1
|
Nor Amdan NA, Shahrulzamri NA, Hashim R, Mohamad Jamil N. Understanding the evolution of macrolides resistance: A mini review. J Glob Antimicrob Resist 2024; 38:368-375. [PMID: 39117142 DOI: 10.1016/j.jgar.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Macrolides inhibit the growth of bacterial cells by preventing the elongation of polypeptides during protein biosynthesis and include natural, synthetic, and semi-synthetic products. Elongation prevention occurs by blocking the passage of the polypeptide chain as the macrolides bind at the nascent peptide exit tunnel. OBJECTIVE Recent data of ribosome profiling via ribo-seq further proves that, other than blocking the polypeptide chain, macrolides are also able to affect the synthesis of individual proteins. Thus, this shows that the mode of action of macrolides is more complex than we initially thought. Since the discovery of macrolides in the 1950s, they have been widely used in veterinary practice, agriculture, and medicine. Due to misuse and overuse of antibiotics, bacteria have acquired resistance against them. Hence, it is of utmost importance for us to fully understand the mode of action of macrolides as well as the mechanisms of resistance against macrolides in order to mitigate antibiotic-resistance issues. RESULTS Chemical modifications can be performed to improve macrolide potency if we have a better understanding of their mode of action. Furthermore, a complete and detailed understanding of the mode of action of macrolides has remained vague, as new findings have challenged theories that are already in existence-due to this obscurity, research into macrolide modes of action continues to this day. CONCLUSION In this review, we present an overview of macrolide antibiotics, with an emphasis on the latest knowledge regarding the mode of action of macrolides as well as the mechanisms of resistance employed by bacteria against macrolides.
Collapse
Affiliation(s)
- Nur Asyura Nor Amdan
- Bacteriology Unit, Infectious Disease Research Centre (IDRC), Institute for Medical Research (IMR), National Institutes of Health, Ministry of Health Malaysia, 40170, Shah Alam, Selangor, Malaysia
| | - Nur Atikah Shahrulzamri
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Rohaidah Hashim
- Bacteriology Unit, Infectious Disease Research Centre (IDRC), Institute for Medical Research (IMR), National Institutes of Health, Ministry of Health Malaysia, 40170, Shah Alam, Selangor, Malaysia
| | - Norashirene Mohamad Jamil
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia; Molecular Microbial Pathogenicity Research Group, Pharmaceutical and Life Sciences Community of Research, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
2
|
Mullally CA, Fahriani M, Mowlaboccus S, Coombs GW. Non- faecium non- faecalis enterococci: a review of clinical manifestations, virulence factors, and antimicrobial resistance. Clin Microbiol Rev 2024; 37:e0012123. [PMID: 38466110 PMCID: PMC11237509 DOI: 10.1128/cmr.00121-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
SUMMARYEnterococci are a diverse group of Gram-positive bacteria that are typically found as commensals in humans, animals, and the environment. Occasionally, they may cause clinically relevant diseases such as endocarditis, septicemia, urinary tract infections, and wound infections. The majority of clinical infections in humans are caused by two species: Enterococcus faecium and Enterococcus faecalis. However, there is an increasing number of clinical infections caused by non-faecium non-faecalis (NFF) enterococci. Although NFF enterococcal species are often overlooked, studies have shown that they may harbor antimicrobial resistance (AMR) genes and virulence factors that are found in E. faecium and E. faecalis. In this review, we present an overview of the NFF enterococci with a particular focus on human clinical manifestations, epidemiology, virulence genes, and AMR genes.
Collapse
Affiliation(s)
- Christopher A Mullally
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marhami Fahriani
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
| | - Shakeel Mowlaboccus
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Geoffrey W Coombs
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
3
|
Lohsen S, Stephens DS. Inducible Mega-Mediated Macrolide Resistance Confers Heteroresistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 2023; 67:e0131922. [PMID: 36847556 PMCID: PMC10019249 DOI: 10.1128/aac.01319-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
In Streptococcus pneumoniae (Spn), the 5.4 to 5.5 kb Macrolide Genetic Assembly (Mega) encodes an efflux pump (Mef[E]) and a ribosomal protection protein (Mel) conferring antibiotic resistance to commonly used macrolides in clinical isolates. We found the macrolide-inducible Mega operon provides heteroresistance (more than 8-fold range in MICs) to 14- and 15-membered ring macrolides. Heteroresistance is commonly missed during traditional clinical resistance screens but is highly concerning as resistant subpopulations can persist despite treatment. Spn strains containing the Mega element were screened via Etesting and population analysis profiling (PAP). All Mega-containing Spn strains screened displayed heteroresistance by PAP. The heteroresistance phenotype was linked to the mRNA expression of the mef(E)/mel operon of the Mega element. Macrolide induction uniformly increased Mega operon mRNA expression across the population, and heteroresistance was eliminated. A deletion of the 5' regulatory region of the Mega operon results in a mutant deficient in induction as well as in heteroresistance. The mef(E)L leader peptide sequence of the 5' regulatory region was required for induction and heteroresistance. Treatment with a noninducing 16-membered ring macrolide antibiotic did not induce the mef(E)/mel operon or eliminate the heteroresistance phenotype. Thus, inducibility of the Mega element by 14- and 15-membered macrolides and heteroresistance are linked in Spn. The stochastic variation in mef(E)/mel expression in a Spn population containing Mega provides the basis for heteroresistance.
Collapse
Affiliation(s)
- Sarah Lohsen
- Departments of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David S. Stephens
- Departments of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Departments of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Burns AL, Sleebs BE, Gancheva M, McLean KT, Siddiqui G, Venter H, Beeson JG, O’Handley R, Creek DJ, Ma S, Frölich S, Goodman CD, McFadden GI, Wilson DW. Targeting malaria parasites with novel derivatives of azithromycin. Front Cell Infect Microbiol 2022; 12:1063407. [PMID: 36530422 PMCID: PMC9748569 DOI: 10.3389/fcimb.2022.1063407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/09/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction The spread of artemisinin resistant Plasmodium falciparum parasites is of global concern and highlights the need to identify new antimalarials for future treatments. Azithromycin, a macrolide antibiotic used clinically against malaria, kills parasites via two mechanisms: 'delayed death' by inhibiting the bacterium-like ribosomes of the apicoplast, and 'quick-killing' that kills rapidly across the entire blood stage development. Methods Here, 22 azithromycin analogues were explored for delayed death and quick-killing activities against P. falciparum (the most virulent human malaria) and P. knowlesi (a monkey parasite that frequently infects humans). Results Seventeen analogues showed improved quick-killing against both Plasmodium species, with up to 38 to 20-fold higher potency over azithromycin after less than 48 or 28 hours of treatment for P. falciparum and P. knowlesi, respectively. Quick-killing analogues maintained activity throughout the blood stage lifecycle, including ring stages of P. falciparum parasites (<12 hrs treatment) and were >5-fold more selective against P. falciparum than human cells. Isopentenyl pyrophosphate supplemented parasites that lacked an apicoplast were equally sensitive to quick-killing analogues, confirming that the quick killing activity of these drugs was not directed at the apicoplast. Further, activity against the related apicoplast containing parasite Toxoplasma gondii and the gram-positive bacterium Streptococcus pneumoniae did not show improvement over azithromycin, highlighting the specific improvement in antimalarial quick-killing activity. Metabolomic profiling of parasites subjected to the most potent compound showed a build-up of non-haemoglobin derived peptides that was similar to chloroquine, while also exhibiting accumulation of haemoglobin-derived peptides that was absent for chloroquine treatment. Discussion The azithromycin analogues characterised in this study expand the structural diversity over previously reported quick-killing compounds and provide new starting points to develop azithromycin analogues with quick-killing antimalarial activity.
Collapse
Affiliation(s)
- Amy L. Burns
- Research Centre for Infectious Diseases, School of Biological Sciences, the University of Adelaide, Adelaide, SA, Australia,School of Science and Technology, the University of New England, Armidale, NSW, Australia
| | - Brad E. Sleebs
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Maria Gancheva
- Research Centre for Infectious Diseases, School of Biological Sciences, the University of Adelaide, Adelaide, SA, Australia
| | - Kimberley T. McLean
- Research Centre for Infectious Diseases, School of Biological Sciences, the University of Adelaide, Adelaide, SA, Australia
| | - Ghizal Siddiqui
- Drug Delivery Disposition and Dynamics, Monash University, Parkville, VIC, Australia
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - James G. Beeson
- Healthy Mothers, Healthy Babies Program, Burnet Institute, Melbourne, VIC, Australia,Department of Medicine, University of Melbourne, Parkville, VIC, Australia,Central Clinical School, Monash University, Melbourne, Vic, Australia,Department of Microbiology, Monash University, Melbourne, Vic, Australia
| | - Ryan O’Handley
- School of Animal and Veterinary Science, University of Adelaide, Adelaide, SA, Australia,Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Adelaide, SA, Australia
| | - Darren J. Creek
- Drug Delivery Disposition and Dynamics, Monash University, Parkville, VIC, Australia
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Sonja Frölich
- Research Centre for Infectious Diseases, School of Biological Sciences, the University of Adelaide, Adelaide, SA, Australia
| | | | | | - Danny W. Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, the University of Adelaide, Adelaide, SA, Australia,Healthy Mothers, Healthy Babies Program, Burnet Institute, Melbourne, VIC, Australia,Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Adelaide, SA, Australia,*Correspondence: Danny W. Wilson,
| |
Collapse
|
5
|
Johannessen H, Anthonisen IL, Zecic N, Hegstad K, Ranheim TE, Skaare D. Characterization and Fitness Cost of Tn7100, a Novel Integrative and Conjugative Element Conferring Multidrug Resistance in Haemophilus influenzae. Front Microbiol 2022; 13:945411. [PMID: 35935209 PMCID: PMC9355037 DOI: 10.3389/fmicb.2022.945411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/16/2022] [Indexed: 12/15/2022] Open
Abstract
A multidrug-resistant (MDR) strain of Haemophilus influenzae, Hi-228, with phenotypic resistance toward ampicillin, cefotaxime, chloramphenicol, gentamicin, and azithromycin, was isolated in Oslo, Norway. The strain was part of a clonal outbreak (2016–2017) comprising five ST143 strains with identical resistotypes. Hi-228 carries a novel integrative and conjugative element (ICE), Tn7100, contributing to this remarkable and previously unreported MDR profile. Tn7100 contains the following resistance genes: blaTEM−1B, catA2, aac(6′)-Im, aph(2″)-Ib, mef (E), and mel. The latter four are previously unreported or rarely reported in H. influenzae. In this study, we investigated the genetic environment, mechanisms of transfer, impact on phenotypic susceptibility, and fitness cost of this ICE. We found that Tn7100 has an overall structure similar to the previously described ICE Tn6686, with blaTEM−1B and catA2 carried by Tn3 and Tn10, respectively. The major difference between Tn7100 and Tn6686 is that Tn7100 lacks tet(B) but carries the resistance gene pairs aac(6′)-Im and aph(2″)-Ib and mef (E) and mel. The gene pairs are located on the novel transposable elements Tn7470 and Tn7471, which have high sequence identities to a plasmid in Enterobacterales and an ICE in streptococcal species, respectively. Tn7100 does circularize and is transferable, however, at a low frequency. Head-to-head competition experiments showed that uptake of Tn7100 reduces bacterial fitness. Our study shows that MDR strains are capable of clonal spread and that the H. influenzae supragenome comprises an increasingly wide range of transferable resistance genes, with evidence of transfer from unrelated genera. The findings offer a glimpse into the genome dynamics of H. influenzae, highlighting the importance of rational antibiotic usage to contain antimicrobial resistance and the emergence of MDR strains in this important pathogen.
