1
|
Reeb KL, Wiah S, Patel BP, Lewandowski SI, Mortensen OV, Salvino JM, Rawls SM, Fontana ACK. Positive allosteric modulation of glutamate transporter reduces cocaine-induced locomotion and expression of cocaine conditioned place preference in rats. Eur J Pharmacol 2024; 984:177017. [PMID: 39349114 PMCID: PMC11563849 DOI: 10.1016/j.ejphar.2024.177017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
The glutamatergic system, located throughout the brain including the prefrontal cortex and nucleus accumbens, plays a critical role in reward and reinforcement processing, and mediates the psychotropic effects of addictive drugs such as cocaine. Glutamate transporters, including EAAT2/GLT-1, are responsible for removing glutamate from the synaptic cleft. Reduced expression of GLT-1 following chronic cocaine use and abstinence has been reported. Here, we demonstrate that targeting GLT-1 with a novel positive allosteric modulator (PAM), NA-014, results in reduction of cocaine-associated behaviors in rats. Pharmacokinetic analysis demonstrated that NA-014 is brain-penetrant and suitable for in vivo studies.We found that 15 and 30 mg/kg NA-014 significantly reduced cocaine-induced locomotion in males. Only the 15 mg/kg dose was effective in females and 60 mg/kg was ineffective in both sexes. Furthermore, 30 and 60 mg/kg NA-014 reduced expression of cocaine conditioned place preference (CPP) in males. 30 mg/kg NA-014 reduced expression of cocaine CPP in females and 15 mg/kg did not affect cocaine CPP in either sex, suggesting GLT-1 influences cocaine-associated behaviors in a sex-dependent manner. NA-014 did not elicit rewarding behavior, nor alter baseline locomotion. Twice daily/7-day administration of 100 mg/kg of NA-014 did not alter GLT-1 or GLAST expression in either sex in the prefrontal cortex (PFC). Collectively, these studies demonstrated that NA-014 reduced the locomotor stimulant and rewarding effects of cocaine in male and female rats. In the context of psychostimulant use disorders, our study suggests studying GLT-1 PAMs as alternatives to β-lactam compounds that increase GLT-1 protein levels.
Collapse
Affiliation(s)
- Katelyn L Reeb
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 191022, USA
| | - Sonita Wiah
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Bhumiben P Patel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 191022, USA
| | - Stacia I Lewandowski
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 191022, USA
| | - Ole V Mortensen
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 191022, USA
| | - Joseph M Salvino
- Medicinal Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Cancer Center Molecular Screening, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Scott M Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA; Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 191022, USA.
| |
Collapse
|
2
|
Alasmari F, Alasmari MS, Assiri MA, Alswayyed M, Rizwan Ahamad S, Alhumaydhi AI, Arif BI, Aljumayi SR, AlAsmari AF, Ali N, Childers WE, Abou-Gharbia M, Sari Y. Liver Metabolomics and Inflammatory Profiles in Mouse Model of Fentanyl Overdose Treated with Beta-Lactams. Metabolites 2023; 13:965. [PMID: 37623908 PMCID: PMC10456707 DOI: 10.3390/metabo13080965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
Fentanyl is a highly potent opioid analgesic that is approved medically to treat acute and chronic pain. There is a high potential for overdose-induced organ toxicities, including liver toxicity, and this might be due to the increase of recreational use of opioids. Several preclinical studies have demonstrated the efficacy of beta-lactams in modulating the expression of glutamate transporter-1 (GLT-1) in different body organs, including the liver. The upregulation of GLT-1 by beta-lactams is associated with the attenuation of hyperglutamatergic state, which is a characteristic feature of opioid use disorders. A novel experimental beta-lactam compound with no antimicrobial properties, MC-100093, has been developed to attenuate dysregulation of glutamate transport, in part by normalizing GLT-1 expression. A previous study showed that MC-100093 modulated hepatic GLT-1 expression with subsequent attenuation of alcohol-increased fat droplet content in the liver. In this study, we investigated the effects of fentanyl overdose on liver metabolites, and determined the effects of MC-100093 and ceftriaxone in the liver of a fentanyl overdose mouse model. Liver samples from control, fentanyl overdose, and fentanyl overdose ceftriaxone- or MC-100093-treated mice were analyzed for metabolomics using gas chromatography-mass spectrometry. Heatmap analysis revealed that both MC-100093 and ceftriaxone attenuated the effects of fentanyl overdose on several metabolites, and MC-100093 showed superior effects. Statistical analysis showed that MC-100093 reversed the effects of fentanyl overdose in some metabolites. Moreover, enrichment analysis revealed that the altered metabolites were strongly linked to the glucose-alanine cycle, the Warburg effect, gluconeogenesis, glutamate metabolism, lactose degradation, and ketone body metabolism. The changes in liver metabolites induced by fentanyl overdose were associated with liver inflammation, an effect attenuated with ceftriaxone pre-treatments. Ceftriaxone normalized fentanyl-overdose-induced changes in liver interleukin-6 and cytochrome CYP3A11 (mouse homolog of human CYP3A4) expression. Our data indicate that fentanyl overdose impaired liver metabolites, and MC-100093 restored certain metabolites.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed S. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Alswayyed
- Department of Pathology and Laboratory Medicine, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Rizwan Ahamad
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I. Alhumaydhi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bandar I. Arif
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sahar R. Aljumayi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wayne E. Childers
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
3
|
León BE, Peyton L, Essa H, Wieden T, Marion N, Childers WE, Abou-Gharbia M, Choi DS. A novel monobactam lacking antimicrobial activity, MC-100093, reduces sex-specific ethanol preference and depressive-like behaviors in mice. Neuropharmacology 2023; 232:109515. [PMID: 37001726 PMCID: PMC10144181 DOI: 10.1016/j.neuropharm.2023.109515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/24/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Several β-lactam derivatives upregulate astrocytic glutamate transporter type 1expression and are known to improve measures in models of mood and alcohol use disorders (AUD) through normalizing glutamatergic states. However, long-term, and high doses of β-lactams may cause adverse side effects for treating mood disorders and AUD. Studies suggest that MC-100093, a novel β-lactam lacking antimicrobial activity, rescues GLT1 expression. Thus, we sought to investigate whether MC-100093 improves affective behaviors and reduces voluntary ethanol drinking. We intraperitoneally administered MC-100093 (50 mg/kg) or vehicle once per day to C57BL/6J male and female mice (8-10 weeks old) over 6 days. We employed the open field test and the elevated plus maze to examine the effect of MC-100093 on anxiety-like behaviors. We assayed MC-100093's effects on depressive-like behaviors using the tail suspension and forced swim tests. Next, utilizing a separate cohort of male and female C57BL6 mice, we assessed the effects MC100093 treatment on voluntary ethanol drinking utilizing the 2-bottle choice continuous access drinking paradigm. After screening and selecting high-drinking mice, we systematically administered MC-100093 (50 mg/kg) or vehicle to the high-drinking mice over 6 days. Overall, we found that MC-100093 treatment resulted in sex-specific pharmacological effects with female mice displaying reduced innate depressive-like behaviors during the tail suspension and force swim testing juxtaposed with male treated mice who displayed no changes in tail suspension and a paradoxical increased depressive-like behavior during the forced swim testing. Additionally, we found that MC100093 treatment reduced female preference for 10% EtOH during the 2-bottle choice continuous access drinking with no effects of MC100093 treatment detected in male mice. Overall, this data suggests sex-specific regulation of innate depressive-like behavior and voluntary EtOH drinking by MC100093 treatment. Western blot analysis of the medial prefrontal cortex and hippocampus revealed no changes in male or female GLT1 protein abundance relative to GAPDH.
