1
|
Zhang Y, Xue G, Wang F, Zhang J, Xu L, Yu C. The impact of antibiotic exposure on antibiotic resistance gene dynamics in the gut microbiota of inflammatory bowel disease patients. Front Microbiol 2024; 15:1382332. [PMID: 38694799 PMCID: PMC11061493 DOI: 10.3389/fmicb.2024.1382332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/26/2024] [Indexed: 05/04/2024] Open
Abstract
Background While antibiotics are commonly used to treat inflammatory bowel disease (IBD), their widespread application can disturb the gut microbiota and foster the emergence and spread of antibiotic resistance. However, the dynamic changes to the human gut microbiota and direction of resistance gene transmission under antibiotic effects have not been clearly elucidated. Methods Based on the Human Microbiome Project, a total of 90 fecal samples were collected from 30 IBD patients before, during and after antibiotic treatment. Through the analysis workflow of metagenomics, we described the dynamic process of changes in bacterial communities and resistance genes pre-treatment, during and post-treatment. We explored potential consistent relationships between gut microbiota and resistance genes, and established gene transmission networks among species before and after antibiotic use. Results Exposure to antibiotics can induce alterations in the composition of the gut microbiota in IBD patients, particularly a reduction in probiotics, which gradually recovers to a new steady state after cessation of antibiotics. Network analyses revealed intra-phylum transfers of resistance genes, predominantly between taxonomically close organisms. Specific resistance genes showed increased prevalence and inter-species mobility after antibiotic cessation. Conclusion This study demonstrates that antibiotics shape the gut resistome through selective enrichment and promotion of horizontal gene transfer. The findings provide insights into ecological processes governing resistance gene dynamics and dissemination upon antibiotic perturbation of the microbiota. Optimizing antibiotic usage may help limit unintended consequences like increased resistance in gut bacteria during IBD management.
Collapse
Affiliation(s)
- Yufei Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Gaogao Xue
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Fan Wang
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| | - Jing Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lida Xu
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
2
|
Allemailem KS. Recent Advances in Understanding the Molecular Mechanisms of Multidrug Resistance and Novel Approaches of CRISPR/Cas9-Based Genome-Editing to Combat This Health Emergency. Int J Nanomedicine 2024; 19:1125-1143. [PMID: 38344439 PMCID: PMC10859101 DOI: 10.2147/ijn.s453566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
The rapid spread of multidrug resistance (MDR), due to abusive use of antibiotics has led to global health emergency, causing substantial morbidity and mortality. Bacteria attain MDR by different means such as antibiotic modification/degradation, target protection/modification/bypass, and enhanced efflux mechanisms. The classical approaches of counteracting MDR bacteria are expensive and time-consuming, thus, it is highly significant to understand the molecular mechanisms of this resistance to curb the problem from core level. The revolutionary approach of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated sequence 9 (CRISPR/Cas9), considered as a next-generation genome-editing tool presents an innovative opportunity to precisely target and edit bacterial genome to alter their MDR strategy. Different bacteria possessing antibiotic resistance genes such as mecA, ermB, ramR, tetA, mqrB and blaKPC that have been targeted by CRISPR/Cas9 to re-sensitize these pathogens against antibiotics, such as methicillin, erythromycin, tigecycline, colistin and carbapenem, respectively. The CRISPR/Cas9 from S. pyogenes is the most widely studied genome-editing tool, consisting of a Cas9 DNA endonuclease associated with tracrRNA and crRNA, which can be systematically coupled as sgRNA. The targeting strategies of CRISPR/Cas9 to bacterial cells is mediated through phage, plasmids, vesicles and nanoparticles. However, the targeting approaches of this genome-editing tool to specific bacteria is a challenging task and still remains at a very preliminary stage due to numerous obstacles awaiting to be solved. This review elaborates some recent updates about the molecular mechanisms of antibiotic resistance and the innovative role of CRISPR/Cas9 system in modulating these resistance mechanisms. Furthermore, the delivery approaches of this genome-editing system in bacterial cells are discussed. In addition, some challenges and future prospects are also described.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah51452, Saudi Arabia
| |
Collapse
|
3
|
Abstract
Antibiotic resistance genes predate the therapeutic uses of antibiotics. However, the current antimicrobial resistance crisis stems from our extensive use of antibiotics and the generation of environmental stressors that impose new selective pressure on microbes and drive the evolution of resistant pathogens that now threaten human health. Similar to climate change, this global threat results from human activities that change habitats and natural microbiomes, which in turn interact with human-associated ecosystems and lead to adverse impacts on human health. Human activities that alter our planet at global scales exacerbate the current resistance crisis and exemplify our central role in large-scale changes in which we are both protagonists and architects of our success but also casualties of unanticipated collateral outcomes. As cognizant participants in this ongoing planetary experiment, we are driven to understand and find strategies to curb the ongoing crises of resistance and climate change.
Collapse
Affiliation(s)
- María Mercedes Zambrano
- Corpogen Research Center, Bogotá, Colombia;
- Dirección de Investigaciones y Transferencia de Conocimiento, Universidad Central, Bogotá, Colombia
| |
Collapse
|
4
|
Moore MJ, Qin P, Keith DJ, Wu ZC, Jung S, Chatterjee S, Tan C, Qu S, Cai Y, Stanfield RL, Boger DL. Divergent Total Synthesis and Characterization of Maxamycins. J Am Chem Soc 2023; 145:12837-12852. [PMID: 37278486 PMCID: PMC10330940 DOI: 10.1021/jacs.3c03710] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A new streamlined and scaled divergent total synthesis of pocket-modified vancomycin analogs is detailed that provides a common late-stage intermediate [Ψ[C(═S)NH]Tpg4]vancomycin (LLS = 18 steps, 12% overall yield, >5 g prepared) to access both existing and future pocket modifications. Highlights of the approach include an atroposelective synthesis of [Ψ[C(═S)NH]Tpg4]vancomycin aglycon (11), a one-pot enzymatic glycosylation for direct conversion to [Ψ[C(═S)NH]Tpg4]vancomycin (12), and new powerful methods for the late-stage conversion of the embedded thioamide to amidine/aminomethylene pocket modifications. Incorporation of two peripheral modifications provides a scalable total synthesis of the maxamycins, all prepared from aglycon 11 without use of protecting groups. Thus, both existing and presently unexplored pocket-modified analogues paired with a range of peripheral modifications are accessible from this common thioamide intermediate. In addition to providing an improved synthesis of the initial member of the maxamycins, this is illustrated herein with the first synthesis and examination of maxamycins that contain the most effective of the pocket modifications (amidine) described to date combined with two additional peripheral modifications. These new amidine-based maxamycins proved to be potent, durable, and efficacious antimicrobial agents that display equipotent activity against vancomycin-sensitive and vancomycin-resistant Gram-positive organisms and act by three independent synergistic mechanisms of action. In the first such study conducted to date, one new maxamycin (21, MX-4) exhibited efficacious in vivo activity against a feared and especially challenging multidrug-resistant (MRSA) and vancomycin-resistant (VRSA) S. aureus bacterial strain (VanA VRS-2) for which vancomycin is inactive.
Collapse
Affiliation(s)
- Maxwell J. Moore
- Department of Chemistry, Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Pengjin Qin
- Department of Chemistry, Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - D. Jamin Keith
- Department of Chemistry, Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zhi-Chen Wu
- Department of Chemistry, Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sunna Jung
- Department of Chemistry, Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shreyosree Chatterjee
- Department of Chemistry, Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ceheng Tan
- Department of Chemistry, Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shiwei Qu
- Department of Chemistry, Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yu Cai
- Department of Chemistry, Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robyn L. Stanfield
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dale L. Boger
- Department of Chemistry, Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Moore MJ, Qin P, Keith DJ, Boger DL. Improved preparative enzymatic glycosylation of vancomycin aglycon and analogues. Tetrahedron 2023; 131:133211. [PMID: 36776940 PMCID: PMC9913888 DOI: 10.1016/j.tet.2022.133211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Modifications to the enzymatic glycosylation of vancomycin and its residue 4 thioamide analogue are detailed that significantly reduce the enzyme loading and amount of glycosyl donor needed for each glycosylation reaction, provide a streamlined synthesis and replacement for the synthetic UDP-vancosamine glycosyl donor to improve both access and storage stability, and permit a single-pot, two-step conversion of the aglycons to the fully glycosylated synthetic glycopeptides now conducted at higher concentrations. The improvements are exemplified with the two-step, one-pot glycosylation of [Ψ[C(=S)NH]Tpg4]vancomycin aglycon (92%) conducted on a 400 mg scale (2 mg to 1 g scales) and vancomycin aglycon itself (5 mg scale, 84%).
