1
|
Aranda-Chan V, Cárdenas-Guerra RE, Otero-Pedraza A, Pacindo-Cabrales EE, Flores-Pucheta CI, Montes-Flores O, Arroyo R, Ortega-López J. Insights into Peptidyl-Prolyl cis- trans Isomerases from Clinically Important Protozoans: From Structure to Potential Biotechnological Applications. Pathogens 2024; 13:644. [PMID: 39204244 PMCID: PMC11357558 DOI: 10.3390/pathogens13080644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
Peptidyl-prolyl cis/trans isomerases (PPIases) are present in a wide variety of microorganisms, including protozoan parasites such as Trypanosoma cruzi, Trypanosoma brucei, Trichomonas vaginalis, Leishmania major, Leishmania donovani, Plasmodium falciparum, Plasmodium vivax, Entamoeba histolytica, Giardia intestinalis, Cryptosporidium parvum, and Cryptosporidium hominis, all of which cause important neglected diseases. PPIases are classified as cyclophilins, FKBPs, or parvulins and play crucial roles in catalyzing the cis-trans isomerization of the peptide bond preceding a proline residue. This activity assists in correct protein folding. However, experimentally, the biological structure-function characterization of PPIases from these protozoan parasites has been poorly addressed. The recombinant production of these enzymes is highly relevant for this ongoing research. Thus, this review explores the structural diversity, functions, recombinant production, activity, and inhibition of protozoan PPIases. We also highlight their potential as biotechnological tools for the in vitro refolding of other recombinant proteins from these parasites. These applications are invaluable for the development of diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Verónica Aranda-Chan
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Rosa Elena Cárdenas-Guerra
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Alejandro Otero-Pedraza
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Esdras Enoc Pacindo-Cabrales
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Claudia Ivonne Flores-Pucheta
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Octavio Montes-Flores
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico;
| | - Jaime Ortega-López
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| |
Collapse
|
2
|
Woolsey ID, Zeller WE, Blomstrand BM, Øines Ø, Enemark HL. Effects of selected condensed tannins on Cryptosporidium parvum growth and proliferation in HCT-8 cell cultures. Exp Parasitol 2022; 241:108353. [PMID: 35995247 DOI: 10.1016/j.exppara.2022.108353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/28/2022] [Accepted: 08/15/2022] [Indexed: 11/04/2022]
Abstract
Infections with Cryptosporidium spp. constitute a substantial public health burden and are responsible for widespread production losses in cattle herds. Reducing disease and shedding of Cryptosporidium spp. oocysts is an important One Health goal. There are very few therapeutic options available to treat cryptosporidiosis. Interest in plant bioactive compounds to mitigate the spread of anthelmintic resistance in ruminants has led to investigation of these phytocompounds against other parasitic taxa. Condensed tannins (CTs) are plant secondary metabolites that have shown potential against nematodes in vitro and in vivo but their applicability to Cryptosporidium spp. is comparatively under-explored. Cryptosporidium parvum infected human ileocecal colorectal adenocarcinoma (HCT)-8 cell cultures were treated with escalating doses of highly purified and well-characterized CTs from five plant species, big trefoil (Lotus pedunculatus), black currant (Ribes nigrum), sainfoin (Onobrychis viciifolia), white clover (Trifolium repens) and grapeseed (Vitis vinifera) for 44 h. Quantitative-PCR (qPCR) analysis revealed that none of the CTs examined demonstrated inhibitory potential against the parasite. Substantial inhibition of C. parvum by paromomycin was observed in positive controls in all assays (76.94-90.72% inhibition), proving the validity of the assay. Despite the lack of inhibition, these results represent an important step towards identifying alternative treatment options against this parasite.
Collapse
Affiliation(s)
- Ian David Woolsey
- Norwegian Veterinary Institute, Department of Animal Health and Food Safety, Elizabeth Stephansens Vei, 1433As, Norway.
| | - Wayne E Zeller
- U.S. Dairy and Forage Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1925 Linden Drive, Madison, WI, 53706, USA
| | | | - Øivind Øines
- Norwegian Veterinary Institute, Department of Animal Health and Food Safety, Elizabeth Stephansens Vei, 1433As, Norway
| | - Heidi L Enemark
- Norwegian Veterinary Institute, Department of Animal Health and Food Safety, Elizabeth Stephansens Vei, 1433As, Norway
| |
Collapse
|
3
|
Corbett KM, Ford L, Warren DB, Pouton CW, Chalmers DK. Cyclosporin Structure and Permeability: From A to Z and Beyond. J Med Chem 2021; 64:13131-13151. [PMID: 34478303 DOI: 10.1021/acs.jmedchem.1c00580] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclosporins are natural or synthetic undecapeptides with a wide range of actual and potential pharmaceutical applications. Several members of the cyclosporin compound family have remarkably high passive membrane permeabilities that are not well-described by simple structural metrics. Here we review experimental studies of cyclosporin structure and permeability, including cyclosporin-metal complexes. We also discuss models for the conformation-dependent permeability of cyclosporins and similar compounds. Finally, we identify current knowledge gaps in the literature and provide recommendations regarding future avenues of exploration.
Collapse
Affiliation(s)
- Karen M Corbett
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Leigh Ford
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Dallas B Warren
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - David K Chalmers
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
4
|
Larrazabal C, Silva LMR, Pervizaj-Oruqaj L, Herold S, Hermosilla C, Taubert A. P-Glycoprotein Inhibitors Differently Affect Toxoplasma gondii, Neospora caninum and Besnoitia besnoiti Proliferation in Bovine Primary Endothelial Cells. Pathogens 2021; 10:pathogens10040395. [PMID: 33806177 PMCID: PMC8065907 DOI: 10.3390/pathogens10040395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Apicomplexan parasites are obligatory intracellular protozoa. In the case of Toxoplasma gondii, Neospora caninum or Besnoitia besnoiti, to ensure proper tachyzoite production, they need nutrients and cell building blocks. However, apicomplexans are auxotrophic for cholesterol, which is required for membrane biosynthesis. P-glycoprotein (P-gp) is a transmembrane transporter involved in xenobiotic efflux. However, the physiological role of P-gp in cholesterol metabolism is unclear. Here, we analyzed its impact on parasite proliferation in T. gondii-, N. caninum- and B. besnoiti-infected primary endothelial cells by applying different generations of P-gp inhibitors. Host cell treatment with verapamil and valspodar significantly diminished tachyzoite production in all three parasite species, whereas tariquidar treatment affected proliferation only in B. besnoiti. 3D-holotomographic analyses illustrated impaired meront development driven by valspodar treatment being accompanied by swollen parasitophorous vacuoles in the case of T. gondii. Tachyzoite and host cell pre-treatment with valspodar affected infection rates in all parasites. Flow cytometric analyses revealed verapamil treatment to induce neutral lipid accumulation. The absence of a pronounced anti-parasitic impact of tariquidar, which represents here the most selective P-gp inhibitor, suggests that the observed effects of verapamil and valspodar are associated with mechanisms independent of P-gp. Out of the three species tested here, this compound affected only B. besnoiti proliferation and its effect was much milder as compared to verapamil and valspodar.