Collapse
Affiliation(s)
- Brandon Emanuel León
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA; Regenerative Sciences Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lee Peyton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Hesham Essa
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Tia Wieden
- Neuroscience Program, Mayo Clinic College of Medicine and Science, MN, 55905, USA
| | - Nicole Marion
- Neuroscience Program, Mayo Clinic College of Medicine and Science, MN, 55905, USA
| | - Wayne E Childers
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, 19140, USA
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, 19140, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA; Neuroscience Program, Mayo Clinic College of Medicine and Science, MN, 55905, USA; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, 59905, USA.
| |
Collapse
|
4
|
Alhaddad H, Wong W, Abou-Gharbia M, Childers W, Melenski E, Bell RL, Sari Y. Effects of a Novel Beta Lactam Compound, MC-100093, on the Expression of Glutamate Transporters/Receptors and Ethanol Drinking Behavior of Alcohol-Preferring Rats. J Pharmacol Exp Ther 2022; 383:208-216. [PMID: 36153003 PMCID: PMC9667983 DOI: 10.1124/jpet.122.001147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/16/2022] [Indexed: 01/07/2023] Open
Abstract
Chronic ethanol exposure affects the glutamatergic system in several brain reward regions including the nucleus accumbens (NAc). Our laboratory has shown that chronic exposure to ethanol reduced the expression of glutamate transporter 1 (GLT-1) and cystine/glutamate exchanger (xCT) and, as a result, increased extracellular glutamate concentrations in the NAc of alcohol-preferring (P) rats. Moreover, previous studies from our laboratory reported that chronic ethanol intake altered the expression of certain metabotropic glutamate receptors in the brain. In addition to central effects, chronic ethanol consumption induced liver injury, which is associated with steatohepatitis. In the present study, we investigated the effects of chronic ethanol consumption in the brain and liver. Male P rats had access to a free choice of ethanol and water bottles for five weeks. Chronic ethanol consumption reduced GLT-1 and xCT expression in the NAc shell but not in the NAc core. Furthermore, chronic ethanol consumption increased fat droplet content as well as peroxisome proliferator-activated receptor alpha (PPAR-α) and GLT-1 expression in the liver. Importantly, treatment with the novel beta-lactam compound, MC-100093, reduced ethanol drinking behavior and normalized the levels of GLT-1 and xCT expression in the NAc shell as well as normalized GLT-1 and PPAR-α expression in the liver. In addition, MC-100093 attenuated ethanol-induced increases in fat droplet content in the liver. These findings suggest that MC-100093 may be a potential lead compound to attenuate ethanol-induced dysfunction in the glutamatergic system and liver injury. SIGNIFICANCE STATEMENT: This study identified a novel beta-lactam, MC-100093, that has demonstrated upregulatory effects on GLT-1. MC-100093 reduced ethanol drinking behavior and normalized levels of GLT-1 and xCT expression in the NAc shell as well as normalized GLT-1 and PPAR-α expression in the liver. In addition, MC-100093 attenuated ethanol-induced increases in fat droplet content in the liver.
Collapse
Affiliation(s)
- Hasan Alhaddad
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, Ohio (H.A., W.W., Y.S.); Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania (M.A-G., W.C., E.M.); and Department of Psychiatry and Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana (R.L.B.)
| | - Woonyen Wong
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, Ohio (H.A., W.W., Y.S.); Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania (M.A-G., W.C., E.M.); and Department of Psychiatry and Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana (R.L.B.)
| | - Magid Abou-Gharbia
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, Ohio (H.A., W.W., Y.S.); Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania (M.A-G., W.C., E.M.); and Department of Psychiatry and Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana (R.L.B.)
| | - Wayne Childers
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, Ohio (H.A., W.W., Y.S.); Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania (M.A-G., W.C., E.M.); and Department of Psychiatry and Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana (R.L.B.)
| | - Edward Melenski
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, Ohio (H.A., W.W., Y.S.); Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania (M.A-G., W.C., E.M.); and Department of Psychiatry and Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana (R.L.B.)
| | - Richard L Bell
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, Ohio (H.A., W.W., Y.S.); Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania (M.A-G., W.C., E.M.); and Department of Psychiatry and Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana (R.L.B.)
| | - Youssef Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, Ohio (H.A., W.W., Y.S.); Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania (M.A-G., W.C., E.M.); and Department of Psychiatry and Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana (R.L.B.)
| |
Collapse
|
5
|
Abulseoud OA, Alasmari F, Hussein AM, Sari Y. Ceftriaxone as a Novel Therapeutic Agent for Hyperglutamatergic States: Bridging the Gap Between Preclinical Results and Clinical Translation. Front Neurosci 2022; 16:841036. [PMID: 35864981 PMCID: PMC9294323 DOI: 10.3389/fnins.2022.841036] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Dysregulation of glutamate homeostasis is a well-established core feature of neuropsychiatric disorders. Extracellular glutamate concentration is regulated by glutamate transporter 1 (GLT-1). The discovery of a beta-lactam antibiotic, ceftriaxone (CEF), as a safe compound with unique ability to upregulate GLT-1 sparked the interest in testing its efficacy as a novel therapeutic agent in animal models of neuropsychiatric disorders with hyperglutamatergic states. Indeed, more than 100 preclinical studies have shown the efficacy of CEF in attenuating the behavioral manifestations of various hyperglutamatergic brain disorders such as ischemic stroke, amyotrophic lateral sclerosis (ALS), seizure, Huntington’s disease, and various aspects of drug use disorders. However, despite rich and promising preclinical data, only one large-scale clinical trial testing the efficacy of CEF in patients with ALS is reported. Unfortunately, in that study, there was no significant difference in survival between placebo- and CEF-treated patients. In this review, we discussed the translational potential of preclinical efficacy of CEF based on four different parameters: (1) initiation of CEF treatment in relation to induction of the hyperglutamatergic state, (2) onset of response in preclinical models in relation to onset of GLT-1 upregulation, (3) mechanisms of action of CEF on GLT-1 expression and function, and (4) non-GLT-1-mediated mechanisms for CEF. Our detailed review of the literature brings new insights into underlying molecular mechanisms correlating the preclinical efficacy of CEF. We concluded here that CEF may be clinically effective in selected cases in acute and transient hyperglutamatergic states such as early drug withdrawal conditions.