Collapse
Affiliation(s)
- Helene Johannessen
- Department of Microbiology, Vestfold Hospital Trust, Tønsberg, Norway
- *Correspondence: Helene Johannessen
| | | | - Nermin Zecic
- Department of Microbiology, Vestfold Hospital Trust, Tønsberg, Norway
| | - Kristin Hegstad
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | | | - Dagfinn Skaare
- Department of Microbiology, Vestfold Hospital Trust, Tønsberg, Norway
| |
Collapse
|
6
|
Fox V, Santoro F, Pozzi G, Iannelli F. Predicted transmembrane proteins with homology to Mef(A) are not responsible for complementing mef(A) deletion in the mef(A)-msr(D) macrolide efflux system in Streptococcus pneumoniae. BMC Res Notes 2021; 14:432. [PMID: 34823574 PMCID: PMC8620141 DOI: 10.1186/s13104-021-05856-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
Objectives In streptococci, the type M resistance to macrolides is due to the mef(A)–msr(D) efflux transport system of the ATP-Binding cassette (ABC) superfamily, where it is proposed that mef(A) codes for the transmembrane channel and msr(D) for the two ATP-binding domains. Phage ϕ1207.3 of Streptococcus pyogenes, carrying the mef(A)–msr(D) gene pair, is able to transfer the macrolide efflux phenotype to Streptococcus pneumoniae. Deletion of mef(A) in pneumococcal ϕ1207.3-carrying strains did not affect erythromycin efflux. In order to identify candidate genes likely involved in complementation of mef(A) deletion, the Mef(A) amino acid sequence was used as probe for database searching. Results In silico analysis identified 3 putative candidates in the S. pneumoniae R6 genome, namely spr0971, spr1023 and spr1932. Isogenic deletion mutants of each candidate gene were constructed and used in erythromycin sensitivity assays to investigate their contribution to mef(A) complementation. Since no change in erythromycin sensitivity was observed compared to the parental strain, we produced double and triple mutants to assess the potential synergic activity of the selected genes. Also these mutants did not complement the mef(A) function. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05856-6.
Collapse
Affiliation(s)
- Valeria Fox
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesco Santoro
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Gianni Pozzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesco Iannelli
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.
| |
Collapse
|
7
|
Azithromycin and Ciprofloxacin Can Promote Antibiotic Resistance in Biosolids and Biosolids-Amended Soils. Appl Environ Microbiol 2021; 87:e0037321. [PMID: 34085858 DOI: 10.1128/aem.00373-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spread of biosolids-borne antibiotic resistance is a growing public and environmental health concern. Herein, we conducted incubation experiments involving biosolids, which are byproducts of sewage treatment processes, and biosolids-amended soil. Quantitative reverse transcription-PCR (RT-qPCR) was employed to assess responses of select antibiotic resistance genes (ARGs) and mobile elements to environmentally relevant concentrations of two biosolids-borne antibiotics, azithromycin (AZ) and ciprofloxacin (CIP). Additionally, we examined sequence distribution of gyrA (encoding DNA gyrase; site of action of CIP) to assess potential shifts in genotype. Increasing antibiotic concentrations generally increased the transcriptional activities of qnrS (encoding CIP resistance) and ermB and mefE (encoding AZ resistance). The transcriptional activity of intl1, a marker of class 1 integrons, was unaffected by CIP or AZ concentrations, but biosolids amendment increased intl1 activity in the soil by 4 to 5 times, which persisted throughout incubation. While the dominant gyrA sequences found herein were unrelated to known CIP-resistant genotypes, the increasing CIP concentrations significantly decreased the diversity of genes encoding the DNA gyrase A subunit, suggesting changes in microbial community structures. This study suggests that biosolids harbor transcriptionally active ARGs and mobile elements that could survive and spread in biosolids-amended soils. However, more research is warranted to investigate these trends under field conditions. IMPORTANCE Although previous studies have indicated that biosolids may be important spreaders of antibiotics and antibiotic resistance genes (ARGs) in environments, the potential activities of ARGs or their responses to environmental parameters have been understudied. This study highlights that certain biosolids-borne antibiotics can induce transcriptional activities of ARGs and mobile genetic elements in biosolids and biosolids-amended soil, even when present at environmentally relevant concentrations. Furthermore, these antibiotics can alter the structure of microbial populations expressing ARGs. Our findings indicate the bioavailability of the antibiotics in biosolids and provide evidence that biosolids can promote the activities and dissemination of ARGs and mobile genes in biosolids and soils that receive contaminated biosolids, thus, underscoring the importance of investigating anthropogenically induced antibiotic resistance in the environment under real-world scenarios.
Collapse
|
8
|
Seabra G, Ventura Mendes RF, Dos Santos Amorim LFV, Peregrino IV, Branquinha MH, Dos Santos ALS, Nunes APF. Azithromycin Use in COVID-19 Patients: Implications on the Antimicrobial Resistance. Curr Top Med Chem 2021; 21:677-683. [PMID: 34028347 DOI: 10.2174/156802662108210319145317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Gabriela Seabra
- Laboratorio de Resistencia Bacteriana (RESBAC), Departamento de Microbiologia, Centro de Ciencias da Saude (CCS), Universidade Federal do Espirito Santo (UFES), Vitoria, Brazil
| | - Roberta Ferreira Ventura Mendes
- Laboratorio de Resistencia Bacteriana (RESBAC), Departamento de Microbiologia, Centro de Ciencias da Saude (CCS), Universidade Federal do Espirito Santo (UFES), Vitoria, Brazil
| | - Luiz Felipe Vieira Dos Santos Amorim
- Laboratorio de Resistencia Bacteriana (RESBAC), Departamento de Microbiologia, Centro de Ciencias da Saude (CCS), Universidade Federal do Espirito Santo (UFES), Vitoria, Brazil
| | - Ingrid Vianez Peregrino
- Laboratorio de Resistencia Bacteriana (RESBAC), Departamento de Microbiologia, Centro de Ciencias da Saude (CCS), Universidade Federal do Espirito Santo (UFES), Vitoria, Brazil
| | - Marta Helena Branquinha
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - André Luis Souza Dos Santos
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Ana Paula Ferreira Nunes
- Laboratorio de Resistencia Bacteriana (RESBAC), Departamento de Microbiologia, Centro de Ciencias da Saude (CCS), Universidade Federal do Espirito Santo (UFES), Vitoria, Brazil
| |
Collapse
|
9
|
Negash AA, Asrat D, Abebe W, Aseffa A, Vaneechoutte M. Phenotypic and Molecular Characterization of Penicillin and Macrolide-Resistant Streptococcus pneumoniae Serotypes Among Pediatric Patients in Addis Ababa, Ethiopia. Infect Drug Resist 2021; 14:1765-1772. [PMID: 34012275 PMCID: PMC8126871 DOI: 10.2147/idr.s309876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/15/2021] [Indexed: 11/23/2022] Open
Abstract
Background In several countries, introduction of the pneumococcal conjugate vaccine (PCV) has led to a decline in antimicrobial-resistant pneumococcal disease but has also resulted in a concomitant increase in antimicrobial-resistant, non-vaccine serotypes of Streptococcus pneumoniae. We sought to determine the magnitude of penicillin and macrolide resistance among pneumococcal serotypes and the mechanisms of macrolide resistance in Ethiopia, 5 years after the introduction of PCV10 in the country. Methods Susceptibility to penicillin and erythromycin of 119 pneumococcal isolates collected from pediatric patients aged 0-15 years in Addis Ababa, Ethiopia, was tested using disc diffusion, and minimum inhibitory concentration (MIC) was also determined by Etest. Pneumococcal serotypes were determined by sequencing the cpsB gene and using Quellung reaction. Polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism analysis were used to detect and differentiate the macrolide resistance genes erm(B), mef(A), and mef(B). Results Among the 119 isolates, 2.5% (3/119) were resistant to penicillin, while 58% (69/119) were intermediate. Resistance to erythromycin was observed in 33.6% (40/119) of the isolates with the highest level of resistance among isolates from middle ear discharge, i.e., 53.3% (8/15). Half (19/40) of the erythromycin resistant isolates were serotype 19A and among serotype 19A isolates, the majority i.e., 54.3% (19/35) were resistant to erythromycin. The most common macrolide resistance determinant was mef(E) with a prevalence of 50% (20/40). Conclusion Five years after introduction of PCV10 in Ethiopia, we observed that the prevalence of penicillin-resistant S. pneumoniae was low. However, there was a high level of macrolide resistance which was mostly in serotype 19A, and the resistance was mainly mediated by efflux pumps. Introduction of PCV13 (which covers serotype 19A) would significantly improve coverage of the macrolide-resistant serotypes. Continued surveillance of pneumococcal serotype distribution and their antibiotic resistance pattern in Ethiopia is warranted.
Collapse
Affiliation(s)
- Abel Abera Negash
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia.,Department of Microbiology, Immunology and Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Asrat
- Department of Microbiology, Immunology and Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Workeabeba Abebe
- Department of Pediatrics and Child Health, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Mario Vaneechoutte
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Lei Z, Karim A. The challenges and applications of nanotechnology against bacterial resistance. J Vet Pharmacol Ther 2020; 44:281-297. [PMID: 33277732 DOI: 10.1111/jvp.12936] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Bacterial resistance to the antibiotics develops rapidly and is increasingly serious health concern in the world. It is an insoluble topic due to the multiple resistant mechanisms. The overexpression of relative activities of the efflux pump has proven to be a frequent and important source of bacterial resistance. Efflux transporters in the membrane from the resistant bacteria could play a key role to inhibit the intracellular drug intake and impede the drug activities. However, nanoparticles (NPs), one of the most frequently used encapsulation materials, could increase the intracellular accumulation of the drug and inhibit the transporter activity effectively. The rational and successful application of nanotechnology is a key factor in overcoming bacterial resistance. Furthermore, nanoparticles such as metallic, carbon nanotubes and so on, may prevent the development of drug resistance and be associated with antibiotic agents, inhibiting biofilm formation or increasing the access into the target cell and exterminating the bacteria eventually. In the current study, the mechanisms of bacterial resistance are discussed and summarized. Additionally, the opportunities and challenges in the use of nanoparticles against bacterial resistance are also illuminated. At the same time, the use of nanoparticles to combat multidrug-resistant bacteria is also investigated by coupling natural antimicrobials or other alternatives. In short, we have provided a new perspective for the application of nanoparticles against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Zhiqun Lei
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Aman Karim
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
11
|
Guérin F, Lachaal S, Auzou M, Le Brun C, Barraud O, Decousser JW, Lienhard R, Baraduc R, Dubreuil L, Cattoir V. Molecular basis of macrolide-lincosamide-streptogramin (MLS) resistance in Finegoldia magna clinical isolates. Anaerobe 2020; 64:102220. [PMID: 32531434 DOI: 10.1016/j.anaerobe.2020.102220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022]
Affiliation(s)
- François Guérin
- CHU de Caen, Service de Microbiologie, Caen, F-14033, France; Université de Caen Normandie, EA4655 (équipe "Antibio-résistance"), Caen, F-14032, France
| | - Sabrine Lachaal
- CHU de Caen, Service de Microbiologie, Caen, F-14033, France
| | - Michel Auzou
- CHU de Caen, Service de Microbiologie, Caen, F-14033, France; Université de Caen Normandie, EA4655 (équipe "Antibio-résistance"), Caen, F-14032, France
| | - Cécile Le Brun
- CHRU de Tours, Service de Bactériologie-Virologie, Hôpital Bretonneau, F-37044, Tours, France
| | - Olivier Barraud
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, Limoges, F-87042, France
| | - Jean-Winoc Decousser
- CHU Henri Mondor, Assistance Publique-Hôpitaux de Paris, Laboratoire de Microbiologie, Créteil, F-94010, France
| | - Reto Lienhard
- ADMED Microbiologie, La-Chaux-de-Fonds, CH-2303, Switzerland
| | - Régine Baraduc
- CHU de Clermont-Ferrand, Laboratoire de Microbiologie, Clermont-Ferrand, F-63003, France
| | - Luc Dubreuil
- CHRU de Lille, Laboratoire de Bactériologie-Hygiène et de Virologie, Lille, F-59 037, France
| | - Vincent Cattoir
- CHU Rennes, Service de Bactériologie et Hygiène Hospitalière, Rennes, F-35033, France; CNR de la Résistance aux Antibiotiques, Rennes, F-35033, France.
