering
for Innovation, and Department of Cultural Heritage, University
of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Daniela Fico
- Department of Biological
and Environmental Sciences and Technologies, Department of Engineering
for Innovation, and Department of Cultural Heritage, University
of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe E. De Benedetto
- Department of Biological
and Environmental Sciences and Technologies, Department of Engineering
for Innovation, and Department of Cultural Heritage, University
of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Ludovico Valli
- Department of Biological
and Environmental Sciences and Technologies, Department of Engineering
for Innovation, and Department of Cultural Heritage, University
of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Pietro Alifano
- Department of Biological
and Environmental Sciences and Technologies, Department of Engineering
for Innovation, and Department of Cultural Heritage, University
of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
38
|
Survey on synergism effect of ketotifen in combination with pyrimethamine in treatment of acute murine toxoplasmosis. Trop Med Health 2017; 45:39. [PMID: 29200930 PMCID: PMC5697358 DOI: 10.1186/s41182-017-0079-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/12/2017] [Indexed: 01/30/2023] Open
Abstract
Background Standard treatment of toxoplasmosis is accompanied by severe side effects and low tolerability; accordingly, alternative medicines are critically needed. Ketotifen (KET) as a cell membrane stabilizer could be an appropriate inhibitor of Toxoplasma gondii (T. gondii) parasite entrance into the host cells. Therefore, the focus of current study is characterization of the anti-Toxoplasma activity of KET in the acute phase of toxoplasmosis in murine model as pre-treatment and post-treatment (before and after infection with RH strain). KET was used intraperitoneally both individually (2 and 3 mg/kg/day) and in combination with pyrimethamine (PYR) (50 mg/kg/day). One week after the post infection, DNA was extracted from brain biopsies samples. Parasite load was calculated using Quantitative-PCR (Q-PCR) in a triplicate reaction for each DNA with the target for at RE (a 529 bp repeat element) gene. Results A significant difference between KET and control groups was observed (P < 0.001) in the pre-treatment and post-treatment groups. Both KET and the combination of KET and PYR showed a reduction in the parasite load in brain through the acute phase of the infection. 2 mg/kg/day dose of KET resulted in higher anti-Toxoplasma activity (15,698 parasites/ml) compared to 3 mg/kg/day dose of KET (72,898 parasites/ml) in brain in the pre-treatment group. In addition, KET combined with PYR significantly decreased the parasite load in the post-treatment group. Conclusions Our results indicated that KET has both prophylactic and therapeutic effects on acute phases of the disease.
Collapse
|
39
|
Yao K, Gao S, Wu Y, Zhao Z, Wang W, Mao Q. Influence of dextrins on the production of spiramycin and impurity components by Streptomyces ambofaciens. Folia Microbiol (Praha) 2017; 63:105-113. [PMID: 28823059 DOI: 10.1007/s12223-017-0544-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
Abstract
Spiramycin is a 16-membered macrolide antibiotic produced by Streptomyces ambofaciens and used in human medicine for the treatment of various respiratory tract and genital infections. Several impurities were detected in spiramycin-fermentation broth, especially impurities D and F, which decreased the separation-extraction yield and increased production cost. Dextrins, as the main carbon source, influence the accumulation of spiramycin and impurities. In this work, two types of dextrin from vendor Y and Z were compared to study their influences on spiramycin production. Our results showed that final spiramycin production with dextrin Z was enhanced twofold as compared with dextrin Y; however, the content of impurities F and D were higher with dextrin Z relative to dextrin Y. Several parameters (adenosine triphosphate, total sugar, reducing sugar, and reducing sugar to total sugar) were analyzed to reveal differences in the fermentation process. In vitro dextrin hydrolysis by amylase revealed structural differences in the two types of dextrin, and real-time quantitative polymerase chain reaction analyses showed that the transcription of srm7 and srm21 (involved in forosaminyl methylation) was enhanced and potentially related to the reduced formation of impurity F with dextrin Y. Furthermore, the srm20/srm33 ratio, representing flux balance of forosaminyl and mycarosyl, was ~ 1, implying that forosaminyl and mycarosyl biosynthesis were well balanced, resulting in reduced production of impurity D with dextrin Y.