Collapse
Affiliation(s)
- Maxwell J. Moore
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Pengjin Qin
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - D. Jamin Keith
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Dale L. Boger
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
6
|
Abbassi MS, Badi S, Lengliz S, Mansouri R, Hammami S, Hynds P. Hiding in plain sight - Wildlife as a neglected reservoir and pathway for the spread of antimicrobial resistance: A narrative review. FEMS Microbiol Ecol 2022; 98:6568898. [DOI: 10.1093/femsec/fiac045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 11/14/2022] Open
Abstract
ABSTRACT
Antimicrobial resistance represents a global health problem, with infections due to pathogenic antimicrobial resistant bacteria (ARB) predicted to be the most frequent cause of human mortality by 2050. The phenomenon of antimicrobial resistance has spread to and across all ecological niches, and particularly in livestock used for food production with antimicrobials consumed in high volumes. Similarly, hospitals and other healthcare facilities are recognized as significant “hotspots” of ARB and antimicrobial resistance genes (ARGs); however, over the past decade, new and previously overlooked ecological niches are emerging as hidden reservoirs of ARB/ARGs. Increasingly extensive and intensive industrial activities, degradation of natural environments, burgeoning food requirements, urbanization, and global climatic change have all dramatically affected the evolution and proliferation of ARB/ARGs, which now stand at extremely concerning ecological levels. While antimicrobial resistant bacteria and genes as they originate and emanate from livestock and human hosts have been extensively studied over the past 30 years, numerous ecological niches have received considerably less attention. In the current descriptive review, the authors have sought to highlight the importance of wildlife as sources/reservoirs, pathways and receptors of ARB/ARGs in the environment, thus paving the way for future primary research in these areas.
Collapse
Affiliation(s)
- Mohamed Salah Abbassi
- Université de Tunis El Manar, Institut de la recherche vétérinaire de Tunisie, Tunis, Tunisia
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES09 Laboratoire de recherche «Résistance aux antimicrobiens» 1007, Tunis, Tunisia
| | - Souhir Badi
- Université de Tunis El Manar, Institut de la recherche vétérinaire de Tunisie, Tunis, Tunisia
| | - Sana Lengliz
- Université de Tunis El Manar, Institut de la recherche vétérinaire de Tunisie, Tunis, Tunisia
| | - Riadh Mansouri
- Université de Tunis El Manar, Institut de la recherche vétérinaire de Tunisie, Tunis, Tunisia
| | - Salah Hammami
- Université Manouba, IRESA, École Nationale de Médecine Vétérinaire de Sidi Thabet, Sidi Thabet 2020, Ariana, Tunisia
| | - Paul Hynds
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin, Grangegorman, Dublin 7, Dublin, Republic of Ireland
| |
Collapse
|
7
|
Andreo-Vidal A, Binda E, Fedorenko V, Marinelli F, Yushchuk O. Genomic Insights into the Distribution and Phylogeny of Glycopeptide Resistance Determinants within the Actinobacteria Phylum. Antibiotics (Basel) 2021; 10:1533. [PMID: 34943745 PMCID: PMC8698665 DOI: 10.3390/antibiotics10121533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/26/2022] Open
Abstract
The spread of antimicrobial resistance (AMR) creates a challenge for global health security, rendering many previously successful classes of antibiotics useless. Unfortunately, this also includes glycopeptide antibiotics (GPAs), such as vancomycin and teicoplanin, which are currently being considered last-resort drugs. Emerging resistance towards GPAs risks limiting the clinical use of this class of antibiotics-our ultimate line of defense against multidrug-resistant (MDR) Gram-positive pathogens. But where does this resistance come from? It is widely recognized that the GPA resistance determinants-van genes-might have originated from GPA producers, such as soil-dwelling Gram-positive actinobacteria, that use them for self-protection. In the current work, we present a comprehensive bioinformatics study on the distribution and phylogeny of GPA resistance determinants within the Actinobacteria phylum. Interestingly, van-like genes (vlgs) were found distributed in different arrangements not only among GPA-producing actinobacteria but also in the non-producers: more than 10% of the screened actinobacterial genomes contained one or multiple vlgs, while less than 1% encoded for a biosynthetic gene cluster (BGC). By phylogenetic reconstructions, our results highlight the co-evolution of the different vlgs, indicating that the most diffused are the ones coding for putative VanY carboxypeptidases, which can be found alone in the genomes or associated with a vanS/R regulatory pair.
Collapse
Affiliation(s)
- Andrés Andreo-Vidal
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.A.-V.); (E.B.); (O.Y.)
| | - Elisa Binda
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.A.-V.); (E.B.); (O.Y.)
| | - Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine;
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.A.-V.); (E.B.); (O.Y.)
| | - Oleksandr Yushchuk
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.A.-V.); (E.B.); (O.Y.)
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine;
| |
Collapse
|
8
|
Looking Back to Amycolatopsis: History of the Antibiotic Discovery and Future Prospects. Antibiotics (Basel) 2021; 10:antibiotics10101254. [PMID: 34680834 PMCID: PMC8532670 DOI: 10.3390/antibiotics10101254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
The emergence of antibiotic-resistant pathogenic bacteria in recent decades leads us to an urgent need for the development of new antibacterial agents. The species of the genus Amycolatopsis are known as producers of secondary metabolites that are used in medicine and agriculture. The complete genome sequences of the Amycolatopsis demonstrate a wide variety of biosynthetic gene clusters, which highlights the potential ability of actinomycetes of this genus to produce new antibiotics. In this review, we summarize information about antibiotics produced by Amycolatopsis species. This knowledge demonstrates the prospects for further study of this genus as an enormous source of antibiotics.
Collapse
|
9
|
Sibinelli-Sousa S, Hespanhol JT, Bayer-Santos E. Targeting the Achilles' Heel of Bacteria: Different Mechanisms To Break Down the Peptidoglycan Cell Wall during Bacterial Warfare. J Bacteriol 2021; 203:e00478-20. [PMID: 33139480 PMCID: PMC8088523 DOI: 10.1128/jb.00478-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bacteria commonly live in dense polymicrobial communities and compete for scarce resources. Consequently, they employ a diverse array of mechanisms to harm, inhibit, and kill their competitors. The cell wall is essential for bacterial survival by providing mechanical strength to resist osmotic stress. Because peptidoglycan is the major component of the cell wall and its synthesis is a complex multistep pathway that requires the coordinate action of several enzymes, it provides a target for rival bacteria, which have developed a large arsenal of antibacterial molecules to attack the peptidoglycan of competitors. These molecules include antibiotics, bacteriocins, and contact-dependent effectors that are either secreted into the medium or directly translocated into a target cell. In this minireview, we summarize the diversity of these molecules and highlight distinct mechanisms to disrupt the peptidoglycan, giving special attention to molecules that are known or have the potential to be used during interbacterial competitions.
Collapse
Affiliation(s)
- Stephanie Sibinelli-Sousa
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Julia Takuno Hespanhol
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ethel Bayer-Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Upert G, Luther A, Obrecht D, Ermert P. Emerging peptide antibiotics with therapeutic potential. MEDICINE IN DRUG DISCOVERY 2021; 9:100078. [PMID: 33398258 PMCID: PMC7773004 DOI: 10.1016/j.medidd.2020.100078] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/15/2020] [Accepted: 12/27/2020] [Indexed: 02/09/2023] Open
Abstract
This review covers some of the recent progress in the field of peptide antibiotics with a focus on compounds with novel or established mode of action and with demonstrated efficacy in animal infection models. Novel drug discovery approaches, linear and macrocyclic peptide antibiotics, lipopeptides like the polymyxins as well as peptides addressing targets located in the plasma membrane or in the outer membrane of bacterial cells are discussed.