Collapse
Affiliation(s)
- Osama A. Abulseoud
- Department of Psychiatry and Psychology, Alex School of Medicine at Mayo Clinic, Phoenix, AZ, United States
- *Correspondence: Osama A. Abulseoud,
| | - Fawaz Alasmari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdelaziz M. Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
- Youssef Sari,
| |
Collapse
|
6
|
Shan Y, Cen Y, Zhang Y, Tan R, Zhao J, Nie Z, Zhang J, Yu S. Effect of P-glycoprotein Inhibition on the Penetration of Ceftriaxone Across the Blood-Brain Barrier. Neurochem Res 2022; 47:634-643. [PMID: 34694535 DOI: 10.1007/s11064-021-03472-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/01/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022]
Abstract
Recent studies indicate that inhibition of the efflux transporter P-glycoprotein (P-gp) at the blood-brain barrier (BBB) may represent a putative strategy to increase the BBB penetration of several antibiotics. Therefore, the present study aimed to investigate the effect of P-gp inhibition on the transport of ceftriaxone (CFX) across the BBB. Blood and brain microdialysis in rats was used to monitor blood and brain unbound CFX concentrations following intravenous administration (50 mg/kg), with or without pretreatment with one of the P-gp inhibitors, cyclosporin A (6.25, 12.5, 25 mg/kg) or verapamil (5, 10, 20 mg/kg). An inhibitory effect was demonstrated by an increase in the ratio of unbound brain to unbound blood concentration (Kp.uu.brain) of CFX. The concentrations of CFX in blood and brain from 0 to 180 min after intravenous administration (CFX, 50 mg/kg) ranged from 3 to 40 μg/ml and 1 to 10 μg/ml, respectively. The Kp.uu.brain of CFX was 24.74 ± 1.34%. Pretreatment with cyclosporin A increased the brain concentration and the Kp.uu.brain of CFX in a dose-dependent manner. However, pretreatment with verapamil increased the brain concentration of CFX but not the Kp.uu.brain. The present data shows that CFX might be a substrate of P-gp efflux transporter at the BBB and P-gp inhibition might enhance the brain concentration of CFX. Future studies involving more selective P-gp inhibitors or knockout mouse models should be conducted to specifically elucidate the impact of P-gp inhibition on penetration of CFX across the BBB.
Collapse
Affiliation(s)
- Yuheng Shan
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, People's Republic of China
- Department of Neurology, Characteristic Medical Centre of People's Armed Police Force, Tianjin, 300162, People's Republic of China
| | - Yuying Cen
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, People's Republic of China
| | - Yanjin Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, People's Republic of China
| | - Ruishu Tan
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, People's Republic of China
| | - Jiahua Zhao
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, People's Republic of China
| | - Zhiyong Nie
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, People's Republic of China.
| | - Jiatang Zhang
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, People's Republic of China.
| | - Shengyuan Yu
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, People's Republic of China
| |
Collapse
|
7
|
Knackstedt LA, Wu L, Rothstein J, Vidensky S, Gordon J, Ramanjulu M, Dunman P, Blass B, Childers W, Abou-Gharbia M. MC-100093, a Novel β-Lactam Glutamate Transporter-1 Enhancer Devoid of Antimicrobial Properties, Attenuates Cocaine Relapse in Rats. J Pharmacol Exp Ther 2021; 378:51-59. [PMID: 33986035 PMCID: PMC8407531 DOI: 10.1124/jpet.121.000532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/11/2021] [Indexed: 11/22/2022] Open
Abstract
Cocaine use disorder currently lacks Food and Drug Administration-approved treatments. In rodents, the glutamate transporter-1 (GLT-1) is downregulated in the nucleus accumbens after cocaine self-administration, and increasing the expression and function of GLT-1 reduces the reinstatement of cocaine seeking. The β-lactam antibiotic ceftriaxone upregulates GLT-1 and attenuates cue- and cocaine-induced cocaine seeking without affecting motivation for natural rewards. Although ceftriaxone shows promise for treating cocaine use disorder, it possesses characteristics that limit successful translation from bench to bedside, including poor brain penetration, a lack of oral bioavailability, and a risk of bacterial resistance when used chronically. Thus, we aimed to develop novel molecules that retained the GLT-1-enhancing effects of ceftriaxone but displayed superior drug-like properties. Here, we describe a new monocyclic β-lactam, MC-100093, as a potent upregulator of GLT-1 that is orally bioavailable and devoid of antimicrobial properties. MC-100093 was synthesized and tested in vitro and in vivo to determine physiochemical, pharmacokinetic, and pharmacodynamic properties. Next, adult male rats underwent cocaine self-administration and extinction training. During extinction training, rats received one of four doses of MC-100093 for 6-8 days prior to a single cue-primed reinstatement test. Separate cohorts of rats were used to assess nucleus accumbens GLT-1 expression and MC-100093 effects on sucrose self-administration. We found that 50 mg/kg MC-100093 attenuated cue-primed reinstatement of cocaine seeking while upregulating GLT-1 expression in the nucleus accumbens core. This dose did not produce sedation, nor did it decrease sucrose consumption or body weight. Thus, MC-100093 represents a potential treatment to reduce cocaine relapse. SIGNIFICANCE STATEMENT: Increasing GLT-1 activity reliably reduces drug-seeking across classes of drugs; however, existing GLT1-enhancers have side effects and lack oral bioavailability. To address this issue, novel GLT-1 enhancers were synthesized, and the compound with the most favorable pharmacokinetic and pharmacodynamic properties, MC-100093, was selected for further testing. MC-100093 attenuated cued cocaine seeking without reducing food seeking or locomotion and upregulated GLT-1 expression in the nucleus accumbens.
