1
|
Hidalgo-Tenorio C, Bou G, Oliver A, Rodríguez-Aguirregabiria M, Salavert M, Martínez-Martínez L. The Challenge of Treating Infections Caused by Metallo-β-Lactamase-Producing Gram-Negative Bacteria: A Narrative Review. Drugs 2024; 84:1519-1539. [PMID: 39467989 PMCID: PMC11652570 DOI: 10.1007/s40265-024-02102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/30/2024]
Abstract
Gram-negative multidrug-resistant (MDR) bacteria, including Enterobacterales, Acinetobacter baumannii, and Pseudomonas aeruginosa, pose a significant challenge in clinical practice. Infections caused by metallo-β-lactamase (MBL)-producing Gram-negative organisms, in particular, require careful consideration due to their complexity and varied prevalence, given that the microbiological diagnosis of these pathogens is intricate and compounded by challenges in assessing the efficacy of anti-MBL antimicrobials. We discuss both established and new approaches in the treatment of MBL-producing Gram-negative infections, focusing on 3 strategies: colistin; the recently approved combination of aztreonam with avibactam (or with ceftazidime/avibactam); and cefiderocol. Despite its significant activity against various Gram-negative pathogens, the efficacy of colistin is limited by resistance mechanisms, while nephrotoxicity and acute renal injury call for careful dosing and monitoring in clinical practice. Aztreonam combined with avibactam (or with avibactam/ceftazidime if aztreonam plus avibactam is not available) exhibits potent activity against MBL-producing Gram-negative pathogens. Cefiderocol in monotherapy is effective against a wide range of multidrug-resistant organisms, including MBL producers, and favorable clinical outcomes have been observed in various clinical trials and case series. After examining scientific evidence in the management of infections caused by MBL-producing Gram-negative bacteria, we have developed a comprehensive clinical algorithm to guide therapeutic decision making. We recommend reserving colistin as a last-resort option for MDR Gram-negative infections. Cefiderocol and aztreonam/avibactam represent favorable options against MBL-producing pathogens. In the case of P. aeruginosa with MBL-producing enzymes and with difficult-to-treat resistance, cefiderocol is the preferred option. Further research is needed to optimize treatment strategies and minimize resistance.
Collapse
Affiliation(s)
- Carmen Hidalgo-Tenorio
- Hospital Universitario Virgen de las Nieves de Granada, Instituto de Investigación Biosanitario de Granada (IBS-Granada), Granada, Spain.
- Departamento de Medicina, Universidad de Granada, Granada, Spain.
| | - German Bou
- Servicio de Microbiología, Complejo Hospitalario Universitario A Coruña, A Coruña, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Oliver
- Servicio de Microbiología y Unidad de Investigación, Hospital Son Espases, IdISBa, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Miguel Salavert
- Infectious Diseases Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Luis Martínez-Martínez
- Microbiology Unit, Hospital Universitario Reina Sofía, Córdoba, Spain
- Department of Agricultural Chemistry, Soil Sciences and Microbiology, Universidad de Córdoba, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Sangiorgio G, Calvo M, Stefani S. Aztreonam and avibactam combination therapy for metallo-β-lactamase-producing gram-negative bacteria: a comprehensive review. Clin Microbiol Infect 2024:S1198-743X(24)00532-9. [PMID: 39528085 DOI: 10.1016/j.cmi.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Carbapenem-resistant gram-negative bacteria represent a challenging healthcare threat, accounting for metallo-β-lactamases (MBL) production increase across the world. MBL-producing Enterobacterales and Pseudomonas aeruginosa represent the main target for ultimate antibiotics combinations due to the difficulty to include carbapenems within the antimicrobial treatment. OBJECTIVES To provide a comprehensive review of the current knowledge about the aztreonam/avibactam (ATM-AVI) combination, which has emerged as a promising option for treating MBL-producing bacteria. SOURCES Relevant in vitro and in vivo studies on ATM-AVI effectiveness. CONTENT The review summarizes ATM-AVI characteristics and targets, examining how AVI restores ATM effectiveness against MBLs while protecting it from other β-lactamases. Key in vitro and in vivo studies on ATM-AVI efficacy are presented. IMPLICATIONS This review provides insights into the potential clinical management implications of ATM-AVI for treating carbapenem-resistant gram-negative infections, particularly those caused by MBL-producing organisms.