Collapse
Key Words
- ADMET, absorption, distribution, metabolism and excretion – toxicity in pharmacokinetics
- AMP, antimicrobial peptide
- AMR, antimicrobial resistance
- ATCC, ATCC cell collection
- Antibiotic
- BAM, β-barrel assembly machinery
- CC50, cytotoxic concentration to kill 50% of cells
- CD, circular dichroism
- CFU, colony forming unit
- CLSI, clinical and laboratory standards institute
- CMS, colistin methane sulfonate
- DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphocholine
- ESKAPE, acronym encompassing six bacterial pathogens (often carrying antibiotic resistance): Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp
- FDA, U. S. Food and Drug Administration
- HABP, hospital acquired bacterial pneumonia
- HDP, host-defense peptide
- HEK293, human embryonic kidney 293 cells
- HK-2, human kidney 2 cells (proximal tubular cell line)
- HepG2, human hepatocellular carcinoma cell line
- Hpg, 4-hydroxy-phenyl glycine
- ITC, isothermal titration calorimetry
- KPC, Klebsiella pneumoniae metallo-β-lactamase C resistant
- LPS, lipopolysaccharide
- LptA, lipopolysaccharide transport protein A
- LptC, lipopolysaccharide transport protein C
- LptD, lipopolysaccharide transport protein D
- MDR, multidrug-resistant
- MH-I, Müller-Hinton broth I
- MH-II, Müller-Hinton broth II (cation adjusted)
- MIC, minimal inhibitory concentration
- MRSA, methicilline-resistant S. aureus
- MSSA, methicilline-sensitive S. aureus
- MoA, mechanism (mode) of action
- NDM-1, New Delhi metallo-β-lactamase resistant
- NOAEL, no adverse effect level
- ODL, odilorhabdin
- OMPTA (outer membrane targeting antibiotic)
- OMPTA, outer membrane targeting antibiotic
- Omp, outer membrane protein
- PBMC, peripheral mononuclear blood cell
- PBP, penicillin-binding protein
- PBS, phosphate-buffered saline
- PK, pharmacokinetics
- POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
- POPG, 2-oleoyl-1-palmitoyl-sn-glycero-3-phospho-(1-glycerol)
- PrAMPs, polyproline antimicrobial peptides
- RBC, red blood cell
- SAR, structure-activity relationship
- SPR, surface plasmon resonance
- SPase I, signal peptidase I
- VABP, ventilator associated bacterial pneumonia
- VIM-1, beta-lactamase 2 (K. pneumoniae)
- VISA, vancomycin-intermediate S. aureus
- VRE, vancomycin-resistant enterococcus
- WHO, World Health Organization
- WT, wild type
- WTA, wall teichoic acid
- XDR, extremely drug-resistant
- antimicrobial peptide
- antimicrobial resistance
- bid, bis in die (two times a day)
- i.p., intraperitoneal
- i.v., intravenous
- lipopeptide
- mITT population, minimal intend-to-treat population
- peptide antibiotic
- s.c., subcutaneous
Collapse
Affiliation(s)
- Gregory Upert
- Polyphor Ltd, Hegenheimermattweg 125, 4123 Allschwil, Switzerland
| | - Anatol Luther
- Bachem AG, Hauptstrasse 114, 4416 Bubendorf, Switzerland
| | - Daniel Obrecht
- Polyphor Ltd, Hegenheimermattweg 125, 4123 Allschwil, Switzerland
| | - Philipp Ermert
- Polyphor Ltd, Hegenheimermattweg 125, 4123 Allschwil, Switzerland
| |
Collapse
|
11
|
Burkholderia ubonensis High-Level Tetracycline Resistance Is Due to Efflux Pump Synergy Involving a Novel TetA(64) Resistance Determinant. Antimicrob Agents Chemother 2021; 65:AAC.01767-20. [PMID: 33318011 DOI: 10.1128/aac.01767-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Burkholderia ubonensis, a nonpathogenic soil bacterium belonging to the Burkholderia cepacia complex (Bcc), is highly resistant to some clinically significant antibiotics. The concern is that B. ubonensis may serve as a resistance reservoir for Bcc or B. pseudomallei complex (Bpc) organisms that are opportunistic human pathogens. Using a B. ubonensis strain highly resistant to tetracycline (MIC, ≥256 µg/ml), we identified and characterized tetA(64) that encodes a novel tetracycline-specific efflux pump of the major facilitator superfamily. TetA(64) and associated TetR(64) regulator expression are induced by tetracyclines. Although TetA(64) is the primary tetracycline and doxycycline resistance determinant, maximum tetracycline and doxycycline resistance requires synergy between TetA(64) and the nonspecific AmrAB-OprA resistance nodulation cell division efflux pump. TetA(64) does not efflux minocycline, tigecycline, and eravacycline. Comprehensive screening of genome sequences showed that TetA(64) is unequally distributed in the Bcc and absent from the Bpc. It is present in some major cystic fibrosis pathogens, like Burkholderia cenocepacia, but absent from others like Burkholderia multivorans The tetR(64)-tetA(64) genes are located in a region of chromosome 1 that is highly conserved in Burkholderia sp. Because there is no evidence for transposition, the tetR(64)-tetA(64) genes may have been acquired by homologous recombination after horizontal gene transfer. Although Burkholderia species contain a resident multicomponent efflux pump that allows them to respond to tetracyclines up to a certain concentration, the acquisition of the single-component TetA(64) by some species likely provides the synergy that these bacteria need to defend against high tetracycline concentrations in niche environments.
Collapse
|
12
|
Chernova OA, Chernov VM, Mouzykantov AA, Baranova NB, Edelstein IA, Aminov RI. Antimicrobial drug resistance mechanisms among Mollicutes. Int J Antimicrob Agents 2020; 57:106253. [PMID: 33264670 DOI: 10.1016/j.ijantimicag.2020.106253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 07/08/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022]
Abstract
Representatives of the Mollicutes class are the smallest, wall-less bacteria capable of independent reproduction. They are widespread in nature, most are commensals, and some are pathogens of humans, animals and plants. They are also the main contaminants of cell cultures and vaccine preparations. Despite limited biosynthetic capabilities, they are highly adaptable and capable of surviving under various stress and extreme conditions, including antimicrobial selective pressure. This review describes current understanding of antibiotic resistance (ABR) mechanisms in Mollicutes. Protective mechanisms in these bacteria include point mutations, which may include non-target genes, and unique gene exchange mechanisms, contributing to transfer of ABR genes. Better understanding of the mechanisms of emergence and dissemination of ABR in Mollicutes is crucial to control these hypermutable bacteria and prevent the occurrence of highly ABR strains.
Collapse
Affiliation(s)
- Olga A Chernova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Vladislav M Chernov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Alexey A Mouzykantov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Natalya B Baranova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Inna A Edelstein
- Smolensk State Medical University, Ministry of Health of Russian Federation, Smolensk, Russian Federation
| | - Rustam I Aminov
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| |
Collapse
|
13
|
Wu ZC, Boger DL. Maxamycins: Durable Antibiotics Derived by Rational Redesign of Vancomycin. Acc Chem Res 2020; 53:2587-2599. [PMID: 33138354 DOI: 10.1021/acs.accounts.0c00569] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since its discovery, vancomycin has been used in the clinic for >60 years. Because of their durability, vancomycin and related glycopeptides serve as the antibiotics of last resort for the treatment of protracted bacterial infections of resistant Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant (MDR) Streptococcus pneumoniae. After 30 years of use, vancomycin resistance was first observed and is now widespread in enterococci and more recently in S. aureus. The widespread prevalence of vancomycin-resistant enterococci (VRE) and the emergence of vancomycin-resistant S. aureus (VRSA) represent a call to focus on the challenge of resistance, highlight the need for new therapeutics, and provide the inspiration for the design of more durable antibiotics less prone to bacterial resistance than even vancomycin.Herein we summarize progress on efforts to overcome vancomycin resistance, first addressing recovery of its original durable mechanism of action and then introducing additional independent mechanisms of action intended to increase the potency and durability beyond that of vancomycin itself. The knowledge of the origin of vancomycin resistance and an understanding of the molecular basis of the loss of binding affinity between vancomycin and the altered target ligand d-Ala-d-Lac provided the basis for the subtle and rational redesign of the vancomycin binding pocket to remove the destabilizing lone-pair repulsion or reintroduce a lost H-bond while not impeding binding to the unaltered ligand d-Ala-d-Ala. Preparation of the modified glycopeptide core structure was conducted by total synthesis, providing binding pocket-modified vancomycin aglycons with dual d-Ala-d-Ala/d-Lac binding properties that directly address the intrinsic mechanism of resistance to vancomycin. Fully glycosylated pocket-modified vancomycin analogues were generated through a subsequent two-step enzymatic glycosylation, providing a starting point for peripheral modifications used to introduce additional mechanisms of action. A well-established vancosamine N-(4-chlorobiphenyl)methyl (CBP) modification as well as newly discovered C-terminal trimethylammonium cation (C1) or guanidine modifications were introduced, providing two additional synergistic mechanisms of action independent of d-Ala-d-Ala/d-Lac binding. The CBP modification provides an additional stage for inhibition of cell wall synthesis that results from direct competitive inhibition of transglycosylase, whereas the C1/guanidine modification induces bacteria cell permeablization. The synergistic behavior of the three independent mechanisms of action combined in a single molecule provides ultrapotent antibiotics (MIC = 0.01-0.005 μg/mL against VanA VRE). Beyond the remarkable antimicrobial activity, the multiple mechanisms of action suppress the rate at which resistance may be selected, where any single mechanism of action is protected by the action of others. The results detailed herein show that rational targeting of durable vancomycin-derived antibiotics has generated compounds with a "resistance against resistance", provided new candidate antibiotics, and may serve as a generalizable strategy to combat antibacterial resistance.
Collapse
Affiliation(s)
- Zhi-Chen Wu
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L. Boger
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
14
|
Yushchuk O, Binda E, Marinelli F. Glycopeptide Antibiotic Resistance Genes: Distribution and Function in the Producer Actinomycetes. Front Microbiol 2020; 11:1173. [PMID: 32655512 PMCID: PMC7325946 DOI: 10.3389/fmicb.2020.01173] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
Glycopeptide antibiotics (GPAs) are considered drugs of "last resort" for the treatment of life-threatening infections caused by relevant Gram-positive pathogens (enterococci, staphylococci, and clostridia). Driven by the issue of the never-stopping evolution of bacterial antibiotic resistance, research on GPA biosynthesis and resistance is developing fast in modern "post-genomic" era. It is today widely accepted that resistance mechanisms emerging in pathogens have been acquired from the soil-dwelling antibiotic-producing actinomycetes, which use them to avoid suicide during production, rather than being orchestrated de novo by pathogen bacteria upon continued treatment. Actually, more and more genomes of GPA producers are being unraveled, carrying a broad collection of differently arranged GPA resistance (named van) genes. In the producer actinomycetes, van genes are generally associated with the antibiotic biosynthetic gene clusters (BGCs) deputed to GPA biosynthesis, being probably transferred/arranged together, favoring a possible co-regulation between antibiotic production and self-resistance. GPA BGC-associated van genes have been also found mining public databases of bacterial genomic and metagenomic sequences. Interestingly, some BGCs for antibiotics, seemingly unrelated to GPAs (e.g., feglymycin), carry van gene homologues. Herein, we would like to cover the recent advances on the distribution of GPA resistance genes in genomic and metagenomics datasets related to GPA potential/proved producer microorganisms. A thorough understanding of GPA resistance in the producing microorganisms may prove useful in the future surveillance of emerging mechanisms of resistance to this clinically relevant antibiotic class.