Collapse
Affiliation(s)
- Lori A Knackstedt
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - Lizhen Wu
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - Jeffrey Rothstein
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - Svetlana Vidensky
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - John Gordon
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - Mercy Ramanjulu
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - Paul Dunman
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - Benjamin Blass
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - Wayne Childers
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - Magid Abou-Gharbia
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| |
Collapse
|
8
|
Effects of ceftriaxone on ethanol drinking and GLT-1 expression in ethanol dependence and relapse drinking. Alcohol 2021; 92:1-9. [PMID: 33465464 DOI: 10.1016/j.alcohol.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/11/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
Abstract
Repeated cycles of chronic intermittent ethanol (CIE) exposure increase voluntary consumption of alcohol (ethanol) in mice. Previous reports from our laboratory show that CIE increases extracellular glutamate in the nucleus accumbens (NAc) and that manipulating accumbal glutamate concentrations will alter ethanol drinking, indicating that glutamate homeostasis plays a crucial role in ethanol drinking in this model. A number of studies have shown that ceftriaxone increases GLT-1 expression, the major glutamate transporter, and that treatment with this antibiotic reduces ethanol drinking. The present studies examined the effects of ceftriaxone on ethanol drinking and GLT-1 in a mouse model of ethanol dependence and relapse drinking. The results show that ceftriaxone did not influence drinking at any dose in either ethanol-dependent or non-dependent mice. Further, ceftriaxone did not increase GLT-1 expression in the accumbens core or shell, with the exception of the ethanol-dependent mice receiving the highest dose of ceftriaxone. Interestingly, ethanol-dependent mice treated with only vehicle displayed reduced expression of GLT-1 in the accumbens shell and of the presynaptic mGlu2 receptor in the accumbens core. The reduced expression of the major glutamate transporter (GLT-1), as well as a receptor that regulates glutamate release (mGlu2), may help explain, at least in part, increased glutamatergic transmission in this model of ethanol dependence and relapse drinking.
Collapse
|
9
|
McNeal CD, Ryan CA, Berghaus LJ, Credille BC, Lo CP, Fajt VR. Plasma disposition of ceftazidime in healthy neonatal foals following intravenous and intramuscular administration. J Vet Pharmacol Ther 2021; 44:560-567. [PMID: 33511670 DOI: 10.1111/jvp.12947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/10/2020] [Accepted: 12/11/2020] [Indexed: 11/29/2022]
Abstract
Cephalosporin antimicrobials can be utilized for the treatment of sepsis in neonatal foals, particularly when an aminoglycoside is contraindicated. Some cephalosporins, however, are not utilized because of cost, sporadic availability, or uncertainty about efficacy. The plasma disposition of ceftazidime, a third-generation cephalosporin with a broad spectrum of activity against a wide variety of gram-negative bacteria and minimal renal side effects has not been reported in neonatal foals. In this study, the plasma disposition of single intravenous (IV) and intramuscular (IM) doses of ceftazidime in neonatal foals was determined. Six healthy one to two-day-old foals were given 25 mg/kg of ceftazidime by IV and IM routes in a cross-over design, with a 48-h washout period between doses. Non-compartmental analysis was used to estimate plasma pharmacokinetic parameters. Median t1/2 was 2 h and median AUC0-last was 364 µg h/ml for both IV and IM administration. Median Cmax after IM administration was 101 µg/ml, with a median Tmax of 0.7 h. Relative bioavailability of IM injection was 90%. There were no statistically significant differences between estimated IV and IM pharmacokinetic parameters. Plasma concentrations remained above the human CLSI susceptible breakpoint for Enterobacteriaceae for over 8 h following IV and IM administration.
Collapse
Affiliation(s)
- Christina D McNeal
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Clare A Ryan
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Londa J Berghaus
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Brenton C Credille
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Chih-Ping Lo
- Texas A&M Veterinary Medical Diagnostic Laboratory (TVMDL), College Station, TX, USA
| | - Virginia R Fajt
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
10
|
Mariappan TT, Kurawattimath V, Gautam SS, Kulkarni CP, Kallem R, Taskar KS, Marathe PH, Mandlekar S. Estimation of the Unbound Brain Concentration of P-Glycoprotein Substrates or Nonsubstrates by a Serial Cerebrospinal Fluid Sampling Technique in Rats. Mol Pharm 2014; 11:477-85. [DOI: 10.1021/mp400436d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T. Thanga Mariappan
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Plot 2 & 3, Bommasandra IV Phase, Bangalore 560 099, India
| | - Vishwanath Kurawattimath
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Plot 2 & 3, Bommasandra IV Phase, Bangalore 560 099, India
| | - Shashyendra Singh Gautam
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Plot 2 & 3, Bommasandra IV Phase, Bangalore 560 099, India
| | - Chetan P. Kulkarni
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Plot 2 & 3, Bommasandra IV Phase, Bangalore 560 099, India
| | - Rajareddy Kallem
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Plot 2 & 3, Bommasandra IV Phase, Bangalore 560 099, India
| | - Kunal S. Taskar
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Syngene International Ltd., Biocon Park, Plot 2 & 3, Bommasandra IV Phase, Bangalore 560 099, India
| | - Punit H. Marathe
- Pharmaceutical
Candidate Optimization, Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Pennington, New Jersey 08534, United States
| | - Sandhya Mandlekar
- Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb R&D Centre (BBRC), Bristol-Myers Squibb India Ltd., Bangalore 560099, India
| |
Collapse
|
11
|
Inui T, Alessandri B, Heimann A, Nishimura F, Frauenknecht K, Sommer C, Kempski O. Neuroprotective effect of ceftriaxone on the penumbra in a rat venous ischemia model. Neuroscience 2013; 242:1-10. [PMID: 23523747 DOI: 10.1016/j.neuroscience.2013.03.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/07/2013] [Accepted: 03/07/2013] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Glutamate transporter-1 (GLT-1) maintains low concentrations of extracellular glutamate by removing glutamate from the extracellular space. It is controversial, however, whether upregulation of GLT-1 is neuroprotective under all ischemic/hypoxic conditions. Recently, a neuroprotective effect of preconditioning with a β-lactam antibiotic ceftriaxone (CTX) that increases expression of GLT-1 has been reported in animal models of focal ischemia. On the other hand, it is said that CTX does not play a neuroprotective role in an in vitro study. Thus, we examined the effect of CTX on ischemic injury in a rat model of two-vein occlusion (2VO). This model mimics venous ischemia during, e.g. tumor surgery, a clinical situation that is best suitable for pretreatment with CTX. METHODS CTX (100mg/kg, 200mg/kg per day) or vehicle (0.9% NaCl) was intraperitoneally injected into Wistar rats for 5days before venous ischemia (n=57). Then, animals were prepared for occlusion of two adjacent cortical veins (2VO) by photothrombosis with rose bengal that was followed by KCl-induced cortical spreading depression (CSD). Infarct volume was evaluated with hematoxylin and eosin (H&E) staining 2days after venous occlusion. [(3)H]MK-801, [(3)H]AMPA and [(3)H]Muscimol ligand binding were examined autoradiographically in additional two groups without 2VO (n=5/group). Animals were injected either with NaCl (vehicle) or CTX 200mg/kg for 5days in order to evaluate whether NMDA, AMPA and GABAA ligand binding densities were affected. RESULTS CTX pretreatment reduced infarct volume compared to vehicle pretreatment (p<0.05). The effect of CTX pretreatment was attenuated by administration of the GLT-1 inhibitor, dihydrokainate (DHK) 30min before 2VO. CTX had no effect on the number of spontaneous spreading depressions after 2VO. Analysis of quantitative receptor autoradiography showed no statistically significant difference between rats after administration with CTX compared to control rats. CONCLUSIONS Pretreatment with CTX has neuroprotective potential without effect on NMDA, AMPA and GABAA receptor density and spontaneous spreading depression. This effect can be abolished by GLT-1 inhibition, indicating that upregulation of GLT-1 is an important mechanism for neuroprotective action in penumbra-like conditions, e.g. if neurosurgeons plan to occlude cerebral veins during tumor surgery.
