1
|
Pumirat P, Santajit S, Tunyong W, Kong-Ngoen T, Tandhavanant S, Lohitthai S, Rungruengkitkun A, Chantratita N, Ampawong S, Reamtong O, Indrawattana N. Impact of AbaI mutation on virulence, biofilm development, and antibiotic susceptibility in Acinetobacter baumannii. Sci Rep 2024; 14:21521. [PMID: 39277662 PMCID: PMC11401864 DOI: 10.1038/s41598-024-72740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
The quorum sensing (QS) system mediated by the abaI gene in Acinetobacter baumannii is crucial for various physiological and pathogenic processes. In this study, we constructed a stable markerless abaI knockout mutant (ΔabaI) strain using a pEXKm5-based allele replacement method to investigate the impact of abaI on A. baumannii. Proteomic analysis revealed significant alterations in protein expression between the wild type (WT) and ΔabaI mutant strains, particularly in proteins associated with membrane structure, antibiotic resistance, and virulence. Notably, the downregulation of key outer membrane proteins such as SurA, OmpA, OmpW, and BamA suggests potential vulnerabilities in outer membrane integrity, which correlate with structural abnormalities in the ΔabaI mutant strain, including irregular cell shapes and compromised membrane integrity, observed by scanning and transmission electron microscopy. Furthermore, diminished expression of regulatory proteins such as OmpR and GacA-GacS highlights the broader regulatory networks affected by abaI deletion. Functional assays revealed impaired biofilm formation and surface-associated motility in the mutant strain, indicative of altered colonization capabilities. Interestingly, the mutant showed a complex antibiotic susceptibility profile. While it demonstrated increased susceptibility to membrane-targeting antibiotics, its response to beta-lactams was more nuanced. Despite increased expression of metallo-beta-lactamase (MBL) superfamily proteins and DcaP-like protein, the mutant unexpectedly showed lower MICs for carbapenems (imipenem and meropenem) compared to the wild-type strain. This suggests that abaI deletion affects antibiotic susceptibility through multiple, potentially competing mechanisms. Further investigation is needed to fully elucidate the interplay between quorum sensing, antibiotic resistance genes, and overall antibiotic susceptibility in A. baumannii. Our findings underscore the multifaceted role of the abaI gene in modulating various cellular processes and highlight its significance in A. baumannii physiology, pathogenesis, and antibiotic resistance. Targeting the abaI QS system may offer novel therapeutic strategies for this clinically significant pathogen.
Collapse
Affiliation(s)
- Pornpan Pumirat
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Sirijan Santajit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Witawat Tunyong
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Thida Kong-Ngoen
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Sanisa Lohitthai
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | | | - Narisara Chantratita
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Tropical Molecular Biology and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nitaya Indrawattana
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Department of Research, Siriraj Center of Research Excellence in Allergy and Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
2
|
Oelschlaeger P, Kaadan H, Dhungana R. Strategies to Name Metallo-β-Lactamases and Number Their Amino Acid Residues. Antibiotics (Basel) 2023; 12:1746. [PMID: 38136780 PMCID: PMC10740994 DOI: 10.3390/antibiotics12121746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Metallo-β-lactamases (MBLs), also known as class B β-lactamases (BBLs), are Zn(II)-containing enzymes able to inactivate a broad range of β-lactams, the most commonly used antibiotics, including life-saving carbapenems. They have been known for about six decades, yet they have only gained much attention as a clinical problem for about three decades. The naming conventions of these enzymes have changed over time and followed various strategies, sometimes leading to confusion. We are summarizing the naming strategies of the currently known MBLs. These enzymes are quite diverse on the amino acid sequence level but structurally similar. Problems trying to describe conserved residues, such as Zn(II) ligands and other catalytically important residues, which have different numbers in different sequences, have led to the establishment of a standard numbering scheme for BBLs. While well intended, the standard numbering scheme is not trivial and has not been applied consistently. We revisit this standard numbering scheme and suggest some strategies for how its implementation could be made more accessible to researchers. Standard numbering facilitates the comparison of different enzymes as well as their interaction with novel antibiotics and BBL inhibitors.
Collapse
Affiliation(s)
- Peter Oelschlaeger
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (H.K.)
| | - Heba Kaadan
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (H.K.)
| | - Rinku Dhungana
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (H.K.)
- Department of Biological Sciences, Kenneth P. Dietrich School of Arts & Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
3
|
Castanheira M, Mendes RE, Gales AC. Global Epidemiology and Mechanisms of Resistance of Acinetobacter baumannii-calcoaceticus Complex. Clin Infect Dis 2023; 76:S166-S178. [PMID: 37125466 PMCID: PMC10150277 DOI: 10.1093/cid/ciad109] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Acinetobacter baumannii-calcoaceticus complex is the most commonly identified species in the genus Acinetobacter and it accounts for a large percentage of nosocomial infections, including bacteremia, pneumonia, and infections of the skin and urinary tract. A few key clones of A. baumannii-calcoaceticus are currently responsible for the dissemination of these organisms worldwide. Unfortunately, multidrug resistance is a common trait among these clones due to their unrivalled adaptive nature. A. baumannii-calcoaceticus isolates can accumulate resistance traits by a plethora of mechanisms, including horizontal gene transfer, natural transformation, acquisition of mutations, and mobilization of genetic elements that modulate expression of intrinsic and acquired genes.
Collapse
Affiliation(s)
| | | | - Ana C Gales
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
4
|
Peykov S, Strateva T. Whole-Genome Sequencing-Based Resistome Analysis of Nosocomial Multidrug-Resistant Non-Fermenting Gram-Negative Pathogens from the Balkans. Microorganisms 2023; 11:microorganisms11030651. [PMID: 36985224 PMCID: PMC10051916 DOI: 10.3390/microorganisms11030651] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Non-fermenting Gram-negative bacilli (NFGNB), such as Pseudomonas aeruginosa and Acinetobacter baumannii, are among the major opportunistic pathogens involved in the global antibiotic resistance epidemic. They are designated as urgent/serious threats by the Centers for Disease Control and Prevention and are part of the World Health Organization’s list of critical priority pathogens. Also, Stenotrophomonas maltophilia is increasingly recognized as an emerging cause for healthcare-associated infections in intensive care units, life-threatening diseases in immunocompromised patients, and severe pulmonary infections in cystic fibrosis and COVID-19 individuals. The last annual report of the ECDC showed drastic differences in the proportions of NFGNB with resistance towards key antibiotics in different European Union/European Economic Area countries. The data for the Balkans are of particular concern, indicating more than 80% and 30% of invasive Acinetobacter spp. and P. aeruginosa isolates, respectively, to be carbapenem-resistant. Moreover, multidrug-resistant and extensively drug-resistant S. maltophilia from the region have been recently reported. The current situation in the Balkans includes a migrant crisis and reshaping of the Schengen Area border. This results in collision of diverse human populations subjected to different protocols for antimicrobial stewardship and infection control. The present review article summarizes the findings of whole-genome sequencing-based resistome analyses of nosocomial multidrug-resistant NFGNBs in the Balkan countries.