Collapse
Affiliation(s)
- Oleksandr Yushchuk
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Elisa Binda
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
15
|
Wright GD. Environmental and clinical antibiotic resistomes, same only different. Curr Opin Microbiol 2019; 51:57-63. [DOI: 10.1016/j.mib.2019.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/10/2019] [Accepted: 06/20/2019] [Indexed: 10/26/2022]
|
16
|
Ogawara H. Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria. Molecules 2019; 24:E3430. [PMID: 31546630 PMCID: PMC6804068 DOI: 10.3390/molecules24193430] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance poses a tremendous threat to human health. To overcome this problem, it is essential to know the mechanism of antibiotic resistance in antibiotic-producing and pathogenic bacteria. This paper deals with this problem from four points of view. First, the antibiotic resistance genes in producers are discussed related to their biosynthesis. Most resistance genes are present within the biosynthetic gene clusters, but some genes such as paromomycin acetyltransferases are located far outside the gene cluster. Second, when the antibiotic resistance genes in pathogens are compared with those in the producers, resistance mechanisms have dependency on antibiotic classes, and, in addition, new types of resistance mechanisms such as Eis aminoglycoside acetyltransferase and self-sacrifice proteins in enediyne antibiotics emerge in pathogens. Third, the relationships of the resistance genes between producers and pathogens are reevaluated at their amino acid sequence as well as nucleotide sequence levels. Pathogenic bacteria possess other resistance mechanisms than those in antibiotic producers. In addition, resistance mechanisms are little different between early stage of antibiotic use and the present time, e.g., β-lactam resistance in Staphylococcus aureus. Lastly, guanine + cytosine (GC) barrier in gene transfer to pathogenic bacteria is considered. Now, the resistance genes constitute resistome composed of complicated mixture from divergent environments.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, 33-9, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, 522-1, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
17
|
Unsleber S, Wohlleben W, Stegmann E. Diversity of peptidoglycan structure—Modifications and their physiological role in resistance in antibiotic producers. Int J Med Microbiol 2019; 309:151332. [DOI: 10.1016/j.ijmm.2019.151332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 11/29/2022] Open
|
18
|
Alanjary M, Kronmiller B, Adamek M, Blin K, Weber T, Huson D, Philmus B, Ziemert N. The Antibiotic Resistant Target Seeker (ARTS), an exploration engine for antibiotic cluster prioritization and novel drug target discovery. Nucleic Acids Res 2019; 45:W42-W48. [PMID: 28472505 PMCID: PMC5570205 DOI: 10.1093/nar/gkx360] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 04/20/2017] [Indexed: 11/12/2022] Open
Abstract
With the rise of multi-drug resistant pathogens and the decline in number of potential new antibiotics in development there is a fervent need to reinvigorate the natural products discovery pipeline. Most antibiotics are derived from secondary metabolites produced by microorganisms and plants. To avoid suicide, an antibiotic producer harbors resistance genes often found within the same biosynthetic gene cluster (BGC) responsible for manufacturing the antibiotic. Existing mining tools are excellent at detecting BGCs or resistant genes in general, but provide little help in prioritizing and identifying gene clusters for compounds active against specific and novel targets. Here we introduce the 'Antibiotic Resistant Target Seeker' (ARTS) available at https://arts.ziemertlab.com. ARTS allows for specific and efficient genome mining for antibiotics with interesting and novel targets. The aim of this web server is to automate the screening of large amounts of sequence data and to focus on the most promising strains that produce antibiotics with new modes of action. ARTS integrates target directed genome mining methods, antibiotic gene cluster predictions and 'essential gene screening' to provide an interactive page for rapid identification of known and putative targets in BGCs.
Collapse
Affiliation(s)
- Mohammad Alanjary
- Interfaculty Institute of Microbiology and Infection Medicine, Microbiology/Biotechnology, University of Tübingen, 72076 Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Brent Kronmiller
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, 97331 OR, USA
| | - Martina Adamek
- Interfaculty Institute of Microbiology and Infection Medicine, Microbiology/Biotechnology, University of Tübingen, 72076 Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Kai Blin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Daniel Huson
- Center for Bioinformatics, University of Tübingen, 72076 Tübingen, Germany
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, 97331 OR, USA
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine, Microbiology/Biotechnology, University of Tübingen, 72076 Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
19
|
Raoult D, Rolain JM. The living croquet theory: The Staphylococcus aureus paradigm. Int J Antimicrob Agents 2019; 53:724-725. [DOI: 10.1016/j.ijantimicag.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/14/2019] [Accepted: 04/07/2019] [Indexed: 11/28/2022]
|
20
|
Durand GA, Raoult D, Dubourg G. Antibiotic discovery: history, methods and perspectives. Int J Antimicrob Agents 2019; 53:371-382. [DOI: 10.1016/j.ijantimicag.2018.11.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/12/2018] [Accepted: 11/17/2018] [Indexed: 02/08/2023]
|
21
|
Tran PN, Yen MR, Chiang CY, Lin HC, Chen PY. Detecting and prioritizing biosynthetic gene clusters for bioactive compounds in bacteria and fungi. Appl Microbiol Biotechnol 2019; 103:3277-3287. [PMID: 30859257 PMCID: PMC6449301 DOI: 10.1007/s00253-019-09708-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 11/23/2022]
Abstract
Secondary metabolites (SM) produced by fungi and bacteria have long been of exceptional interest owing to their unique biomedical ramifications. The traditional discovery of new natural products that was mainly driven by bioactivity screening has now experienced a fresh new approach in the form of genome mining. Several bioinformatics tools have been continuously developed to detect potential biosynthetic gene clusters (BGCs) that are responsible for the production of SM. Although the principles underlying the computation of these tools have been discussed, the biological background is left underrated and ambiguous. In this review, we emphasize the biological hypotheses in BGC formation driven from the observations across genomes in bacteria and fungi, and provide a comprehensive list of updated algorithms/tools exclusively for BGC detection. Our review points to a direction that the biological hypotheses should be systematically incorporated into the BGC prediction and assist the prioritization of candidate BGC.
Collapse
Affiliation(s)
- Phuong Nguyen Tran
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, 11529, Taiwan
| | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, 11529, Taiwan
| | - Chen-Yu Chiang
- Institute of Biological Chemistry, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, 11529, Taiwan
| | - Hsiao-Ching Lin
- Institute of Biological Chemistry, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, 11529, Taiwan.
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, 11529, Taiwan.
| |
Collapse
|
22
|
Abstract
The study of the genetics of enterococci has focused heavily on mobile genetic elements present in these organisms, the complex regulatory circuits used to control their mobility, and the antibiotic resistance genes they frequently carry. Recently, more focus has been placed on the regulation of genes involved in the virulence of the opportunistic pathogenic species Enterococcus faecalis and Enterococcus faecium. Little information is available concerning fundamental aspects of DNA replication, partition, and division; this article begins with a brief overview of what little is known about these issues, primarily by comparison with better-studied model organisms. A variety of transcriptional and posttranscriptional mechanisms of regulation of gene expression are then discussed, including a section on the genetics and regulation of vancomycin resistance in enterococci. The article then provides extensive coverage of the pheromone-responsive conjugation plasmids, including sections on regulation of the pheromone response, the conjugative apparatus, and replication and stable inheritance. The article then focuses on conjugative transposons, now referred to as integrated, conjugative elements, or ICEs, and concludes with several smaller sections covering emerging areas of interest concerning the enterococcal mobilome, including nonpheromone plasmids of particular interest, toxin-antitoxin systems, pathogenicity islands, bacteriophages, and genome defense.
Collapse
Affiliation(s)
- Keith E Weaver
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| |
Collapse
|
23
|
Panina IS, Chugunov AO, Efremov RG. Lipid II as a Target for Novel Antibiotics: Structural and Molecular Dynamics Studies. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019010126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Konaklieva MI. Addressing Antimicrobial Resistance through New Medicinal and Synthetic Chemistry Strategies. SLAS DISCOVERY 2018; 24:419-439. [PMID: 30523713 DOI: 10.1177/2472555218812657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the past century, a multitude of derivatives of structural scaffolds with established antimicrobial potential have been prepared and tested, and a variety of new scaffolds have emerged. The effectiveness of antibiotics, however, is in sharp decline because of the emergence of drug-resistant microorganisms. The prevalence of drug resistance, both in clinical and community settings, is a consequence of bacterial ingenuity in altering pathways and/or cell morphology, making it a persistent threat to human health. The fundamental ability of pathogens to survive in a multitude of habitats can be triggered by recognition of chemical signals that warn organisms of exposure to a potentially harmful environment. Host immune defenses, including reactive oxygen intermediates and antibacterial substances, are among the multitude of chemical signals that can subsequently trigger expression of phenotypes better adapted for survival in that hostile environment. Thus, resistance development appears to be unavoidable, which leads to the conclusion that developing an alternative perspective for treatment options is vital. This review will discuss emerging medicinal chemistry approaches for addressing the global multidrug resistance in the 21st century.