| |
Collapse
|
12
|
Djamin RS, Talman S, Schrauwen EJA, von Wintersdorff CJH, Wolffs PF, Savelkoul PHM, Uzun S, Kerstens R, van der Eerden MM, Kluytmans JAJW. Prevalence and abundance of selected genes conferring macrolide resistance genes in COPD patients during maintenance treatment with azithromycin. Antimicrob Resist Infect Control 2020; 9:116. [PMID: 32723393 PMCID: PMC7389634 DOI: 10.1186/s13756-020-00783-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/14/2020] [Indexed: 11/16/2022] Open
Abstract
Objectives Maintenance treatment with macrolide antibiotics has shown to be effective in reducing exacerbations in COPD patients. A major concern with prolonged treatment with antibiotics is the development of bacterial resistance. In this study we determined the effect of azithromycin on the development and acquisition of resistance to macrolides in the nasopharyngeal flora in COPD patients. Methods This study was part of the COLUMBUS trial, a randomised, double-blind, placebo-controlled trial to measure the effect of maintenance treatment with azithromycin in 92 COPD patients on the exacerbation rates during a 12-month period. In order to determine resistance to macrolides, we used a targeted metagenomic approach to measure the presence and relative abundance of specific macrolide resistance genes ermB, ermF and mefA in throat samples collected at different time-points during this 12-month period. Results There was no increased risk for acquisition of macrolide resistance genes in the azithromycin group compared to the placebo group in COPD patients. However, loss of the macrolide resistance gene ermB was increased overtime in the placebo treated group compared to the azithromycin group (n = 5 for the placebo group versus n = 0 for the azithromycin group at 12 months; p = 0.012). The change in relative abundance of the three macrolide-resistance genes showed that all but one (ermF) increased during treatment with azithromycin. Conclusions The acquisition rate of macrolide resistance genes in COPD patients treated with azithromycin maintenance therapy was limited, but the relative abundance of macrolide resistance genes increased significantly over time compared to placebo. This study was part of the COLUMBUS trial (Clinicaltrials.gov, NCT00985244).
Collapse
Affiliation(s)
- Remco S Djamin
- Department t of Respiratory Medicine, Amphia Hospital, Molengracht 21, 4818 CK, Breda, The Netherlands
| | - Sander Talman
- Department t of Respiratory Medicine, Amphia Hospital, Molengracht 21, 4818 CK, Breda, The Netherlands.
| | - Eefje J A Schrauwen
- Laboratory for Microbiology and Infection Control, Amphia Hospital, Breda, The Netherlands.,Academy for Technology and Environmental Health, Avans University of Applied Sciences, Breda, the Netherlands
| | | | - Petra F Wolffs
- Department of Medical Microbiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Paul H M Savelkoul
- Department of Medical Microbiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Sevim Uzun
- Department t of Respiratory Medicine, Amphia Hospital, Molengracht 21, 4818 CK, Breda, The Netherlands
| | - René Kerstens
- Orion Statistical Consulting BV, Hilvarenbeek, The Netherlands
| | | | - Jan A J W Kluytmans
- Laboratory for Microbiology and Infection Control, Amphia Hospital, Breda, The Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
13
|
Antibiotic Resistance Is Associated with Integrative and Conjugative Elements and Genomic Islands in Naturally Circulating Streptococcus pneumoniae Isolates from Adults in Liverpool, UK. Genes (Basel) 2020; 11:genes11060625. [PMID: 32517221 PMCID: PMC7348760 DOI: 10.3390/genes11060625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/23/2022] Open
Abstract
Pneumonia is the sixth largest cause of death in the UK. It is usually caused by Streptococcus pneumoniae, which healthy individuals can carry in their nose without symptoms of disease. Antimicrobial resistance further increases mortality and morbidity associated with pneumococcal infection, although few studies have analysed resistance in naturally circulating pneumococcal isolates in adult populations. Here, we report on the resistome and associated mobile genetic elements within circulating pneumococcus isolated from adult volunteers enrolled in the experimental human pneumococcal colonisation (EHPC) research program at the Liverpool School of Tropical Medicine, UK. Pneumococcal isolates collected from 30 healthy asymptomatic adults who had volunteered to take part in clinical research were screened for antibiotic susceptibility to erythromycin and tetracycline, and whole-genome sequenced. The genetic context of resistance to one or both antibiotics in four isolates was characterised bioinformatically, and any association of the resistance genes with mobile genetic elements was determined. Tetracycline and macrolide resistance genes [tet(M), erm(B), mef(A), msr(D)] were detected on known Tn916-like integrative and conjugative elements, namely Tn6002 and Tn2010, and tet(32) was found for the first time in S. pneumoniae located on a novel 50 kb genomic island. The widespread use of pneumococcal conjugate vaccines impacts on serotype prevalence and transmission within the community. It is therefore important to continue to monitor antimicrobial resistance (AMR) genes present in both vaccine types and non-vaccine types in response to contemporary antimicrobial therapies and characterise the genetic context of acquired resistance genes to continually optimise antibiotic therapies.
Collapse
|
14
|
Schroeder MR, Lohsen S, Chancey ST, Stephens DS. High-Level Macrolide Resistance Due to the Mega Element [ mef(E)/ mel] in Streptococcus pneumoniae. Front Microbiol 2019; 10:868. [PMID: 31105666 PMCID: PMC6491947 DOI: 10.3389/fmicb.2019.00868] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/04/2019] [Indexed: 01/06/2023] Open
Abstract
Transferable genetic elements conferring macrolide resistance in Streptococcus pneumoniae can encode the efflux pump and ribosomal protection protein, mef(E)/mel, in an operon of the macrolide efflux genetic assembly (Mega) element- or induce ribosomal methylation through a methyltransferase encoded by erm(B). During the past 30 years, strains that contain Mega or erm(B) or both elements on Tn2010 and other Tn916-like composite mobile genetic elements have emerged and expanded globally. In this study, we identify and define pneumococcal isolates with unusually high-level macrolide resistance (MICs > 16 μg/ml) due to the presence of the Mega element [mef(E)/mel] alone. High-level resistance due to mef(E)/mel was associated with at least two specific genomic insertions of the Mega element, designated Mega-2.IVa and Mega-2.IVc. Genome analyses revealed that these strains do not possess erm(B) or known ribosomal mutations. Deletion of mef(E)/mel in these isolates eliminated macrolide resistance. We also found that Mef(E) and Mel of Tn2010-containing pneumococci were functional but the high-level of macrolide resistance was due to Erm(B). Using in vitro competition experiments in the presence of macrolides, high-level macrolide-resistant S. pneumoniae conferred by either Mega-2.IVa or erm(B), had a growth fitness advantage over the lower-level, mef(E)/mel-mediated macrolide-resistant S. pneumoniae phenotypes. These data indicate the ability of S. pneumoniae to generate high-level macrolide resistance by macrolide efflux/ribosomal protection [Mef(E)/Mel] and that high-level resistance regardless of mechanism provides a fitness advantage in the presence of macrolides.
Collapse
Affiliation(s)
- Max R Schroeder
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Laboratories of Microbial Pathogenesis, Department of Veterans Affairs Medical Center, Atlanta, GA, United States
| | - Sarah Lohsen
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Scott T Chancey
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Laboratories of Microbial Pathogenesis, Department of Veterans Affairs Medical Center, Atlanta, GA, United States
| | - David S Stephens
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Laboratories of Microbial Pathogenesis, Department of Veterans Affairs Medical Center, Atlanta, GA, United States
| |
Collapse
|
15
|
Shriram V, Khare T, Bhagwat R, Shukla R, Kumar V. Inhibiting Bacterial Drug Efflux Pumps via Phyto-Therapeutics to Combat Threatening Antimicrobial Resistance. Front Microbiol 2018; 9:2990. [PMID: 30619113 PMCID: PMC6295477 DOI: 10.3389/fmicb.2018.02990] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/19/2018] [Indexed: 12/04/2022] Open
Abstract
Antibiotics, once considered the lifeline for treating bacterial infections, are under threat due to the emergence of threatening antimicrobial resistance (AMR). These drug-resistant microbes (or superbugs) are non-responsive to most of the commonly used antibiotics leaving us with few treatment options and escalating mortality-rates and treatment costs. The problem is further aggravated by the drying-pipeline of new and potent antibiotics effective particularly against the drug-resistant strains. Multidrug efflux pumps (EPs) are established as principal determinants of AMR, extruding multiple antibiotics out of the cell, mostly in non-specific manner and have therefore emerged as potent drug-targets for combating AMR. Plants being the reservoir of bioactive compounds can serve as a source of potent EP inhibitors (EPIs). The phyto-therapeutics with noteworthy drug-resistance-reversal or re-sensitizing activities may prove significant for reviving the otherwise fading antibiotics arsenal and making this combination-therapy effective. Contemporary attempts to potentiate the antibiotics with plant extracts and pure phytomolecules have gained momentum though with relatively less success against Gram-negative bacteria. Plant-based EPIs hold promise as potent drug-leads to combat the EPI-mediated AMR. This review presents an account of major bacterial multidrug EPs, their roles in imparting AMR, effective strategies for inhibiting drug EPs with phytomolecules, and current account of research on developing novel and potent plant-based EPIs for reversing their AMR characteristics. Recent developments including emergence of in silico tools, major success stories, challenges and future prospects are also discussed.
Collapse
Affiliation(s)
- Varsha Shriram
- Department of Botany, Prof. Ramkrishna More College, Savitribai Phule Pune University, Pune, India
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Pune, India
| | - Rohit Bhagwat
- Department of Environmental Science, Savitribai Phule Pune University, Pune, India
| | - Ravi Shukla
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Pune, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
16
|
Tatsuno I, Isaka M, Masuno K, Hata N, Matsumoto M, Hasegawa T. Functional Predominance of msr(D), Which Is More Effective as mef(A)-Associated Than mef(E)-Associated, Over mef(A)/mef(E) in Macrolide Resistance in Streptococcus pyogenes. Microb Drug Resist 2018; 24:1089-1097. [DOI: 10.1089/mdr.2017.0277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Ichiro Tatsuno
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masanori Isaka
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Katsuaki Masuno
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Nagoya City Public Health Research Institute, Nagoya, Japan
| | - Nanako Hata
- Department of Microbiology, Nagoya City University Hospital, Nagoya, Japan
| | - Masakado Matsumoto
- Department of Microbiology and Medical Zoology, Aichi Prefectural Institute of Public Health, Nagoya, Japan
| | - Tadao Hasegawa
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
17
|
Iannelli F, Santoro F, Santagati M, Docquier JD, Lazzeri E, Pastore G, Cassone M, Oggioni MR, Rossolini GM, Stefani S, Pozzi G. Type M Resistance to Macrolides Is Due to a Two-Gene Efflux Transport System of the ATP-Binding Cassette (ABC) Superfamily. Front Microbiol 2018; 9:1670. [PMID: 30108557 PMCID: PMC6079230 DOI: 10.3389/fmicb.2018.01670] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/04/2018] [Indexed: 11/19/2022] Open
Abstract
The mef(A) gene was originally identified as the resistance determinant responsible for type M resistance to macrolides, a phenotype frequently found in clinical isolates of Streptococcus pneumoniae and Streptococcus pyogenes. MefA was defined as a secondary transporter of the major facilitator superfamily driven by proton-motive force. However, when characterizing the mef(A)-carrying elements Tn1207.1 and Φ1207.3, another macrolide resistance gene, msr(D), was found adjacent to mef(A). To define the respective contribution of mef(A) and msr(D) to macrolide resistance, three isogenic deletion mutants were constructed by transformation of a S. pneumoniae strain carrying Φ1207.3: (i) Δmef(A)–Δmsr(D); (ii) Δmef(A)–msr(D); and (iii) mef(A)–Δmsr(D). Susceptibility testing of mutants clearly showed that msr(D) is required for macrolide resistance, while deletion of mef(A) produced only a twofold reduction in the minimal inhibitory concentration (MIC) for erythromycin. The contribution of msr(D) to macrolide resistance was also studied in S. pyogenes, which is the original host of Φ1207.3. Two isogenic strains of S. pyogenes were constructed: (i) FR156, carrying Φ1207.3, and (ii) FR155, carrying Φ1207.3/Δmsr(D). FR155 was susceptible to erythromycin, whereas FR156 was resistant, with an MIC value of 8 μg/ml. Complementation experiments showed that reintroduction of the msr(D) gene could restore macrolide resistance in Δmsr(D) mutants. Radiolabeled erythromycin was retained by strains lacking msr(D), while msr(D)-carrying strains showed erythromycin efflux. Deletion of mef(A) did not affect erythromycin efflux. This data suggest that type M resistance to macrolides in streptococci is due to an efflux transport system of the ATP-binding cassette (ABC) superfamily, in which mef(A) encodes the transmembrane channel, and msr(D) the two ATP-binding domains.