Collapse
Affiliation(s)
- Slavil Peykov
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8, Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria
- BioInfoTech Laboratory, Sofia Tech Park, 111, Tsarigradsko Shosse Blvd., 1784 Sofia, Bulgaria
- Correspondence: (S.P.); (T.S.); Tel.: +359-87-6454492 (S.P.); +359-2-9172750 (T.S.)
| | - Tanya Strateva
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria
- Correspondence: (S.P.); (T.S.); Tel.: +359-87-6454492 (S.P.); +359-2-9172750 (T.S.)
| |
Collapse
|
5
|
Qiao J, Ge H, Xu H, Guo X, Liu R, Li C, Chen R, Zheng B, Gou J. Detection of IMP-4 and SFO-1 co-producing ST51 Enterobacter hormaechei clinical isolates. Front Cell Infect Microbiol 2022; 12:998578. [PMID: 36389152 PMCID: PMC9647121 DOI: 10.3389/fcimb.2022.998578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/13/2022] [Indexed: 12/31/2022] Open
Abstract
Purpose To explore the genetic characteristics of the IMP-4 and SFO-1 co-producing multidrug-resistant (MDR) clinical isolates, Enterobacter hormaechei YQ13422hy and YQ13530hy. Methods MALDI-TOF MS was used for species identification. Antibiotic resistance genes (ARGs) were tested by PCR and Sanger sequencing analysis. In addition to agar dilution, broth microdilution was used for antimicrobial susceptibility testing (AST). Whole-genome sequencing (WGS) analysis was conducted using the Illumina NovaSeq 6000 and Oxford Nanopore platforms. Annotation was performed by RAST on the genome. The phylogenetic tree was achieved using kSNP3.0. Plasmid characterization was conducted using S1-pulsed-field gel electrophoresis (S1-PFGE), Southern blotting, conjugation experiments, and whole genome sequencing (WGS). An in-depth study of the conjugation module was conducted using the OriTFinder website. The genetic context of bla IMP-4 and bla SFO-1 was analyzed using BLAST Ring Image Generator (BRIG) and Easyfig 2.3. Results YQ13422hy and YQ13530hy, two MDR strains of ST51 E. hormaechei harboring bla IMP-4 and bla SFO-1, were identified. They were only sensitive to meropenem, amikacin and polymyxin B, and were resistant to cephalosporins, aztreonam, piperacillin/tazobactam and aminoglycosides, intermediate to imipenem. The genetic context surrounding bla IMP-4 was 5'CS-hin-1-IS26-IntI1-bla IMP-4-IS6100-ecoRII. The integron of bla IMP-4 is In823, which is the array of gene cassettes of 5'CS-bla IMP-4. Phylogenetic analysis demonstrated that E. hormaechei YQ13422hy and YQ13530hy belonged to the same small clusters with a high degree of homology. Conclusion This observation revealed the dissemination of the bla IMP-4 gene in E. hormaechei in China. We found that bla IMP-4 and bla SFO-1 co-exist in MDR clinical E. hormaechei isolates. This work showed a transferable IncN-type plasmid carrying the bla IMP-4 resistance gene in E. hormaechei. We examined the potential resistance mechanisms of pYQ13422-IMP-4 and pYQ13422-SFO-1, along with their detailed genetic contexts.
Collapse
Affiliation(s)
- Jie Qiao
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Haoyu Ge
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenyu Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Research Units of Infectious Diseases and Microecology, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianjun Gou
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Yamamoto K, Tanaka H, Kurisu G, Nakano R, Yano H, Sakai H. Structural insights into the substrate specificity of IMP-6 and IMP-1 metallo-β-lactamases. J Biochem 2022; 173:21-30. [PMID: 36174533 PMCID: PMC9792659 DOI: 10.1093/jb/mvac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 01/12/2023] Open
Abstract
IMP-type metallo-β-lactamases confer resistance to carbapenems and a broad spectrum of β-lactam antibiotics. IMP-6 and IMP-1 differ by only a point mutation: Ser262 in IMP-1 and Gly262 in IMP-6. The kcat/Km values of IMP-1 for imipenem and meropenem are nearly identical; however, for IMP-6, the kcat/Km for meropenem is 7-fold that for imipenem. In clinical practice, this may result in an ineffective therapeutic regimen and, consequently, in treatment failure. Here, we report the crystal structures of IMP-6 and IMP-1 with the same space group and similar cell constants at resolutions of 1.70 and 1.94 Å, respectively. The overall structures of IMP-6 and IMP-1 are similar. However, the loop region (residues 60-66), which participates in substrate binding, is more flexible in IMP-6 than in IMP-1. This difference in flexibility determines the substrate specificity of IMP-type metallo-β-lactamases for imipenem and meropenem. The amino acid at position 262 alters the mobility of His263; this affects the flexibility of the loop via a hydrogen bond with Pro68, which plays the role of a hinge in IMP-type metallo-β-lactamases. The substitution of Pro68 with a glycine elicited an increase in the Km of IMP-6 for imipenem, whereas the affinity for meropenem remained unchanged.
Collapse
Affiliation(s)
- Keizo Yamamoto
- Keizo Yamamoto, 840 Shijo-Cho, Kashihara, Nara 634-8521 Japan. Tel/Fax: +81-(0)744-29-8810,
| | - Hideaki Tanaka
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryuichi Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shojo-Cho, Kashihara, Nara 634-8521, Japan
| | - Hisakazu Yano
- Department of Microbiology and Infectious Diseases, Nara Medical University, 840 Shojo-Cho, Kashihara, Nara 634-8521, Japan
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, 840 Shojo-Cho, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
7
|
Massik A, Hibaoui L, Moussa B, Yahyaoui G, Oumokhtar B, Mahmoud M. First report of SPM metallo-β-lactamases producing Acinetobacter baumannii isolates in Morocco. IRANIAN JOURNAL OF MICROBIOLOGY 2022; 14:438-444. [PMID: 36721516 PMCID: PMC9867632 DOI: 10.18502/ijm.v14i4.10229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background and Objectives Carbapenem-resistant Acinetobacter baumannii has recently been identified by the World Health Organization as a critical pathogen. We propose to characterize the molecular characteristics of clinical isolates of A. baumannii resistant to carbapenems collected in a Moroccan hospital. Materials and Methods Seventy carbapenem-resistant A. baumannii isolates from various samples were received at the microbiology laboratory of the Hospital Center. Antibiotic susceptibility was tested by the diffusion disc method and molecular characterization of antimicrobial resistance was performed by PCR and sequencing. Results Carbapenemase genes were detected in our isolates: the OXA-51 gene and the ISbA1 sequence were detected in all isolates (100%), the OXA-23 and OXA-58 genes were detected in 82.85% and 10% of isolates respectively, MBL genes were dominated by VIM 39 isolates (55.7%), followed by GIM 26 isolates (37%), SIM 20 isolates (28.5%), IMP 8 isolates (11, 4%), NDM 3 isolates (4%) and for the first time in Morocco SPM with 4 isolates (5.7%). Conclusion The emergence of resistance of A. baumannii to carbapenems is a serious problem in our hospital which requires the establishment of a prevention strategy and strict respect for hygiene to minimize their dissemination.