Collapse
|
25
|
Peterson E, Kaur P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front Microbiol 2018; 9:2928. [PMID: 30555448 PMCID: PMC6283892 DOI: 10.3389/fmicb.2018.02928] [Citation(s) in RCA: 472] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/14/2018] [Indexed: 11/13/2022] Open
Abstract
Emergence of antibiotic resistant pathogenic bacteria poses a serious public health challenge worldwide. However, antibiotic resistance genes are not confined to the clinic; instead they are widely prevalent in different bacterial populations in the environment. Therefore, to understand development of antibiotic resistance in pathogens, we need to consider important reservoirs of resistance genes, which may include determinants that confer self-resistance in antibiotic producing soil bacteria and genes encoding intrinsic resistance mechanisms present in all or most non-producer environmental bacteria. While the presence of resistance determinants in soil and environmental bacteria does not pose a threat to human health, their mobilization to new hosts and their expression under different contexts, for example their transfer to plasmids and integrons in pathogenic bacteria, can translate into a problem of huge proportions, as discussed in this review. Selective pressure brought about by human activities further results in enrichment of such determinants in bacterial populations. Thus, there is an urgent need to understand distribution of resistance determinants in bacterial populations, elucidate resistance mechanisms, and determine environmental factors that promote their dissemination. This comprehensive review describes the major known self-resistance mechanisms found in producer soil bacteria of the genus Streptomyces and explores the relationships between resistance determinants found in producer soil bacteria, non-producer environmental bacteria, and clinical isolates. Specific examples highlighting potential pathways by which pathogenic clinical isolates might acquire these resistance determinants from soil and environmental bacteria are also discussed. Overall, this article provides a conceptual framework for understanding the complexity of the problem of emergence of antibiotic resistance in the clinic. Availability of such knowledge will allow researchers to build models for dissemination of resistance genes and for developing interventions to prevent recruitment of additional or novel genes into pathogens.
Collapse
Affiliation(s)
- Elizabeth Peterson
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Parjit Kaur
- Department of Biology, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
26
|
Molina‐Santiago C, de Vicente A, Romero D. The race for antimicrobials in the multidrug resistance era. Microb Biotechnol 2018; 11:976-978. [PMID: 29205906 PMCID: PMC6196379 DOI: 10.1111/1751-7915.12884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/13/2017] [Indexed: 11/30/2022] Open
Abstract
The appearance of multidrug-resistant pathogens is a major threat to human health with the reemergence of fatal and untreatable diseases. In addition to a rational use of the well-known and available antibiotics, two complementary ways to overcome this public health issue are (i) the discovery of new antimicrobials and (ii) the chemical modification of pre-existing potent antibiotics. In this article, we highlight some of the strategies to generate new and promising antimicrobials for use in the management of these so-called 'superbugs'.
Collapse
Affiliation(s)
- Carlos Molina‐Santiago
- Departamento de MicrobiologíaInstituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”Universidad de MálagaBulevar Louis Pasteur 31 (Campus Universitario de teatinos)29071MálagaSpain
| | - Antonio de Vicente
- Departamento de MicrobiologíaInstituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”Universidad de MálagaBulevar Louis Pasteur 31 (Campus Universitario de teatinos)29071MálagaSpain
| | - Diego Romero
- Departamento de MicrobiologíaInstituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”Universidad de MálagaBulevar Louis Pasteur 31 (Campus Universitario de teatinos)29071MálagaSpain
| |
Collapse
|
27
|
Trichlorination of a Teicoplanin-Type Glycopeptide Antibiotic by the Halogenase StaI Evades Resistance. Antimicrob Agents Chemother 2018; 62:AAC.01540-18. [PMID: 30275088 DOI: 10.1128/aac.01540-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/22/2018] [Indexed: 01/31/2023] Open
Abstract
Glycopeptide antibiotics (GPAs) include clinically important drugs used for the treatment of infections caused by Gram-positive pathogens. These antibiotics are specialized metabolites produced by several genera of actinomycete bacteria. While many GPAs are highly chemically modified, A47934 is a relatively unadorned GPA lacking sugar or acyl modifications, common to other members of the class, but which is chlorinated at three distinct sites. The biosynthesis of A47934 is encoded by a 68-kb gene cluster in Streptomyces toyocaensis NRRL 15009. The cluster includes all necessary genes for the synthesis of A47934, including two predicted halogenase genes, staI and staK In this study, we report that only one of the halogenase genes, staI, is necessary and essential for A47934 biosynthesis. Chlorination of the A47934 scaffold is important for antibiotic activity, as assessed by binding affinity for the target N-acyl-d-Ala-d-Ala. Surprisingly, chlorination is also vital to avoid activation of enterococcal and Streptomyces VanB-type GPA resistance through induction of resistance genes. Phenotypic assays showed stronger induction of GPA resistance by the dechlorinated compared to the chlorinated GPA. Correspondingly, the relative expression of the enterococcal vanA resistance gene was shown to be increased by the dechlorinated compared to the chlorinated compound. These results provide insight into the biosynthesis of GPAs and the biological function of GPA chlorination for this medically important class of antibiotic.
Collapse
|
28
|
Ogawara H. Comparison of Strategies to Overcome Drug Resistance: Learning from Various Kingdoms. Molecules 2018; 23:E1476. [PMID: 29912169 PMCID: PMC6100412 DOI: 10.3390/molecules23061476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
Abstract
Drug resistance, especially antibiotic resistance, is a growing threat to human health. To overcome this problem, it is significant to know precisely the mechanisms of drug resistance and/or self-resistance in various kingdoms, from bacteria through plants to animals, once more. This review compares the molecular mechanisms of the resistance against phycotoxins, toxins from marine and terrestrial animals, plants and fungi, and antibiotics. The results reveal that each kingdom possesses the characteristic features. The main mechanisms in each kingdom are transporters/efflux pumps in phycotoxins, mutation and modification of targets and sequestration in marine and terrestrial animal toxins, ABC transporters and sequestration in plant toxins, transporters in fungal toxins, and various or mixed mechanisms in antibiotics. Antibiotic producers in particular make tremendous efforts for avoiding suicide, and are more flexible and adaptable to the changes of environments. With these features in mind, potential alternative strategies to overcome these resistance problems are discussed. This paper will provide clues for solving the issues of drug resistance.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
29
|
Old and new glycopeptide antibiotics: From product to gene and back in the post-genomic era. Biotechnol Adv 2018; 36:534-554. [PMID: 29454983 DOI: 10.1016/j.biotechadv.2018.02.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/22/2018] [Accepted: 02/14/2018] [Indexed: 02/05/2023]
Abstract
Glycopeptide antibiotics are drugs of last resort for treating severe infections caused by multi-drug resistant Gram-positive pathogens. First-generation glycopeptides (vancomycin and teicoplanin) are produced by soil-dwelling actinomycetes. Second-generation glycopeptides (dalbavancin, oritavancin, and telavancin) are semi-synthetic derivatives of the progenitor natural products. Herein, we cover past and present biotechnological approaches for searching for and producing old and new glycopeptide antibiotics. We review the strategies adopted to increase microbial production (from classical strain improvement to rational genetic engineering), and the recent progress in genome mining, chemoenzymatic derivatization, and combinatorial biosynthesis for expanding glycopeptide chemical diversity and tackling the never-ceasing evolution of antibiotic resistance.
Collapse
|
30
|
Peterson E, Kaur P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front Microbiol 2018; 9:2928. [PMID: 30555448 DOI: 10.3389/fmicb.2018.02928/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/14/2018] [Indexed: 05/20/2023] Open
Abstract
Emergence of antibiotic resistant pathogenic bacteria poses a serious public health challenge worldwide. However, antibiotic resistance genes are not confined to the clinic; instead they are widely prevalent in different bacterial populations in the environment. Therefore, to understand development of antibiotic resistance in pathogens, we need to consider important reservoirs of resistance genes, which may include determinants that confer self-resistance in antibiotic producing soil bacteria and genes encoding intrinsic resistance mechanisms present in all or most non-producer environmental bacteria. While the presence of resistance determinants in soil and environmental bacteria does not pose a threat to human health, their mobilization to new hosts and their expression under different contexts, for example their transfer to plasmids and integrons in pathogenic bacteria, can translate into a problem of huge proportions, as discussed in this review. Selective pressure brought about by human activities further results in enrichment of such determinants in bacterial populations. Thus, there is an urgent need to understand distribution of resistance determinants in bacterial populations, elucidate resistance mechanisms, and determine environmental factors that promote their dissemination. This comprehensive review describes the major known self-resistance mechanisms found in producer soil bacteria of the genus Streptomyces and explores the relationships between resistance determinants found in producer soil bacteria, non-producer environmental bacteria, and clinical isolates. Specific examples highlighting potential pathways by which pathogenic clinical isolates might acquire these resistance determinants from soil and environmental bacteria are also discussed. Overall, this article provides a conceptual framework for understanding the complexity of the problem of emergence of antibiotic resistance in the clinic. Availability of such knowledge will allow researchers to build models for dissemination of resistance genes and for developing interventions to prevent recruitment of additional or novel genes into pathogens.