Collapse
Affiliation(s)
- T Inui
- Institute for Neurosurgical Pathophysiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Yun YE, Edginton AN. Correlation-based prediction of tissue-to-plasma partition coefficients using readily available input parameters. Xenobiotica 2013; 43:839-52. [PMID: 23418669 DOI: 10.3109/00498254.2013.770182] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
UNLABELLED 1. RATIONALE Tissue-to-plasma partition coefficients (Kp) that characterize the tissue distribution of a drug are important input parameters in physiologically based pharmacokinetic (PBPK) models. The aim of this study was to develop an empirically derived Kp prediction algorithm using input parameters that are available early in the investigation of a compound. 2. METHODS The algorithm development dataset (n = 97 compounds) was divided according to acidic/basic properties. Using multiple stepwise regression, the experimentally derived Kp values were correlated with the rat volume of distribution at steady state (Vss) and one or more physicochemical parameters (e.g. lipophilicity, degree of ionization and protein binding) to account for inter-organ variability of tissue distribution. 3. RESULTS Prediction equations for the value of Kp were developed for 11 tissues. Validation of this model using a test dataset (n = 20 compounds) demonstrated that 65% of the predicted Kp values were within a two-fold error deviation from the experimental values. The developed algorithms had greater prediction accuracy compared to an existing empirically derived and a mechanistic tissue-composition algorithm. 4. CONCLUSIONS This innovative method uses readily available input parameters with reasonable prediction accuracy and will thus enhance both the usability and the confidence in the outputs of PBPK models.
Collapse
Affiliation(s)
- Y E Yun
- School of Pharmacy, University of Waterloo , Waterloo, ON , Canada
| | | |
Collapse
|
13
|
de Lange ECM. Utility of CSF in translational neuroscience. J Pharmacokinet Pharmacodyn 2013; 40:315-26. [PMID: 23400635 PMCID: PMC3663203 DOI: 10.1007/s10928-013-9301-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/30/2013] [Indexed: 01/19/2023]
Abstract
Human cerebrospinal fluid (CSF) sampling is of high value as the only general applicable methodology to obtain information on free drug concentrations in individual human brain. As the ultimate interest is in the free drug concentration at the CNS target site, the question is what CSF concentrations may tell us in that respect. Studies have been performed in rats and other animals for which concentrations in brain extracellular fluid (brain ECF) as a target site for many drugs, have been compared to (cisterna magna) CSF concentrations, at presumed steady state conditions,. The data indicated that CSF drug concentrations provided a rather good indication of, but not a reliable measure for predicting brain ECF concentrations. Furthermore, comparing rat with human CSF concentrations, human CSF concentrations tend to be higher and display much more variability. However, this comparison of CSF concentrations cannot be a direct one, as humans probably had a disease for which CSF was collected in the first place, while the rats were healthy. In order to be able to more accurately predict human brain ECF concentrations, understanding of the complexity of the CNS in terms of intrabrain pharmacokinetic relationships and the influence of CNS disorders on brain pharmacokinetics needs to be increased. This can be achieved by expanding a currently existing preclinically derived physiologically based pharmacokinetic model for brain distribution. This model has been shown to successfully predict data obtained for human lumbar CSF concentrations of acetaminophen which renders trust in the model prediction of human brain ECF concentrations. This model should further evolute by inclusion of influences of drug properties, fluid flows, transporter functionalities and different disease conditions. Finally the model should include measures of target site engagement and CNS effects, to ultimately learn about concentrations that best predict particular target site concentrations, via human CSF concentrations.
Collapse
|
14
|
Notkina N, Dahyot-Fizelier C, Gupta AK. In vivo microdialysis in pharmacological studies of antibacterial agents in the brain. Br J Anaesth 2012; 109:155-60. [PMID: 22745353 DOI: 10.1093/bja/aes216] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cerebral microdialysis (MD) has proven to be a valuable clinical and research tool in neuroscience. It allows sampling of endogenous and exogenous molecules of interest from the extracellular fluid (ECF) of the brain. MD has also been successfully used to assess drug delivery to the target tissues in pharmacokinetic (PK) studies. There is a concern that due to the blood-brain barrier (BBB), current regimens of commonly used antibiotics might be inadequate. Although PK/pharmacodynamic (PK/PD) studies play an important role in drug evaluation, PK MD studies of antibacterial agents in cerebral tissue are few in number. These studies demonstrate a significant variation in drug penetration in the presence of intracranial pathology. Antibacterial agents from the same chemical group have significantly different PK profiles due to different affinity to the transport proteins of the BBB. Some studies suggest that commonly used antibiotics do not reach a therapeutic concentration range in brain ECF. Studies reviewed in this article are small and performed in different patient populations (brain tumour, head injury, epilepsy) using different methodological approaches to the drug recovery estimation. Nevertheless, they provide interesting and important data on the variability of antibiotic penetration that could be utilized for PK/PD studies and which may have clinical relevance.