Collapse
Affiliation(s)
- Abdelhamid Massik
- Laboratory of Microbiology and Molecular Biology, CHU Hassan II, Fez, Morocco,Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez, Morocco,Corresponding author: Abdelhamid Massik, Ph.D, Laboratory of Microbiology and Molecular Biology, CHU Hassan II, Fez, Morocco; Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez, Morocco. Tel: +98-212626805059
| | - Lahbib Hibaoui
- Laboratory of Microbiology and Molecular Biology, CHU Hassan II, Fez, Morocco,Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Benboubker Moussa
- Human Pathologies, Biomedicine and Environment Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Ghita Yahyaoui
- Laboratory of Microbiology and Molecular Biology, CHU Hassan II, Fez, Morocco
| | - Bouchra Oumokhtar
- Human Pathologies, Biomedicine and Environment Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Mustapha Mahmoud
- Laboratory of Microbiology and Molecular Biology, CHU Hassan II, Fez, Morocco,Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
8
|
Fonseca ÉL, Vicente AC. Integron Functionality and Genome Innovation: An Update on the Subtle and Smart Strategy of Integrase and Gene Cassette Expression Regulation. Microorganisms 2022; 10:microorganisms10020224. [PMID: 35208680 PMCID: PMC8876359 DOI: 10.3390/microorganisms10020224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/22/2022] Open
Abstract
Integrons are considered hot spots for bacterial evolution, since these platforms allow one-step genomic innovation by capturing and expressing genes that provide advantageous novelties, such as antibiotic resistance. The acquisition and shuffling of gene cassettes featured by integrons enable the population to rapidly respond to changing selective pressures. However, in order to avoid deleterious effects and fitness burden, the integron activity must be tightly controlled, which happens in an elegant and elaborate fashion, as discussed in detail in the present review. Here, we aimed to provide an up-to-date overview of the complex regulatory networks that permeate the expression and functionality of integrons at both transcriptional and translational levels. It was possible to compile strong shreds of evidence clearly proving that these versatile platforms include functions other than acquiring and expressing gene cassettes. The well-balanced mechanism of integron expression is intricately related with environmental signals, host cell physiology, fitness, and survival, ultimately leading to adaptation on the demand.
Collapse
|
9
|
Hata A, Fujitani N, Ono F, Yoshikawa Y. Surveillance of antimicrobial-resistant Escherichia coli in Sheltered dogs in the Kanto Region of Japan. Sci Rep 2022; 12:773. [PMID: 35031646 PMCID: PMC8760262 DOI: 10.1038/s41598-021-04435-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
There is a lack of an established antimicrobial resistance (AMR) surveillance system in animal welfare centers. Therefore, the AMR prevalence in shelter dogs is rarely known. Herein, we conducted a survey in animal shelters in Chiba and Kanagawa prefectures, in the Kanto Region, Japan, to ascertain the AMR status of Escherichia coli (E. coli) prevalent in shelter dogs. E. coli was detected in the fecal samples of all 61 and 77 shelter dogs tested in Chiba and Kanagawa, respectively. The AMR was tested against 20 antibiotics. E. coli isolates derived from 16.4% and 26.0% of samples from Chiba and Kanagawa exhibited resistance to at least one antibiotic, respectively. E. coli in samples from Chiba and Kanagawa prefectures were commonly resistant to ampicillin, piperacillin, streptomycin, kanamycin, tetracycline, and nalidixic acid; that from the Kanagawa Prefecture to cefazolin, cefotaxime, aztreonam, ciprofloxacin, and levofloxacin and that from Chiba Prefecture to chloramphenicol and imipenem. Multidrug-resistant bacteria were detected in 18 dogs from both regions; β-lactamase genes (blaTEM, blaDHA-1, blaCTX-M-9 group CTX-M-14), quinolone-resistance protein genes (qnrB and qnrS), and mutations in quinolone-resistance-determining regions (gyrA and parC) were detected. These results could partially represent the AMR data in shelter dogs in the Kanto Region of Japan.
Collapse
Affiliation(s)
- Akihisa Hata
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari, Ehime, 7948555, Japan
- Biomedical Science Examination and Research Center, Okayama University of Science, Ikoino-oka 1-3, Imabari, Ehime, 7948555, Japan
| | - Noboru Fujitani
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari, Ehime, 7948555, Japan.
- Biomedical Science Examination and Research Center, Okayama University of Science, Ikoino-oka 1-3, Imabari, Ehime, 7948555, Japan.
| | - Fumiko Ono
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari, Ehime, 7948555, Japan
| | - Yasuhiro Yoshikawa
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari, Ehime, 7948555, Japan
| |
Collapse
|
10
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
11
|
Guo X, Wang Q, Xu H, He X, Guo L, Liu S, Wen P, Gou J. Emergence of IMP-8-Producing Comamonas thiooxydans Causing Urinary Tract Infection in China. Front Microbiol 2021; 12:585716. [PMID: 33790873 PMCID: PMC8005532 DOI: 10.3389/fmicb.2021.585716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
The emergence of carbapenem resistance (CR) caused by hydrolytic enzymes called carbapenemases has become a major concern worldwide. So far, CR genes have been widely detected in various bacteria. However, there is no report of CR gene harboring Comamonas thiooxydans. We first isolated a strain of an IMP-8-producing C. thiooxydans from a patient with urinary tract infection in China. Species identity was determined using MALDI-TOF MS analysis and carbapenemase-encoding genes were detected using PCR. The complete genomic sequence of C. thiooxydans was identified using Illumina Novaseq and Oxford Nanopore PromethION. Antimicrobial susceptibility analysis indicated that the C. thiooxydans strain ZDHYF418 was susceptible to imipenem, intermediate to meropenem, and was resistant to aztreonam, fluoroquinolones, and aminoglycosides. The blaIMP–8 gene was chromosomally located, and was part of a Tn402-like class 1 integron characterized by the following structure: DDE-type integrase/transposase/recombinase-tniB-tniQ-recombinase family protein-aac(6′)-Ib-cr-blaIMP–8-intI1. Phylogenetic analysis demonstrated that the closest relative of ZDHYF418 is C. thiooxydans QYY (accession number: CP053920.1). We detected 330 SNP differences between ZDHYF418 and C. thiooxydans QYY. Strain QYY was isolated from activated sludge in Jilin province, China in 2015. In summary, we isolated a strain of C. thiooxydans that is able to produce IMP-8 and a novel blaOXA. This is the first time that a CR gene has been identified in C. thiooxydans. The occurrence of the strain needs to be closely monitored.
Collapse
Affiliation(s)
- Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohong He
- Department of Clinical Laboratory, Women and Infants Hospital of Zhengzhou, Zhengzhou, China
| | - Lihua Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuxiu Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Peipei Wen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianjun Gou
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Bassetti M, Di Pilato V, Giani T, Vena A, Rossolini GM, Marchese A, Giacobbe DR. Treatment of severe infections due to metallo-β-lactamases-producing Gram-negative bacteria. Future Microbiol 2020; 15:1489-1505. [PMID: 33140656 DOI: 10.2217/fmb-2020-0210] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the last decades, there was an important paucity of agents for adequately treating infections due to metallo-β-lactamases-producing Gram-negative bacteria (MBL-GNB). Cefiderocol, a novel siderophore cephalosporin showing in vitro activity against MBL-GNB, has been recently marketed, and a combination of aztreonam and ceftazidime/avibactam has shown a possible favorable effect on survival of patients with severe MBL-GNB infections in observational studies. Other agents showing in vitro activity against MBL-GNB are currently in clinical development (e.g., cefepime/taniborbactam, LYS228, cefepime/zidebactam) that could be an important addition to our future armamentarium for severe MBL-GNB infections. Nonetheless, we should not discontinue our efforts to optimize the use of non-β-lactams agents, since they could remain an essential last-resort or alternative option in selected cases.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Unit, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences & Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Tommaso Giani
- Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
- Microbiology & Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Antonio Vena
- Infectious Diseases Unit, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
| | - Gian Maria Rossolini
- Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
- Microbiology & Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Anna Marchese
- Department of Surgical Sciences & Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Microbiology Unit, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
| | - Daniele R Giacobbe
- Infectious Diseases Unit, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
| |
Collapse
|
13
|
Antibiotic Resistance Profiles, Molecular Mechanisms and Innovative Treatment Strategies of Acinetobacter baumannii. Microorganisms 2020; 8:microorganisms8060935. [PMID: 32575913 PMCID: PMC7355832 DOI: 10.3390/microorganisms8060935] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/18/2022] Open
Abstract
Antibiotic resistance is one of the biggest challenges for the clinical sector and industry, environment and societal development. One of the most important pathogens responsible for severe nosocomial infections is Acinetobacter baumannii, a Gram-negative bacterium from the Moraxellaceae family, due to its various resistance mechanisms, such as the β-lactamases production, efflux pumps, decreased membrane permeability and altered target site of the antibiotic. The enormous adaptive capacity of A. baumannii and the acquisition and transfer of antibiotic resistance determinants contribute to the ineffectiveness of most current therapeutic strategies, including last-line or combined antibiotic therapy. In this review, we will present an update of the antibiotic resistance profiles and underlying mechanisms in A. baumannii and the current progress in developing innovative strategies for combating multidrug-resistant A. baumannii (MDRAB) infections.