Collapse
Affiliation(s)
- Francesco Iannelli
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesco Santoro
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Maria Santagati
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Elisa Lazzeri
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Gabiria Pastore
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Marco Cassone
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Marco R Oggioni
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Gian M Rossolini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Stefania Stefani
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gianni Pozzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
18
|
Feßler AT, Wang Y, Wu C, Schwarz S. Mobile macrolide resistance genes in staphylococci. Plasmid 2018; 99:2-10. [PMID: 29807043 DOI: 10.1016/j.plasmid.2018.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/30/2018] [Accepted: 05/24/2018] [Indexed: 01/12/2023]
Abstract
Macrolide resistance in staphylococci is based on the expression of a number of genes which specify four major resistance mechanisms: (i) target site modification by methylation of the ribosomal target site in the 23S rRNA, (ii) ribosome protection via ABC-F proteins, (iii) active efflux via Major Facilitator Superfamily (MFS) transporters, and (iv) enzymatic inactivation by phosphotransferases or esterases. So far, 14 different classes of erm genes, which code for 23S rRNA methylases, have been reported to occur in staphylococci from humans, animals and environmental sources. Inducible or constitutive expression of the erm genes depends on the presence and intactness of a regulatory region known as translational attenuator. The erm genes commonly confer resistance not only to macrolides, but also to lincosamides and streptogramin B compounds. In contrast, the msr(A) gene codes for an ABC-F protein which confers macrolide and streptogramin B resistance whereas the mef(A) gene codes for a Major Facilitator Superfamily protein that can export only macrolides. Enzymatic inactivation of macrolides may be due to the macrolide phosphotransferase gene mph(C) or the macrolide esterase genes ere(A) or ere(B). Many of these macrolide resistance genes are part of either plasmids, transposons, genomic islands or prophages and as such, can easily be transferred across strain, species and genus boundaries. The co-location of other antimicrobial or metal resistance genes on the same mobile genetic element facilitates co-selection and persistence of macrolide resistance genes under the selective pressure of metals or other antimicrobial agents.
Collapse
Affiliation(s)
- Andrea T Feßler
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Congming Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
19
|
Molecular detection of genes responsible for macrolide resistance among Streptococcus pneumoniae isolated in North Lebanon. J Infect Public Health 2017; 10:745-748. [DOI: 10.1016/j.jiph.2016.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/10/2016] [Accepted: 11/18/2016] [Indexed: 11/23/2022] Open
|
20
|
El Moujaber G, Osman M, Rafei R, Dabboussi F, Hamze M. Molecular mechanisms and epidemiology of resistance in Streptococcus pneumoniae in the Middle East region. J Med Microbiol 2017. [DOI: 10.1099/jmm.0.000503] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Grace El Moujaber
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| |
Collapse
|
21
|
Fyfe C, Grossman TH, Kerstein K, Sutcliffe J. Resistance to Macrolide Antibiotics in Public Health Pathogens. Cold Spring Harb Perspect Med 2016; 6:a025395. [PMID: 27527699 PMCID: PMC5046686 DOI: 10.1101/cshperspect.a025395] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Macrolide resistance mechanisms can be target-based with a change in a 23S ribosomal RNA (rRNA) residue or a mutation in ribosomal protein L4 or L22 affecting the ribosome's interaction with the antibiotic. Alternatively, mono- or dimethylation of A2058 in domain V of the 23S rRNA by an acquired rRNA methyltransferase, the product of an erm (erythromycin ribosome methylation) gene, can interfere with antibiotic binding. Acquired genes encoding efflux pumps, most predominantly mef(A) + msr(D) in pneumococci/streptococci and msr(A/B) in staphylococci, also mediate resistance. Drug-inactivating mechanisms include phosphorylation of the 2'-hydroxyl of the amino sugar found at position C5 by phosphotransferases and hydrolysis of the macrocyclic lactone by esterases. These acquired genes are regulated by either translation or transcription attenuation, largely because cells are less fit when these genes, especially the rRNA methyltransferases, are highly induced or constitutively expressed. The induction of gene expression is cleverly tied to the mechanism of action of macrolides, relying on antibiotic-bound ribosomes stalled at specific sequences of nascent polypeptides to promote transcription or translation of downstream sequences.
Collapse
Affiliation(s)
- Corey Fyfe
- Tetraphase Pharmaceuticals, Watertown, Massachusetts 02472
| | | | - Kathy Kerstein
- Tetraphase Pharmaceuticals, Watertown, Massachusetts 02472
| | | |
Collapse
|
22
|
Schroeder MR, Stephens DS. Macrolide Resistance in Streptococcus pneumoniae. Front Cell Infect Microbiol 2016; 6:98. [PMID: 27709102 PMCID: PMC5030221 DOI: 10.3389/fcimb.2016.00098] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/26/2016] [Indexed: 01/21/2023] Open
Abstract
Streptococcus pneumoniae is a common commensal and an opportunistic pathogen. Suspected pneumococcal upper respiratory infections and pneumonia are often treated with macrolide antibiotics. Macrolides are bacteriostatic antibiotics and inhibit protein synthesis by binding to the 50S ribosomal subunit. The widespread use of macrolides is associated with increased macrolide resistance in S. pneumoniae, and the treatment of pneumococcal infections with macrolides may be associated with clinical failures. In S. pneumoniae, macrolide resistance is due to ribosomal dimethylation by an enzyme encoded by erm(B), efflux by a two-component efflux pump encoded by mef (E)/mel(msr(D)) and, less commonly, mutations of the ribosomal target site of macrolides. A wide array of genetic elements have emerged that facilitate macrolide resistance in S. pneumoniae; for example erm(B) is found on Tn917, while the mef (E)/mel operon is carried on the 5.4- or 5.5-kb Mega element. The macrolide resistance determinants, erm(B) and mef (E)/mel, are also found on large composite Tn916-like elements most notably Tn6002, Tn2009, and Tn2010. Introductions of 7-valent and 13-valent pneumococcal conjugate vaccines (PCV-7 and PCV-13) have decreased the incidence of macrolide-resistant invasive pneumococcal disease, but serotype replacement and emergence of macrolide resistance remain an important concern.
Collapse
Affiliation(s)
| | - David S Stephens
- Departments of Medicine, Emory UniversityAtlanta, GA, USA; Departments of Microbiology and Immunology, Emory UniversityAtlanta, GA, USA; Departments of Epidemiology, Emory UniversityAtlanta, GA, USA
| |
Collapse
|
23
|
Metcalf BJ, Chochua S, Gertz RE, Li Z, Walker H, Tran T, Hawkins PA, Glennen A, Lynfield R, Li Y, McGee L, Beall B. Using whole genome sequencing to identify resistance determinants and predict antimicrobial resistance phenotypes for year 2015 invasive pneumococcal disease isolates recovered in the United States. Clin Microbiol Infect 2016; 22:1002.e1-1002.e8. [PMID: 27542334 DOI: 10.1016/j.cmi.2016.08.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/22/2016] [Accepted: 08/03/2016] [Indexed: 11/29/2022]
Abstract
Our whole genome sequence (WGS) pipeline was assessed for accurate prediction of antimicrobial phenotypes. For 2316 invasive pneumococcal isolates recovered during 2015 we compared WGS pipeline data to broth dilution testing (BDT) for 18 antimicrobials. For 11 antimicrobials categorical discrepancies were assigned when WGS-predicted MICs and BDT MICs predicted different categorizations for susceptibility, intermediate resistance or resistance, ranging from 0.9% (tetracycline) to 2.9% (amoxicillin). For β-lactam antibiotics, the occurrence of at least four-fold differences in MIC ranged from 0.2% (meropenem) to 1.0% (penicillin), although phenotypic retesting resolved 25%-78% of these discrepancies. Non-susceptibility to penicillin, predicted by penicillin-binding protein types, was 2.7% (non-meningitis criteria) and 23.8% (meningitis criteria). Other common resistance determinants included mef (475 isolates), ermB (191 isolates), ermB + mef (48 isolates), tetM (261 isolates) and cat (51 isolates). Additional accessory resistance genes (tetS, tet32, aphA-3, sat4) were rarely detected (one to three isolates). Rare core genome mutations conferring erythromycin-resistance included a two-codon rplD insertion (rplD69-KG-70) and the 23S rRNA A2061G substitution (six isolates). Intermediate cotrimoxazole-resistance was associated with one or two codon insertions within folP (238 isolates) or the folA I100L substitution (38 isolates), whereas full cotrimoxazole-resistance was attributed to alterations in both genes (172 isolates). The two levofloxacin-resistant isolates contained parC and/or gyrA mutations. Of 11 remaining isolates with moderately elevated MICs to both ciprofloxacin and levofloxacin, seven contained parC or gyrA mutations. The two rifampin-resistant isolates contained rpoB mutations. WGS-based antimicrobial phenotype prediction was an informative alternative to BDT for invasive pneumococci.
Collapse
Affiliation(s)
- B J Metcalf
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - S Chochua
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - R E Gertz
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Z Li
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - H Walker
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - T Tran
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - P A Hawkins
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - A Glennen
- Minnesota Department of Health, St Paul, MN, USA
| | - R Lynfield
- Minnesota Department of Health, St Paul, MN, USA
| | - Y Li
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - L McGee
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - B Beall
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | |
Collapse
|
24
|
ICESpy009, a Conjugative Genetic Element Carrying mef(E) in Streptococcus pyogenes. Antimicrob Agents Chemother 2016; 60:3906-12. [PMID: 27067338 DOI: 10.1128/aac.03082-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/01/2016] [Indexed: 01/19/2023] Open
Abstract
Efflux-mediated macrolide resistance due to mef(E) and mel, carried by the mega element, is common in Streptococcus pneumoniae, for which it was originally characterized, but it is rare in Streptococcus pyogenes In S. pyogenes, mega was previously found to be enclosed in Tn2009, a composite genetic element of the Tn916 family containing tet(M) and conferring erythromycin and tetracycline resistance. In this study, S. pyogenes isolates containing mef(E), apparently not associated with other resistance determinants, were examined to characterize the genetic context of mega. By whole-genome sequencing of one isolate, MB56Spyo009, we identified a novel composite integrative and conjugative element (ICE) carrying mega, designated ICESpy009, belonging to the ICESa2603 family. ICESpy009 was 55 kb long, contained 61 putative open reading frames (ORFs), and was found to be integrated into hylA, a novel integration site for the ICESa2603 family. The modular organization of the ICE was similar to that of members of the ICESa2603 family carried by different streptococcal species. In addition, a novel cluster of accessory resistance genes was found inside a region that encloses mega. PCR mapping targeting ICESpy009 revealed the presence of a similar ICE in five other isolates under study. While in three isolates the integration site was the same as that of ICESpy009, in two isolates the ICE was integrated into rplL, the typical integration site of the ICESa2603 family. ICESpy009 was able to transfer macrolide resistance by conjugation to both S. pyogenes and S. pneumoniae, showing the first evidence of the transferability of mega from S. pyogenes.