Collapse
Affiliation(s)
- G Sangiorgio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - M Calvo
- Laboratory Analysis Unit, University Hospital Policlinico-San Marco, Catania, Italy.
| | - S Stefani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; Laboratory Analysis Unit, University Hospital Policlinico-San Marco, Catania, Italy.
| |
Collapse
|
3
|
Vega AD, DeRonde K, Jimenez A, Piazza M, Vu C, Martinez O, Rojas LJ, Marshall S, Yasmin M, Bonomo RA, Abbo LM. Difficult-to-treat (DTR) Pseudomonas aeruginosa harboring Verona-Integron metallo-β-lactamase ( blaVIM): infection management and molecular analysis. Antimicrob Agents Chemother 2024; 68:e0147423. [PMID: 38602418 PMCID: PMC11064525 DOI: 10.1128/aac.01474-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Pseudomonas aeruginosa harboring Verona Integron-encoded metallo-β-lactamase enzymes (VIM-CRPA) have been associated with infection outbreaks in several parts of the world. In the US, however, VIM-CRPA remain rare. Starting in December 2018, we identified a cluster of cases in our institution. Herein, we present our epidemiological investigation and strategies to control/manage these challenging infections. This study was conducted in a large academic healthcare system in Miami, FL, between December 2018 and January 2022. Patients were prospectively identified via rapid molecular diagnostics when cultures revealed carbapenem-resistant P. aeruginosa. Alerts were received in real time by the antimicrobial stewardship program and infection prevention teams. Upon alert recognition, a series of interventions were performed as a coordinated effort. A retrospective chart review was conducted to collect patient demographics, antimicrobial therapy, and clinical outcomes. Thirty-nine VIM-CRPA isolates led to infection in 21 patients. The majority were male (76.2%); the median age was 52 years. The majority were mechanically ventilated (n = 15/21; 71.4%); 47.6% (n = 10/21) received renal replacement therapy at the time of index culture. Respiratory (n = 20/39; 51.3%) or bloodstream (n = 13/39; 33.3%) were the most common sources. Most infections (n = 23/37; 62.2%) were treated with an aztreonam-avibactam regimen. Six patients (28.6%) expired within 30 days of index VIM-CRPA infection. Fourteen isolates were selected for whole genome sequencing. Most of them belonged to ST111 (12/14), and they all carried blaVIM-2 chromosomally. This report describes the clinical experience treating serious VIM-CRPA infections with either aztreonam-ceftazidime/avibactam or cefiderocol in combination with other agents. The importance of implementing infection prevention strategies to curb VIM-CRPA outbreaks is also demonstrated.
Collapse
Affiliation(s)
- Ana D. Vega
- Department of Pharmacy, Jackson Health System, Miami, Florida, USA
| | - Kailynn DeRonde
- Department of Pharmacy, Jackson Health System, Miami, Florida, USA
| | - Adriana Jimenez
- Department of Pharmacy, Jackson Health System, Miami, Florida, USA
- Department of Epidemiology, Florida International University, Miami, Florida, USA
| | - Michael Piazza
- Department of Medicine, Virtua Medical Group, Medford, New Jersey, USA
| | - Christine Vu
- Department of Pharmacy, Jackson Health System, Miami, Florida, USA
| | - Octavio Martinez
- Department of Pharmacy, Jackson Health System, Miami, Florida, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Laura J. Rojas
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Steven Marshall
- Department of Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Mohamad Yasmin
- Department of Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Robert A. Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
- Department of Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Departments of Proteomics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Lilian M. Abbo
- Department of Pharmacy, Jackson Health System, Miami, Florida, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
4
|
Slimene K, Salabi AE, Dziri O, Mathlouthi N, Diene SM, Mohamed EA, Amhalhal JMA, Aboalgasem MO, Alrjael JF, Rolain JM, Chouchani C. Epidemiology, Phenotypic and Genotypic Characterization of Carbapenem-Resistant Gram-Negative Bacteria from a Libyan Hospital. Microb Drug Resist 2023. [PMID: 37145891 DOI: 10.1089/mdr.2022.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
Antimicrobial resistance, particularly resistance to carbapenems, has become one of the major threats to public health. Seventy-two isolates were collected from patients and hospital environment of Ibn Sina Hospital, Sirte, Libya. Antibiotic susceptibility tests, using the disc diffusion method and E-Test strips, were performed to select carbapenem-resistant strains. The colistin (CT) resistance was also tested by determining the minimum inhibitory concentration (MIC). RT-PCR was conducted to identify the presence of carbapenemase encoding genes and plasmid-mediated mcr CT resistance genes. Standard PCR was performed for positive RT-PCR and the chromosome-mediated CT resistance genes (mgrB, pmrA, pmrB, phoP, phoQ). Gram-negative bacteria showed a low susceptibility to carbapenems. Molecular investigations indicated that the metallo-β-lactamase New Delhi metallo-beta-lactamases-1 was the most prevalent (n = 13), followed by Verona integron-encoded metallo-beta-lactamase (VIM) enzyme (VIM-2 [n = 6], VIM-1 [n = 1], and VIM-4 [n = 1]) that mainly detected among Pseudomonas spp. The oxacillinase enzyme OXA-23 was detected among six Acinetobacter baumannii, and OXA-48 was detected among one Citrobacter freundii and three Klebsiella pneumoniae, in which one coharbored the Klebsiella pneumoniae carbapenemase enzyme and showed resistance to CT (MIC = 64 μg/mL) by modification in pmrB genes. In this study, we report for the first time the emergence of Pseudomonas aeruginosa carrying the blaNDM-1 gene and belonging to sequence type773 in Libya. Our study reported also for the first time CT resistance by mutation in the pmrB gene among Enterobacteriaceae isolates in Libya.