Collapse
|
14
|
Ramirez MS, Bonomo RA, Tolmasky ME. Carbapenemases: Transforming Acinetobacter baumannii into a Yet More Dangerous Menace. Biomolecules 2020; 10:biom10050720. [PMID: 32384624 PMCID: PMC7277208 DOI: 10.3390/biom10050720] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Acinetobacter baumannii is a common cause of serious nosocomial infections. Although community-acquired infections are observed, the vast majority occur in people with preexisting comorbidities. A. baumannii emerged as a problematic pathogen in the 1980s when an increase in virulence, difficulty in treatment due to drug resistance, and opportunities for infection turned it into one of the most important threats to human health. Some of the clinical manifestations of A. baumannii nosocomial infection are pneumonia; bloodstream infections; lower respiratory tract, urinary tract, and wound infections; burn infections; skin and soft tissue infections (including necrotizing fasciitis); meningitis; osteomyelitis; and endocarditis. A. baumannii has an extraordinary genetic plasticity that results in a high capacity to acquire antimicrobial resistance traits. In particular, acquisition of resistance to carbapenems, which are among the antimicrobials of last resort for treatment of multidrug infections, is increasing among A. baumannii strains compounding the problem of nosocomial infections caused by this pathogen. It is not uncommon to find multidrug-resistant (MDR, resistance to at least three classes of antimicrobials), extensively drug-resistant (XDR, MDR plus resistance to carbapenems), and pan-drug-resistant (PDR, XDR plus resistance to polymyxins) nosocomial isolates that are hard to treat with the currently available drugs. In this article we review the acquired resistance to carbapenems by A. baumannii. We describe the enzymes within the OXA, NDM, VIM, IMP, and KPC groups of carbapenemases and the coding genes found in A. baumannii clinical isolates.
Collapse
Affiliation(s)
- Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Robert A. Bonomo
- Medical Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA;
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics; Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- WRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
- Correspondence: ; Tel.: +657-278-5263
| |
Collapse
|
15
|
The Current Burden of Carbapenemases: Review of Significant Properties and Dissemination among Gram-Negative Bacteria. Antibiotics (Basel) 2020; 9:antibiotics9040186. [PMID: 32316342 PMCID: PMC7235769 DOI: 10.3390/antibiotics9040186] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
Carbapenemases are β-lactamases belonging to different Ambler classes (A, B, D) and can be encoded by both chromosomal and plasmid-mediated genes. These enzymes represent the most potent β-lactamases, which hydrolyze a broad variety of β-lactams, including carbapenems, cephalosporins, penicillin, and aztreonam. The major issues associated with carbapenemase production are clinical due to compromising the activity of the last resort antibiotics used for treating serious infections, and epidemiological due to their dissemination into various bacteria across almost all geographic regions. Carbapenemase-producing Enterobacteriaceae have received more attention upon their first report in the early 1990s. Currently, there is increased awareness of the impact of nonfermenting bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa, as well as other Gram-negative bacteria that are carbapenemase-producers. Outside the scope of clinical importance, carbapenemases are also detected in bacteria from environmental and zoonotic niches, which raises greater concerns over their prevalence, and the need for public health measures to control consequences of their propagation. The aims of the current review are to define and categorize the different families of carbapenemases, and to overview the main lines of their spread across different bacterial groups.
Collapse
|
16
|
Yum JH. High Prevalence and Genotypic Characterization of Metallo-β-Lactamase (MBL)-Producing Acinetobacter spp. Isolates Disseminated in a Korean Hospital. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2019. [DOI: 10.15324/kjcls.2019.51.4.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Jong Hwa Yum
- Department of Clinical Laboratory Science, Dongeui University, Busan, Korea
| |
Collapse
|
17
|
Buelow E, Bayjanov JR, Majoor E, Willems RJ, Bonten MJ, Schmitt H, van Schaik W. Limited influence of hospital wastewater on the microbiome and resistome of wastewater in a community sewerage system. FEMS Microbiol Ecol 2019; 94:4995906. [PMID: 29767712 DOI: 10.1093/femsec/fiy087] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/10/2018] [Indexed: 12/26/2022] Open
Abstract
Effluents from wastewater treatment plants (WWTPs) have been proposed to act as point sources of antibiotic-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs) in the environment. Hospital sewage may contribute to the spread of ARB and ARGs as it contains the feces and urine of hospitalized patients, who are more frequently colonized with multi-drug resistant bacteria than the general population. However, whether hospital sewage noticeably contributes to the quantity and diversity of ARGs in the general sewerage system has not yet been determined.Here, we employed culture-independent techniques, namely 16S rRNA gene sequencing and nanolitre-scale quantitative PCRs, to assess the role of hospital effluent as a point source of ARGs in the sewerage system, through comparing microbiota composition and levels of ARGs in hospital sewage with WWTP influent with and without hospital sewage.Compared to other sites, hospital sewage was richest in human-associated bacteria and contained the highest relative levels of ARGs. Yet, the relative abundance of ARGs was comparable in the influent of WWTPs with and without hospital sewage, suggesting that hospitals do not contribute importantly to the quantity and diversity of ARGs in the investigated sewerage system.
Collapse
Affiliation(s)
- Elena Buelow
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Université Limoges, INSERM, CHU Limoges, UMR 1092, Limoges, France
| | - Jumamurat R Bayjanov
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eline Majoor
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rob Jl Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marc Jm Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Heike Schmitt
- Institute for Risk Assessment Sciences, Utrecht University, The Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Institute of Microbiology and Infection, University of Birmingham, UK
| |
Collapse
|
18
|
Jamal S, Al Atrouni A, Rafei R, Dabboussi F, Hamze M, Osman M. Molecular mechanisms of antimicrobial resistance in Acinetobacter baumannii, with a special focus on its epidemiology in Lebanon. J Glob Antimicrob Resist 2018; 15:154-163. [PMID: 29859266 DOI: 10.1016/j.jgar.2018.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/24/2018] [Accepted: 05/22/2018] [Indexed: 10/16/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic bacterium involved in several types of infection with high mortality and morbidity, especially in intensive care units. Treatment of these infections remains a challenge due to the worldwide emergence of broad-spectrum resistance to many antibiotics. Following the implementation of molecular techniques to study A. baumannii outbreaks, it has been shown that they are mainly caused by specific clones such as international clones I, II and III. The present work aims to review the available data on the mechanisms underlying antimicrobial resistance in A. baumannii, with a special focus on the molecular epidemiology of this species in Lebanon.