Collapse
Affiliation(s)
- Camilo Larrazabal
- Biomedical Research Center Seltersberg, Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (L.M.R.S.); (C.H.); (A.T.)
- Correspondence:
| | - Liliana M. R. Silva
- Biomedical Research Center Seltersberg, Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (L.M.R.S.); (C.H.); (A.T.)
| | - Learta Pervizaj-Oruqaj
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany; (L.P.-O.); (S.H.)
- Member of the German Center for Lung Research (DZL), Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Susanne Herold
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany; (L.P.-O.); (S.H.)
- Member of the German Center for Lung Research (DZL), Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Carlos Hermosilla
- Biomedical Research Center Seltersberg, Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (L.M.R.S.); (C.H.); (A.T.)
| | - Anja Taubert
- Biomedical Research Center Seltersberg, Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (L.M.R.S.); (C.H.); (A.T.)
| |
Collapse
|
5
|
Taddeo EP, Alsabeeh N, Baghdasarian S, Wikstrom JD, Ritou E, Sereda S, Erion K, Li J, Stiles L, Abdulla M, Swanson Z, Wilhelm JJ, Bellin MD, Kibbey RG, Liesa M, Shirihai OS. Mitochondrial Proton Leak Regulated by Cyclophilin D Elevates Insulin Secretion in Islets at Nonstimulatory Glucose Levels. Diabetes 2020; 69:131-145. [PMID: 31740442 PMCID: PMC6971491 DOI: 10.2337/db19-0379] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022]
Abstract
Fasting hyperinsulinemia precedes the development of type 2 diabetes. However, it is unclear whether fasting insulin hypersecretion is a primary driver of insulin resistance or a consequence of the progressive increase in fasting glycemia induced by insulin resistance in the prediabetic state. Herein, we have discovered a mechanism that specifically regulates non-glucose-stimulated insulin secretion (NGSIS) in pancreatic islets that is activated by nonesterified free fatty acids, the major fuel used by β-cells during fasting. We show that the mitochondrial permeability transition pore regulator cyclophilin D (CypD) promotes NGSIS, but not glucose-stimulated insulin secretion, by increasing mitochondrial proton leak. Islets from prediabetic obese mice show significantly higher CypD-dependent proton leak and NGSIS compared with lean mice. Proton leak-mediated NGSIS is conserved in human islets and is stimulated by exposure to nonesterified free fatty acids at concentrations observed in obese subjects. Mechanistically, proton leak activates islet NGSIS independently of mitochondrial ATP synthesis but ultimately requires closure of the KATP channel. In summary, we have described a novel nonesterified free fatty acid-stimulated pathway that selectively drives pancreatic islet NGSIS, which may be therapeutically exploited as an alternative way to halt fasting hyperinsulinemia and the progression of type 2 diabetes.
Collapse
Affiliation(s)
- Evan P Taddeo
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Nour Alsabeeh
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Siyouneh Baghdasarian
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jakob D Wikstrom
- Dermatology and Venereology Unit, Department of Medicine, Karolinska Institutet, and Department of Dermato-Venereology, Karolinska University Hospital, Stockholm, Sweden
| | - Eleni Ritou
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Samuel Sereda
- Endocrinology, Diabetes, Nutrition and Weight Management Section, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Karel Erion
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jin Li
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Linsey Stiles
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Muhamad Abdulla
- Department of Surgery and Schulze Diabetes Institute, University of Minnesota School of Medicine, Minneapolis, MN
| | - Zachary Swanson
- Department of Surgery and Schulze Diabetes Institute, University of Minnesota School of Medicine, Minneapolis, MN
| | - Joshua J Wilhelm
- Department of Surgery and Schulze Diabetes Institute, University of Minnesota School of Medicine, Minneapolis, MN
| | - Melena D Bellin
- Department of Surgery and Schulze Diabetes Institute, University of Minnesota School of Medicine, Minneapolis, MN
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Richard G Kibbey
- Departments of Internal Medicine (Endocrinology) and Cellular & Molecular Physiology, Yale University, New Haven, CT
| | - Marc Liesa
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| | - Orian S Shirihai
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
6
|
Woolsey ID, Valente AH, Williams AR, Thamsborg SM, Simonsen HT, Enemark HL. Anti-protozoal activity of extracts from chicory (Cichorium intybus) against Cryptosporidium parvum in cell culture. Sci Rep 2019; 9:20414. [PMID: 31892721 PMCID: PMC6938481 DOI: 10.1038/s41598-019-56619-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 12/16/2019] [Indexed: 11/09/2022] Open
Abstract
Cryptosporidium spp. are responsible for severe public health problems and livestock production losses. Treatment options are limited to only one drug available for human and bovine cryptosporidiosis, respectively, and both drugs exhibit only partial efficacy. Sesquiterpene lactones (SL) are plant bioactive compounds that function as a defence mechanism against herbivores. SL have demonstrated anti-parasitic properties against a range of parasitic taxa but knowledge about their anti-Cryptosporidium efficacy is limited. The effect of SL-rich leaf and root extracts from chicory (Cichorium intybus cv. Spadona) was investigated using human colon adenocarcinoma (HCT-8) cells infected with Cryptosporidium parvum. C. parvum oocysts were inoculated onto the cell monolayer and i) incubated for 4 hours with extracts (leaf and root extracts 300, 150, 75, 37.5, 18.75 and 9.375 μg/mL) in triplicates followed by incubation in bioactive free media (sporozoite invasion assays) or ii) incubated for 4 hours in bioactive free media followed by 48-hours incubation with extracts (growth inhibition assays). Extract toxicity on HCT-8 cells was assessed via water-soluble tetrazolium (WST)-1 assay prior to quantifying parasitic growth via immunofluorescence. Both extracts demonstrated dose-dependent inhibition in the growth inhibition assays (p = < 0.0001 for both extracts) but not in the invasion assays. Anti-parasitic activity did not appear to be solely related to SL content, with the extract with lower SL content (leaf) exhibiting higher inhibition at 300 μg/ml. However, given the limited treatment options available for Cryptosporidium spp., our study encourages further investigation into the use of chicory extracts to identify novel active compound(s) inhibiting these protozoa.