Collapse
Affiliation(s)
- Kaiya Yao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Shuhong Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yanjie Wu
- Topfond Pharmaceutical Co., Ltd, Zhumadian, Henan, 463000, China
| | - Zhen Zhao
- Topfond Pharmaceutical Co., Ltd, Zhumadian, Henan, 463000, China
| | - Wen Wang
- Topfond Pharmaceutical Co., Ltd, Zhumadian, Henan, 463000, China
| | - Quangui Mao
- Topfond Pharmaceutical Co., Ltd, Zhumadian, Henan, 463000, China
| |
Collapse
|
40
|
Segarra I, Modamio P, Fernández C, Mariño EL. Sex-Divergent Clinical Outcomes and Precision Medicine: An Important New Role for Institutional Review Boards and Research Ethics Committees. Front Pharmacol 2017; 8:488. [PMID: 28785221 PMCID: PMC5519571 DOI: 10.3389/fphar.2017.00488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022] Open
Abstract
The efforts toward individualized medicine have constantly increased in an attempt to improve treatment options. These efforts have led to the development of small molecules which target specific molecular pathways involved in cancer progression. We have reviewed preclinical studies of sunitinib that incorporate sex as a covariate to explore possible sex-based differences in pharmacokinetics and drug–drug interactions (DDI) to attempt a relationship with published clinical outputs. We observed that covariate sex is lacking in most clinical outcome reports and suggest a series of ethic-based proposals to improve research activities and identify relevant different sex outcomes. We propose a deeper integration of preclinical, clinical, and translational research addressing statistical and clinical significance jointly; to embed specific sex-divergent endpoints to evaluate possible gender differences objectively during all stages of research; to pay greater attention to sex-divergent outcomes in polypharmacy scenarios, DDI and bioequivalence studies; the clear reporting of preclinical and clinical findings regarding sex-divergent outcomes; as well as to encourage the active role of scientists and the pharmaceutical industry to foster a new scientific culture through their research programs, practice, and participation in editorial boards and Institutional Ethics Review Boards (IRBs) and Research Ethics Committees (RECs). We establish the IRB/REC as the centerpiece for the implementation of these proposals. We suggest the expansion of its competence to follow up clinical trials to ensure that sex differences are addressed and recognized; to engage in data monitoring committees to improve clinical research cooperation and ethically address those potential clinical outcome differences between male and female patients to analyze their social and clinical implications in research and healthcare policies.
Collapse
Affiliation(s)
- Ignacio Segarra
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
| | - Pilar Modamio
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
| | - Cecilia Fernández
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
| | - Eduardo L Mariño
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
| |
Collapse
|
41
|
Toxoplasma gondii and schizophrenia: a review of published RCTs. Parasitol Res 2017; 116:1793-1799. [PMID: 28508166 DOI: 10.1007/s00436-017-5478-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/02/2017] [Indexed: 12/19/2022]
Abstract
Over the last 60 years, accumulating evidence has suggested that acute, chronic, and maternal Toxoplasma gondii infections predispose to schizophrenia. More recent evidence suggests that chronically infected patients with schizophrenia present with more severe disease. After acute infection, parasites form walled cysts in the brain, leading to lifelong chronic infection and drug resistance to commonly used antiparasitics. Chronic infection is the most studied and closely linked with development and severity of schizophrenia. There are currently four published randomized controlled trials evaluating antiparasitic drugs, specifically azithromycin, trimethoprim, artemisinin, and artemether, in patients with schizophrenia. No trials have demonstrated a change in psychopathology with adjunctive treatment. Published trials have either selected drugs without evidence against chronic infection or used them at doses too low to reduce brain cyst burden. Furthermore, trials have failed to achieve sufficient power or account for confounders such as previous antipsychotic treatment, sex, age, or rhesus status on antiparasitic effect. There are currently no ongoing trials of anti-Toxoplasma therapy in schizophrenia despite ample evidence to justify further testing.