Collapse
Affiliation(s)
- Sabah Jamal
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Ahmad Al Atrouni
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon.
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| |
Collapse
|
19
|
Benmahmod AB, Said HS, Ibrahim RH. Prevalence and Mechanisms of Carbapenem Resistance Among Acinetobacter baumannii Clinical Isolates in Egypt. Microb Drug Resist 2018; 25:480-488. [PMID: 30394846 DOI: 10.1089/mdr.2018.0141] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The increasing number of carbapenem-resistant Acinetobacter baumannii clinical isolates is a major concern, which restricts therapeutic options for treatment of serious infections caused by this emerging pathogen. The aim of this work is to assess the antimicrobial resistance profile and identify the molecular mechanisms involved in carbapenem resistance in A. baumannii isolated from different clinical sources in Mansoura University Hospitals, Egypt. Antimicrobial susceptibility testing has shown that resistance to carbapenem has dramatically increased (98%) with concomitant elevated levels of resistance to quinolones, trimethoprim/sulfamethoxazole, and aminoglycosides. Polymyxin B and colistin are considered the last resort. Random amplified polymorphic DNA (RAPD) typing method revealed great diversity among A. baumannii isolates. Coexistence of diverse intrinsic and acquired carbapenem-hydrolyzing β-lactamases has been detected in the tested isolates: Ambler class A: blaKPC (56%) and blaGES (48%), and Ambler class B: blaNDM (30%), blaSIM (28%), blaVIM (20%), and blaIMP (10%). Most isolates (94%) carried blaOXA-23-like and blaOXA-51-like simultaneously. blaOXA-23-like was preceded by ISAba1 providing a potent promoter activity for its expression. Sequencing analysis revealed that ISAba1 has been also inserted in carbapenem resistance-associated outer membrane protein (OMP) (carO) gene in three isolates, two of which were clonal based on RAPD typing, leading to interruption of its expression as confirmed by SDS-PAGE analysis of OMP fractions. Carbapenem resistance genes are widely distributed among A. baumannii clinical isolates from different clinical sources. Therefore, enhanced infection control measures, effective barriers, and rational use of antimicrobials should be enforced in hospitals for minimizing the widespread resistance to carbapenems and all other antibiotics.
Collapse
Affiliation(s)
| | - Heba Shehta Said
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ramdan Hassan Ibrahim
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
20
|
Pasero C, D'Agostino I, De Luca F, Zamperini C, Deodato D, Truglio GI, Sannio F, Del Prete R, Ferraro T, Visaggio D, Mancini A, Guglielmi MB, Visca P, Docquier JD, Botta M. Alkyl-guanidine Compounds as Potent Broad-Spectrum Antibacterial Agents: Chemical Library Extension and Biological Characterization. J Med Chem 2018; 61:9162-9176. [PMID: 30265809 DOI: 10.1021/acs.jmedchem.8b00619] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nowadays, the increasing of multidrug-resistant pathogenic bacteria represents a serious threat to public health, and the lack of new antibiotics is becoming a global emergency. Therefore, research in antibacterial fields is urgently needed to expand the currently available arsenal of drugs. We have recently reported an alkyl-guanidine derivative (2), characterized by a symmetrical dimeric structure, as a good candidate for further developments, with a high antibacterial activity against both Gram-positive and Gram-negative strains. In this study, starting from its chemical scaffold, we synthesized a small library of analogues. Moreover, biological and in vitro pharmacokinetic characterizations were conducted on some selected derivatives, revealing notable properties: broad-spectrum profile, activity against resistant clinical isolates, and appreciable aqueous solubility. Interestingly, 2 seems neither to select for resistant strains nor to macroscopically alter the membranes, but further studies are required to determine the mode of action.
Collapse
Affiliation(s)
- Carolina Pasero
- Department of Biotechnology, Chemistry, and Pharmacy , University of Siena , I-53100 Siena , Italy
| | - Ilaria D'Agostino
- Department of Biotechnology, Chemistry, and Pharmacy , University of Siena , I-53100 Siena , Italy
| | - Filomena De Luca
- Department of Medical Biotechnology , University of Siena , I-53100 Siena , Italy
| | - Claudio Zamperini
- Department of Biotechnology, Chemistry, and Pharmacy , University of Siena , I-53100 Siena , Italy.,Lead Discovery Siena s.r.l. , Via Vittorio Alfieri 31 , I-53019 Castelnuovo Berardenga , Italy
| | - Davide Deodato
- Department of Biotechnology, Chemistry, and Pharmacy , University of Siena , I-53100 Siena , Italy
| | - Giuseppina I Truglio
- Department of Biotechnology, Chemistry, and Pharmacy , University of Siena , I-53100 Siena , Italy
| | - Filomena Sannio
- Department of Medical Biotechnology , University of Siena , I-53100 Siena , Italy
| | - Rosita Del Prete
- Department of Medical Biotechnology , University of Siena , I-53100 Siena , Italy
| | - Teresa Ferraro
- Lead Discovery Siena s.r.l. , Via Vittorio Alfieri 31 , I-53019 Castelnuovo Berardenga , Italy
| | - Daniela Visaggio
- Department of Sciences , Roma Tre University , Rome 00146 , Italy
| | - Arianna Mancini
- Department of Biotechnology, Chemistry, and Pharmacy , University of Siena , I-53100 Siena , Italy
| | | | - Paolo Visca
- Department of Sciences , Roma Tre University , Rome 00146 , Italy
| | - Jean-Denis Docquier
- Department of Medical Biotechnology , University of Siena , I-53100 Siena , Italy.,Lead Discovery Siena s.r.l. , Via Vittorio Alfieri 31 , I-53019 Castelnuovo Berardenga , Italy
| | - Maurizio Botta
- Department of Biotechnology, Chemistry, and Pharmacy , University of Siena , I-53100 Siena , Italy.,Lead Discovery Siena s.r.l. , Via Vittorio Alfieri 31 , I-53019 Castelnuovo Berardenga , Italy.,Sbarro Institute for Cancer Research and Molecular Medicine , Temple University , BioLife Science Building, Suite 333, 1900 North 12th Street , Philadelphia , Pennsylvania 19122 , United States
| |
Collapse
|
21
|
Detection of antimicrobial resistance genes associated with the International Space Station environmental surfaces. Sci Rep 2018; 8:814. [PMID: 29339831 PMCID: PMC5770469 DOI: 10.1038/s41598-017-18506-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/13/2017] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global health issue. In an effort to minimize this threat to astronauts, who may be immunocompromised and thus at a greater risk of infection from antimicrobial resistant pathogens, a comprehensive study of the ISS “resistome’ was conducted. Using whole genome sequencing (WGS) and disc diffusion antibiotic resistance assays, 9 biosafety level 2 organisms isolated from the ISS were assessed for their antibiotic resistance. Molecular analysis of AMR genes from 24 surface samples collected from the ISS during 3 different sampling events over a span of a year were analyzed with Ion AmpliSeq™ and metagenomics. Disc diffusion assays showed that Enterobacter bugandensis strains were resistant to all 9 antibiotics tested and Staphylococcus haemolyticus being resistant to none. Ion AmpliSeq™ revealed that 123 AMR genes were found, with those responsible for beta-lactam and trimethoprim resistance being the most abundant and widespread. Using a variety of methods, the genes involved in antimicrobial resistance have been examined for the first time from the ISS. This information could lead to mitigation strategies to maintain astronaut health during long duration space missions when return to Earth for treatment is not possible.