Collapse
Affiliation(s)
- Khouloud Slimene
- Faculté de Médecine et de Pharmacie, Aix-Marseille Université, IRD, APHM, MEPHI, Marseille Cedex 05, France
- IHU Méditerranée Infection, Marseille Cedex 05, France
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie
- Laboratoire de Recherche des Sciences et Technologies de l'Environnement, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Tunis, Tunisie
- Unité de Service en Commun Pour la Recherche « Plateforme Génomique » Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Tunis, Tunisie
| | - Allaaeddin El Salabi
- Department of Environmental Health, Faculty of Public Health, University of Benghazi, Benghazi, Libya
| | - Olfa Dziri
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie
- Laboratoire de Recherche des Sciences et Technologies de l'Environnement, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Tunis, Tunisie
- Unité de Service en Commun Pour la Recherche « Plateforme Génomique » Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Tunis, Tunisie
| | - Najla Mathlouthi
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie
- Laboratoire de Recherche des Sciences et Technologies de l'Environnement, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Tunis, Tunisie
- Unité de Service en Commun Pour la Recherche « Plateforme Génomique » Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Tunis, Tunisie
| | - Seydina M Diene
- Faculté de Médecine et de Pharmacie, Aix-Marseille Université, IRD, APHM, MEPHI, Marseille Cedex 05, France
- IHU Méditerranée Infection, Marseille Cedex 05, France
| | | | - Jadalla M A Amhalhal
- Department of Anesthesia and Surgical Intensive Care, Faculty of Medicine, Sirte University, Sirte, Libya
- ICU Department, Ibn Sina Hospital, Sirte, Libya
| | - Mohammed O Aboalgasem
- Department of Internal Medicine, Faculty of Medicine, University of Sirte, Sirte, Libya
- Infection Prevention and Patient Safety Office, Ibn Sina Hospital, Sirte, Libya
| | - Jomaa F Alrjael
- ICU Department, Ibn Sina Hospital, Sirte, Libya
- Department of Anesthesia, Ibn Sina Hospital, Sirte, Libya
| | - Jean-Marc Rolain
- Faculté de Médecine et de Pharmacie, Aix-Marseille Université, IRD, APHM, MEPHI, Marseille Cedex 05, France
- IHU Méditerranée Infection, Marseille Cedex 05, France
| | - Chedly Chouchani
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie
- Laboratoire de Recherche des Sciences et Technologies de l'Environnement, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Tunis, Tunisie
- Unité de Service en Commun Pour la Recherche « Plateforme Génomique » Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Tunis, Tunisie
| |
Collapse
|
5
|
Yamada AY, de Souza AR, Lima MDJDC, Reis AD, Campos KR, Bertani AMDJ, de Araujo LJT, Sacchi CT, Tiba-Casas MR, Camargo CH. Co-production of Classes A and B Carbapenemases BKC-1 and VIM-2 in a Clinical Pseudomonas Putida Group Isolate from Brazil. Curr Microbiol 2022; 79:250. [PMID: 35834136 DOI: 10.1007/s00284-022-02945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/21/2022] [Indexed: 11/03/2022]
Abstract
Emergence of resistance to classical antimicrobial agents is a public health issue, especially in countries with high antimicrobial consumption rates. Carbapenems have been employed as first-choice option for empirical treatment complicated infections. However, in the last decades, frequency of carbapenemase-producing Gram-negative bacteria has rising, demanding the use of alternative antimicrobial agents. By sequencing the entire genomes with short and long reads technologies, we report the isolation and genomic characterization of a carbapenem-resistant Pseudomonas clinical isolate. The identification based on average nucleotide identity indicates a putative new species into the Pseudomonas putida Group, which carries both the blaBKC-1 and blaVIM-2 carbapenemase genes. The blaBKC-1 was found to be on a transferable IncQ plasmid backbone, whereas blaVIM-2 was found in a new integron, In2126 (intl1∆-blaVIM-2-aacA7-blaVIM-2∆-aacA27-3'CS), described in this study. Our findings indicate that co-occurrence of classes A and B carbapenemase enzymes underscores the evolving emergence of more complex antimicrobial resistance in opportunistic pathogens.