Collapse
Affiliation(s)
- Ian David Woolsey
- Norwegian Veterinary Institute, Department of Animal Health and Food Safety, Oslo, Norway.
| | - Angela H Valente
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Henrik T Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Heidi L Enemark
- Norwegian Veterinary Institute, Department of Animal Health and Food Safety, Oslo, Norway
| |
Collapse
|
7
|
Chao AT, Lee BH, Wan KF, Selva J, Zou B, Gedeck P, Beer DJ, Diagana TT, Bonamy GMC, Manjunatha UH. Development of a Cytopathic Effect-Based Phenotypic Screening Assay against Cryptosporidium. ACS Infect Dis 2018; 4:635-645. [PMID: 29341586 DOI: 10.1021/acsinfecdis.7b00247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cryptosporidiosis is a diarrheal disease predominantly caused by Cryptosporidium parvum ( Cp) and Cryptosporidium hominis ( Ch), apicomplexan parasites which infect the intestinal epithelial cells of their human hosts. The only approved drug for cryptosporidiosis is nitazoxanide, which shows limited efficacy in immunocompromised children, the most vulnerable patient population. Thus, new therapeutics and in vitro infection models are urgently needed to address the current unmet medical need. Toward this aim, we have developed novel cytopathic effect (CPE)-based Cp and Ch assays in human colonic tumor (HCT-8) cells and compared them to traditional imaging formats. Further model validation was achieved through screening a collection of FDA-approved drugs and confirming many previously known anti- Cryptosporidium hits as well as identifying a few novel candidates. Collectively, our data reveals this model to be a simple, functional, and homogeneous gain of signal format amenable to high throughput screening, opening new avenues for the discovery of novel anticryptosporidials.
Collapse
Affiliation(s)
- Alexander T. Chao
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Boon Heng Lee
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - Kah Fei Wan
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - Jeremy Selva
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - Bin Zou
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - Peter Gedeck
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - David John Beer
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - Thierry T. Diagana
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Ghislain M. C. Bonamy
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Ujjini H. Manjunatha
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, California 94608, United States
| |
Collapse
|
8
|
Waseem M, Tabassum H, Parvez S. Melatonin modulates permeability transition pore and 5-hydroxydecanoate induced KATP channel inhibition in isolated brain mitochondria. Mitochondrion 2016; 31:1-8. [DOI: 10.1016/j.mito.2016.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 06/16/2016] [Accepted: 08/11/2016] [Indexed: 12/22/2022]
|
9
|
Cryptosporidiosis Treated With Nitazoxanide in Intestinal Transplantation. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2016. [DOI: 10.1097/ipc.0000000000000332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Microbial peptidyl-prolyl cis/trans isomerases (PPIases): virulence factors and potential alternative drug targets. Microbiol Mol Biol Rev 2015; 78:544-71. [PMID: 25184565 DOI: 10.1128/mmbr.00015-14] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Initially discovered in the context of immunomodulation, peptidyl-prolyl cis/trans isomerases (PPIases) were soon identified as enzymes catalyzing the rate-limiting protein folding step at peptidyl bonds preceding proline residues. Intense searches revealed that PPIases are a superfamily of proteins consisting of three structurally distinguishable families with representatives in every described species of prokaryote and eukaryote and, recently, even in some giant viruses. Despite the clear-cut enzymatic activity and ubiquitous distribution of PPIases, reports on solely PPIase-dependent biological roles remain scarce. Nevertheless, they have been found to be involved in a plethora of biological processes, such as gene expression, signal transduction, protein secretion, development, and tissue regeneration, underscoring their general importance. Hence, it is not surprising that PPIases have also been identified as virulence-associated proteins. The extent of contribution to virulence is highly variable and dependent on the pleiotropic roles of a single PPIase in the respective pathogen. The main objective of this review is to discuss this variety in virulence-related bacterial and protozoan PPIases as well as the involvement of host PPIases in infectious processes. Moreover, a special focus is given to Legionella pneumophila macrophage infectivity potentiator (Mip) and Mip-like PPIases of other pathogens, as the best-characterized virulence-related representatives of this family. Finally, the potential of PPIases as alternative drug targets and first tangible results are highlighted.
Collapse
|
11
|
Roy S, Basu S, Datta AK, Bhattacharyya D, Banerjee R, Dasgupta D. Equilibrium unfolding of cyclophilin from Leishmania donovani: characterization of intermediate states. Int J Biol Macromol 2014; 69:353-60. [PMID: 24887548 DOI: 10.1016/j.ijbiomac.2014.05.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 10/25/2022]
Abstract
Cyclophilin from Leishmania donovani (LdCyp) is a ubiquitous peptidyl-prolyl cis-trans isomerase involved in a host of important cellular activities, such as signaling, heat shock response, chaperone activity, mitochondrial pore maintenance and regulation of HIV-1 infectivity. It also acts as the prime cellular target for the auto-immune drug cyclosporine A (CsA). LdCyp is composed of a beta barrel encompassing the unique hydrophobic core of the molecule and is flanked by two helices (H1, H2) on either end of the barrel. The protein contains a lone partially exposed tryptophan. In the present work the equilibrium unfolding of LdCyp has been studied by fluorescence, circular dichroism and the non-coincidence of their respective Cm's, indicates a non-two state transition. This fact was further corroborated by binding studies of the protein with bis-ANS and the lack of an isochromatic point in far UV CD. The thermal stability of the possible intermediates was characterized by differential scanning calorimetry. Further, MD simulations performed at 310, 400 and 450K exhibited the tendency of both helices to partially unwind and adopt non-native geometries with respect to the core, quite early in the unfolding process, in contrast to the relatively stable beta barrel.