Collapse
|
25
|
Diawara I, Zerouali K, Katfy K, Barguigua A, Belabbes H, Timinouni M, Elmdaghri N. Phenotypic and genotypic characterization of Streptococcus pneumoniae resistant to macrolide in Casablanca, Morocco. INFECTION GENETICS AND EVOLUTION 2016; 40:200-204. [PMID: 26961592 DOI: 10.1016/j.meegid.2016.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 11/17/2022]
Abstract
In Morocco, the 13-valent pneumococcal conjugate vaccine (PCV-13) was introduced in the national immunization program (NIP) in October 2010 and replaced by the PCV-10 in July 2012. The present study aimed to determine the prevalence of erythromycin-resistant Streptococcus pneumoniae (ERSP) and to analyze the phenotypic and genotypic characteristics of these isolates in Casablanca, Morocco from January 2007 to December 2014. Isolates were obtained from the Microbiology Laboratory of Ibn Rochd University Hospital Centre of Casablanca. Serogrouping was done using Pneumotest Kit and serotyping by the Quellung capsular swelling. Antibiotic susceptibility pattern was determined by disk diffusion and Etest methods. A total of 655S. pneumoniae isolates were collected from 2007 to 2014 from pediatric and adult patients. Fifty-five percent of these isolates were from invasive pneumococcal diseases. Of the 655 isolates, 92 (14%) were ERSP. Globally, the proportion of ERSP from 2007 to 2010 (before vaccination) and from 2011 to 2014 (after vaccination) were 11.6% and 17.2% (p=0.04), respectively. Of the 92 ERSP, 89%, 4% and 7% displayed constitutive MLSB (resistance to macrolide, lincosamide and streptogramin B), inducible MLSB, and M phenotype (resistance to macrolide only), respectively. ERSP genotypic analysis showed that 90.2% carried the ermB gene, 6.5% the mefE gene, and 3.3% both the genes (ermB+mefE). The most prevalent ERSP serotypes were 6B, 19F and 23F before vaccination and 19F, 6B, 6A and 23F after vaccination. Erythromycin resistance among S. pneumoniae is relatively high in Casablanca. The contribution of PCVs to the reduction in antibiotic use is encouraging but this should be accompanied by a rational use of antibiotic.
Collapse
Affiliation(s)
- Idrissa Diawara
- Laboratoire de Microbiologie, Faculté de Médecine et de Pharmacie, Hassan II University of Casablanca, B.P 9154, Casablanca, Maroc; Service de Microbiologie, CHU Ibn Rochd, Casablanca, Maroc.
| | - Khalid Zerouali
- Laboratoire de Microbiologie, Faculté de Médecine et de Pharmacie, Hassan II University of Casablanca, B.P 9154, Casablanca, Maroc; Service de Microbiologie, CHU Ibn Rochd, Casablanca, Maroc.
| | - Khalid Katfy
- Service de Microbiologie, CHU Ibn Rochd, Casablanca, Maroc.
| | - Abouddihaj Barguigua
- Laboratoire de Microbiologie, Faculté de Médecine et de Pharmacie, Hassan II University of Casablanca, B.P 9154, Casablanca, Maroc; Molecular Bacteriology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.
| | - Houria Belabbes
- Laboratoire de Microbiologie, Faculté de Médecine et de Pharmacie, Hassan II University of Casablanca, B.P 9154, Casablanca, Maroc; Service de Microbiologie, CHU Ibn Rochd, Casablanca, Maroc.
| | - Mohammed Timinouni
- Molecular Bacteriology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.
| | - Naima Elmdaghri
- Laboratoire de Microbiologie, Faculté de Médecine et de Pharmacie, Hassan II University of Casablanca, B.P 9154, Casablanca, Maroc; Service de Microbiologie, CHU Ibn Rochd, Casablanca, Maroc.
| |
Collapse
|
26
|
Abriouel H, Lerma LL, Casado Muñoz MDC, Montoro BP, Kabisch J, Pichner R, Cho GS, Neve H, Fusco V, Franz CMAP, Gálvez A, Benomar N. The controversial nature of the Weissella genus: technological and functional aspects versus whole genome analysis-based pathogenic potential for their application in food and health. Front Microbiol 2015; 6:1197. [PMID: 26579103 PMCID: PMC4621295 DOI: 10.3389/fmicb.2015.01197] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/15/2015] [Indexed: 11/21/2022] Open
Abstract
Despite the use of several Weissella (W.) strains for biotechnological and probiotic purposes, certain species of this genus were found to act as opportunistic pathogens, while strains of W. ceti were recognized to be pathogenic for farmed rainbow trout. Herein, we investigated the pathogenic potential of weissellas based on in silico analyses of the 13 whole genome sequences available to date in the NCBI database. Our screening allowed us to find several virulence determinants such as collagen adhesins, aggregation substances, mucus-binding proteins, and hemolysins in some species. Moreover, we detected several antibiotic resistance-encoding genes, whose presence could increase the potential pathogenicity of some strains, but should not be regarded as an excluding trait for beneficial weissellas, as long as these genes are not present on mobile genetic elements. Thus, selection of weissellas intended to be used as starters or for biotechnological or probiotic purposes should be investigated regarding their safety aspects on a strain to strain basis, preferably also by genome sequencing, since nucleotide sequence heterogeneity in virulence and antibiotic resistance genes makes PCR-based screening unreliable for safety assessments. In this sense, the application of W. confusa and W. cibaria strains as starter cultures or as probiotics should be approached with caution, by carefully selecting strains that lack pathogenic potential.
Collapse
Affiliation(s)
- Hikmate Abriouel
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - Leyre Lavilla Lerma
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - María Del Carmen Casado Muñoz
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - Beatriz Pérez Montoro
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - Jan Kabisch
- Department of Microbiology and Biotechnology, Federal Research Institute of Nutrition and Food, Max Rubner-Institut , Kiel, Germany
| | - Rohtraud Pichner
- Department of Microbiology and Biotechnology, Federal Research Institute of Nutrition and Food, Max Rubner-Institut , Kiel, Germany
| | - Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Federal Research Institute of Nutrition and Food, Max Rubner-Institut , Kiel, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Federal Research Institute of Nutrition and Food, Max Rubner-Institut , Kiel, Germany
| | - Vincenzina Fusco
- Institute of Sciences of Food Production, National Research Council of Italy , Bari, Italy
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Federal Research Institute of Nutrition and Food, Max Rubner-Institut , Kiel, Germany
| | - Antonio Gálvez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - Nabil Benomar
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| |
Collapse
|
27
|
Andersen JL, He GX, Kakarla P, K C R, Kumar S, Lakra WS, Mukherjee MM, Ranaweera I, Shrestha U, Tran T, Varela MF. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:1487-547. [PMID: 25635914 PMCID: PMC4344678 DOI: 10.3390/ijerph120201487] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/15/2015] [Indexed: 02/07/2023]
Abstract
Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations.
Collapse
Affiliation(s)
- Jody L Andersen
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Gui-Xin He
- Department of Clinical Laboratory and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | - Prathusha Kakarla
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Ranjana K C
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Sanath Kumar
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India.
| | - Wazir Singh Lakra
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India.
| | - Mun Mun Mukherjee
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Indrika Ranaweera
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Ugina Shrestha
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Thuy Tran
- Department of Clinical Laboratory and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | - Manuel F Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| |
Collapse
|
28
|
Mingoia M, Morici E, Brenciani A, Giovanetti E, Varaldo PE. Genetic basis of the association of resistance genes mef(I) (macrolides) and catQ (chloramphenicol) in streptococci. Front Microbiol 2015; 5:747. [PMID: 25610433 PMCID: PMC4285128 DOI: 10.3389/fmicb.2014.00747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/09/2014] [Indexed: 12/26/2022] Open
Abstract
In streptococci mef(I) and catQ, two relatively uncommon macrolide and chloramphenicol resistance genes, respectively, are typically linked in a genetic module designated IQ module. Though variable, the module consistently encompasses, and is sometimes reduced to, a conserved ∼5.8-kb mef(I)-catQ fragment. The prototype IQ module was described in Streptococcus pneumoniae. IQ-like modules have subsequently been detected in Streptococcus pyogenes and in different species of viridans group streptococci, where mef(E) may be found instead of mef(I). Three genetic elements, one carrying the prototype IQ module from S. pneumoniae and two carrying different, defective IQ modules from S. pyogenes, have recently been characterized. All are integrative and conjugative elements (ICEs) belonging to the Tn5253 family, and have been designated ICESpn529IQ, ICESpy029IQ and ICESpy005IQ, respectively. ICESpy029IQ and ICESpy005IQ were the first Tn5253 family ICEs to be described in S. pyogenes. A wealth of new information has been obtained by comparing their genetic organization, chromosomal integration, and transferability. The origin of the IQ module is unknown. The mechanism by which it spreads in streptococci is discussed.
Collapse
Affiliation(s)
- Marina Mingoia
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, School of Medicine, Polytechnic University of Marche Ancona, Italy
| | - Eleonora Morici
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, School of Medicine, Polytechnic University of Marche Ancona, Italy
| | - Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, School of Medicine, Polytechnic University of Marche Ancona, Italy
| | - Eleonora Giovanetti
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche Ancona, Italy
| | - Pietro E Varaldo
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, School of Medicine, Polytechnic University of Marche Ancona, Italy
| |
Collapse
|
29
|
Modulation of Bacterial Multidrug Resistance Efflux Pumps of the Major Facilitator Superfamily. INTERNATIONAL JOURNAL OF BACTERIOLOGY 2013; 2013. [PMID: 25750934 PMCID: PMC4347946 DOI: 10.1155/2013/204141] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial infections pose a serious public health concern, especially when an infectious disease has a multidrug resistant causative agent. Such multidrug resistant bacteria can compromise the clinical utility of major chemotherapeutic antimicrobial agents. Drug and multidrug resistant bacteria harbor several distinct molecular mechanisms for resistance. Bacterial antimicrobial agent efflux pumps represent a major mechanism of clinical resistance. The major facilitator superfamily (MFS) is one of the largest groups of solute transporters to date and includes a significant number of bacterial drug and multidrug efflux pumps. We review recent work on the modulation of multidrug efflux pumps, paying special attention to those transporters belonging primarily to the MFS.