Collapse
Affiliation(s)
- Amanda Yaeko Yamada
- Bacteriology Division, Instituto Adolfo Lutz, Doutor Arnaldo Avenue, 351, 9º floor, Sao Paulo, 01246-902, Brazil.,Faculdade de Medicina, Universidade de São Paulo, Doutor Arnaldo Avenue, 455, São Paulo, 01246-000, Brazil
| | - Andreia Rodrigues de Souza
- Bacteriology Division, Instituto Adolfo Lutz, Doutor Arnaldo Avenue, 351, 9º floor, Sao Paulo, 01246-902, Brazil
| | | | - Alex Domingos Reis
- Strategic Laboratory, Rapid Response Center, Instituto Adolfo Lutz, Doutor Arnaldo Avenue, 351, 10º floor, Sao Paulo, 01246-902, Brazil
| | - Karoline Rodrigues Campos
- Strategic Laboratory, Rapid Response Center, Instituto Adolfo Lutz, Doutor Arnaldo Avenue, 351, 10º floor, Sao Paulo, 01246-902, Brazil
| | | | - Leonardo Jose Tadeu de Araujo
- Strategic Laboratory, Rapid Response Center, Instituto Adolfo Lutz, Doutor Arnaldo Avenue, 351, 10º floor, Sao Paulo, 01246-902, Brazil
| | - Claudio Tavares Sacchi
- Strategic Laboratory, Rapid Response Center, Instituto Adolfo Lutz, Doutor Arnaldo Avenue, 351, 10º floor, Sao Paulo, 01246-902, Brazil
| | - Monique Ribeiro Tiba-Casas
- Bacteriology Division, Instituto Adolfo Lutz, Doutor Arnaldo Avenue, 351, 9º floor, Sao Paulo, 01246-902, Brazil
| | - Carlos Henrique Camargo
- Bacteriology Division, Instituto Adolfo Lutz, Doutor Arnaldo Avenue, 351, 9º floor, Sao Paulo, 01246-902, Brazil. .,Faculdade de Medicina, Universidade de São Paulo, Doutor Arnaldo Avenue, 455, São Paulo, 01246-000, Brazil.
| |
Collapse
|
6
|
Bassetti M, Di Pilato V, Giani T, Vena A, Rossolini GM, Marchese A, Giacobbe DR. Treatment of severe infections due to metallo-β-lactamases-producing Gram-negative bacteria. Future Microbiol 2020; 15:1489-1505. [PMID: 33140656 DOI: 10.2217/fmb-2020-0210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the last decades, there was an important paucity of agents for adequately treating infections due to metallo-β-lactamases-producing Gram-negative bacteria (MBL-GNB). Cefiderocol, a novel siderophore cephalosporin showing in vitro activity against MBL-GNB, has been recently marketed, and a combination of aztreonam and ceftazidime/avibactam has shown a possible favorable effect on survival of patients with severe MBL-GNB infections in observational studies. Other agents showing in vitro activity against MBL-GNB are currently in clinical development (e.g., cefepime/taniborbactam, LYS228, cefepime/zidebactam) that could be an important addition to our future armamentarium for severe MBL-GNB infections. Nonetheless, we should not discontinue our efforts to optimize the use of non-β-lactams agents, since they could remain an essential last-resort or alternative option in selected cases.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Unit, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences & Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Tommaso Giani
- Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
- Microbiology & Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Antonio Vena
- Infectious Diseases Unit, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
| | - Gian Maria Rossolini
- Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
- Microbiology & Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Anna Marchese
- Department of Surgical Sciences & Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Microbiology Unit, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
| | - Daniele R Giacobbe
- Infectious Diseases Unit, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
| |
Collapse
|
7
|
Bleichenbacher S, Stevens MJA, Zurfluh K, Perreten V, Endimiani A, Stephan R, Nüesch-Inderbinen M. Environmental dissemination of carbapenemase-producing Enterobacteriaceae in rivers in Switzerland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115081. [PMID: 32806462 DOI: 10.1016/j.envpol.2020.115081] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/12/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
The aquatic environment takes on a key role in the dissemination of antimicrobial-resistant Enterobacteriaceae. This study assesses the occurrence of carbapenemase-producing Enterobacteriaceae (CPE) in freshwater samples from rivers, inland canals, and streams throughout Switzerland, and characterizes the isolated strains using phenotypic and NGS-based genotypic methods. CPE producing KPC-2 (n = 2), KPC-3 (n = 1), NDM-5 (n = 3), OXA-48 (n = 3), OXA-181 (n = 6), and VIM-1 (n = 2) were detected in 17/164 of the water samples. Seven Escherichia coli had sequence types (STs) that belonged to extra-intestinal pathogenic clonal lineages ST38, ST73, ST167, ST410, and ST648. The majority (16/17) of the carbapenemase genes were located on plasmids, including the widespread IncC (n = 1), IncFIIA (n = 1), and IncFIIB plasmids (n = 4), the epidemic IncL (n = 1) and IncX3 (n = 5) plasmids, a rare Col156 plasmid (n = 1), and the mosaic IncFIB, IncR, and IncQ plasmids (n = 3). Plasmids were composed of elements that were identical to those of resistance plasmids retrieved from clinical and veterinary isolates locally and worldwide. Our data show environmental dissemination of high-risk CPE clones in Switzerland. Epidemic and mosaic-like plasmids carrying clinically relevant carbapenemase genes are replicating and evolving pollutants of river ecosystems, representing a threat to public health and environmental integrity.