Collapse
|
42
|
Fondi M, Pinatel E, Talà A, Damiano F, Consolandi C, Mattorre B, Fico D, Testini M, De Benedetto GE, Siculella L, De Bellis G, Alifano P, Peano C. Time-Resolved Transcriptomics and Constraint-Based Modeling Identify System-Level Metabolic Features and Overexpression Targets to Increase Spiramycin Production in Streptomyces ambofaciens. Front Microbiol 2017; 8:835. [PMID: 28553270 PMCID: PMC5427115 DOI: 10.3389/fmicb.2017.00835] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/24/2017] [Indexed: 12/22/2022] Open
Abstract
In this study we have applied an integrated system biology approach to characterize the metabolic landscape of Streptomyces ambofaciens and to identify a list of potential metabolic engineering targets for the overproduction of the secondary metabolites in this microorganism. We focused on an often overlooked growth period (i.e., post-first rapid growth phase) and, by integrating constraint-based metabolic modeling with time resolved RNA-seq data, we depicted the main effects of changes in gene expression on the overall metabolic reprogramming occurring in S. ambofaciens. Moreover, through metabolic modeling, we unraveled a set of candidate overexpression gene targets hypothetically leading to spiramycin overproduction. Model predictions were experimentally validated by genetic manipulation of the recently described ethylmalonyl-CoA metabolic node, providing evidence that spiramycin productivity may be increased by enhancing the carbon flow through this pathway. The goal was achieved by over-expressing the ccr paralog srm4 in an ad hoc engineered plasmid. This work embeds the first metabolic reconstruction of S. ambofaciens and the successful experimental validation of model predictions and demonstrates the validity and the importance of in silico modeling tools for the overproduction of molecules with a biotechnological interest. Finally, the proposed metabolic reconstruction, which includes manually refined pathways for several secondary metabolites with antimicrobial activity, represents a solid platform for the future exploitation of S. ambofaciens biotechnological potential.
Collapse
Affiliation(s)
- Marco Fondi
- Department of Biology, University of FlorenceFlorence, Italy
| | - Eva Pinatel
- Institute of Biomedical Technologies, National Research CouncilSegrate, Italy
| | - Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies, University of SalentoLecce, Italy
| | - Fabrizio Damiano
- Department of Biological and Environmental Sciences and Technologies, University of SalentoLecce, Italy
| | - Clarissa Consolandi
- Institute of Biomedical Technologies, National Research CouncilSegrate, Italy
| | | | - Daniela Fico
- Laboratory of Analytical and Isotopic Mass Spectrometry, Department of Cultural Heritage, University of SalentoLecce, Italy
| | - Mariangela Testini
- Department of Biological and Environmental Sciences and Technologies, University of SalentoLecce, Italy
| | - Giuseppe E De Benedetto
- Laboratory of Analytical and Isotopic Mass Spectrometry, Department of Cultural Heritage, University of SalentoLecce, Italy
| | - Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies, University of SalentoLecce, Italy
| | - Gianluca De Bellis
- Institute of Biomedical Technologies, National Research CouncilSegrate, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of SalentoLecce, Italy
| | - Clelia Peano
- Institute of Biomedical Technologies, National Research CouncilSegrate, Italy
| |
Collapse
|
43
|
Chew CC, Ng S, Chee YL, Koo TW, Liew MH, Chee ELC, Modamio P, Fernández C, Mariño EL, Segarra I. Diclofenac sex-divergent drug-drug interaction with Sunitinib: pharmacokinetics and tissue distribution in male and female mice. Invest New Drugs 2017; 35:399-411. [DOI: 10.1007/s10637-017-0447-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
|
44
|
Montazeri M, Sharif M, Sarvi S, Mehrzadi S, Ahmadpour E, Daryani A. A Systematic Review of In vitro and In vivo Activities of Anti -Toxoplasma Drugs and Compounds (2006-2016). Front Microbiol 2017; 8:25. [PMID: 28163699 PMCID: PMC5247447 DOI: 10.3389/fmicb.2017.00025] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/05/2017] [Indexed: 11/23/2022] Open
Abstract
The currently available anti-Toxoplasma agents have serious limitations. This systematic review was performed to evaluate drugs and new compounds used for the treatment of toxoplasmosis. Data was systematically collected from published papers on the efficacy of drugs/compounds used against Toxoplasma gondii (T. gondii) globally during 2006-2016. The searched databases were PubMed, Google Scholar, Science Direct, ISI Web of Science, EBSCO, and Scopus. One hundred and eighteen papers were eligible for inclusion in this systematic review, which were both in vitro and in vivo studies. Within this review, 80 clinically available drugs and a large number of new compounds with more than 39 mechanisms of action were evaluated. Interestingly, many of the drugs/compounds evaluated against T. gondii act on the apicoplast. Therefore, the apicoplast represents as a potential drug target for new chemotherapy. Based on the current findings, 49 drugs/compounds demonstrated in vitro half-maximal inhibitory concentration (IC50) values of below 1 μM, but most of them were not evaluated further for in vivo effectiveness. However, the derivatives of the ciprofloxacin, endochin-like quinolones and 1-[4-(4-nitrophenoxy) phenyl] propane-1-one (NPPP) were significantly active against T. gondii tachyzoites both in vitro and in vivo. Thus, these compounds are promising candidates for future studies. Also, compound 32 (T. gondii calcium-dependent protein kinase 1 inhibitor), endochin-like quinolones, miltefosine, rolipram abolish, and guanabenz can be repurposed into an effective anti-parasitic with a unique ability to reduce brain tissue cysts (88.7, 88, 78, 74, and 69%, respectively). Additionally, no promising drugs are available for congenital toxoplasmosis. In conclusion, as current chemotherapy against toxoplasmosis is still not satisfactory, development of well-tolerated and safe specific immunoprophylaxis in relaxing the need of dependence on chemotherapeutics is a highly valuable goal for global disease control. However, with the increasing number of high-risk individuals, and absence of a proper vaccine, continued efforts are necessary for the development of novel treatment options against T. gondii. Some of the novel compounds reviewed here may represent good starting points for the discovery of effective new drugs. In further, bioinformatic and in silico studies are needed in order to identify new potential toxoplasmicidal drugs.