Collapse
|
22
|
Paitan Y. Current Trends in Antimicrobial Resistance of Escherichia coli. Curr Top Microbiol Immunol 2018; 416:181-211. [PMID: 30088148 DOI: 10.1007/82_2018_110] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Escherichia coli is the most common Gram-negative bacterial pathogen, presenting both a clinical and an epidemiological challenge. In the last decade, several successful multidrug-resistant high-risk strains, such as strain E. coli ST131 have evolved, mainly due to the growing selective pressure of antimicrobial use. These strains present enhanced fitness and pathogenicity, effective transmission and colonization abilities, global distribution due to efficient dissemination, and resistance to various antimicrobial resistances. Here, we describe the emerging trends and epidemiology of resistant E. coli, including carbapenemase-producing E. coli, E. coli ST131 and colistin resistant E. coli.
Collapse
Affiliation(s)
- Yossi Paitan
- Clinical Microbiology Laboratory, Meir Medical Center, 44282, Kfar Saba, Israel. .,Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, 39978, Tel Aviv, Israel.
| |
Collapse
|
23
|
Case Report of Enterobacter cloacae Producing IMP-8 Carbapenemase Isolated from Secretions of Burn Patients and Diabetes Patients with Diabetic Foot. Jundishapur J Microbiol 2017. [DOI: 10.5812/jjm.56006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Esposito EP, Gaiarsa S, Del Franco M, Crivaro V, Bernardo M, Cuccurullo S, Pennino F, Triassi M, Marone P, Sassera D, Zarrilli R. A Novel IncA/C1 Group Conjugative Plasmid, Encoding VIM-1 Metallo-Beta-Lactamase, Mediates the Acquisition of Carbapenem Resistance in ST104 Klebsiella pneumoniae Isolates from Neonates in the Intensive Care Unit of V. Monaldi Hospital in Naples. Front Microbiol 2017; 8:2135. [PMID: 29163422 PMCID: PMC5675864 DOI: 10.3389/fmicb.2017.02135] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/19/2017] [Indexed: 11/13/2022] Open
Abstract
The emergence of carbapenemase producing Enterobacteriaceae has raised major public health concern. The aim of this study was to investigate the molecular epidemiology and the mechanism of carbapenem resistance acquisition of multidrug-resistant Klebsiella pneumoniae isolates from 20 neonates in the neonatal intensive care unit (NICU) of the V. Monaldi Hospital in Naples, Italy, from April 2015 to March 2016. Genotype analysis by pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) identified PFGE type A and subtypes A1 and A2 in 17, 2, and 1 isolates, respectively, and assigned all isolates to sequence type (ST) 104. K. pneumoniae isolates were resistant to all classes of β-lactams including carbapenems, fosfomycin, gentamicin, and trimethoprim-sulfamethoxazole, but susceptible to quinolones, amikacin, and colistin. Conjugation experiments demonstrated that resistance to third-generation cephems and imipenem could be transferred along with an IncA/C plasmid containing the extended spectrum β-lactamase blaSHV -12 and carbapenem-hydrolyzing metallo-β-lactamase blaV IM-1 genes. The plasmid that we called pIncAC_KP4898 was 156,252 bp in size and included a typical IncA/C backbone, which was assigned to ST12 and core genome (cg) ST12.1 using the IncA/C plasmid MLST (PMLST) scheme. pIncAC_KP4898 showed a mosaic structure with blaV IM-1 into a class I integron, blaSHV -12 flanked by IS6 elements, a mercury resistance and a macrolide 2'-phosphotransferase clusters, ant(3″), aph(3″), aacA4, qnrA1, sul1, and dfrA14 conferring resistance to aminoglycosides, quinolones, sulfonamides, and trimethoprim, respectively, several genes predicted to encode transfer functions and proteins involved in DNA transposition. The acquisition of pIncAC_KP4898 carrying blaV IM-1 and blaSHV -12 contributed to the spread of ST104 K. pneumoniae in the NICU of V. Monaldi Hospital in Naples.
Collapse
Affiliation(s)
- Eliana P Esposito
- Department of Public Health, University of Naples 'Federico II', Naples, Italy
| | - Stefano Gaiarsa
- Department of Bioscience, University of Milan, Milan, Italy.,Microbiology and Virology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | | | - Valeria Crivaro
- Azienda Ospedaliera di Rilievo Nazionale (AORN) dei Colli, V. Monaldi Hospital, Naples, Italy
| | - Mariano Bernardo
- Azienda Ospedaliera di Rilievo Nazionale (AORN) dei Colli, V. Monaldi Hospital, Naples, Italy
| | - Susanna Cuccurullo
- Azienda Ospedaliera di Rilievo Nazionale (AORN) dei Colli, V. Monaldi Hospital, Naples, Italy
| | - Francesca Pennino
- Department of Public Health, University of Naples 'Federico II', Naples, Italy
| | - Maria Triassi
- Department of Public Health, University of Naples 'Federico II', Naples, Italy
| | - Piero Marone
- Microbiology and Virology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Davide Sassera
- Department of Biology and Biotechnologies, University of Pavia, Pavia, Italy
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples 'Federico II', Naples, Italy.,Centro di Inngegneria Genetica (CEINGE) Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
25
|
Mojica MF, Bonomo RA, Fast W. B1-Metallo-β-Lactamases: Where Do We Stand? Curr Drug Targets 2017; 17:1029-50. [PMID: 26424398 DOI: 10.2174/1389450116666151001105622] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 12/31/1969] [Accepted: 09/14/2015] [Indexed: 11/22/2022]
Abstract
Metallo-β-Lactamases (MBLs) are class Bβ-lactamases that hydrolyze almost all clinically-availableβ-lactam antibiotics. MBLs feature the distinctive αβ/βα sandwich fold of the metallo-hydrolase/oxidoreductase superfamily and possess a shallow active-site groove containing one or two divalent zinc ions, flanked by flexible loops. According to sequence identity and zinc ion dependence, MBLs are classified into three subclasses (B1, B2 and B3), of which the B1 subclass enzymes have emerged as the most clinically significant. Differences among the active site architectures, the nature of zinc ligands, and the catalytic mechanisms have limited the development of a common inhibitor. In this review, we will describe the molecular epidemiology and structural studies of the most prominent representatives of class B1 MBLs (NDM-1, IMP-1 and VIM-2) and describe the implications for inhibitor design to counter this growing clinical threat.