Collapse
|
30
|
Otsuka T, Chang B, Wada A, Okazaki M. Molecular epidemiology and serogroup 6 capsular gene evolution of pneumococcal carriage in a Japanese birth cohort study. J Med Microbiol 2013; 62:1868-1875. [DOI: 10.1099/jmm.0.066316-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibiotic resistance in Streptococcus pneumoniae is a major concern worldwide. However, it is unclear whether resistance is associated with only a few highly prevalent clones or numerous and diverse clones. We monitored 349 healthy children and obtained nasopharyngeal cultures at five time points coinciding with health check-ups (4, 7, 10, 18 and 36 months) between 2008 and 2012. A total of 497 S. pneumoniae isolates from 257 healthy children were characterized using capsular serotyping, multilocus sequence typing and antibiotic resistance genotyping (ermB, mefA/E and pbp mutations). Among these isolates, 25 serotypes and 66 sequence types (STs) were found, including 24 new STs with 11 new alleles. Although resistance was present in a variety of ST clones, most of the clones (57/66, 86.4 %) had one specific resistant or susceptible genotype. Of 233 phenotypically penicillin-non-susceptible isolates, 196 (84.1 %) belonged to only six clones, comprising ST906B, ST23619F, ST24223F, ST37876A, ST143723F and ST33823A and their variants. We concluded that drug-resistant S. pneumoniae is associated with a limited number of highly prevalent clones that are capable of adapting to the community setting. Furthermore, we analysed the capsular gene evolution in serogroup 6. The strain ST29246D was probably the result of recombination of a 3563 bp fragment of the capsule locus acquired by an ST29246C strain from an ST906B or ST29246B strain. Compared with previous studies, our results showed a different recombination site (wciN and wzx) and a different cps profile (8-7-11), indicating that serogroup 6 strains have multiple sites for cps recombination as a mechanism of vaccine escape.
Collapse
Affiliation(s)
- Taketo Otsuka
- Department of Pediatrics, Sado General Hospital 161 Chigusa, Sado, Niigata, 952-1209, Japan
| | - Bin Chang
- Department of Bacteriology I, National Institute of Infectious Diseases 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Akihito Wada
- Department of Bacteriology I, National Institute of Infectious Diseases 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Minoru Okazaki
- Department of Pediatrics, Sado General Hospital 161 Chigusa, Sado, Niigata, 952-1209, Japan
| |
Collapse
|
31
|
Molecular resistance mechanisms of macrolide-resistant invasive Streptococcus pneumoniae isolates from Alaska, 1986 to 2010. Antimicrob Agents Chemother 2013; 57:5415-22. [PMID: 23959308 DOI: 10.1128/aac.00319-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rapid emergence of antibiotic-resistant pneumococcal strains has reduced treatment options. The aim of this study was to determine antimicrobial susceptibilities, serotype distributions, and molecular resistance mechanisms among macrolide-resistant invasive pneumococcal isolates in Alaska from 1986 to 2010. We identified cases of invasive pneumococcal disease in Alaska from 1986 to 2010 through statewide population-based laboratory surveillance. All invasive pneumococcal isolates submitted to the Arctic Investigations Program laboratory were confirmed by standard microbiological methods and serotyped by slide agglutination and the Quellung reaction. MICs were determined by the broth microdilution method, and macrolide-resistant genotypes were determined by multiplex PCR. Among 2,923 invasive pneumococcal isolates recovered from 1986 to 2010, 270 (9.2%) were nonsusceptible to erythromycin; 177 (66%) erythromycin-nonsusceptible isolates demonstrated coresistance to penicillin, and 167 (62%) were multidrug resistant. The most frequent serotypes among the macrolide-resistant isolates were serotypes 6B (23.3%), 14 (20.7%), 19A (16.7%), 9V (8.9%), 19F (6.3%), 6A (5.6%), and 23F (4.8%). mef and erm(B) genes were detected in 207 (77%) and 32 (12%) of the isolates, respectively. Nineteen (7%) of the erythromycin-nonsusceptible isolates contained both mef and erm(B) genotypes; 15 were of serotype 19A. There was significant year-to-year variation in the proportion of isolates that were nonsusceptible to erythromycin (P < 0.001). Macrolide resistance among pneumococcal isolates from Alaska is mediated predominantly by mef genes, and this has not changed significantly over time. However, there was a statistically significant increase in the proportion of isolates that possess both erm(B) and mef, primarily due to serotype 19A isolates.
Collapse
|
32
|
Rudolph K, Bruce MG, Bulkow L, Zulz T, Reasonover A, Harker-Jones M, Hurlburt D, Hennessy TW. Molecular epidemiology of serotype 19A Streptococcus pneumoniae among invasive isolates from Alaska, 1986-2010. Int J Circumpolar Health 2013; 72:20854. [PMID: 23984273 PMCID: PMC3753058 DOI: 10.3402/ijch.v72i0.20854] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background After the introduction of the 7-valent pneumococcal conjugate vaccine (PCV7) in Alaska, the incidence of invasive pneumococcal disease (IPD) due to non-vaccine serotypes, particularly serotype 19A, increased. The aim of this study was to describe the molecular epidemiology of IPD due to serotype 19A in Alaska. Methods IPD data were collected from 1986 to 2010 through population-based laboratory surveillance. Isolates were serotyped by the Quellung reaction and MICs determined by broth microdilution. Genotypes were assessed by multilocus sequence typing. Results Among 3,294 cases of laboratory-confirmed IPD, 2,926 (89%) isolates were available for serotyping, of which 233 (8%) were serotype 19A. Across all ages, the proportion of IPD caused by serotype 19A increased from 3.5% (63/1823) pre-PCV7 (1986–2000) to 15.4% (170/1103) post-PCV7 (2001–2010) (p<0.001); among children <5 years of age, the proportion increased from 5.0% (39/776) to 33.0% (76/230) (p<0.001). The annual incidence rate of IPD due to serotype 19A (all ages) increased from 0.73 cases pre-PCV7 to 2.56 cases/100,000 persons post-PCV7 (p<0.001); rates among children <5 years of age increased from 4.84 cases to 14.1 cases/100,000 persons (p<0.001). Among all IPD isolates with reduced susceptibility to penicillin, 17.8% (32/180) were serotype 19A pre-PCV7 and 64% (121/189) were serotype 19A post-PCV7 (p<0.001). Eighteen different sequence types (STs) were identified; ST199 or single locus variants of ST199 (n=150) and ST172 (n=59) accounted for the majority of isolates. Multidrug-resistant isolates were clustered in ST199 and ST320. Conclusion While PCV13 should significantly reduce the burden of disease due to 19A, these data highlight the need to continue surveillance for IPD to monitor the effects of vaccination on the expansion and emergence of non-PCV strains.
Collapse
Affiliation(s)
- Karen Rudolph
- Arctic Investigations Program, Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention (CDC), Anchorage, Alaska 99508, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Wyres KL, van Tonder A, Lambertsen LM, Hakenbeck R, Parkhill J, Bentley SD, Brueggemann AB. Evidence of antimicrobial resistance-conferring genetic elements among pneumococci isolated prior to 1974. BMC Genomics 2013; 14:500. [PMID: 23879707 PMCID: PMC3726389 DOI: 10.1186/1471-2164-14-500] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/23/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Antimicrobial resistance among pneumococci has greatly increased over the past two to three decades. Resistance to tetracycline (tet(M)), chloramphenicol (cat) and macrolides (erm(B) and/or mef(A/E)) is generally conferred by acquisition of specific genes that are associated with mobile genetic elements, including those of the Tn916 and Tn5252 families. The first tetracycline-, chloramphenicol- and macrolide-resistant pneumococci were detected between 1962 and 1970; however, until now the oldest pneumococcus shown to harbour Tn916 and/or Tn5252 was isolated in 1974. In this study the genomes of 38 pneumococci isolated prior to 1974 were probed for the presence of tet(M), cat, erm(B), mef(A/E) and int (integrase) to indicate the presence of Tn916/Tn5252-like elements. RESULTS Two Tn916-like, tet(M)-containing, elements were identified among pneumococci dated 1967 and 1968. The former element was highly similar to that of the PMEN1 multidrug-resistant, globally-distributed pneumococcal reference strain, which was isolated in 1984. The latter element was associated with a streptococcal phage. A third, novel genetic element, designated ICESpPN1, was identified in the genome of an isolate dated 1972. ICESpPN1 contained a region of similarity to Tn5252, a region of similarity to a pneumococcal pathogenicity island and novel lantibiotic synthesis/export-associated genes. CONCLUSIONS These data confirm the existence of pneumococcal Tn916 elements in the first decade within which pneumococcal tetracycline resistance was described. Furthermore, the discovery of ICESpPN1 demonstrates the dynamic variability of pneumococcal genetic elements and is contrasted with the evidence for Tn916 stability.
Collapse
Affiliation(s)
- Kelly L Wyres
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - Andries van Tonder
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - Lotte M Lambertsen
- Department of Microbiology Surveillance and Research, Statens Serum Institut, 5 Artillerivej, Copenhagen 2300, Denmark
| | - Regine Hakenbeck
- Department of Microbiology, University Kaiserslautern, Kaiserslautern, Germany
| | - Julian Parkhill
- Pathogen Genomics Team, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Stephen D Bentley
- Pathogen Genomics Team, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Angela B Brueggemann
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| |
Collapse
|
34
|
Otsuka T, Kitami O, Kondo K, Ota H, Oshima S, Tsuchiya A, Shirai T, Fujii K, Nakamure M, Shoji Y, Nakamura H, Masuda Y, Komiyama K, Yoshida K, Ishikawa Y, Iwaya A, Takahashi S, Okazaki M, Hotomi M, Yamanaka N. Incidence survey of acute otitis media in children in Sado Island, Japan--Sado Otitis Media Study (SADOMS). PLoS One 2013; 8:e68711. [PMID: 23844235 PMCID: PMC3699511 DOI: 10.1371/journal.pone.0068711] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 06/02/2013] [Indexed: 11/25/2022] Open
Abstract
Background Acute otitis media (AOM) is one of the most common forms of bacterial infection and cause for clinic visits in children. The incidence of AOM was 0.9–1.2 episodes per person-year during the first 2 years of life in previous reports conducted before 2000. The aim of this study was to 1) evaluate the latest AOM incidence in pediatric outpatients and 2) identify the bacterial pathogens from these patients and ascertain their serotypes and resistance. Methods The study was conducted in a closed population, involving all pediatricians and otolaryngologists in Sado Island allowing accurate determination of AOM incidence. In each month, one week was assigned as “surveillance week”, and all outpatients with acute illness aged 0–18 years examined during the surveillance weeks were enrolled. AOM was diagnosed on the basis of otoscopic findings and clinical symptoms were recorded. Specimens were collected from the nasopharynx or middle ear cavity of AOM patients and examined for bacteria. Antimicrobial susceptibilities, serotypes, and molecular typing for resistance were determined among Streptococcus pneumoniae and Haemophilus influenzae. Results In total, 8,283 clinic visits were conducted, and 354 episodes (4.3%, 95% CI: 3.9–4.7%) among 312 children were diagnosed as AOM. The incidence of AOM was highest in children of 1 year of age (0.54 episodes/child/year, 95% CI: 0.44–0.64). Serotype coverage of 7- and 13-valent pneumococcal conjugate vaccines in this study were 38.0% (95% CI: 29.3–47.3) and 62.8% (95% CI: 53.6–71.4), respectively. Of 122 H.influenzae isolates available for typing, 120 were nontypeable and 2 were type b. A high proportion of S. pneumoniae isolates (46%) showed resistance to penicillin. Approximately half of H. influenzae isolates had genetic markers for beta-lactamase-negative ampicillin-resistance. Conclusions Approximately 4–5% of pediatric outpatients, even without AOM-related symptoms, had AOM in our study. Pediatricians as well as otolaryngologists should check the tympanic membrane findings of all pediatric outpatients.