Collapse
Affiliation(s)
- Sourav Roy
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India
| | - Sankar Basu
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India
| | - Alok K Datta
- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | | | - Rahul Banerjee
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India.
| | - Dipak Dasgupta
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India.
| |
Collapse
|
12
|
Kirubakaran S, Gorla SK, Sharling L, Zhang M, Liu X, Ray SS, Macpherson IS, Striepen B, Hedstrom L, Cuny GD. Structure-activity relationship study of selective benzimidazole-based inhibitors of Cryptosporidium parvum IMPDH. Bioorg Med Chem Lett 2012; 22:1985-8. [PMID: 22310229 DOI: 10.1016/j.bmcl.2012.01.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
Abstract
Cryptosporidium parasites are important waterborne pathogens of both humans and animals. The Cryptosporidium parvum and Cryptosporidium hominis genomes indicate that the only route to guanine nucleotides is via inosine 5'-monophosphate dehydrogenase (IMPDH). Thus the inhibition of the parasite IMPDH presents a potential strategy for treating Cryptosporidium infections. A selective benzimidazole-based inhibitor of C. parvum IMPDH (CpIMPDH) was previously identified in a high throughput screen. Here we report a structure-activity relationship study of benzimidazole-based compounds that resulted in potent and selective inhibitors of CpIMPDH. Several compounds display potent antiparasitic activity in vitro.
Collapse
Affiliation(s)
- Sivapriya Kirubakaran
- Department of Biology, Brandeis University, MS009, 415 South Street, Waltham, MA 02454, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Galat A, Bua J. Molecular aspects of cyclophilins mediating therapeutic actions of their ligands. Cell Mol Life Sci 2010; 67:3467-88. [PMID: 20602248 PMCID: PMC11115621 DOI: 10.1007/s00018-010-0437-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/04/2010] [Accepted: 06/10/2010] [Indexed: 12/14/2022]
Abstract
Cyclosporine A (CsA) is an immunosuppressive cyclic peptide that binds with a high affinity to 18 kDa human cyclophilin-A (hCyPA). CsA and its several natural derivatives have some pharmacological potential in treatment of diverse immune disorders. More than 20 paralogues of CyPA are expressed in the human body while expression levels and functions of numerous ORFs encoding cyclophilin-like sequences remain unknown. Certain derivatives of CsA devoid of immunosuppressive activity may have some potential in treatments of Alzheimer diseases, Hepatitis C and HIV infections, amyotrophic lateral sclerosis, congenital muscular dystrophy, asthma and various parasitic infections. Here, we discuss structural and functional aspects of the human cyclophilins and their interaction with various intra-cellular targets that can be under the control of CsA or its complexes with diverse cyclophilins that are selectively expressed in different cellular compartments. Some molecular aspects of the cyclophilins expressed in parasites invading humans and causing diseases were also analyzed.
Collapse
Affiliation(s)
- Andrzej Galat
- SIMOPRO, Institute de Biologie et de Technologies de Saclay, DSV/CEA, Bat. 152, CE-Saclay, Gif-sur-Yvette Cedex, France.
| | | |
Collapse
|
14
|
Sharling L, Liu X, Gollapalli DR, Maurya SK, Hedstrom L, Striepen B. A screening pipeline for antiparasitic agents targeting cryptosporidium inosine monophosphate dehydrogenase. PLoS Negl Trop Dis 2010; 4:e794. [PMID: 20706578 PMCID: PMC2919388 DOI: 10.1371/journal.pntd.0000794] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 07/14/2010] [Indexed: 11/30/2022] Open
Abstract
Background The protozoan parasite Cryptosporidium parvum is responsible for significant disease burden among children in developing countries. In addition Cryptosporidiosis can result in chronic and life-threatening enteritis in AIDS patients, and the currently available drugs lack efficacy in treating these severe conditions. The discovery and development of novel anti-cryptosporidial therapeutics has been hampered by the poor experimental tractability of this pathogen. While the genome sequencing effort has identified several intriguing new targets including a unique inosine monophosphate dehydrogenase (IMPDH), pursuing these targets and testing inhibitors has been frustratingly difficult. Methodology and Principal Findings Here we have developed a pipeline of tools to accelerate the in vivo screening of inhibitors of C. parvum IMPDH. We have genetically engineered the related parasite Toxoplasma gondii to serve as a model of C. parvum infection as the first screen. This assay provides crucial target validation and a large signal window that is currently not possible in assays involving C. parvum. To further develop compounds that pass this first filter, we established a fluorescence-based assay of host cell proliferation, and a C. parvum growth assay that utilizes automated high-content imaging analysis for enhanced throughput. Conclusions and Significance We have used these assays to evaluate C. parvum IMPDH inhibitors emerging from our ongoing medicinal chemistry effort and have identified a subset of 1,2,3-triazole ethers that exhibit excellent in vivo selectivity in the T. gondii model and improved anti-cryptosporidial activity. Persistent diarrhea is a leading cause of illness and death among impoverished children, and a growing share of this disease burden can be attributed to the parasite Cryptosporidium. There are no vaccines to prevent Cryptosporidium infection, and the treatment options are limited and unreliable. Critically, no effective treatment exists for children or adults suffering from AIDS. Cryptosporidium presents many technical obstacles for drug discovery; perhaps the most important roadblock is the difficulty of monitoring drug action. Here we have developed a set of methods to accelerate the drug discovery process for cryptosporidiosis. We exploit the opportunities for experimental manipulation in the related parasite Toxoplasma to genetically engineer a Cryptosporidium model. This new model parasite mirrors the metabolism of Cryptosporidium for a particularly promising drug target that supplies the building blocks for DNA and RNA. Drug effectiveness can be assayed through simple fluorescence measurements for many candidates. Using this assay as an initial filter, and adapting other assays to a high throughput format, we identify several novel chemical compounds that exhibit markedly improved anti-cryptosporidial activity and excellent selectivity.