Collapse
Affiliation(s)
- Elizabeth Peterson
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Parjit Kaur
- Department of Biology, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
31
|
Boger DL. The Difference a Single Atom Can Make: Synthesis and Design at the Chemistry-Biology Interface. J Org Chem 2017; 82:11961-11980. [PMID: 28945374 PMCID: PMC5712263 DOI: 10.1021/acs.joc.7b02088] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Indexed: 01/24/2023]
Abstract
A Perspective of work in our laboratory on the examination of biologically active compounds, especially natural products, is presented. In the context of individual programs and along with a summary of our work, selected cases are presented that illustrate the impact single atom changes can have on the biological properties of the compounds. The examples were chosen to highlight single heavy atom changes that improve activity, rather than those that involve informative alterations that reduce or abolish activity. The examples were also chosen to illustrate that the impact of such single-atom changes can originate from steric, electronic, conformational, or H-bonding effects, from changes in functional reactivity, from fundamental intermolecular interactions with a biological target, from introduction of a new or altered functionalization site, or from features as simple as improvements in stability or physical properties. Nearly all the examples highlighted represent not only unusual instances of productive deep-seated natural product modifications and were introduced through total synthesis but are also remarkable in that they are derived from only a single heavy atom change in the structure.
Collapse
Affiliation(s)
- Dale L. Boger
- Department of Chemistry and
The Skaggs Research Institute, The Scripps
Research Institute, 10550
North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
32
|
Pidgeon SE, Pires MM. Cell Wall Remodeling by a Synthetic Analog Reveals Metabolic Adaptation in Vancomycin Resistant Enterococci. ACS Chem Biol 2017; 12:1913-1918. [PMID: 28574692 DOI: 10.1021/acschembio.7b00412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drug-resistant bacterial infections threaten to overburden our healthcare system and disrupt modern medicine. A large class of potent antibiotics, including vancomycin, operate by interfering with bacterial cell wall biosynthesis. Vancomycin-resistant enterococci (VRE) evade the blockage of cell wall biosynthesis by altering cell wall precursors, rendering them drug insensitive. Herein, we reveal the phenotypic plasticity and cell wall remodeling of VRE in response to vancomycin in live bacterial cells via a metabolic probe. A synthetic cell wall analog was designed and constructed to monitor cell wall structural alterations. Our results demonstrate that the biosynthetic pathway for vancomycin-resistant precursors can be hijacked by synthetic analogs to track the kinetics of phenotype induction. In addition, we leveraged this probe to interrogate the response of VRE cells to vancomycin analogs and a series of cell wall-targeted antibiotics. Finally, we describe a proof-of-principle strategy to visually inspect drug resistance induction. Based on our findings, we anticipate that our metabolic probe will play an important role in further elucidating the interplay among the enzymes involved in the VRE biosynthetic rewiring.
Collapse
Affiliation(s)
- Sean E. Pidgeon
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Marcos M. Pires
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
33
|
Abstract
Antibiotic resistance is an ancient biological mechanism in bacteria, although its proliferation in our contemporary world has been amplified through antimicrobial therapy. Recent studies conducted on ancient environmental and human samples have uncovered numerous antibiotic-resistant bacteria and resistance genes. The resistance genes that have been reported from the analysis of ancient bacterial DNA include genes coding for several classes of antibiotics, such as glycopeptides, β-lactams, tetracyclines, and macrolides. The investigation of the resistome of ancient bacteria is a recent and emerging field of research, and technological advancements such as next-generation sequencing will further contribute to its growth. It is hoped that the knowledge gained from this research will help us to better understand the evolution of antibiotic resistance genes and will also be used in drug design as a proactive measure against antibiotic resistance.
Collapse
|
34
|
Abstract
Antibiotic resistance is a global public health issue of growing proportions. All antibiotics are susceptible to resistance. The evidence is now clear that the environment is the single largest source and reservoir of resistance. Soil, aquatic, atmospheric, animal-associated, and built ecosystems are home to microbes that harbor antibiotic resistance elements and the means to mobilize them. The diversity and abundance of resistance in the environment is consistent with the ancient origins of antibiotics and a variety of studies support a long natural history of associated resistance. The implications are clear: Understanding the evolution of resistance in the environment, its diversity, and mechanisms is essential to the management of our existing and future antibiotic resources.
Collapse
Affiliation(s)
- Matthew D Surette
- M.G. DeGroote Institute for Infectious Disease Research and.,Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, Ontario L8N 4K1;
| | - Gerard D Wright
- M.G. DeGroote Institute for Infectious Disease Research and.,Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, Ontario L8N 4K1;
| |
Collapse
|
35
|
Jiang X, Ellabaan MMH, Charusanti P, Munck C, Blin K, Tong Y, Weber T, Sommer MOA, Lee SY. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat Commun 2017; 8:15784. [PMID: 28589945 PMCID: PMC5467266 DOI: 10.1038/ncomms15784] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/27/2017] [Indexed: 12/25/2022] Open
Abstract
It has been hypothesized that some antibiotic resistance genes (ARGs) found in pathogenic bacteria derive from antibiotic-producing actinobacteria. Here we provide bioinformatic and experimental evidence supporting this hypothesis. We identify genes in proteobacteria, including some pathogens, that appear to be closely related to actinobacterial ARGs known to confer resistance against clinically important antibiotics. Furthermore, we identify two potential examples of recent horizontal transfer of actinobacterial ARGs to proteobacterial pathogens. Based on this bioinformatic evidence, we propose and experimentally test a 'carry-back' mechanism for the transfer, involving conjugative transfer of a carrier sequence from proteobacteria to actinobacteria, recombination of the carrier sequence with the actinobacterial ARG, followed by natural transformation of proteobacteria with the carrier-sandwiched ARG. Our results support the existence of ancient and, possibly, recent transfers of ARGs from antibiotic-producing actinobacteria to proteobacteria, and provide evidence for a defined mechanism.
Collapse
Affiliation(s)
- Xinglin Jiang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Mostafa M. Hashim Ellabaan
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Pep Charusanti
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Christian Munck
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Kai Blin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Yaojun Tong
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Morten O. A. Sommer
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
36
|
Peripheral modifications of [Ψ[CH 2NH]Tpg 4]vancomycin with added synergistic mechanisms of action provide durable and potent antibiotics. Proc Natl Acad Sci U S A 2017; 114:E5052-E5061. [PMID: 28559345 DOI: 10.1073/pnas.1704125114] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Subsequent to binding pocket modifications designed to provide dual d-Ala-d-Ala/d-Ala-d-Lac binding that directly overcome the molecular basis of vancomycin resistance, peripheral structural changes have been explored to improve antimicrobial potency and provide additional synergistic mechanisms of action. A C-terminal peripheral modification, introducing a quaternary ammonium salt, is reported and was found to provide a binding pocket-modified vancomycin analog with a second mechanism of action that is independent of d-Ala-d-Ala/d-Ala-d-Lac binding. This modification, which induces cell wall permeability and is complementary to the glycopeptide inhibition of cell wall synthesis, was found to provide improvements in antimicrobial potency (200-fold) against vancomycin-resistant Enterococci (VRE). Furthermore, it is shown that this type of C-terminal modification may be combined with a second peripheral (4-chlorobiphenyl)methyl (CBP) addition to the vancomycin disaccharide to provide even more potent antimicrobial agents [VRE minimum inhibitory concentration (MIC) = 0.01-0.005 μg/mL] with activity that can be attributed to three independent and synergistic mechanisms of action, only one of which requires d-Ala-d-Ala/d-Ala-d-Lac binding. Finally, it is shown that such peripherally and binding pocket-modified vancomycin analogs display little propensity for acquired resistance by VRE and that their durability against such challenges as well as their antimicrobial potency follow now predictable trends (three > two > one mechanisms of action). Such antibiotics are expected to display durable antimicrobial activity not prone to rapidly acquired clinical resistance.
Collapse
|
37
|
Okano A, Isley NA, Boger DL. Total Syntheses of Vancomycin-Related Glycopeptide Antibiotics and Key Analogues. Chem Rev 2017; 117:11952-11993. [PMID: 28437097 DOI: 10.1021/acs.chemrev.6b00820] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A review of efforts that have provided total syntheses of vancomycin and related glycopeptide antibiotics, their agylcons, and key analogues is provided. It is a tribute to developments in organic chemistry and the field of organic synthesis that not only can molecules of this complexity be prepared today by total synthesis but such efforts can be extended to the preparation of previously inaccessible key analogues that contain deep-seated structural changes. With the increasing prevalence of acquired bacterial resistance to existing classes of antibiotics and with the emergence of vancomycin-resistant pathogens (VRSA and VRE), the studies pave the way for the examination of synthetic analogues rationally designed to not only overcome vancomycin resistance but provide the foundation for the development of even more powerful and durable antibiotics.