Collapse
Affiliation(s)
- Taketo Otsuka
- Department of Pediatrics, Sado General Hospital, Sado, Niigata, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hashimoto K, Ogawa W, Nishioka T, Tsuchiya T, Kuroda T. Functionally cloned pdrM from Streptococcus pneumoniae encodes a Na(+) coupled multidrug efflux pump. PLoS One 2013; 8:e59525. [PMID: 23555691 PMCID: PMC3608713 DOI: 10.1371/journal.pone.0059525] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/15/2013] [Indexed: 11/29/2022] Open
Abstract
Multidrug efflux pumps play an important role as a self-defense system in bacteria. Bacterial multidrug efflux pumps are classified into five families based on structure and coupling energy: resistance−nodulation−cell division (RND), small multidrug resistance (SMR), major facilitator (MF), ATP binding cassette (ABC), and multidrug and toxic compounds extrusion (MATE). We cloned a gene encoding a MATE-type multidrug efflux pump from Streptococcus pneumoniae R6, and designated it pdrM. PdrM showed sequence similarity with NorM from Vibrio parahaemolyticus, YdhE from Escherichia coli, and other bacterial MATE-type multidrug efflux pumps. Heterologous expression of PdrM let to elevated resistance to several antibacterial agents, norfloxacin, acriflavine, and 4′,6-diamidino-2-phenylindole (DAPI) in E. coli KAM32 cells. PdrM effluxes acriflavine and DAPI in a Na+- or Li+-dependent manner. Moreover, Na+ efflux via PdrM was observed when acriflavine was added to Na+-loaded cells expressing pdrM. Therefore, we conclude that PdrM is a Na+/drug antiporter in S. pneumoniae. In addition to pdrM, we found another two genes, spr1756 and spr1877,that met the criteria of MATE-type by searching the S. pneumoniae genome database. However, cloned spr1756 and spr1877 did not elevate the MIC of any of the investigated drugs. mRNA expression of spr1756, spr1877, and pdrM was detected in S. pneumoniae R6 under laboratory growth conditions. Therefore, spr1756 and spr1877 are supposed to play physiological roles in this growth condition, but they may be unrelated to drug resistance.
Collapse
Affiliation(s)
- Kohei Hashimoto
- Department of Molecular Microbiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima, Okayama, Japan
| | - Wakano Ogawa
- Department of Molecular Microbiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima, Okayama, Japan
- * E-mail:
| | - Toshihiro Nishioka
- Department of Molecular Microbiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima, Okayama, Japan
| | - Tomofusa Tsuchiya
- Department of Molecular Microbiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima, Okayama, Japan
| | - Teruo Kuroda
- Department of Molecular Microbiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima, Okayama, Japan
| |
Collapse
|
36
|
Nunez-Samudio V, Chesneau O. Functional interplay between the ATP binding cassette Msr(D) protein and the membrane facilitator superfamily Mef(E) transporter for macrolide resistance in Escherichia coli. Res Microbiol 2012; 164:226-35. [PMID: 23261969 DOI: 10.1016/j.resmic.2012.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 12/02/2012] [Indexed: 11/24/2022]
Abstract
Macrolides have wide clinical applications in the treatment of community-acquired respiratory tract infections, among which streptococci are the most frequent causative agents. An active efflux-based mechanism of macrolide resistance, referred to as the M phenotype in streptococcal isolates, has been associated with the presence of mef genes that encode a subset of major facilitator superfamily (MFS) transporters like Mef(E). An msr(D) gene, adjacent to and co-transcribed with mef in the presence of erythromycin, has also been implicated in drug efflux, but its role remains elusive. Msr(D) belongs to the ATP binding cassette (ABC) proteins and harbors two fused nucleotide-binding domains with no membrane-spanning domains. The present work indicates that the major resistance traits of the M phenotype in Escherichia coli may be due to Msr(D) and not to Mef(E). Fluorescence microscopy using Mef(E) tagged with GFP linked low efficacy of the chimera in conferring macrolide resistance with improper subcellular localization. The active role of Msr(D) in directing Mef(E)-GFP to the cell poles was demonstrated, as was synergistic effect in terms of levels of resistance when both proteins were expressed. A trans-dominant negative mutation within ABC Msr(D) affecting MFS Mef(E) strongly suggests that both proteins can interact in vivo, and such a physical interaction was supported in vitro. This is the first reported example of a functional interplay between an ABC component and an MFS transporter. The direct involvement of Msr(D) in the efflux of macrolides remains to be demonstrated.
Collapse
Affiliation(s)
- Virginia Nunez-Samudio
- Institut Pasteur, Bacterial Membranes Unit, 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
37
|
Grivea IN, Sourla A, Ntokou E, Chryssanthopoulou DC, Tsantouli AG, Syrogiannopoulos GA. Macrolide resistance determinants among Streptococcus pneumoniae isolates from carriers in Central Greece. BMC Infect Dis 2012; 12:255. [PMID: 23057516 PMCID: PMC3484024 DOI: 10.1186/1471-2334-12-255] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 10/01/2012] [Indexed: 11/22/2022] Open
Abstract
Background We sought to characterize the temporal trends in nasopharyngeal carriage of macrolide-resistant pneumococci during a period with increased heptavalent pneumococcal conjugate vaccine (PCV7) coverage in Central Greece. Methods Streptococcus pneumoniae isolates were recovered from 2649 nasopharyngeal samples obtained from day-care center attendees in Central Greece during 2005–2009. A phenotypic and genotypic analysis of the isolates was performed, including the identification of macrolide resistance genes mef(A), subclasses mef(A) and mef(E), as well as erm(B). Results Of the 1105 typeable S. pneumoniae isolates, 265 (24%) were macrolide-resistant; 22% in 2005, 33.3% in 2006, 23.7% in 2007, and 20.5% in 2009 (P=0.398). Among these macrolide-resistant pneumococci, 28.5% possessed erm(B), 24.3% erm(B)+mef(E), 41.8% mef(E), and 5.3% mef(A). A mef gene as the sole resistance determinant was carried by 31% of macrolide-resistant isolates belonging to PCV7 serotypes and 75.8% of the non-PCV7 serotypes. Across the 4 annual surveillances, pneumococci carrying mef(A) gradually disappeared, whereas serotype 19F isolates carrying both erm(B) and mef(E) persisted without significant yearly fluctuations. Among isolates belonging to non-PCV7 serotypes, macrolide-resistance was observed in those of serotypes 6A, 19A, 10A, 15A, 15B/C, 35F, 35A, and 24F. In 2009, ie 5 years after the introduction of PCV7 in our country, 59% of macrolide-resistant pneumococci belonged to non-PCV7 serotypes. Conclusions Across the study period, the annual frequency of macrolide-resistant isolates did not change significantly, but in 2009 a marked shift to non-PCV7 serotypes occurred. Overall, more than half of the macrolide-resistant isolates possessed erm(B) either alone or in combination with mef(E). erm(B) dominated among isolates belonging to PCV7 serotypes, but not among those of non-PCV7 serotypes.
Collapse
Affiliation(s)
- Ioanna N Grivea
- Department of Pediatrics, University of Thessaly, School of Medicine, General University Hospital of Larissa, Biopolis, 411 10, Larissa, Greece
| | | | | | | | | | | |
Collapse
|
38
|
Anti-inflammatory and immunomodulatory properties of azithromycin involved in treatment and prevention of chronic lung allograft rejection. Transplantation 2012; 94:101-9. [PMID: 22461039 DOI: 10.1097/tp.0b013e31824db9da] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chronic lung allograft rejection is the single most important cause of death in lung transplant recipients after the first postoperative year, resulting in a 5-year survival rate of approximately 50%, which is far behind that of other solid organ transplantations. Spirometry is routinely used as a clinical marker for assessing pulmonary allograft function and diagnosing chronic lung allograft rejection after lung transplantation (LTx). As such, a progressive obstructive decline in pulmonary allograft function (forced expiratory volume in 1 sec [FEV1]) in absence of all other causes (currently defined as bronchiolitis obliterans syndrome [BOS]) is considered to reflect the evolution of chronic lung allograft rejection. BOS has a 5-year prevalence of approximately 45% and is thought to be the final common endpoint of various alloimmunologic and nonalloimmunologic injuries to the pulmonary allograft, triggering different innate and adaptive immune responses. Most preventive and therapeutic strategies for this complex process have thus far been largely unsuccessful. However, the introduction of the neomacrolide antibiotic azithromycin (AZI) in the field of LTx as of 2003 made it clear that some patients with established BOS might in fact benefit from such therapy due to its various antiinflammatory and immunomodulatory properties, as summarized in this review. Particularly in patients with an increased bronchoalveolar lavage neutrophilia (i.e., 15%-20% or more), AZI treatment could result in an increase in FEV1 of at least 10%. More recently, it has become clear that prophylactic therapy with AZI actually may prevent BOS and improve FEV1 after LTx, most likely through its interactions with the innate immune system. However, one should always be aware of possible adverse effects related to AZI when implementing this drug as prophylactic or long-term treatment. Even so, AZI therapy after LTx can generally be considered as safe.
Collapse
|
39
|
Chiba N, Morozumi M, Ubukata K. Application of the Real-Time PCR Method for Genotypic Identification of β-Lactam Resistance in Isolates from Invasive Pneumococcal Diseases. Microb Drug Resist 2012; 18:149-56. [DOI: 10.1089/mdr.2011.0102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Naoko Chiba
- Laboratory of Molecular Epidemiology for Infectious Agents, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Miyuki Morozumi
- Laboratory of Molecular Epidemiology for Infectious Agents, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kimiko Ubukata
- Laboratory of Molecular Epidemiology for Infectious Agents, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
40
|
Hu P, Yang M, Zhang A, Wu J, Chen B, Hua Y, Yu J, Chen H, Xiao J, Jin M. Comparative genomics study of multi-drug-resistance mechanisms in the antibiotic-resistant Streptococcus suis R61 strain. PLoS One 2011; 6:e24988. [PMID: 21966396 PMCID: PMC3180280 DOI: 10.1371/journal.pone.0024988] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 08/22/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Streptococcus suis infections are a serious problem for both humans and pigs worldwide. The emergence and increasing prevalence of antibiotic-resistant S. suis strains pose significant clinical and societal challenges. RESULTS In our study, we sequenced one multi-drug-resistant S. suis strain, R61, and one S. suis strain, A7, which is fully sensitive to all tested antibiotics. Comparative genomic analysis revealed that the R61 strain is phylogenetically distinct from other S. suis strains, and the genome of R61 exhibits extreme levels of evolutionary plasticity with high levels of gene gain and loss. Our results indicate that the multi-drug-resistant strain R61 has evolved three main categories of resistance. CONCLUSIONS Comparative genomic analysis of S. suis strains with diverse drug-resistant phenotypes provided evidence that horizontal gene transfer is an important evolutionary force in shaping the genome of multi-drug-resistant strain R61. In this study, we discovered novel and previously unexamined mutations that are strong candidates for conferring drug resistance. We believe that these mutations will provide crucial clues for designing new drugs against this pathogen. In addition, our work provides a clear demonstration that the use of drugs has driven the emergence of the multi-drug-resistant strain R61.
Collapse
Affiliation(s)
- Pan Hu
- Division of Animal Infectious Disease in the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ming Yang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Anding Zhang
- Division of Animal Infectious Disease in the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jiayan Wu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Bo Chen
- Division of Animal Infectious Disease in the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yafeng Hua
- Division of Animal Infectious Disease in the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Huanchun Chen
- Division of Animal Infectious Disease in the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jingfa Xiao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
- * E-mail: (JX); (MJ)
| | - Meilin Jin
- Division of Animal Infectious Disease in the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
- * E-mail: (JX); (MJ)
| |
Collapse
|
41
|
Takahata M, Sugiura Y, Shiokawa Y, Futakuchi N, Fukuda Y, Nomura N, Mitsuyama J. In vitro and in vivo antibacterial activities of garenoxacin against group G Streptococcus dysgalactiae subsp. equisimilis. Int J Antimicrob Agents 2011; 38:226-30. [PMID: 21726983 DOI: 10.1016/j.ijantimicag.2011.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 11/28/2022]
Abstract
In this study, garenoxacin showed potent in vitro activity against clinical isolates of group G Streptococcus dysgalactiae subsp. equisimilis [minimum inhibitory concentration for 90% of the organisms (MIC(90)) = 0.125 μg/mL] and was superior to levofloxacin (MIC(90) = 1 μg/mL) and moxifloxacin (MIC(90)=0.25 μg/mL). In experimental pneumonia caused by group G S. dysgalactiae subsp. equisimilis in mice, the effective dose for 50% survival (ED(50)) of garenoxacin following single oral administration was 1.87 mg/kg, >10.7-fold and 4.6-fold less than the ED(50) values of levofloxacin (>20 mg/kg) and moxifloxacin (8.54 mg/kg), respectively. The area under the free serum concentration-time curve from 0-24 h (fAUC(0-24))/MIC ratio of garenoxacin in serum following oral administration of 20 mg/kg was 73.2, which was 8.7-11.4-fold and 1.4-fold greater than that of levofloxacin (6.44-8.46) and moxifloxacin (51.4), respectively. These results suggest that garenoxacin has potential for the treatment of infectious diseases caused by S. dysgalactiae subsp. equisimilis.