Collapse
Affiliation(s)
- Lisa Sharling
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Xiaoping Liu
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Deviprasad R. Gollapalli
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, United States of America
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Sushil K. Maurya
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, United States of America
| | - Lizbeth Hedstrom
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, United States of America
| | - Boris Striepen
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
15
|
Krücken J, Greif G, von Samson-Himmelstjerna G. In silico analysis of the cyclophilin repertoire of apicomplexan parasites. Parasit Vectors 2009; 2:27. [PMID: 19555495 PMCID: PMC2713222 DOI: 10.1186/1756-3305-2-27] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 06/25/2009] [Indexed: 11/26/2022] Open
Abstract
Background Cyclophilins (Cyps) are peptidyl cis/trans isomerases implicated in diverse processes such as protein folding, signal transduction, and RNA processing. They are also candidate drug targets, in particular for the immunosuppressant cyclosporine A. In addition, cyclosporine is known to exhibit anti-parasitic effects on a wide range of organisms including several apicomplexa. In order to obtain new non-immunosuppressive drugs targeting apicomplexan cyclophilins, a profound knowledge of the cyclophilin repertoire of this phylum would be necessary. Results BLAST and maximum likelihood analyses identified 16 different cyclophilin subfamilies within the genomes of Cryptosporidium hominis, Toxoplasma gondii, Plasmodium falciparum, Theileria annulata, Theileria parva, and Babesia bovis. In addition to good statistical support from the phylogenetic analysis, these subfamilies are also confirmed by comparison of cyclophilin domain architecture. Within an individual genome, the number of different Cyp genes that could be deduced varies between 7–9 for Cryptosporidia and 14 for T. gondii. Many of the putative apicomplexan cyclophilins are predicted to be nuclear proteins, most of them presumably involved in RNA processing. Conclusion The genomes of apicomplexa harbor a cyclophilin repertoire that is at least as complex as that of most fungi. The identification of Cyp subfamilies that are specific for lower eukaryotes, apicomplexa, or even the genus Plasmodium is of particular interest since these subfamilies are not present in host cells and might therefore represent attractive drug targets.
Collapse
Affiliation(s)
- Jürgen Krücken
- Institute for Parasitology, University of Veterinary Medicine Foundation, Bünteweg 17, 30559 Hannover, Germany.
| | | | | |
Collapse
|
16
|
Sauvage V, Aubert D, Escotte-Binet S, Villena I. The role of ATP-binding cassette (ABC) proteins in protozoan parasites. Mol Biochem Parasitol 2009; 167:81-94. [PMID: 19464325 DOI: 10.1016/j.molbiopara.2009.05.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 05/11/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
Abstract
The ATP-binding cassette (ABC) superfamily is one of the largest protein families with representatives in all kingdoms of life. Members of this superfamily are involved in a wide variety of transport processes with substrates ranging from small ions to relatively large polypeptides and polysaccharides, but also in cellular processes such as DNA repair, translation or regulation of gene expression. For many years, the role of ABC proteins was mainly investigated for their implication in drug resistance. However, recent studies focused rather on their physiological functions for the parasite. In this review, we present an overview of ABC proteins in major protozoan parasites including Leishmania, Trypanosoma, Plasmodium, Toxoplasma, Cryptosporidium and Entamoeba species. We will also discuss the role of characterized ABC transporters in the biology of the parasite and in drug resistance.
Collapse
Affiliation(s)
- Virginie Sauvage
- Laboratoire de Parasitologie-Mycologie, EA 3800, IFR 53, UFR Médecine, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51095 Reims Cedex, France
| | | | | | | |
Collapse
|
17
|
Targeting a Uniquely Nonspecific Prenyl Synthase with Bisphosphonates to Combat Cryptosporidiosis. ACTA ACUST UNITED AC 2008; 15:1296-306. [DOI: 10.1016/j.chembiol.2008.10.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 09/30/2008] [Accepted: 10/06/2008] [Indexed: 11/19/2022]
|
18
|
Umejiego NN, Gollapalli D, Sharling L, Volftsun A, Lu J, Benjamin NN, Stroupe AH, Riera TV, Striepen B, Hedstrom L. Targeting a prokaryotic protein in a eukaryotic pathogen: identification of lead compounds against cryptosporidiosis. ACTA ACUST UNITED AC 2008; 15:70-7. [PMID: 18215774 DOI: 10.1016/j.chembiol.2007.12.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 12/07/2007] [Accepted: 12/17/2007] [Indexed: 11/28/2022]
Abstract
Cryptosporidium parvum is an important human pathogen and potential bioterrorism agent. No vaccines exist against C. parvum, the drugs currently approved to treat cryptosporidiosis are ineffective, and drug discovery is challenging because the parasite cannot be maintained continuously in cell culture. Mining the sequence of the C. parvum genome has revealed that the only route to guanine nucleotides is via inosine-5'-monophosphate dehydrogenase (IMPDH). Moreover, phylogenetic analysis suggests that the IMPDH gene was obtained from bacteria by lateral gene transfer. Here we exploit the unexpected evolutionary divergence of parasite and host enzymes by designing a high-throughput screen to target the most diverged portion of the IMPDH active site. We have identified four parasite-selective IMPDH inhibitors that display antiparasitic activity with greater potency than paromomycin, the current gold standard for anticryptosporidial activity.
Collapse
Affiliation(s)
- Nwakaso N Umejiego
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jenwitheesuk E, Horst JA, Rivas KL, Van Voorhis WC, Samudrala R. Novel paradigms for drug discovery: computational multitarget screening. Trends Pharmacol Sci 2008; 29:62-71. [PMID: 18190973 PMCID: PMC4551513 DOI: 10.1016/j.tips.2007.11.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 11/16/2007] [Accepted: 11/16/2007] [Indexed: 12/24/2022]
Abstract
An established paradigm in current drug development is (i) to identify a single protein target whose inhibition is likely to result in the successful treatment of a disease of interest; (ii) to assay experimentally large libraries of small-molecule compounds in vitro and in vivo to identify promising inhibitors in model systems; and (iii) to determine whether the findings are extensible to humans. This complex process, which is largely based on trial and error, is risk-, time- and cost-intensive. Computational (virtual) screening of drug-like compounds simultaneously against the atomic structures of multiple protein targets, taking into account protein-inhibitor dynamics, might help to identify lead inhibitors more efficiently, particularly for complex drug-resistant diseases. Here we discuss the potential benefits of this approach, using HIV-1 and Plasmodium falciparum infections as examples. We propose a virtual drug discovery 'pipeline' that will not only identify lead inhibitors efficiently, but also help minimize side-effects and toxicity, thereby increasing the likelihood of successful therapies.