Collapse
Affiliation(s)
- Mahbobeh Montazeri
- Toxoplasmosis Research Center, Mazandaran University of Medical SciencesSari, Iran
- Student Research Committee, Mazandaran University of Medical SciencesSari, Iran
| | - Mehdi Sharif
- Toxoplasmosis Research Center, Mazandaran University of Medical SciencesSari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical SciencesSari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical SciencesSari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical SciencesSari, Iran
| | - Saeed Mehrzadi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences TehranIran
| | - Ehsan Ahmadpour
- Drug Applied Research Center, Tabriz University of Medical SciencesTabriz, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical SciencesSari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical SciencesSari, Iran
| |
Collapse
|
45
|
Evaluation of Propranolol Effect on Experimental Acute and Chronic Toxoplasmosis Using Quantitative PCR. Antimicrob Agents Chemother 2016; 60:7128-7133. [PMID: 27645234 DOI: 10.1128/aac.01323-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/04/2016] [Indexed: 12/14/2022] Open
Abstract
Current therapies against toxoplasmosis are limited, and drugs have significant side effects and low efficacies. We evaluated the potential anti-Toxoplasma activity of propranolol at a dose of 2 or 3 mg/kg of body weight/day in vivo in the acute and chronic phases. Propranolol as a cell membrane-stabilizing agent is a suitable drug for inhibiting the entrance of Toxoplasma gondii tachyzoites into cells. The acute-phase assay was performed using propranolol, pyrimethamine, and propranolol plus pyrimethamine before (pretreatment) and after (posttreatment) intraperitoneal challenge with 1 × 103 tachyzoites of the virulent T. gondii strain RH in BALB/c mice. Also, in the chronic phase, treatment was performed 12 h before intraperitoneal challenge with 1 × 106 tachyzoites of the virulent strain RH of T. gondii in rats. One week (in the acute phase) and 2 months (in the chronic phase) after postinfection, tissues were isolated and DNA was extracted. Subsequently, parasite load was calculated using quantitative PCR (qPCR). In the acute phase, in both groups, significant anti-Toxoplasma activity was observed using propranolol (P < 0.001). Propranolol in the pretreatment group showed higher anti-Toxoplasma activity than propranolol in posttreatment in brain tissues, displaying therapeutic efficiency on toxoplasmosis. Also, propranolol combined with pyrimethamine reduced the parasite load as well as significantly increased survival of mice in the pretreatment group. In the chronic phase, anti-Toxoplasma activity and decreased parasite load in tissues were observed with propranolol. In conclusion, the presented results demonstrate that propranolol, as an orally available drug, is effective at low doses against acute and latent murine toxoplasmosis, and the efficiency of the drug is increased when it is used in combination therapy with pyrimethamine.