Collapse
Affiliation(s)
- Masahiro Takahata
- Research Laboratories, Toyama Chemical Co. Ltd., 4-1, Shimookui 2-chome, Toyama 930-8508, Japan. MASAHIRO
| | | | | | | | | | | | | |
Collapse
|
42
|
Zuckerman JM, Qamar F, Bono BR. Review of macrolides (azithromycin, clarithromycin), ketolids (telithromycin) and glycylcyclines (tigecycline). Med Clin North Am 2011; 95:761-91, viii. [PMID: 21679791 DOI: 10.1016/j.mcna.2011.03.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The advanced macrolides, azithromycin and clarithromycin, and the ketolide, telithromycin, are structural analogs of erythromycin. They have several distinct advantages when compared with erythromycin, including enhanced spectrum of activity, more favorable pharmacokinetics and pharmacodynamics, once-daily administration, and improved tolerability. Clarithromycin and azithromycin are used extensively for the treatment of respiratory tract infections, sexually transmitted diseases, and Helicobacter pylori-associated peptic ulcer disease. Telithromycin is approved for the treatment of community-acquired pneumonia. Severe hepatotoxicity has been reported with the use of telithromycin.
Collapse
Affiliation(s)
- Jerry M Zuckerman
- Jefferson Medical College, 1025 Walnut Street, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
43
|
Chancey ST, Zhou X, Zähner D, Stephens DS. Induction of efflux-mediated macrolide resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 2011; 55:3413-22. [PMID: 21537010 PMCID: PMC3122420 DOI: 10.1128/aac.00060-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 04/25/2011] [Indexed: 01/17/2023] Open
Abstract
The antimicrobial efflux system encoded by the operon mef(E)-mel on the mobile genetic element MEGA in Streptococcus pneumoniae and other Gram-positive bacteria is inducible by macrolide antibiotics and antimicrobial peptides. Induction may affect the clinical response to the use of macrolides. We developed mef(E) reporter constructs and a disk diffusion induction and resistance assay to determine the kinetics and basis of mef(E)-mel induction. Induction occurred rapidly, with a >15-fold increase in transcription within 1 h of exposure to subinhibitory concentrations of erythromycin. A spectrum of environmental conditions, including competence and nonmacrolide antibiotics with distinct cellular targets, did not induce mef(E). Using 16 different structurally defined macrolides, induction was correlated with the amino sugar attached to C-5 of the macrolide lactone ring, not with the size (e.g., 14-, 15- or 16-member) of the ring or with the presence of the neutral sugar cladinose at C-3. Macrolides with a monosaccharide attached to C-5, known to block exit of the nascent peptide from the ribosome after the incorporation of up to eight amino acids, induced mef(E) expression. Macrolides with a C-5 disaccharide, which extends the macrolide into the ribosomal exit tunnel, disrupting peptidyl transferase activity, did not induce it. The induction of mef(E) did not require macrolide efflux, but the affinity of macrolides for the ribosome determined the availability for efflux and pneumococcal susceptibility. The induction of mef(E)-mel expression by inducing macrolides appears to be based on specific interactions of the macrolide C-5 saccharide with the ribosome that alleviate transcriptional attenuation of mef(E)-mel.
Collapse
Affiliation(s)
- Scott T. Chancey
- Division of Infectious Diseases, Department of Medicine
- Department of Veterans Affairs Medical Center, Atlanta, Georgia 30033
| | - Xiaoliu Zhou
- Division of Infectious Diseases, Department of Medicine
- Department of Veterans Affairs Medical Center, Atlanta, Georgia 30033
| | - Dorothea Zähner
- Division of Infectious Diseases, Department of Medicine
- Department of Veterans Affairs Medical Center, Atlanta, Georgia 30033
| | - David S. Stephens
- Division of Infectious Diseases, Department of Medicine
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Veterans Affairs Medical Center, Atlanta, Georgia 30033
| |
Collapse
|
44
|
Prevalence and mechanism of resistance to antimicrobial agents in group G streptococcal isolates from China. Antimicrob Agents Chemother 2010; 55:402-4. [PMID: 20956590 DOI: 10.1128/aac.01106-10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eighty group G streptococcal stains were collected from Chinese children. Susceptibility testing was done by a double-dilution and a disk diffusion method. PCR was used to test drug-resistant genes, and the χ(2) test and definite probability methods were used to test for statistically significant differences among the three groups. Thirty-four isolates (42.5%) showed resistance to erythromycin. There are differences between the resistance characteristics of group G streptococci from different regions of China.
Collapse
|
45
|
Human antimicrobial peptide LL-37 induces MefE/Mel-mediated macrolide resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 2010; 54:3516-9. [PMID: 20498319 DOI: 10.1128/aac.01756-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Macrolide resistance is a major concern in the treatment of Streptococcus pneumoniae. Inducible macrolide resistance in this pneumococcus is mediated by the efflux pump MefE/Mel. We show here that the human antimicrobial peptide LL-37 induces the mefE promoter and confers resistance to erythromycin and LL-37. Such induction may impact the efficacy of host defenses and of macrolide-based treatment of pneumococcal disease.
Collapse
|
46
|
Rafie S, MacDougall C, James CL. Cethromycin: A Promising New Ketolide Antibiotic for Respiratory Infections. Pharmacotherapy 2010; 30:290-303. [DOI: 10.1592/phco.30.3.290] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Zuckerman JM, Qamar F, Bono BR. Macrolides, ketolides, and glycylcyclines: azithromycin, clarithromycin, telithromycin, tigecycline. Infect Dis Clin North Am 2010; 23:997-1026, ix-x. [PMID: 19909895 DOI: 10.1016/j.idc.2009.06.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The advanced macrolides, azithromycin and clarithromycin, and the ketolide, telithromycin, are structural analogs of erythromycin. They have several distinct advantages when compared with erythromycin, including enhanced spectrum of activity, more favorable pharmacokinetics and pharmacodynamics, once-daily administration, and improved tolerability. Clarithromycin and azithromycin are used extensively for the treatment of respiratory tract infections, sexually transmitted diseases, and Helicobacter pylori-associated peptic ulcer disease. Telithromycin is approved for the treatment of community-acquired pneumonia. Severe hepatotoxicity has been reported with the use of telithromycin.
Collapse
Affiliation(s)
- Jerry M Zuckerman
- Jefferson Medical College, 1025 Walnut Street, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
48
|
Sunaoshi K, Murayama SY, Adachi K, Yagoshi M, Okuzumi K, Chiba N, Morozumi M, Ubukata K. Molecular emm genotyping and antibiotic susceptibility of Streptococcus dysgalactiae subsp. equisimilis isolated from invasive and non-invasive infections. J Med Microbiol 2010; 59:82-88. [PMID: 19745030 DOI: 10.1099/jmm.0.013201-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To analyse the characteristics of infections caused by Streptococcus dysgalactiae subsp. equisimilis, clinical isolates (n=145) were collected at 11 medical institutions between September 2003 and October 2005. These isolates belonged to Lancefield group A (n=5), group C (n=18) or group G (n=122). Among all isolates, 42 strains were isolated from sterile samples such as blood, synovial fluid and tissue specimens from patients who were mostly over 50 years with invasive infections, and included seven cases of streptococcal toxic shock syndrome and necrotizing fasciitis. In contrast, the remaining 103 were isolated mainly from patients of all age groups with non-invasive infections such as pharyngotonsillitis. These isolates were classified into 25 types based on emm genotyping. A significant difference in emm types was observed between isolates from invasive and non-invasive infections (P<0.001): stG485, stG6792 and stG2078 predominated among isolates from invasive infections. A phylogenetic tree of complete open reading frames of emm genes in this organism showed high homology with those of Streptococcus pyogenes, but not with those of other streptococci. The presence of five different clones was estimated based on DNA profiles of isolates from invasive infections obtained by PFGE. Genes for resistance to macrolides [erm(A), three isolates; erm(B), five isolates; mef(A), seven isolates] and levofloxacin (mutations in gyrA and parC, four isolates) were identified in this organism. These results suggest the need for further nationwide surveillance of invasive infections caused by S. dysgalactiae subsp. equisimilis.
Collapse
Affiliation(s)
- Katsuhiko Sunaoshi
- Department of Clinical Microbiology, Saitama Institute of Public Health, Saitama PR, Japan.,Laboratory of Molecular Epidemiology for Infectious Agents, Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Somay Y Murayama
- Laboratory of Molecular Epidemiology for Infectious Agents, Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Keiko Adachi
- Laboratory Medicine, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Michiko Yagoshi
- Department of Bacteriological Examination, Nihon University Itabashi Hospital, Tokyo, Japan
| | - Katsuko Okuzumi
- Division of Infection Control, Department of Medical Safety Administration, Dokkyo University School of Medicine Hospital, Tochigi PR, Japan
| | - Naoko Chiba
- Laboratory of Molecular Epidemiology for Infectious Agents, Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Miyuki Morozumi
- Laboratory of Molecular Epidemiology for Infectious Agents, Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Kimiko Ubukata
- Department of Clinical Microbiology, Saitama Institute of Public Health, Saitama PR, Japan.,Laboratory of Molecular Epidemiology for Infectious Agents, Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| |
Collapse
|
49
|
Schmitz FJ, Fluit AC. Mechanisms of antibacterial resistance. Infect Dis (Lond) 2010. [DOI: 10.1016/b978-0-323-04579-7.00131-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
50
|
Nishioka T, Ogawa W, Kuroda T, Katsu T, Tsuchiya T. Gene cloning and characterization of EfmA, a multidrug efflux pump, from Enterococcus faecium. Biol Pharm Bull 2009; 32:483-8. [PMID: 19252300 DOI: 10.1248/bpb.32.483] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A DNA fragment responsible for resistance to antimicrobial agents was cloned from chromosomal DNA of Enterococcus faecium FN-1, a clinically isolated strain. Escherichia coli KAM32, a drug-hypersusceptible mutant, was used as a host for gene cloning. Cells of E. coli KAM32 harboring a recombinant plasmid (pTFM8) carrying the DNA fragment became resistant to fluoroquinolones, macrolides, ethidium bromide, 4',6-diamidino-2-phenylindole (DAPI) and tetraphenylphosphonium chloride (TPPCl). Three complete open reading frames (ORFs) were found in the DNA insert of pTFM8, and the deduced amino acid sequences of one of the ORFs showed high similarity to Mdt(A) from Lactococcus lactis. Mdt(A) is a multidrug efflux pump belonging to a major facilitator superfamily. We designated the ORF efmA. E. coli KAM32 cells harboring the efmA showed energy-dependent efflux of DAPI and TPP(+). We also observed norfloxacin/H(+) antiport due to EfmA. The mRNA expression of efmA was observed in E. faecium FN-1 grown without any exogenously added antimicrobial agents. Thus, we conclude that efmA is constitutively expressed under laboratory growth conditions and would contribute to intrinsic resistance against multiple antimicrobial agents in E. faecium FN-1.
Collapse
Affiliation(s)
- Toshihiro Nishioka
- Laboratory of Molecular Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | | | |
Collapse
|