Collapse
Affiliation(s)
| | - Robert A Bonomo
- Medical Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Blvd., Cleveland, OH 44106, USA.
| | - Walter Fast
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas, Austin TX, 78712, USA.
| |
Collapse
|
26
|
Djouadi LN, Selama O, Abderrahmani A, Bouanane-Darenfed A, Abdellaziz L, Amziane M, Fardeau ML, Nateche F. Multiresistant opportunistic pathogenic bacteria isolated from polluted rivers and first detection of nontuberculous mycobacteria in the Algerian aquatic environment. JOURNAL OF WATER AND HEALTH 2017; 15:566-579. [PMID: 28771154 DOI: 10.2166/wh.2017.309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Opportunistic infections constitute a major challenge for modern medicine mainly because the involved bacteria are usually multiresistant to antibiotics. Most of these bacteria possess remarkable ability to adapt to various ecosystems, including those exposed to anthropogenic activities. This study isolated and identified 21 multiresistant opportunistic bacteria from two polluted rivers, located in Algiers. Cadmium, lead, and copper concentrations were determined for both water samples to evaluate heavy metal pollution. High prevalence of Enterobacteria and non-fermentative Gram-negative rods was found and a nontuberculous Mycobacterium (NTM) strain was isolated. To the best of our knowledge, this is the first detection of NTM in the Algerian environment. The strains were tested for their resistance against 34 antibiotics and 8 heavy metals. Multiple antibiotics and heavy metals resistance was observed in all isolates. The two most resistant strains, identified as Acinetobacter sp. and Citrobacter freundii, were submitted to plasmid curing to determine if resistance genes were plasmid or chromosome encoded. Citrobacter freundii strain P18 showed a high molecular weight plasmid which seems to code for resistance to zinc, lead, and tetracycline, at the same time. These findings strongly suggest that anthropized environments constitute a reservoir for multiresistant opportunistic bacteria and for circulating resistance genes.
Collapse
Affiliation(s)
- Lydia Neïla Djouadi
- Laboratory of Cellular and Molecular Biology, Microbiology team, Faculty of Biological Sciences, USTHB, Bab ezzouar -BP n°32, Algiers, Algeria
| | - Okba Selama
- Laboratory of Cellular and Molecular Biology, Microbiology team, Faculty of Biological Sciences, USTHB, Bab ezzouar -BP n°32, Algiers, Algeria
| | - Ahmed Abderrahmani
- Laboratory of Cellular and Molecular Biology, Microbiology team, Faculty of Biological Sciences, USTHB, Bab ezzouar -BP n°32, Algiers, Algeria
| | - Amel Bouanane-Darenfed
- Laboratory of Cellular and Molecular Biology, Microbiology team, Faculty of Biological Sciences, USTHB, Bab ezzouar -BP n°32, Algiers, Algeria
| | - Lamia Abdellaziz
- Laboratory of Cellular and Molecular Biology, Microbiology team, Faculty of Biological Sciences, USTHB, Bab ezzouar -BP n°32, Algiers, Algeria
| | - Meriam Amziane
- Laboratory of Cellular and Molecular Biology, Microbiology team, Faculty of Biological Sciences, USTHB, Bab ezzouar -BP n°32, Algiers, Algeria
| | - Marie-Laure Fardeau
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, Marseille 13288 cedex 09, France E-mail:
| | - Farida Nateche
- Laboratory of Cellular and Molecular Biology, Microbiology team, Faculty of Biological Sciences, USTHB, Bab ezzouar -BP n°32, Algiers, Algeria
| |
Collapse
|
27
|
Shakibaie MR, Azizi O, Shahcheraghi F. Insight into stereochemistry of a new IMP allelic variant (IMP-55) metallo-β-lactamase identified in a clinical strain of Acinetobacter baumannii. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2017; 51:118-126. [PMID: 28336429 DOI: 10.1016/j.meegid.2017.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 02/05/2023]
Abstract
Metallo-β-lactamases (MBLs) such as IMPs are broad-spectrum β-lactamases that inactivate virtually all β-lactam antibiotics including carbapenems. In this study, we investigated the hydrolytic activity, phylogenetic relationship, three dimensional (3D) structure including zinc binding motif of a new IMP variant (IMP-55) identified in a clinical strain of Acinetobacter baumannii (AB). AB strain 56 was isolated from an adult ICU of a teaching hospital in Kerman, Iran. It exhibited MIC 32μg/ml to imipenem and showed MBL activity. Hydrolytic property of the MBL enzyme was measured phenotypically. Presence of blaIMP gene encoded by class 1 integrons was detected by PCR-sequencing. Phylogenetic tree of IMP protein was constructed using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) and 3D model including zinc binding motif was predicted by bioinformatics softwares. Analysis of IMP sequence led to the identification of a novel IMP-type designated as IMP-55 (GenBank: KU299753.1; UniprotKB: A0A0S2MTX2). Impact in term of hydrolytic activity compared to the closest variants suggested efficient imipenem hydrolysis by this enzyme. Evolutionary distance matrix assessment indicated that IMP-55 protein is not closely related to other A. baumannii IMPs, however, shared 98% homology with Escherichia coli IMP-30 (UniprotKB: A0A0C5PJR0) and Pseudomonas aeruginosa IMP-1 (UniprotKB: Q19KT1). It consisted of five α-helices, ten β-sheets and six loops. A monovalent zinc ion attached to core of enzyme via His95, His97, His157 and Cys176. Multiple amino acid sequence alignments and mutational trajectory with reported IMPs showed 4 amino acid substitutions at positions 12(Phe→Ile), 31(Asp→Glu), 172(Leu→Phe) and 185(Asn→Lys). We suggest that the pleiotropic effect of mutations due to frequent administration of imipenem is responsible for emergence of new IMP variant in our hospitals.
Collapse
Affiliation(s)
- Mohammad Reza Shakibaie
- Department of Microbiology and Virology, Kerman University of Medical Sciences, Kerman, Iran; Infection Diseases and Tropical Medicine Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Omid Azizi
- Department of Microbiology and Virology, Kerman University of Medical Sciences, Kerman, Iran
| | - Fereshteh Shahcheraghi
- Department of Bacteriology, Microbiology Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
28
|
Molecular epidemiology of carbapenemase-producing Enterobacteriaceae in a primary care hospital in Japan, 2010–2013. J Infect Chemother 2017; 23:224-229. [DOI: 10.1016/j.jiac.2016.12.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 12/12/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
|
29
|
Lee CR, Lee JH, Park M, Park KS, Bae IK, Kim YB, Cha CJ, Jeong BC, Lee SH. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front Cell Infect Microbiol 2017; 7:55. [PMID: 28348979 PMCID: PMC5346588 DOI: 10.3389/fcimb.2017.00055] [Citation(s) in RCA: 517] [Impact Index Per Article: 73.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/13/2017] [Indexed: 12/27/2022] Open
Abstract
Acinetobacter baumannii is undoubtedly one of the most successful pathogens responsible for hospital-acquired nosocomial infections in the modern healthcare system. Due to the prevalence of infections and outbreaks caused by multi-drug resistant A. baumannii, few antibiotics are effective for treating infections caused by this pathogen. To overcome this problem, knowledge of the pathogenesis and antibiotic resistance mechanisms of A. baumannii is important. In this review, we summarize current studies on the virulence factors that contribute to A. baumannii pathogenesis, including porins, capsular polysaccharides, lipopolysaccharides, phospholipases, outer membrane vesicles, metal acquisition systems, and protein secretion systems. Mechanisms of antibiotic resistance of this organism, including acquirement of β-lactamases, up-regulation of multidrug efflux pumps, modification of aminoglycosides, permeability defects, and alteration of target sites, are also discussed. Lastly, novel prospective treatment options for infections caused by multi-drug resistant A. baumannii are summarized.