Collapse
|
46
|
An XD, Yu S. Direct Synthesis of Nitriles from Aldehydes Using an O-Benzoyl Hydroxylamine (BHA) as the Nitrogen Source. Org Lett 2015; 17:5064-7. [DOI: 10.1021/acs.orglett.5b02547] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiao-De An
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Shouyun Yu
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
47
|
Novel Approaches Reveal that Toxoplasma gondii Bradyzoites within Tissue Cysts Are Dynamic and Replicating Entities In Vivo. mBio 2015; 6:e01155-15. [PMID: 26350965 PMCID: PMC4600105 DOI: 10.1128/mbio.01155-15] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Despite their critical role in chronic toxoplasmosis, the biology of Toxoplasma gondii bradyzoites is poorly understood. In an attempt to address this gap, we optimized approaches to purify tissue cysts and analyzed the replicative potential of bradyzoites within these cysts. In order to quantify individual bradyzoites within tissue cysts, we have developed imaging software, BradyCount 1.0, that allows the rapid establishment of bradyzoite burdens within imaged optical sections of purified tissue cysts. While in general larger tissue cysts contain more bradyzoites, their relative “occupancy” was typically lower than that of smaller cysts, resulting in a lower packing density. The packing density permits a direct measure of how bradyzoites develop within cysts, allowing for comparisons across progression of the chronic phase. In order to capture bradyzoite endodyogeny, we exploited the differential intensity of TgIMC3, an inner membrane complex protein that intensely labels newly formed/forming daughters within bradyzoites and decays over time in the absence of further division. To our surprise, we were able to capture not only sporadic and asynchronous division but also synchronous replication of all bradyzoites within mature tissue cysts. Furthermore, the time-dependent decay of TgIMC3 intensity was exploited to gain insights into the temporal patterns of bradyzoite replication in vivo. Despite the fact that bradyzoites are considered replicatively dormant, we find evidence for cyclical, episodic bradyzoite growth within tissue cysts in vivo. These findings directly challenge the prevailing notion of bradyzoites as dormant nonreplicative entities in chronic toxoplasmosis and have implications on our understanding of this enigmatic and clinically important life cycle stage. The protozoan Toxoplasma gondii establishes a lifelong chronic infection mediated by the bradyzoite form of the parasite within tissue cysts. Technical challenges have limited even the most basic studies on bradyzoites and the tissue cysts in vivo. Bradyzoites, which are viewed as dormant, poorly replicating or nonreplicating entities, were found to be surprisingly active, exhibiting not only the capacity for growth but also previously unrecognized patterns of replication that point to their being considerably more dynamic than previously imagined. These newly revealed properties force us to reexamine the most basic questions regarding bradyzoite biology and the progression of the chronic phase of toxoplasmosis. By developing new tools and approaches to study the chronic phase at the level of bradyzoites, we expose new avenues to tackle both drug development and a better understanding of events that may lead to reactivated symptomatic disease.
Collapse
|
48
|
Mitchell SM, Ullman JL, Teel AL, Watts RJ. Hydrolysis of amphenicol and macrolide antibiotics: Chloramphenicol, florfenicol, spiramycin, and tylosin. CHEMOSPHERE 2015; 134:504-11. [PMID: 25618189 DOI: 10.1016/j.chemosphere.2014.08.050] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 08/22/2014] [Accepted: 08/23/2014] [Indexed: 05/12/2023]
Abstract
Antibiotics that enter the environment can present human and ecological health risks. An understanding of antibiotic hydrolysis rates is important for predicting their environmental persistence as biologically active contaminants. In this study, hydrolysis rates and Arrhenius constants were determined as a function of pH and temperature for two amphenicol (chloramphenicol and florfenicol) and two macrolide (spiramycin and tylosin) antibiotics. Antibiotic hydrolysis rates in pH 4-9 buffer solutions at 25°C, 50°C, and 60°C were quantified, and degradation products were characterized. All of the antibiotics tested remained stable and exhibited no observable hydrolysis under ambient conditions typical of aquatic ecosystems. Acid- and base-catalyzed hydrolysis occurred at elevated temperatures (50-60°C), and hydrolysis rates increased considerably below pH 5 and above pH 8. Hydrolysis rates also increased approximately 1.5- to 2.9-fold for each 10°C increase in temperature. Based on the degradation product masses found, the functional groups that underwent hydrolysis were alkyl fluoride, amide, and cyclic ester (lactone) moieties; some of the resultant degradation products may remain bioactive, but to a lesser extent than the parent compounds. The results of this research demonstrate that amphenicol and macrolide antibiotics persist in aquatic systems under ambient temperature and pH conditions typical of natural waters. Thus, these antibiotics may present a risk in aquatic ecosystems depending on the concentration present.