Collapse
Affiliation(s)
- Akinori Okano
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Nicholas A Isley
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L Boger
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
38
|
Substrate Inhibition of VanA by d-Alanine Reduces Vancomycin Resistance in a VanX-Dependent Manner. Antimicrob Agents Chemother 2016; 60:4930-9. [PMID: 27270282 DOI: 10.1128/aac.00276-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/30/2016] [Indexed: 12/12/2022] Open
Abstract
The increasing resistance of clinical pathogens against the glycopeptide antibiotic vancomycin, a last-resort drug against infections with Gram-positive pathogens, is a major problem in the nosocomial environment. Vancomycin inhibits peptidoglycan synthesis by binding to the d-Ala-d-Ala terminal dipeptide moiety of the cell wall precursor lipid II. Plasmid-transferable resistance is conferred by modification of the terminal dipeptide into the vancomycin-insensitive variant d-Ala-d-Lac, which is produced by VanA. Here we show that exogenous d-Ala competes with d-Lac as a substrate for VanA, increasing the ratio of wild-type to mutant dipeptide, an effect that was augmented by several orders of magnitude in the absence of the d-Ala-d-Ala peptidase VanX. Liquid chromatography-mass spectrometry (LC-MS) analysis showed that high concentrations of d-Ala led to the production of a significant amount of wild-type cell wall precursors, while vanX-null mutants produced primarily wild-type precursors. This enhanced the efficacy of vancomycin in the vancomycin-resistant model organism Streptomyces coelicolor, and the susceptibility of vancomycin-resistant clinical isolates of Enterococcus faecium (VRE) increased by up to 100-fold. The enhanced vancomycin sensitivity of S. coelicolor cells correlated directly to increased binding of the antibiotic to the cell wall. Our work offers new perspectives for the treatment of diseases associated with vancomycin-resistant pathogens and for the development of drugs that target vancomycin resistance.
Collapse
|
39
|
Ng V, Chan WC. New Found Hope for Antibiotic Discovery: Lipid II Inhibitors. Chemistry 2016; 22:12606-16. [PMID: 27388768 DOI: 10.1002/chem.201601315] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Indexed: 12/14/2022]
Abstract
Research into antibacterial agents has recently gathered pace in light of the disturbing crisis of antimicrobial resistance. The development of modern tools offers the opportunity of reviving the fallen era of antibacterial discovery through uncovering novel lead compounds that target vital bacterial cell components, such as lipid II. This paper provides a summary of the role of lipid II as well as an overview and insight into the structural features of macrocyclic peptides that inhibit this bacterial cell wall component. The recent discovery of teixobactin, a new class of lipid II inhibitor has generated substantial research interests. As such, the significant progress that has been achieved towards its development as a promising antibacterial agent is discussed.
Collapse
Affiliation(s)
- Vivian Ng
- School of Pharmacy, Centre of Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Weng C Chan
- School of Pharmacy, Centre of Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
40
|
Binda E, Carrano L, Marcone GL, Marinelli F. Extraction and Analysis of Peptidoglycan Cell Wall Precursors. Methods Mol Biol 2016; 1440:153-70. [PMID: 27311671 DOI: 10.1007/978-1-4939-3676-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
Extraction and analysis by LC-MS of peptidoglycan precursors represent a valuable method to study antibiotic mode of action and resistance in bacteria. Here, we describe how to apply this method for: (1) testing the action of different classes of antibiotics inhibiting cell wall biosynthesis in Bacillus megaterium; (2) studying the mechanism of self-resistance in mycelial actinomycetes producing glycopeptide antibiotics.
Collapse
Affiliation(s)
- Elisa Binda
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, Varese, 3-21100, Italy.,"The Protein Factory" Research Center, Politecnico of Milano, ICRM CNR Milano University of Insubria, Via Dunant, Varese, 3-21100, Italy
| | - Lùcia Carrano
- Fondazione Istituto Insubrico Ricerca per la Vita (F.I.I.R.V.), Via R. Lepetit 32, Gerenzano, 21100, Italy
| | - Giorgia Letizia Marcone
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, Varese, 3-21100, Italy.,"The Protein Factory" Research Center, Politecnico of Milano, ICRM CNR Milano University of Insubria, Via Dunant, Varese, 3-21100, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, Varese, 3-21100, Italy. .,"The Protein Factory" Research Center, Politecnico of Milano, ICRM CNR Milano University of Insubria, Via Dunant, Varese, 3-21100, Italy.
| |
Collapse
|
41
|
Antibiotic Susceptibility Pattern and Virulence Genes in Enterococcus spp. Isolated From Clinical Samples of Milad Hospital of Tehran, Iran. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2016. [DOI: 10.5812/archcid.36260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Frasch HJ, Kalan L, Kilian R, Martin T, Wright GD, Stegmann E. Alternative Pathway to a Glycopeptide-Resistant Cell Wall in the Balhimycin Producer Amycolatopsis balhimycina. ACS Infect Dis 2015; 1:243-52. [PMID: 27622740 DOI: 10.1021/acsinfecdis.5b00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Balhimycin, a vancomycin-type glycopeptide, is a lipid II targeting antibiotic produced by Amycolatopsis balhimycina. A. balhimycina has developed a self-resistance mechanism based on the synergistic action of different enzymes resulting in modified peptidoglycan. The canonical resistance mechanism against glycopeptides is the synthesis of peptidoglycan precursors ending with acyl-d-alanyl-d-lactate (d-Ala-d-Lac) rather than acyl-d-alanyl-d-alanine (d-Ala-d-Ala). This reprogramming is the result of the enzymes VanH, VanA, and VanX. VanH and VanA are required to produce d-Ala-d-Lac; VanX cleaves cytosolic pools of d-Ala-d-Ala, thereby ensuring that peptidoglycan is enriched in d-Ala-d-Lac. In A. balhimycina, the ΔvanHAXAb mutant showed a reduced glycopeptide resistance in comparison to the wild type. Nevertheless, ΔvanHAXAb was paradoxically still able to produce d-Ala-d-Lac containing resistant cell wall precursors suggesting the presence of a novel alternative glycopeptide resistance mechanism. In silico analysis, inactivation studies, and biochemical assays led to the characterization of an enzyme, Ddl1Ab, as a paraloguous chromosomal d-Ala-d-Lac ligase able to complement the function of VanAAb in the ΔvanHAXAb mutant. Furthermore, A. balhimycina harbors a vanYAb gene encoding a d,d-carboxypeptidase. Transcriptional analysis revealed an upregulated expression of vanYAb in the ΔvanHAXAb mutant. VanYAb cleaves the endstanding d-Ala from the pentapeptide precursors, reducing the quantity of sensitive cell wall precursors in the absence of VanXAb. These findings represent an unprecedented coordinated layer of resistance mechanisms in a glycopeptide antibiotic producing bacterium.
Collapse
Affiliation(s)
- Hans-Joerg Frasch
- Interfaculty Institute of Microbiology
and Infection Medicine Tuebingen (IMIT), Microbiology/Biotechnology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Lindsay Kalan
- Michael G. Degroote Institute for Infectious Disease
Research, Biochemistry and Biomedical Sciences, McMaster University, MDCL-2301, 1280 Main Street West, Hamilton, Ontario L8S4L8, Canada
| | - Regina Kilian
- Interfaculty Institute of Microbiology
and Infection Medicine Tuebingen (IMIT), Microbiology/Biotechnology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Tobias Martin
- Interfaculty Institute of Microbiology
and Infection Medicine Tuebingen (IMIT), Microbiology/Biotechnology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Gerard D. Wright
- Michael G. Degroote Institute for Infectious Disease
Research, Biochemistry and Biomedical Sciences, McMaster University, MDCL-2301, 1280 Main Street West, Hamilton, Ontario L8S4L8, Canada
| | - Evi Stegmann
- Interfaculty Institute of Microbiology
and Infection Medicine Tuebingen (IMIT), Microbiology/Biotechnology, University of Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
43
|
Hesketh A, Deery MJ, Hong HJ. High-Resolution Mass Spectrometry Based Proteomic Analysis of the Response to Vancomycin-Induced Cell Wall Stress in Streptomyces coelicolor A3(2). J Proteome Res 2015; 14:2915-28. [PMID: 25965010 DOI: 10.1021/acs.jproteome.5b00242] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Understanding how bacteria survive periods of cell wall stress is of fundamental interest and can help generate ideas for improved antibacterial treatments. In this study we use tandem mass tagging to characterize the proteomic response of vancomycin resistant Streptomyces coelicolor to the exposure to sublethal levels of the antibiotic. A common set of 804 proteins were identified in triplicate experiments. Contrasting changes in the abundance of proteins closely associated with the cytoplasmic membrane with those taking place in the cytosol identified aspects of protein spatial localization that are associated with the response to vancomycin. Enzymes for peptidoglycan precursor, mycothiol, ectoine and menaquinone biosynthesis together with a multisubunit nitrate reductase were recruited to the membrane following vancomycin treatment. Many proteins with regulatory functions (including sensor protein kinases) also exhibited significant changes in abundance exclusively in the membrane-associated protein fraction. Several enzymes predicted to be involved in extracellular peptidoglycan crossbridge formation became significantly depleted from the membrane. A comparison with data previously acquired on the changes in gene transcription following vancomycin treatment identified a common high-confidence set of changes in gene expression. Generalized changes in protein abundance indicate roles for proteolysis, the pentose phosphate pathway and a reorganization of amino acid biosynthesis in the stress response.