Collapse
Affiliation(s)
- Ekachai Jenwitheesuk
- Department of Microbiology, School of Medicine, University of Washington, Box 357242, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
20
|
Benitez AJ, McNair N, Mead J. Modulation of gene expression of three Cryptosporidium parvum ATP-binding cassette transporters in response to drug treatment. Parasitol Res 2007; 101:1611-6. [PMID: 17705063 DOI: 10.1007/s00436-007-0701-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 06/01/2007] [Accepted: 07/24/2007] [Indexed: 10/22/2022]
Abstract
We studied three ATP-binding cassette (ABC) transporters (cgd1_1350, cgd7_4510, and cgd7_4520) of Cryptosporidium parvum that were identified to share a high level of homology with nucleotide binding domains of other parasitic ABC transporters and therefore could be potential candidates of efflux of drugs and/or contribute to the intrinsic resistance to chemotherapy observed of this parasite. Partial characterization and expression analysis of three C. parvum ABC transporters was determined by standard semi-quantitative real-time polymerase chain reaction. Expression of mRNA of the three ABC transporters was detected at different time points in infected cell cultures over the 48-h period, corresponding to the development of the sexual and asexual stages of the parasite. To determine if these three transporters were modulated in response to drug treatment, infected HCT 8 cells were then incubated for 48 h with different concentrations of paromomycin and a single concentration of cyclosporin A. Our results indicated that treatment by paromomycin resulted in approximately five to eightfold upregulation of cgd1_1350 transcript and about threefold of upregulation of Cgd7_4510 transcript levels. Cyclosporin A had a similar upregulating effect on cgd1_1350 and cgd7_4510 RNA levels: fivefold and 2.6-fold, respectively. On the contrary, drug treatment had little effect on cgd7_4520 transcript levels. Therefore, two of these transporters may be of value as tools for the study and the rational drug design of specific inhibitors to counteract C. parvum's intrinsic drug resistance.
Collapse
Affiliation(s)
- Alvaro J Benitez
- Veterans Affairs Medical Center, 1670 Clairmont Road, Decatur, GA 30033, USA
| | | | | |
Collapse
|
21
|
Cai X, Woods KM, Upton SJ, Zhu G. Application of quantitative real-time reverse transcription-PCR in assessing drug efficacy against the intracellular pathogen Cryptosporidium parvum in vitro. Antimicrob Agents Chemother 2006; 49:4437-42. [PMID: 16251280 PMCID: PMC1280145 DOI: 10.1128/aac.49.11.4437-4442.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here on a quantitative real-time reverse transcription-PCR (qRT-PCR) assay for assessing drug efficacy against the intracellular pathogen Cryptosporidium parvum. The qRT-PCR assay detects 18S rRNA transcripts from both parasites, that is, the cycle threshold for 18S rRNA from parasites (C(T)([P18S])) and host cells (C(T)([H18S])), and evaluates the relative expression between parasite and host rRNA levels (i.e., deltaC(T) = C(T)([P18S]) - C(T)([H18S])) to minimize experimental and operational errors. The choice of qRT-PCR over quantitative PCR (qPCR) in this study is based on the observations that (i) the relationship between the logarithm of infected parasites (log[P]) and the normalized relative level of rRNA (deltadeltaC(T)) is linear, with a fourfold dynamic range, by qRT-PCR but sigmoidal (nonlinear) by qPCR; and (ii) the level of RNA represents that of live parasites better than that of DNA, because the decay of RNA (99% in approximately 3 h) in dead parasites is faster than that of DNA (99% in approximately 24 to 48 h) under in vitro conditions. The reliability of the qRT-PCR method was validated by testing the efficacies of nitazoxanide and paromomycin on the development of two strains of C. parvum (IOWA and KSU-1) in HCT-8 cells in vitro. Both compounds displayed dose-dependent inhibitions. The observed MIC50 values for nitazoxanide and paromomycin were 0.30 to 0.45 micro/ml and 89.7 to 119.0 microg/ml, respectively, comparable to the values reported previously. Using the qRT-PCR assay, we have also observed that pyrazole could inhibit C. parvum development in vitro (MIC50 = 15.8 mM), suggesting that the recently discovered Cryptosporidium alcohol dehydrogenases may be explored as new drug targets.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, 4467 TAMU, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
22
|
Carrero JC, Lugo H, Pérez DG, Ortiz-Martínez C, Laclette JP. Cyclosporin A inhibits calcineurin (phosphatase 2B) and P-glycoprotein activity in Entamoeba histolytica. Int J Parasitol 2004; 34:1091-7. [PMID: 15313136 DOI: 10.1016/j.ijpara.2004.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 05/10/2004] [Accepted: 05/20/2004] [Indexed: 10/26/2022]
Abstract
Cyclosporin A (CsA) inhibits the proliferation of several protozoan parasites through blocking the activity of calcineurin (Cn) or P-glycoproteins (Pgp). We report here, that inhibition of the proliferation of Entamoeba histolytica trophozoites, the causal agent of human amebiasis, is due to interference of the phosphatase activity of Cn, in a similar fashion to the effect of this immunosuppressive drug on T lymphocytes. The non-immunosuppressive CsA analog PSC-833, which binds Pgp without interfering the function of Cn, did not inhibit the proliferation of HM1:IMSS trophozoites. Moreover, phosphatase activity of amebic Cn, detected using the phosphopeptide RII, was drastically affected by incubation with CsA, but not with PSC-833. On the other hand, both drugs were also tested on clone C2 trophozoites, which grow in the presence of emetine due to over-expression of Pgp. The effect of CsA was similar to that observed on HM1:IMSS trophozoites, whereas PSC-833 only affected the proliferation and viability of clone C2 when the trophozoites were grown in the presence of 40 microM of emetine, suggesting an interference of the Pgp activity. This suggestion was confirmed by results from experiments of Pgp-dependent effux of rhodamine from pre-loaded trophozoites, in the presence of either of these drugs. Therefore, CsA inhibition of E. histolytica trophozoite proliferation is more likely due to Cn than Pgp activity inhibition.