Collapse
Affiliation(s)
- N Notkina
- University Division of Anaesthesia, Addenbrooke`s Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| | | | | |
Collapse
|
15
|
β-Lactam antibiotic produces a sustained reduction in extracellular glutamate in the nucleus accumbens of rats. Amino Acids 2010; 40:761-4. [PMID: 20383795 DOI: 10.1007/s00726-010-0589-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 03/30/2010] [Indexed: 10/19/2022]
Abstract
We investigated the short- and long-term effects of ceftriaxone on glutamate transporter subtype 1 (GLT-1) transporter activity and extracellular glutamate in the rat nucleus accumbens. Repeated ceftriaxone administration (50, 100 or 200 mg/kg, i.p.) produced a dose-dependent reduction in glutamate levels that persisted for 20 days following discontinuation of drug exposure. The ceftriaxone effect was prevented by the GLT-1 transporter inhibitor dihydrokainate (1 μM, intra-accumbal). These results suggest that β-lactam antibiotics produce an enduring reduction in glutamatergic transmission in the brain reward center.
Collapse
|
16
|
Lung microdialysis study of levofloxacin in rats following intravenous infusion at steady state. Antimicrob Agents Chemother 2008; 52:3074-7. [PMID: 18591278 DOI: 10.1128/aac.00242-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lung microdialysis has been used with rats to investigate antibiotic distribution after single-dose administration. However, conducting such experiments after intravenous infusion at steady state would constitute a more convenient alternative, which was evaluated here, using levofloxacin (LVX) as a test compound. Microdialysis probes were inserted in blood and muscle, used as a comparator, between 9:00 a.m. and 11:00 a.m. Intravenous LVX infusion was started 6 h later and maintained until the end of the experiment at a rate of 1.0 mg.h(-1). Lung microdialysis probes were inserted on the morning of the next day. Rats were kept anesthetized during dialysate collection. In vivo probe recoveries were estimated by retrodialysis using a calibrator method, with ciprofloxacin (CIP) as the calibrator. LVX and CIP were analyzed in dialysates by high-performance liquid chromatography. The steady-state tissue-to-blood unbound-drug concentration ratios were 1.00 +/- 0.15 in muscle tissues and 1.06 +/- 0.40 in lungs, suggesting passive distribution of LVX in tissue. Although providing no information on rate of distribution, microdialysis investigations following drug infusion at steady state appear to be an interesting approach for characterization of antibiotic distribution in rat lungs.
Collapse
|
17
|
Jansson R, Bredberg U, Ashton M. Prediction of Drug Tissue to Plasma Concentration Ratios Using a Measured Volume of Distribution in Combination With Lipophilicity. J Pharm Sci 2008; 97:2324-39. [PMID: 17724666 DOI: 10.1002/jps.21130] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
One of the drug specific parameters needed in physiologically based pharmacokinetic (PBPK) models is the tissue to plasma drug concentration ratios (K(p) values). The aim of this study was to develop an empirical method for predicting K(p) values using a preclinically determined in vivo volume of distribution, in combination with descriptors for drug lipophilicity. Pharmacokinetic data in laboratory animals for a wide range of drug compounds were collected. Obtained correlations between K(p) values for muscle and other tissues, in a training set of 49 compounds, were used to predict K(p) values for a test set of 22 compounds, based on their volume of distribution and lipophilicity. Predicted K(p) values agreed well with experimentally determined values (n = 118), especially for noneliminating tissues (r(2) = 0.81) with 72% and 87% being within a factor +/-2 and +/-3, respectively. In conclusion, we present an empirical method based on a measured volume of distribution and a drug lipophilicity descriptor, which can be used to predict tissue K(p) values with reasonable accuracy.
Collapse
Affiliation(s)
- Rasmus Jansson
- Unit for Pharmacokinetics and Drug Metabolism, Sahlgrenska Academy at Göteborg University, Gothenburg, Sweden.
| | | | | |
Collapse
|
18
|
Albarellos GA, Kreil VE, Landoni MF. Pharmacokinetics of ceftriaxone after intravenous, intramuscular and subcutaneous administration to domestic cats. J Vet Pharmacol Ther 2007; 30:345-52. [PMID: 17610408 DOI: 10.1111/j.1365-2885.2007.00871.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pharmacokinetic properties of ceftriaxone, a third-generation cephalosporin, were investigated in five cats after single intravenous, intramuscular and subcutaneous administration at a dosage of 25 mg/kg. Ceftriaxone MICs for some gram-negative and positive strains isolated from clinical cases were determined. Efficacy predictor (t > MIC) was calculated. Serum ceftriaxone disposition was best fitted by a bicompartmental and a monocompartmental open models with first-order elimination after intravenous and intramuscular and subcutaneous dosing, respectively. After intravenous administration, distribution was fast (t1/2d 0.14 +/- 0.02 h) and moderate as reflected by the volume of distribution (V(d(ss))) of 0.57 +/- 0.22 L/kg. Furthermore, elimination was rapid with a plasma clearance of 0.37 +/- 0.13 L/h.kg and a t1/2 of 1.73 +/- 0.23 h. Peak serum concentration (Cmax), tmax and bioavailability for the intramuscular administration were 54.40 +/- 12.92 microg/mL, 0.33 +/- 0.07 h and 85.72 +/- 14.74%, respectively; and for the subcutaneous route the same parameters were 42.35 +/- 17.62 microg/mL, 1.27 +/- 0.95 h and 118.28 +/- 39.17%. Ceftriaxone MIC for gram-negative bacteria ranged from 0.0039 to >8 microg/mL and for gram-positive bacteria from 0.5 to 4 microg/mL. t > MIC was in the range 83.31-91.66% (10-12 h) of the recommended dosing interval (12 h) for Escherichia coli (MIC90 = 0.2 microg/mL).
Collapse
Affiliation(s)
- G A Albarellos
- Cátedra de Farmacología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | |
Collapse
|
19
|
Rawls SM, Tallarida R, Robinson W, Amin M. The beta-lactam antibiotic, ceftriaxone, attenuates morphine-evoked hyperthermia in rats. Br J Pharmacol 2007; 151:1095-102. [PMID: 17592517 PMCID: PMC2042926 DOI: 10.1038/sj.bjp.0707309] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Beta-lactam antibiotics are the first practical pharmaceuticals capable of increasing the expression and activity of the glutamate transporter, GLT-1, in the CNS. However, the functional impact of beta-lactam antibiotics on specific drugs which produce their pharmacological effects by increasing glutamatergic transmission is unknown. One such drug is morphine, which causes hyperthermia in rats, mediated by an increase in glutamatergic transmission. Since drugs (e.g. antibiotics) that enhance glutamate uptake also decrease glutamatergic transmission, we tested the hypothesis that ceftriaxone, a beta-lactam antibiotic, would block the glutamate-dependent portion of morphine-evoked hyperthermia. EXPERIMENTAL APPROACH A body temperature assay was used to determine if ceftriaxone decreased morphine-induced hyperthermia in rats by increasing glutamate uptake. KEY RESULTS Body temperatures of rats treated with ceftriaxone (200 mg kg(-1), i.p. x 7 days) did not differ from rats receiving saline. Morphine (1, 4, 8 and 15 mg kg(-1), s.c.) caused significant hyperthermia. Pre-treatment with ceftriaxone, as described above, decreased the hyperthermic response to these doses of morphine. The effects of ceftriaxone were prevented by TBOA (0.2 micromol, i.c.v.), an inhibitor of glutamate transport. CONCLUSIONS AND IMPLICATIONS Ceftriaxone attenuated the hyperthermia caused by morphine, an effect prevented by inhibiting glutamate transport. Thus this effect of ceftriaxone was most likely mediated by increased glutamate uptake. These data revealed a functional interaction between ceftriaxone and morphine and indicated that a beta-lactam antibiotic decreased the efficacy of morphine in conscious rats.