Collapse
Affiliation(s)
- Andy Hesketh
- †Department of Biochemistry, University of Cambridge, Cambridge, U.K.,‡Cambridge Systems Biology Centre, University of Cambridge, Cambridge, U.K
| | - Michael J Deery
- †Department of Biochemistry, University of Cambridge, Cambridge, U.K.,‡Cambridge Systems Biology Centre, University of Cambridge, Cambridge, U.K
| | - Hee-Jeon Hong
- †Department of Biochemistry, University of Cambridge, Cambridge, U.K
| |
Collapse
|
44
|
Okano A, Nakayama A, Wu K, Lindsey EA, Schammel AW, Feng Y, Collins KC, Boger DL. Total syntheses and initial evaluation of [Ψ[C(═S)NH]Tpg⁴]vancomycin, [Ψ[C(═NH)NH]Tpg⁴]vancomycin, [Ψ[CH₂NH]Tpg⁴]vancomycin, and their (4-chlorobiphenyl)methyl derivatives: synergistic binding pocket and peripheral modifications for the glycopeptide antibiotics. J Am Chem Soc 2015; 137:3693-704. [PMID: 25750995 PMCID: PMC4376669 DOI: 10.1021/jacs.5b01008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Full details of studies are disclosed on the total syntheses of binding pocket analogues of vancomycin bearing the peripheral L-vancosaminyl-1,2-D-glucosyl disaccharide that contain changes to a key single atom in the residue-4 amide (residue-4 carbonyl O → S, NH, H2) designed to directly address the underlying molecular basis of resistance to vancomycin. Also disclosed are studies piloting the late-stage transformations conducted on the synthetically more accessible C-terminus hydroxymethyl aglycon derivatives and full details of the peripheral chlorobiphenyl functionalization of all of the binding-pocket-modified vancomycin analogues designed for dual D-Ala-D-Ala/D-Ala-D-Lac binding. Their collective assessment indicates that combined binding pocket and chlorobiphenyl peripherally modified analogues exhibit a remarkable spectrum of antimicrobial activity (VSSA, MRSA, and VanA and VanB VRE) and impressive potencies against both vancomycin-sensitive and vancomycin-resistant bacteria (MICs = 0.06-0.005 and 0.5-0.06 μg/mL for the amidine and methylene analogues, respectively) and likely benefit from two independent and synergistic mechanisms of action, only one of which is dependent on D-Ala-D-Ala/D-Ala-D-Lac binding. Such analogues are likely to display especially durable antibiotic activity that is not prone to rapidly acquired clinical resistance.
Collapse
Affiliation(s)
- Akinori Okano
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Atsushi Nakayama
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kejia Wu
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Erick A. Lindsey
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Alex W. Schammel
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yiqing Feng
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Karen C. Collins
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L. Boger
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
45
|
|
46
|
Singh V, Mani I, Chaudhary DK. Metabolic Engineering of Microorganisms for Biosynthesis of Antibiotics. SYSTEMS AND SYNTHETIC BIOLOGY 2015. [DOI: 10.1007/978-94-017-9514-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Abstract
Gram-positive organisms, including the pathogens Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecalis, have dynamic cell envelopes that mediate interactions with the environment and serve as the first line of defense against toxic molecules. Major components of the cell envelope include peptidoglycan (PG), which is a well-established target for antibiotics, teichoic acids (TAs), capsular polysaccharides (CPS), surface proteins, and phospholipids. These components can undergo modification to promote pathogenesis, decrease susceptibility to antibiotics and host immune defenses, and enhance survival in hostile environments. This chapter will cover the structure, biosynthesis, and important functions of major cell envelope components in gram-positive bacteria. Possible targets for new antimicrobials will be noted.
Collapse
|
48
|
Stegmann E, Frasch HJ, Kilian R, Pozzi R. Self-resistance mechanisms of actinomycetes producing lipid II-targeting antibiotics. Int J Med Microbiol 2014; 305:190-5. [PMID: 25601631 DOI: 10.1016/j.ijmm.2014.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Glycopeptides and several lantibiotics are lipid II-targeting antibiotics produced by actinomycetes. To protect themselves from their own product, antibiotic producers developed self-resistance mechanisms. Inspection of different producer strains revealed that their resistance is not only based on a single determinant but on the synergistic action of different factors. Glycopeptide producers possess different ways to synthesize a modified peptidoglycan to prevent the binding of the glycopeptide antibiotic. One possible modification is the synthesis of peptidoglycan precursors terminating with a D-alanyl-D-lactate (D-Ala-D-Lac) rather than with a D-alanyl-D-alanine (D-Ala-D-Ala) resulting in a 1000-fold decreased binding affinity of the glycopeptide to its target. The reprogramming of the peptidoglycan precursor biosynthesis is based on the action of VanHAX or paralogous enzymes as it was shown for Amycolatopsis balhimycina. A second peptidoglycan modification resulting in glycopeptide resistance was investigated in the glycopeptide A40926 producer Nonomuraea ATCC 39727. Nonomuraea eliminates the glycopeptide target by synthesizing a peptidoglycan with 3-3 cross-linked peptide stems. The carboxypeptidase VanYn provides tetrapeptides which serve as substrates for the L,D-transpeptidase catalyzing the formation of 3-3 cross-links. The occurrence of 3-3 cross-linked dimers is also an important feature of the lantibiotic NAI-107 producer Microbispora ATCC PTA-5024. Moreover, the D-Ala in the fourth position in the acceptor peptide of muropeptides is exchanged to glycine or serine in Microbispora, a side reaction of the L,D-transpeptidase. Together with the lipoprotein MlbQ, the ABC transporter MlbYZ and the transmembrane protein MlbJ it might contribute to the self-resistance in Microbispora ATCC PTA-5024.
Collapse
Affiliation(s)
- Evi Stegmann
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany.
| | - Hans-Joerg Frasch
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Regina Kilian
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Roberta Pozzi
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| |
Collapse
|
49
|
Nesme J, Simonet P. The soil resistome: a critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. Environ Microbiol 2014; 17:913-30. [DOI: 10.1111/1462-2920.12631] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Joseph Nesme
- Environmental Microbial Genomics, Bioengineering Departement, Laboratoire Ampère, CNRS UMR5005, Ecole Centrale de Lyon; Université de Lyon; 36 Avenue Guy de Collongue Ecully 69134 France
| | - Pascal Simonet
- Environmental Microbial Genomics, Bioengineering Departement, Laboratoire Ampère, CNRS UMR5005, Ecole Centrale de Lyon; Université de Lyon; 36 Avenue Guy de Collongue Ecully 69134 France
| |
Collapse
|
50
|
Binda E, Marinelli F, Marcone GL. Old and New Glycopeptide Antibiotics: Action and Resistance. Antibiotics (Basel) 2014; 3:572-94. [PMID: 27025757 PMCID: PMC4790382 DOI: 10.3390/antibiotics3040572] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 12/05/2022] Open
Abstract
Glycopeptides are considered antibiotics of last resort for the treatment of life-threatening infections caused by relevant Gram-positive human pathogens, such as Staphylococcus aureus, Enterococcus spp. and Clostridium difficile. The emergence of glycopeptide-resistant clinical isolates, first among enterococci and then in staphylococci, has prompted research for second generation glycopeptides and a flurry of activity aimed at understanding resistance mechanisms and their evolution. Glycopeptides are glycosylated non-ribosomal peptides produced by a diverse group of soil actinomycetes. They target Gram-positive bacteria by binding to the acyl-d-alanyl-d-alanine (d-Ala-d-Ala) terminus of the growing peptidoglycan on the outer surface of the cytoplasmatic membrane. Glycopeptide-resistant organisms avoid such a fate by replacing the d-Ala-d-Ala terminus with d-alanyl-d-lactate (d-Ala-d-Lac) or d-alanyl-d-serine (d-Ala-d-Ser), thus markedly reducing antibiotic affinity for the cellular target. Resistance has manifested itself in enterococci and staphylococci largely through the expression of genes (named van) encoding proteins that reprogram cell wall biosynthesis and, thus, evade the action of the antibiotic. These resistance mechanisms were most likely co-opted from the glycopeptide producing actinomycetes, which use them to avoid suicide during antibiotic production, rather than being orchestrated by pathogen bacteria upon continued treatment. van-like gene clusters, similar to those described in enterococci, were in fact identified in many glycopeptide-producing actinomycetes, such as Actinoplanes teichomyceticus, which produces teicoplanin, and Streptomyces toyocaensis, which produces the A47934 glycopeptide. In this paper, we describe the natural and semi-synthetic glycopeptide antibiotics currently used as last resort drugs for Gram-positive infections and compare the van gene-based strategies of glycopeptide resistance among the pathogens and the producing actinomycetes. Particular attention is given to the strategy of immunity recently described in Nonomuraea sp. ATCC 39727. Nonomuraea sp. ATCC 39727 is the producer of A40926, which is the natural precursor of the second generation semi-synthetic glycopeptide dalbavancin, very recently approved for acute bacterial skin and skin structure infections. A thorough understanding of glycopeptide immunity in this producing microorganism may be particularly relevant to predict and eventually control the evolution of resistance that might arise following introduction of dalbavancin and other second generation glycopeptides into clinics.
Collapse
Affiliation(s)
- Elisa Binda
- Department of Biotechnology and Life Sciences, University of Insubria, Varese 20100, Italy.
- The Protein Factory, Interuniversity Centre Politecnico di Milano, ICRM CNR Milano and University of Insubria, Milan 21100, Italy.
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese 20100, Italy.
- The Protein Factory, Interuniversity Centre Politecnico di Milano, ICRM CNR Milano and University of Insubria, Milan 21100, Italy.
| | - Giorgia Letizia Marcone
- Department of Biotechnology and Life Sciences, University of Insubria, Varese 20100, Italy.
- The Protein Factory, Interuniversity Centre Politecnico di Milano, ICRM CNR Milano and University of Insubria, Milan 21100, Italy.
| |
Collapse
|