Collapse
Affiliation(s)
- Julio C Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, A.P. 70228, 04510 México DF, Mexico.
| | | | | | | | | |
Collapse
|
23
|
Discovery of mammalian genes that participate in virus infection. BMC Cell Biol 2004; 5:41. [PMID: 15522117 PMCID: PMC534806 DOI: 10.1186/1471-2121-5-41] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Accepted: 11/02/2004] [Indexed: 11/10/2022] Open
Abstract
Background Viruses are obligate intracellular parasites that rely upon the host cell for different steps in their life cycles. The characterization of cellular genes required for virus infection and/or cell killing will be essential for understanding viral life cycles, and may provide cellular targets for new antiviral therapies. Results Candidate genes required for lytic reovirus infection were identified by tagged sequence mutagenesis, a process that permits rapid identification of genes disrupted by gene entrapment. One hundred fifty-one reovirus resistant clones were selected from cell libraries containing 2 × 105 independently disrupted genes, of which 111 contained mutations in previously characterized genes and functionally anonymous transcription units. Collectively, the genes associated with reovirus resistance differed from genes targeted by random gene entrapment in that known mutational hot spots were under represented, and a number of mutations appeared to cluster around specific cellular processes, including: IGF-II expression/signalling, vesicular transport/cytoskeletal trafficking and apoptosis. Notably, several of the genes have been directly implicated in the replication of reovirus and other viruses at different steps in the viral lifecycle. Conclusions Tagged sequence mutagenesis provides a rapid, genome-wide strategy to identify candidate cellular genes required for virus infection. The candidate genes provide a starting point for mechanistic studies of cellular processes that participate in the virus lifecycle and may provide targets for novel anti-viral therapies.
Collapse
|
24
|
Bonafonte MT, Romagnoli PA, McNair N, Shaw AP, Scanlon M, Leitch GJ, Mead JR. Cryptosporidium parvum: effect of multi-drug reversing agents on the expression and function of ATP-binding cassette transporters. Exp Parasitol 2004; 106:126-34. [PMID: 15172220 DOI: 10.1016/j.exppara.2004.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Revised: 01/27/2004] [Accepted: 03/30/2004] [Indexed: 11/27/2022]
Abstract
In the present study, the gene expression of three multidrug resistance (MDR) and resistance-associated protein (MRP) transport proteins or efflux pumps was characterized and the phenotypic evidence for such pumps was demonstrated in cultured Madin-Darby canine kidney (MDCK) cells. A gradient for the fluorescent probe calcein was established between parasite and host cell suggestive of a parasite extrusion pump at the parasite-host interface. This gradient was decreased in a glucose-free medium containing 2-deoxyglucose or 3-O-methylglucose, by probenecid, and by the isoflavonoid, narigenin, suggesting that the calcein extrusion was energy-dependent and involved an MRP-like pump. While neither MDR or MRP inhibiters significantly affected transcript levels of any of the ABC transporters, transcript levels of the Cryptosporidium parvum ABC protein (CpABC1), an MRP transporter, were consistently expressed 4 logs higher than either CpABC3 or CpABC2, suggesting a prominent role in the intracellular stages of the parasite.
Collapse
|
25
|
Sauvage V, Aubert D, Bonhomme A, Pinon JM, Millot JM. P-glycoprotein inhibitors modulate accumulation and efflux of xenobiotics in extra and intracellular Toxoplasma gondii. Mol Biochem Parasitol 2004; 134:89-95. [PMID: 14747146 DOI: 10.1016/j.molbiopara.2003.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We examined xenobiotic transport and the effects of P-glycoprotein (Pgp) inhibitors on efflux function in Toxoplasma gondii tachyzoites. The fluorescence emission of JC-1 and daunorubicin (Pgp substrates) was determined in both extracellular tachyzoites and T. gondii-infected human KB cells. Dye accumulation and efflux were modulated by verapamil (Vp) and cyclosporin A (CsA), both of which are Pgp inhibitors. Red JC-1 emission was measured from 10(6) extracellular tachyzoites, using spectrofluorometry. The increase in red emission was significant from 1 microM concentration of both drugs and was higher with CsA than with Vp. Compared with untreated tachyzoites, JC-1 efflux was inhibited by 3 microM CsA and 3 microM Vp. With intracellular tachyzoites, the fluorescence distribution of daunorubicin (DNR) between the parasitophorous vacuole and the host cell was modulated by Vp and CsA. In media free of CsA and Vp, DNR emission inside intracellular tachyzoites was very weak, as observed by confocal microscopy. In the presence of CsA or Vp, DNR emission was markedly enhanced in tachyzoites but not in the whole vacuole. The modulation of DNR uptake seems to involve the tachyzoite membrane rather than the parasitophorous vacuole or host cell membranes. It suggests that Vp would inhibit the DNR efflux from intracellular tachyzoites through a transitory effect. In conclusion, these two Pgp inhibitors increase both extracellular and intracellular dye accumulation in living T. gondii, pointing to the existence of a transmembrane transport mediated by a Pgp homologue located on the parasite membrane complex.
Collapse
Affiliation(s)
- Virginie Sauvage
- Laboratoire de Parasitologie-Mycologie, UFR de Médecine, UPRES EA 2070, IFR53 CHU, 51 rue Cognacq Jay, Reims 51096, France
| | | | | | | | | |
Collapse
|
26
|
Waldmeier PC, Feldtrauer JJ, Qian T, Lemasters JJ. Inhibition of the mitochondrial permeability transition by the nonimmunosuppressive cyclosporin derivative NIM811. Mol Pharmacol 2002; 62:22-9. [PMID: 12065751 DOI: 10.1124/mol.62.1.22] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cyclosporin A (CsA) shows cytoprotective properties in many cellular and in vivo models that may depend on interference of the interaction of cyclophilin A with calcineurin or of cyclophilin D with the mitochondrial permeability transition (PT) pore. The nonimmunosuppressive cyclosporin derivative N-methyl-4-valine-cyclosporin (PKF220-384) inhibits the mitochondrial permeability transition (MPT) like CsA but without calcineurin inactivation. PKF220-384 has been used to discriminate between PT pore- and calcineurin mediated effects but is no longer available. Here, we evaluated the effects of another nonimmunosuppressive cyclosporin derivative, N-methyl-4-isoleucine-cyclosporin (NIM811) on the MPT. Using two newly developed microtiter plate assays, one measuring mitochondrial swelling from absorbance and the other measuring mitochondrial membrane potential from changes in safranin fluorescence, we show that NIM811 blocks the MPT induced by calcium and inorganic phosphate, alone or in combination with the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, the complex I inhibitor rotenone, and the prooxidant t-butylhydroperoxide. NIM811 was equipotent to CsA and half as potent as PKF220-384. Additionally, we show that NIM811 blocks cell killing and prevents in situ mitochondrial inner membrane permeabilization and depolarization during tumor necrosis factor-alpha-induced apoptosis to cultured rat hepatocytes. NIM811 inhibition of apoptosis was equipotent with CsA except at higher concentrations: CsA lost efficacy but NIM 811 did not. We conclude that NIM811 is a useful alternative to PKF220-384 to investigate the role of the mitochondrial permeability transition in apoptotic and necrotic cell death.