Collapse
Affiliation(s)
- Shannon M Mitchell
- Department of Civil and Environmental Engineering, Washington State University, 405 Spokane Street, Pullman, WA 99164, USA
| | - Jeffrey L Ullman
- Department of Agricultural and Biological Engineering, University of Florida, PO Box 110570, 1741 Museum Road, Gainesville, FL 32611, USA.
| | - Amy L Teel
- Department of Civil and Environmental Engineering, Washington State University, 405 Spokane Street, Pullman, WA 99164, USA
| | - Richard J Watts
- Department of Civil and Environmental Engineering, Washington State University, 405 Spokane Street, Pullman, WA 99164, USA
| |
Collapse
|
49
|
Eissa MM, Barakat AMA, Amer EI, Younis LK. Could miltefosine be used as a therapy for toxoplasmosis? Exp Parasitol 2015; 157:12-22. [PMID: 26112396 DOI: 10.1016/j.exppara.2015.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 06/05/2015] [Accepted: 06/14/2015] [Indexed: 02/08/2023]
Abstract
Toxoplasmosis is a zoonotic protozoal disease affecting more than a billion people worldwide. The shortfalls of the current treatment options necessitate the development of non-toxic and well-tolerated, efficient alternatives especially against the cyst form. The current study was undertaken to investigate, for the first time, the potential potency of miltefosine against Toxoplasma gondii infection in acute and chronic experimental toxoplasmosis. Results showed that there is no evidence of anti-parasitic activity of miltefosine against T. gondii tachyzoites in acute experimental toxoplasmosis. However, anti-parasitic activity of miltefosine against T. gondii cyst stage in chronic experimental toxoplasmosis could not be excluded as demonstrated by significant reduction in brain cyst burden. Moreover, considerable morphological changes in the cysts were revealed by light and electron microscopy study and also by amelioration of pathological changes in the brain. Future studies should focus on enhancement of anti-toxoplasma activity of miltefosine against chronic toxoplasmosis using formulation based nanotechnology. To the best of our knowledge, this is the first study highlighting efficacy of miltefosine against chronic toxoplasmosis, thus, increasing the list of diseases that can be targeted by this drug.
Collapse
Affiliation(s)
- Maha M Eissa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Eglal I Amer
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Layla K Younis
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
50
|
Lau CLL, Chan ST, Selvaratanam M, Khoo HW, Lim AYL, Modamio P, Mariño EL, Segarra I. Sunitinib-ibuprofen drug interaction affects the pharmacokinetics and tissue distribution of sunitinib to brain, liver, and kidney in male and female mice differently. Fundam Clin Pharmacol 2015; 29:404-16. [DOI: 10.1111/fcp.12126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 06/02/2015] [Accepted: 05/18/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Christine Li Ling Lau
- Department of Pharmaceutical Technology; School of Pharmacy and Health Sciences; International Medical University; Jalan 19/155B, Bukit Jalil Kuala Lumpur Malaysia
| | - Sook Tyng Chan
- Department of Pharmaceutical Technology; School of Pharmacy and Health Sciences; International Medical University; Jalan 19/155B, Bukit Jalil Kuala Lumpur Malaysia
| | - Manimegahlai Selvaratanam
- Department of Pharmaceutical Technology; School of Pharmacy and Health Sciences; International Medical University; Jalan 19/155B, Bukit Jalil Kuala Lumpur Malaysia
| | - Hui Wen Khoo
- Department of Pharmaceutical Technology; School of Pharmacy and Health Sciences; International Medical University; Jalan 19/155B, Bukit Jalil Kuala Lumpur Malaysia
| | - Adeline Yi Ling Lim
- Department of Human Biology; School of Medicine; International Medical University; Jalan 19/155B, Bukit Jalil Kuala Lumpur Malaysia
| | - Pilar Modamio
- Clinical Pharmacy and Pharmacotherapy Unit; Department of Pharmacy and Pharmaceutical Technology; Faculty of Pharmacy; University of Barcelona; Av. Joan XXIII s/n Barcelona 08028 Spain
| | - Eduardo L. Mariño
- Clinical Pharmacy and Pharmacotherapy Unit; Department of Pharmacy and Pharmaceutical Technology; Faculty of Pharmacy; University of Barcelona; Av. Joan XXIII s/n Barcelona 08028 Spain
| | - Ignacio Segarra
- Department of Pharmaceutical Technology; School of Pharmacy and Health Sciences; International Medical University; Jalan 19/155B, Bukit Jalil Kuala Lumpur Malaysia
| |
Collapse
|