Collapse
Affiliation(s)
- S M Rawls
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA.
| | | | | | | |
Collapse
|
20
|
Böttcher T, Ren H, Goiny M, Gerber J, Lykkesfeldt J, Kuhnt U, Lotz M, Bunkowski S, Werner C, Schau I, Spreer A, Christen S, Nau R. Clindamycin is neuroprotective in experimental Streptococcus pneumoniae meningitis compared with ceftriaxone. J Neurochem 2004; 91:1450-60. [PMID: 15584921 DOI: 10.1111/j.1471-4159.2004.02837.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In animal models of Streptococcus pneumoniae meningitis, rifampin is neuroprotective in comparison to ceftriaxone. So far it is not clear whether this can be generalized for other protein synthesis-inhibiting antimicrobial agents. We examined the effects of the bactericidal protein synthesis-inhibiting clindamycin (n = 12) on the release of proinflammatory bacterial components, the formation of neurotoxic compounds and neuronal injury compared with the standard therapy with ceftriaxone (n = 12) in a rabbit model of pneumococcal meningitis. Analysis of the CSF and histological evaluation were combined with microdialysis from the hippocampal formation and the neocortex. Compared with ceftriaxone, clindamycin reduced the release of lipoteichoic acids from the bacteria (p = 0.004) into the CSF and the CSF leucocyte count (p = 0.011). This led to lower extracellular concentrations of hydroxyl radicals (p = 0.034) and glutamate (p = 0.016) in the hippocampal formation and a subsequent reduction of extracellular glycerol levels (p = 0.018) and neuronal apoptosis in the dentate gyrus (p = 0.008). The present data document beneficial effects of clindamycin compared with ceftriaxone on various parameters linked with the pathophysiology of pneumococcal meningitis and development of neuronal injury. This study suggests neuroprotection to be a group effect of bactericidal protein synthesis-inhibiting antimicrobial agents compared with the standard therapy with beta-lactam antibiotics in meningitis.
Collapse
Affiliation(s)
- Tobias Böttcher
- Department of Neurology, University of Rostock, Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Müller M, dela Peña A, Derendorf H. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: distribution in tissue. Antimicrob Agents Chemother 2004; 48:1441-53. [PMID: 15105091 PMCID: PMC400530 DOI: 10.1128/aac.48.5.1441-1453.2004] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Markus Müller
- Health Science Center, Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610-0494, USA
| | | | | |
Collapse
|
22
|
Nathan BR, Scheld WM. The efficacy of trovafloxacin versus ceftriaxone in the treatment of experimental brain abscess/cerebritis in the rat. Life Sci 2003; 73:1773-82. [PMID: 12888116 DOI: 10.1016/s0024-3205(03)00507-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Current estimates of the mortality associated with brain abscesses range from 0-24%, with neurological sequellae in 30-55% of survivors. Although the incidence of brain abscess appears to be increasing, likely due to an increase in the population of immunosuppressed patients, the condition is still sufficiently uncommon to make human clinical trials of therapy problematic. An animal model to study the efficacy of new treatment regimens, specifically, new antimicrobial agents is therefore necessary. This study uses a well-defined experimental paradigm as an inexpensive method of inducing and studying the efficacy of antibiotics in brain abscess. The rat model of brain abscess/cerebritis developed at this institution was used to determine the relative efficacy of trovafloxacin as compared to ceftriaxone in animals infected with Staphylococcus aureus. S. aureus ( approximately 10(5) CFU in 1 microliter) was injected with a Hamilton syringe, very slowly, over the course of 70 minutes after a two mm burr hole was created with a spherical carbide drill just posterior to the coronal suture and four mm lateral to the midline. Eighteen hours later treatment was begun; every 8 hours the rats were dosed with subcutaneous ceftriaxone (n = 10), trovafloxacin (n = 11) or 0.9% sterile pyogen-free saline (n = 10). After four days of treatment the brains were removed and sectioned with a scalpel. The entire injected hemisphere was homogenized and quantitative cultures performed. The mean +/- SEM log(10) colony forming units/ml S. aureus recovered from homogenized brain were as follows: controls 6.10 +/- 0.28; ceftriaxone 3.43 +/- 0.33; trovafloxacin 3.65 +/- 0.3. There was no significant difference in bacterial clearance between ceftriaxone versus trovafloxacin (p = 0.39). Trovafloxacin or other quinolones may provide a viable alternative to intravenous antibiotics in patients with brain abscess/cerebritis.
Collapse
Affiliation(s)
- Barnett R Nathan
- Departments of Neurology and Internal Medicine, University of Virginia, Box 800394, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
23
|
Liassine N, Madec S, Ninet B, Metral C, Fouchereau-Peron M, Labia R, Auckenthaler R. Postneurosurgical meningitis due to Proteus penneri with selection of a ceftriaxone-resistant isolate: analysis of chromosomal class A beta-lactamase HugA and its LysR-type regulatory protein HugR. Antimicrob Agents Chemother 2002; 46:216-9. [PMID: 11751137 PMCID: PMC126972 DOI: 10.1128/aac.46.1.216-219.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report on a case of a postneurosurgical meningitis due to ceftriaxone-susceptible Proteus penneri, with selection of a ceftriaxone-resistant isolate following treatment with ceftriaxone. The isolates presented identical patterns by pulsed-field gel electrophoresis and produced a single beta-lactamase named HugA with an isoelectric point of 6.7. The ceftriaxone-resistant isolate hyperproduced the beta-lactamase (increase in the level of production, about 90-fold). The sequences of the hugA beta-lactamase gene and its regulator, hugR, were identical in both P. penneri strains and had 85.96% homology with those of Proteus vulgaris. The HugA beta-lactamase belongs to molecular class A, and the transcriptional regulator HugR belongs to the LysR family.