Collapse
Affiliation(s)
- Stephanie Bleichenbacher
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, 8057, Zurich, Switzerland
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, 8057, Zurich, Switzerland
| | - Katrin Zurfluh
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, 8057, Zurich, Switzerland
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, 8057, Zurich, Switzerland
| | - Magdalena Nüesch-Inderbinen
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, 8057, Zurich, Switzerland.
| |
Collapse
|
8
|
Quintieri L, Fanelli F, Caputo L. Antibiotic Resistant Pseudomonas Spp. Spoilers in Fresh Dairy Products: An Underestimated Risk and the Control Strategies. Foods 2019; 8:E372. [PMID: 31480507 PMCID: PMC6769999 DOI: 10.3390/foods8090372] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 01/14/2023] Open
Abstract
Microbial multidrug resistance (MDR) is a growing threat to public health mostly because it makes the fight against microorganisms that cause lethal infections ever less effective. Thus, the surveillance on MDR microorganisms has recently been strengthened, taking into account the control of antibiotic abuse as well as the mechanisms underlying the transfer of antibiotic genes (ARGs) among microbiota naturally occurring in the environment. Indeed, ARGs are not only confined to pathogenic bacteria, whose diffusion in the clinical field has aroused serious concerns, but are widespread in saprophytic bacterial communities such as those dominating the food industry. In particular, fresh dairy products can be considered a reservoir of Pseudomonas spp. resistome, potentially transmittable to consumers. Milk and fresh dairy cheeses products represent one of a few "hubs" where commensal or opportunistic pseudomonads frequently cohabit together with food microbiota and hazard pathogens even across their manufacturing processes. Pseudomonas spp., widely studied for food spoilage effects, are instead underestimated for their possible impact on human health. Recent evidences have highlighted that non-pathogenic pseudomonads strains (P. fluorescens, P. putida) are associated with some human diseases, but are still poorly considered in comparison to the pathogen P. aeruginosa. In addition, the presence of ARGs, that can be acquired and transmitted by horizontal genetic transfer, further increases their risk and the need to be deeper investigated. Therefore, this review, starting from the general aspects related to the physiological traits of these spoilage microorganisms from fresh dairy products, aims to shed light on the resistome of cheese-related pseudomonads and their genomic background, current methods and advances in the prediction tools for MDR detection based on genomic sequences, possible implications for human health, and the affordable strategies to counteract MDR spread.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Leonardo Caputo
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
9
|
Di Pilato V, Antonelli A, Giani T, Henrici De Angelis L, Rossolini GM, Pollini S. Identification of a Novel Plasmid Lineage Associated With the Dissemination of Metallo-β-Lactamase Genes Among Pseudomonads. Front Microbiol 2019; 10:1504. [PMID: 31312195 PMCID: PMC6614342 DOI: 10.3389/fmicb.2019.01504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/14/2019] [Indexed: 12/23/2022] Open
Abstract
Acquisition of metallo-β-lactamases (MBLs) represents one of most relevant resistance mechanisms to all β-lactams, including carbapenems, ceftolozane and available β-lactamase inhibitors, in Pseudomonas spp. VIM-type enzymes are the most common acquired MBLs in Pseudomonas aeruginosa and, to a lesser extent, in other Pseudomonas species. Little is known about the acquisition dynamics of these determinants, that are usually carried on integrons embedded into chromosomal mobile genetic elements. To date, few MBL-encoding plasmids have been described in Pseudomonas spp., and their diversity and role in the dissemination of these MBLs remains largely unknown. Here we report on the genetic features of the VIM-1-encoding plasmid pMOS94 from P. mosselii AM/94, the earliest known VIM-1-producing strain, and of related elements involved in dissemination of MBL. Results of plasmid DNA sequencing showed that pMOS94 had a modular organization, consisting of backbone modules associated with replication, transfer and antibiotic resistance. Plasmid pMOS94, although not typable according to the PBRT scheme, was classifiable either in MOBF11 or MPFT plasmid families. The resistance region included the class I integron In70, carrying bla V IM-1, in turn embedded in a defective Tn402-like transposon. Comparison with pMOS94-like elements led to the identification of a defined plasmid lineage circulating in different Pseudomonas spp. of clinical and environmental origin and spreading different MBL-encoding genes, including bla IMP-63, bla BIM, and bla V IM-type determinants. Genetic analysis revealed that this plasmid lineage likely shared a common ancestor and had evolved through the acquisition and recombination of different mobile elements, including the MBL-encoding transposons. Our findings provide new insights about the genetic diversity of MBL-encoding plasmids circulating among Pseudomonas spp., potentially useful for molecular epidemiology purposes, and revealed the existence and persistence of a successful plasmid lineage over a wide spatio-temporal interval, spanning over five different countries among two continents and over 20-years.