Collapse
|
27
|
Abstract
Coccidia provide a rich hunting ground for drug-designers, as there are significant biochemical differences between the parasites and their hosts. Recent years have brought the discovery of the plastid and its possible metabolic machinery, characterisation of acidocalcisomes, reports on the apparent absence from some coccidia of a typical mitochondrion, and the discovery of the mannitol cycle and shikimate pathway in the parasites. Moreover, modern technologies such as genomics and proteomics are bringing new insights into the biochemistry of coccidia and highlighting possible drug targets in abundance. A major issue for would-be drug discoverers is to decide upon the targets to prioritise. This review provides an update on recent findings on how coccidia differ biochemically from vertebrates. It includes discoveries within coccidian parasites themselves but also uses findings in Plasmodium to provide an overview of biochemical features that may be characteristics of many apicomplexan parasites and so potential targets for broad-spectrum drugs.
Collapse
Affiliation(s)
- G H Coombs
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, G12 8QQ, Glasgow, UK.
| | | |
Collapse
|
28
|
Nelson RG, Rosowsky A. Dicyclic and tricyclic diaminopyrimidine derivatives as potent inhibitors of Cryptosporidium parvum dihydrofolate reductase: structure-activity and structure-selectivity correlations. Antimicrob Agents Chemother 2001; 45:3293-303. [PMID: 11709300 PMCID: PMC90829 DOI: 10.1128/aac.45.12.3293-3303.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A structurally diverse library of 93 lipophilic di- and tricyclic diaminopyrimidine derivatives was tested for the ability to inhibit recombinant dihydrofolate reductase (DHFR) cloned from human and bovine isolates of Cryptosporidium parvum (J. R. Vásquez et al., Mol. Biochem. Parasitol. 79:153-165, 1996). In parallel, the library was also tested against human DHFR and, for comparison, the enzyme from Escherichia coli. Fifty percent inhibitory concentrations (IC(50)s) were determined by means of a standard spectrophotometric assay of DHFR activity with dihydrofolate and NADPH as the cosubstrates. Of the compounds tested, 25 had IC(50)s in the 1 to 10 microM range against one or both C. parvum enzymes and thus were not substantially different from trimethoprim (IC(50)s, ca. 4 microM). Another 25 compounds had IC(50)s of <1.0 microM, and 9 of these had IC(50)s of <0.1 microM and thus were at least 40 times more potent than trimethoprim. The remaining 42 compounds were weak inhibitors (IC(50)s, >10 microM) and thus were not considered to be of interest as drugs useful against this organism. A good correlation was generally obtained between the results of the spectrophotometric enzyme inhibition assays and those obtained recently in a yeast complementation assay (V. H. Brophy et al., Antimicrob. Agents Chemother. 44:1019-1028, 2000; H. Lau et al., Antimicrob. Agents Chemother. 45:187-195, 2001). Although many of the compounds in the library were more potent than trimethoprim, none had the degree of selectivity of trimethoprim for C. parvum versus human DHFR. Collectively, the results of these assays comprise the largest available database of lipophilic antifolates as potential anticryptosporidial agents. The compounds in the library were also tested as inhibitors of the proliferation of intracellular C. parvum oocysts in canine kidney epithelial cells cultured in folate-free medium containing thymidine (10 microM) and hypoxanthine (100 microM). After 72 h of drug exposure, the number of parasites inside the cells was quantitated by indirect immunofluorescence microscopy. Sixteen compounds had IC(50)s of <3 microM, and five of these had IC(50)s of <0.3 microM and thus were comparable in potency to trimetrexate. The finding that submicromolar concentrations of several of the compounds in the library could inhibit in vitro growth of C. parvum in host cells in the presence of thymidine (dThd) and hypoxanthine (Hx) suggests that lipophilic DHFR inhibitors, in combination with leucovorin, may find use in the treatment of intractable C. parvum infections.
Collapse
Affiliation(s)
- R G Nelson
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, California 94143, USA
| | | |
Collapse
|
29
|
Coombs GH. Biochemical peculiarities and drug targets in Cryptosporidium parvum: lessons from other coccidian parasites. PARASITOLOGY TODAY (PERSONAL ED.) 1999; 15:333-8. [PMID: 10407381 DOI: 10.1016/s0169-4758(99)01474-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There is an urgent need for effective medicines for treating human and animal cryptosporidiosis. In the absence of drugs being found using an empirical route, the structure-based approach may be the better option for discovering new chemotherapeutic agents against these diseases. With this objective, what possible drug targets are there? Here, Graham Coombs speculates on the best putative targets for chemotherapeutic attack, and reviews what is known and what can be deduced about the biochemical features of Cryptosporidium parvum, the causative agent of cryptosporidiosis, emphasizing the ways in which the parasite differs biochemically from its mammalian hosts.
Collapse
Affiliation(s)
- G H Coombs
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Joseph Black Buliding, University of Glasgow, Glasgow, UK G12 8QQ.
| |
Collapse
|
30
|
Perkins ME, Riojas YA, Wu TW, Le Blancq SM. CpABC, a Cryptosporidium parvum ATP-binding cassette protein at the host-parasite boundary in intracellular stages. Proc Natl Acad Sci U S A 1999; 96:5734-9. [PMID: 10318953 PMCID: PMC21929 DOI: 10.1073/pnas.96.10.5734] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The intracellular parasite Cryptosporidium parvum develops inside a vacuole at the apex of its epithelial host cell. The developing parasite is separated from the host cell cytoplasm by a zone of attachment that consists of an extensively folded membranous structure known as the feeder organelle. It has been proposed that the feeder organelle is the site of regulation of transport of nutrients and drugs into the parasite. In this report, we localize an approximately 200-kDa integral membrane protein, CpABC, from Cryptosporidium parvum to the host-parasite boundary, possibly the feeder organelle. The predicted amino acid sequence of CpABC has significant structural similarity with the cystic fibrosis conductance regulator and the multidrug resistance protein subfamily of ATP-binding cassette proteins. This is an example of a parasite-encoded transport protein localized at the parasite-host interface of an intracellular protozoan.
Collapse
Affiliation(s)
- M E Perkins
- Division of Environmental Health Sciences, Joseph L. Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|