Collapse
Affiliation(s)
- Nadia Liassine
- Central Laboratory of Bacteriology, University Hospital, Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
24
|
Tikka T, Usenius T, Tenhunen M, Keinänen R, Koistinaho J. Tetracycline derivatives and ceftriaxone, a cephalosporin antibiotic, protect neurons against apoptosis induced by ionizing radiation. J Neurochem 2001; 78:1409-14. [PMID: 11579149 DOI: 10.1046/j.1471-4159.2001.00543.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DNA damage induced by low doses of ionizing radiation causes apoptosis, which is partially mediated via the generation of free radicals. Both free radicals and apoptosis are involved in the majority of brain diseases, including stroke, Alzheimer's disease and amyotrophic lateral sclerosis. Because previous studies have shown that tetracycline derivatives doxycycline and minocycline have anti-inflammatory effects and are protective against brain ischemia, we studied whether minocycline and doxycycline or ceftriaxone, a cephalosporin antibiotic with the potential to inhibit excitotoxicity, protect neurons against ionizing radiation in primary cortical cultures. A single dose of 1 Gy significantly increased lactate dehydrogenase release, induced DNA fragmentation in neurons and triggered microglial proliferation. Treatment with minocycline (20 nM), doxycycline (20 nM) and ceftriaxone (1 microM) significantly reduced irradiation-induced lactate dehydrogenase release and DNA fragmentation. The most efficient protection was achieved by minocycline treatment, which also inhibited the irradiation-induced increase in microglial cell number. Our results suggest that some tetracycline derivatives, such as doxycycline and minocycline, and ceftriaxone, a cephalosporin derivative, protect neurons against apoptotic death.
Collapse
Affiliation(s)
- T Tikka
- A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland
| | | | | | | | | |
Collapse
|
25
|
Tsai TH, Kao HY, Chen CF. Measurement and pharmacokinetic analysis of unbound ceftazidime in rat blood using microdialysis and microbore liquid chromatography. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2001; 750:93-8. [PMID: 11204227 DOI: 10.1016/s0378-4347(00)00415-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To evaluate the biodisposition of ceftazidime in rat blood, a rapid and simple microbore liquid chromatographic technique together with a microdialysis sampling technique were developed. This method involves an on-line design for blood dialysate directly injected into a microbore liquid chromatographic system. The chromatographic conditions consisted of a mobile phase of methanol-acetonitrile-100 mM monosodium phosphoric acid (pH 3.0) (10:10:80, v/v/v) pumped through a microbore reversed-phase column at a flow-rate of 0.05 ml/min. With the detection wavelength set at 254 nm, a good linear correlation was observed between the peak area and the ceftazidime concentration at 0.1 to 50 microg/ml (r=0.999). Microdialysis probes, being custom-made, were screened for acceptable in vivo recovery while chromatographic resolution and detection were validated for response linearity, as well as intra-day and inter-day variabilities. This method was then applied to the pharmacokinetic profiling of ceftazidime in blood following intravenous 50 mg/kg administration to rats. The pharmacokinetics was calculated from the corrected data for dialysate concentrations of ceftazidime versus time. This method has been used to study ceftazidime pharmacokinetics in rats and has proven to be rapid and reproducible.
Collapse
Affiliation(s)
- T H Tsai
- National Research Institute of Chinese Medicine, Taipei, Taiwan.
| | | | | |
Collapse
|
26
|
Mindermann T, Zimmerli W, Gratzl O. Rifampin concentrations in various compartments of the human brain: a novel method for determining drug levels in the cerebral extracellular space. Antimicrob Agents Chemother 1998; 42:2626-9. [PMID: 9756766 PMCID: PMC105908 DOI: 10.1128/aac.42.10.2626] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial therapy for brain infections is notoriously difficult because of the limited extent of knowledge about drug penetration into the brain. Therefore, we determined the penetration of rifampin into various compartments of the human brain, including the cerebral extracellular space (CES). Patients undergoing craniotomy for resection of primary brain tumors were given a standard dose of 600 mg of rifampin intravenously before the operation. A microdialysis probe (10 by 0.5 mm) was inserted into the cortex distantly from the resection and was perfused with two different rifampin solutions. Rifampin concentrations in the CES were calculated by the no-net-flux method. Intraoperatively, samples were taken from brain tumor tissue, perifocal tissue, and normal brain tissue in the case of pole resections. Rifampin concentrations in the various samples were determined by using a bioassay with Sarcinea lutea. In the various compartments, rifampin concentrations were highest within tumors (1.37 +/- 1.34 microg/ml; n = 8), followed by the perifocal region (0.62 +/- 0.67 microg/ml; n = 8), the CES (0.32 +/- 0.11 microg/ml; n = 6), and normal brain tissue (0.29 +/- 0.15 microg/ml; n = 7). Rifampin concentrations in brain tumors do not adequately reflect concentrations in normal brain tissue or in the CES. Rifampin concentrations in the CES, as determined by microdialysis, are the most reproducible, and the least scattered, of the values for all compartments evaluated. Rifampin concentrations in all compartments exceed the MIC for staphylococci and streptococci. However, CES concentrations may be below the MICs for some mycobacterial strains.
Collapse
Affiliation(s)
- T Mindermann
- Neurological Surgery, University Hospitals Basel, 4031 Basel, Switzerland.
| | | | | |
Collapse
|
27
|
Abstract
The objective of this review is to survey the recent literature regarding the various applications of microdialysis in pharmacokinetics. Microdialysis is a relatively new technique for sampling tissue extracellular fluid that is gaining popularity in pharmacokinetic and pharmacodynamic studies, both in experimental animals and humans. The first part of this review discusses various aspects of the technique with regard to its use in pharmacokinetic studies, such as: quantitation of the microdialysis probe relative recovery, interfacing the sampling technique with analytical instrumentation, and consideration of repeated procedures using the microdialysis probe. The remainder of the review is devoted to a survey of the recent literature concerning pharmacokinetic studies that apply the microdialysis sampling technique. While the majority of the pharmacokinetic studies that have utilized microdialysis have been done in the central nervous system, a growing number of applications are being found in a variety of peripheral tissue types, e.g. skin, muscle, adipose, eye, lung, liver, and blood, and these are considered as well. Given the rising interest in this technique, and the ongoing attempts to adapt it to pharmacokinetic studies, it is clear that microdialysis sampling will have an important place in studying drug disposition and metabolism.
Collapse
Affiliation(s)
- W F Elmquist
- Department of Pharmaceutical Sciences, College of Pharmacy University of Nebraska Medical Center, Omaha 68198, USA
| | | |
Collapse
|