Collapse
Affiliation(s)
- Vincenzo Di Pilato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Tommaso Giani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | | | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Simona Pollini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
10
|
Mathlouthi N, Al-Bayssari C, Bakour S, Rolain JM, Chouchani C. RETRACTED ARTICLE: Prevalence and emergence of carbapenemases-producing Gram-negative bacteria in Mediterranean basin. Crit Rev Microbiol 2016; 43:43-61. [DOI: 10.3109/1040841x.2016.1160867] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Najla Mathlouthi
- Université Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire des Microorganismes et Biomolécules Actives, Campus Universitaire, El-Manar II, Tunisia
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
- Université de Carthage, Institut Supérieur des Sciences et Technologies de l’Environnement de Borj-Cedria, Technopôle de Borj-Cedria, BP-1003, Hammam-Lif, Tunisia
| | - Charbel Al-Bayssari
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Sofiane Bakour
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Jean Marc Rolain
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Chedly Chouchani
- Université Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire des Microorganismes et Biomolécules Actives, Campus Universitaire, El-Manar II, Tunisia
- Université de Carthage, Institut Supérieur des Sciences et Technologies de l’Environnement de Borj-Cedria, Technopôle de Borj-Cedria, BP-1003, Hammam-Lif, Tunisia
| |
Collapse
|
11
|
Estepa V, Rojo-Bezares B, Torres C, Sáenz Y. Genetic Lineages and Antimicrobial Resistance inPseudomonasspp. Isolates Recovered from Food Samples. Foodborne Pathog Dis 2015; 12:486-91. [DOI: 10.1089/fpd.2014.1928] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Vanesa Estepa
- Área de Bioquímica y Biología Molecular, Departamento de Agricultura y Alimentación, Universidad de La Rioja, Logroño, Spain
| | - Beatriz Rojo-Bezares
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Carmen Torres
- Área de Bioquímica y Biología Molecular, Departamento de Agricultura y Alimentación, Universidad de La Rioja, Logroño, Spain
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| |
Collapse
|
12
|
Manenzhe RI, Zar HJ, Nicol MP, Kaba M. The spread of carbapenemase-producing bacteria in Africa: a systematic review. J Antimicrob Chemother 2014; 70:23-40. [PMID: 25261423 DOI: 10.1093/jac/dku356] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Carbapenems are the last line of defence against ever more prevalent MDR Gram-negative bacteria, but their efficacy is threatened worldwide by bacteria that produce carbapenemase enzymes. The epidemiology of bacteria producing carbapenemases has been described in considerable detail in Europe, North America and Asia; however, little is known about their spread and clinical relevance in Africa. METHODS We systematically searched in PubMed, EBSCOhost, Web of Science, Scopus, Elsevier Masson Consulte and African Journals Online, international conference proceedings, published theses and dissertations for studies reporting on carbapenemase-producing bacteria in Africa. We included articles published in English or French up to 28 February 2014. We calculated the prevalence of carbapenemase producers only including studies where the total number of isolates tested was at least 30. RESULTS Eighty-three studies were included and analysed. Most studies were conducted in North Africa (74%, 61/83), followed by Southern Africa (12%, 10/83), especially South Africa (90%, 9/10), West Africa (8%, 7/83) and East Africa (6%, 6/83). Carbapenemase-producing bacteria were isolated from humans, the hospital environment and community environmental water samples, but not from animals. The prevalence of carbapenemase-producing isolates in hospital settings ranged from 2.3% to 67.7% in North Africa and from 9% to 60% in sub-Saharan Africa. CONCLUSIONS Carbapenemase-producing bacteria have been described in many African countries; however, their prevalence is poorly defined and has not been systematically studied. Antibiotic stewardship and surveillance systems, including molecular detection and genotyping of resistant isolates, should be implemented to monitor and reduce the spread of carbapenemase-producing bacteria.
Collapse
Affiliation(s)
- Rendani I Manenzhe
- Division of Medical Microbiology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Heather J Zar
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa Red Cross War Memorial Children's Hospital, Cape Town, South Africa
| | - Mark P Nicol
- Division of Medical Microbiology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa Institute for Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Mamadou Kaba
- Division of Medical Microbiology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa Institute for Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
Epidemiology of carbapenemase-producing Enterobacteriaceae and Acinetobacter baumannii in Mediterranean countries. BIOMED RESEARCH INTERNATIONAL 2014; 2014:305784. [PMID: 24955354 PMCID: PMC4052623 DOI: 10.1155/2014/305784] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 04/22/2014] [Indexed: 01/17/2023]
Abstract
The emergence and global spread of carbapenemase-producing Enterobacteriaceae and Acinetobacter baumannii are of great concern to health services worldwide. These β-lactamases hydrolyse almost all β-lactams, are plasmid-encoded, and are easily transferable among bacterial species. They are mostly of the KPC, VIM, IMP, NDM, and OXA-48 types. Their current extensive spread worldwide in Enterobacteriaceae is an important source of concern. Infections caused by these bacteria have limited treatment options and have been associated with high mortality rates. Carbapenemase producers are mainly identified among Klebsiella pneumoniae, Escherichia coli, and A. baumannii and still mostly in hospital settings and rarely in the community. The Mediterranean region is of interest due to a great diversity and population mixing. The prevalence of carbapenemases is particularly high, with this area constituting one of the most important reservoirs. The types of carbapenemase vary among countries, partially depending on the population exchange relationship between the regions and the possible reservoirs of each carbapenemase. This review described the epidemiology of carbapenemases produced by enterobacteria and A. baumannii in this part of the world highlighting the worrisome situation and the need to screen and detect these enzymes to prevent and control their dissemination.
Collapse
|
14
|
Soto-Rodriguez S, Cabanillas-Ramos J, Alcaraz U, Gomez-Gil B, Romalde J. Identification and virulence of Aeromonas dhakensis
, Pseudomonas mosselii
and Microbacterium paraoxydans
isolated from Nile tilapia, Oreochromis niloticus
, cultivated in Mexico. J Appl Microbiol 2013; 115:654-62. [DOI: 10.1111/jam.12280] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 11/28/2022]
Affiliation(s)
- S.A. Soto-Rodriguez
- CIAD, A.C. Mazatlan Unit for Aquaculture and Environmental Management; Mazatlan Sinaloa Mexico
| | | | - U. Alcaraz
- CIAD, A.C. Mazatlan Unit for Aquaculture and Environmental Management; Mazatlan Sinaloa Mexico
| | - B. Gomez-Gil
- CIAD, A.C. Mazatlan Unit for Aquaculture and Environmental Management; Mazatlan Sinaloa Mexico
| | - J.L. Romalde
- Departamento de Microbiologia y Parasitologia; CIBUS-Facultad de Biologia; Universidad de Santiago de Compostela; Santiago de Compostela España
| |
Collapse
|
15
|
Leneveu-Jenvrin C, Madi A, Bouffartigues E, Biaggini K, Feuilloley M, Chevalier S, Connil N. Cytotoxicity and inflammatory potential of two Pseudomonas mosselii strains isolated from clinical samples of hospitalized patients. BMC Microbiol 2013; 13:123. [PMID: 23718251 PMCID: PMC3679952 DOI: 10.1186/1471-2180-13-123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 05/24/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genus Pseudomonas includes a heterogeneous set of microorganisms that can be isolated from many different niches and nearly 100 different strains have been described. The best characterized bacterium is Pseudomonas aeruginosa which is the primary agent of opportunistic infection in humans, causing both acute and chronic infections. Other species like fluorescens, putida or mosselii have been sporadically isolated from hospitalized patients but their association with the pathology often remains unclear. RESULTS This study focuses on the cytotoxicity and inflammatory potential of two strains of Pseudomonas mosselii (ATCC BAA-99 and MFY161) that were recently isolated from clinical samples of hospitalized patients. The behavior of these bacteria was compared to that of the well-known opportunistic pathogen P. aeruginosa PAO1. We found that P. mosselii ATCC BAA-99 and MFY161 are cytotoxic towards Caco-2/TC7 cells, have low invasive capacity, induce secretion of human β-defensin 2 (HBD-2), alter the epithelial permeability of differentiated cells and damage the F-actin cytoskeleton. CONCLUSIONS These data bring new insights into P. mosselii virulence, since this bacterium has often been neglected due to its rare occurrence in hospital.
Collapse
Affiliation(s)
- Charlène Leneveu-Jenvrin
- Laboratoire de Microbiologie Signaux et Microenvironnement-LMSM EA 4312, Université de Rouen, Normandie Université, 55 Rue Saint-Germain, Evreux F-27000, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Dissemination of a class I integron carrying VIM-2 carbapenemase in Pseudomonas aeruginosa clinical isolates from a hospital intensive care unit in Annaba, Algeria. Antimicrob Agents Chemother 2013; 57:2426-7. [PMID: 23459493 DOI: 10.1128/aac.00032-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
17
|
FIM-1, a new acquired metallo-β-lactamase from a Pseudomonas aeruginosa clinical isolate from Italy. Antimicrob Agents Chemother 2012; 57:410-6. [PMID: 23114762 DOI: 10.1128/aac.01953-12] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acquired metallo-β-lactamases (MBLs) are resistance determinants of increasing clinical importance in Gram-negative bacterial pathogens, which confer a broad-spectrum β-lactam resistance, including carbapenems. Several such enzymes have been described since the 1990s. In the present study, a novel acquired MBL, named FIM-1, was identified and characterized. The bla(FIM-1) gene was cloned from a multidrug-resistant Pseudomonas aeruginosa clinical isolate (FI-14/157) cultured from a patient with a vascular graft infection in Florence, Italy. The isolate belonged in the sequence type 235 epidemic clonal lineage. The FIM-1 enzyme is a member of subclass B1 and, among acquired MBLs, exhibited the highest similarity (ca. 40% amino acid identity) with NDM-type enzymes. In P. aeruginosa FI-14/157, the bla(FIM-1) gene was apparently inserted into the chromosome and associated with ISCR19-like elements that were likely involved in the capture and mobilization of this MBL gene. Transfer experiments of the bla(FIM-1) gene to an Escherichia coli strain or another P. aeruginosa strain by conjugation or electrotransformation were not successful. The FIM-1 protein was produced in E. coli and purified by two chromatography steps. Analysis of the kinetic parameters, carried out with the purified enzyme, revealed that FIM-1 has a broad substrate specificity, with a preference for penicillins (except the 6α-methoxy derivative temocillin) and carbapenems. Aztreonam was not hydrolyzed. Detection of this novel type of acquired MBL in a P. aeruginosa clinical isolate underscores the increasing diversity of such enzymes that can be encountered in the clinical setting.
Collapse
|
18
|
Cantón R, Akóva M, Carmeli Y, Giske CG, Glupczynski Y, Gniadkowski M, Livermore DM, Miriagou V, Naas T, Rossolini GM, Samuelsen Ø, Seifert H, Woodford N, Nordmann P. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect 2012; 18:413-31. [PMID: 22507109 DOI: 10.1111/j.1469-0691.2012.03821.x] [Citation(s) in RCA: 652] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Plasmid-acquired carbapenemases in Enterobacteriaceae, which were first discovered in Europe in the 1990s, are now increasingly being identified at an alarming rate. Although their hydrolysis spectrum may vary, they hydrolyse most β-lactams, including carbapenems. They are mostly of the KPC, VIM, NDM and OXA-48 types. Their prevalence in Europe as reported in 2011 varies significantly from high (Greece and Italy) to low (Nordic countries). The types of carbapenemase vary among countries, partially depending on the cultural/population exchange relationship between the European countries and the possible reservoirs of each carbapenemase. Carbapenemase producers are mainly identified among Klebsiella pneumoniae and Escherichia coli, and still mostly in hospital settings and rarely in the community. Although important nosocomial outbreaks with carbapenemase-producing Enterobacteriaceae have been extensively reported, many new cases are still related to importation from a foreign country. Rapid identification of colonized or infected patients and screening of carriers is possible, and will probably be effective for prevention of a scenario of endemicity, as now reported for extended-spectrum β-lactamase (mainly CTX-M) producers in all European countries.
Collapse
Affiliation(s)
- R Cantón
- Servicio de Microbiología and CIBER en Epidemiología y Salud Pública, Instituto Ramón y Cajal de Investigación Sanitaria and Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother 2012; 67:1597-606. [PMID: 22499996 DOI: 10.1093/jac/dks121] [Citation(s) in RCA: 677] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OXA-48-type carbapenem-hydrolysing class D β-lactamases are increasingly reported in enterobacterial species. To date, six OXA-48-like variants have been identified, with OXA-48 being the most widespread. They differ by a few amino acid substitutions or deletions (one to five amino acids). The enzymes hydrolyse penicillins at a high level and carbapenems at a low level, sparing broad-spectrum cephalosporins, and are not susceptible to β-lactamase inhibitors. When combining permeability defects, OXA-48-like producers may exhibit a high level of resistance to carbapenems. OXA-163 is an exception, hydrolysing broad-spectrum cephalosporins but carbapenems at a very low level, and being susceptible to β-lactamase inhibitors. The bla(OXA-48)-type genes are always plasmid-borne and have been identified in association with insertion sequences involved in their acquisition and expression. The current spread of the bla(OXA-48) gene is mostly linked to the dissemination of a single IncL/M-type self-transferable plasmid of 62 kb that does not carry any additional resistance gene. OXA-48-type carbapenemases have been identified mainly from North African countries, the Middle East, Turkey and India, those areas constituting the most important reservoirs; however, occurrence of OXA-48 producers in European countries is now well documented, with some reported hospital outbreaks. Since many OXA-48-like producers do not exhibit resistance to broad-spectrum cephalosporins, or only decreased susceptibility to carbapenems, their recognition and detection can be challenging. Adequate screening and detection methods are therefore required to prevent and control their dissemination.
Collapse
Affiliation(s)
- Laurent Poirel
- Service de Bactériologie-Virologie, INSERM U914 Emerging Resistance to Antibiotics, Hôpital de Bicêtre, Faculté de Médecine et Université Paris-Sud, 94275 K.-Bicêtre, France.
| | | | | |
Collapse
|