Collapse
Affiliation(s)
- Chang-Ro Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Moonhee Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji UniversityYongin, South Korea; DNA Analysis Division, Seoul Institute, National Forensic ServiceSeoul, South Korea
| | - Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Il Kwon Bae
- Department of Dental Hygiene, College of Health and Welfare, Silla University Busan, South Korea
| | - Young Bae Kim
- Biotechnology Program, North Shore Community College Danvers, MA, USA
| | - Chang-Jun Cha
- Department of Systems Biotechnology, College of Biotechnology and Natural Resources, Chung-Ang University Anseong, South Korea
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| |
Collapse
|
30
|
Multidrug-Resistant Sequence Type 235 Pseudomonas aeruginosa Clinical Isolates Producing IMP-26 with Increased Carbapenem-Hydrolyzing Activities in Vietnam. Antimicrob Agents Chemother 2016; 60:6853-6858. [PMID: 27600046 DOI: 10.1128/aac.01177-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/29/2016] [Indexed: 11/20/2022] Open
Abstract
Forty clinical isolates of multidrug-resistant Pseudomonas aeruginosa were obtained in a medical setting in Hanoi, Vietnam. Whole genomes of all 40 isolates were sequenced by MiSeq (Illumina), and phylogenic trees were constructed from the single nucleotide polymorphism concatemers. Of these 40 isolates, 24 (60.0%) harbored metallo-β-lactamase-encoding genes, including blaIMP-15, blaIMP-26, blaIMP-51, and/or blaNDM-1 Of these 24 isolates, 12 harbored blaIMP-26 and belonged to sequence type 235 (ST235). Escherichia coli expressing blaIMP-26 was significantly more resistant to doripenem and meropenem than E. coli expressing blaIMP-1 and blaIMP-15 IMP-26 showed higher catalytic activity against doripenem and meropenem than IMP-1 and against all carbapenems tested, including doripenem, imipenem, meropenem, and panipenem, than did IMP-15. These data suggest that clinical isolates of multidrug-resistant ST235 P. aeruginosa producing IMP-26 with increased carbapenem-hydrolyzing activities are spreading in medical settings in Vietnam.
Collapse
|
31
|
Insights on the Horizontal Gene Transfer of Carbapenemase Determinants in the Opportunistic Pathogen Acinetobacter baumannii. Microorganisms 2016; 4:microorganisms4030029. [PMID: 27681923 PMCID: PMC5039589 DOI: 10.3390/microorganisms4030029] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/21/2016] [Accepted: 08/09/2016] [Indexed: 12/23/2022] Open
Abstract
Horizontal gene transfer (HGT) is a driving force to the evolution of bacteria. The fast emergence of antimicrobial resistance reflects the ability of genetic adaptation of pathogens. Acinetobacter baumannii has emerged in the last few decades as an important opportunistic nosocomial pathogen, in part due to its high capacity of acquiring resistance to diverse antibiotic families, including to the so-called last line drugs such as carbapenems. The rampant selective pressure and genetic exchange of resistance genes hinder the effective treatment of resistant infections. A. baumannii uses all the resistance mechanisms to survive against carbapenems but production of carbapenemases are the major mechanism, which may act in synergy with others. A. baumannii appears to use all the mechanisms of gene dissemination. Beyond conjugation, the mostly reported recent studies point to natural transformation, transduction and outer membrane vesicles-mediated transfer as mechanisms that may play a role in carbapenemase determinants spread. Understanding the genetic mobilization of carbapenemase genes is paramount in preventing their dissemination. Here we review the carbapenemases found in A. baumannii and present an overview of the current knowledge of contributions of the various HGT mechanisms to the molecular epidemiology of carbapenem resistance in this relevant opportunistic pathogen.
Collapse
|
32
|
Mathlouthi N, Al-Bayssari C, Bakour S, Rolain JM, Chouchani C. RETRACTED ARTICLE: Prevalence and emergence of carbapenemases-producing Gram-negative bacteria in Mediterranean basin. Crit Rev Microbiol 2016; 43:43-61. [DOI: 10.3109/1040841x.2016.1160867] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Najla Mathlouthi
- Université Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire des Microorganismes et Biomolécules Actives, Campus Universitaire, El-Manar II, Tunisia
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
- Université de Carthage, Institut Supérieur des Sciences et Technologies de l’Environnement de Borj-Cedria, Technopôle de Borj-Cedria, BP-1003, Hammam-Lif, Tunisia
| | - Charbel Al-Bayssari
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Sofiane Bakour
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Jean Marc Rolain
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Chedly Chouchani
- Université Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire des Microorganismes et Biomolécules Actives, Campus Universitaire, El-Manar II, Tunisia
- Université de Carthage, Institut Supérieur des Sciences et Technologies de l’Environnement de Borj-Cedria, Technopôle de Borj-Cedria, BP-1003, Hammam-Lif, Tunisia
| |
Collapse
|
33
|
Yamaguchi Y, Matsueda S, Matsunaga K, Takashio N, Toma-Fukai S, Yamagata Y, Shibata N, Wachino JI, Shibayama K, Arakawa Y, Kurosaki H. Crystal structure of IMP-2 metallo-β-lactamase from Acinetobacter spp.: comparison of active-site loop structures between IMP-1 and IMP-2. Biol Pharm Bull 2015; 38:96-101. [PMID: 25744464 DOI: 10.1248/bpb.b14-00594] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
IMP-2, a subclass B1 metallo-β-lactamase (MBL), is a Zn(II)-containing hydrolase. This hydrolase, involved in antibiotic resistance, catalyzes the hydrolysis of the C-N bond of the β-lactam ring in β-lactam antibiotics such as benzylpenicillin and imipenem. The crystal structure of IMP-2 MBL from Acinetobacter spp. was determined at 2.3 Å resolution. This structure is analogous to that of subclass B1 MBLs such as IMP-1 and VIM-2. Comparison of the structures of IMP-1 and IMP-2, which have an 85% amino acid identity, suggests that the amino acid substitution at position 68 on a β-strand (β3) (Pro in IMP-1 versus Ser in IMP-2) may be a staple factor affecting the flexibility of loop 1 (comprising residues at positions 60-66; EVNGWGV). In the IMP-1 structure, loop 1 adopts an open, disordered conformation. On the other hand, loop 1 of IMP-2 forms a closed conformation in which the side chain of Trp64, involved in substrate binding, is oriented so as to cover the active site, even though there is an acetate ion in the active site of both IMP-1 and IMP-2. Loop 1 of IMP-2 has a more flexible structure in comparison to IMP-1 due to having a Ser residue instead of the Pro residue at position 68, indicating that this difference in sequence may be a trigger to induce a more flexible conformation in loop 1.
Collapse
|
34
|
Del Franco M, Paone L, Novati R, Giacomazzi CG, Bagattini M, Galotto C, Montanera PG, Triassi M, Zarrilli R. Molecular epidemiology of carbapenem resistant Enterobacteriaceae in Valle d'Aosta region, Italy, shows the emergence of KPC-2 producing Klebsiella pneumoniae clonal complex 101 (ST101 and ST1789). BMC Microbiol 2015; 15:260. [PMID: 26552763 PMCID: PMC4640108 DOI: 10.1186/s12866-015-0597-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/02/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The spread of carbapenem resistant Enterobacteriaceae (CRE) is an emerging clinical problem, of great relevance in Europe and worldwide. The aim of this study was the molecular epidemiology of CRE isolates in Valle d'Aosta region, Italy, and the mechanism of carbapenem resistance. RESULTS Sixty consecutive CRE samples were isolated from 52 hospital inpatients and/or outpatients from November 2013 to August 2014. Genotyping of microbial isolates was done by pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST), carbapenemases were identified by PCR and sequencing. Carbapenem resistance gene transfer was performed by filter mating, plasmids from parental and transconjugant strains were assigned to incompatibility groups by PCR-based replicon typing. Molecular characterization of CRE isolates assigned 25 Klebsiella pneumoniae isolates to PFGE types A1-A5 and sequencing type (ST) 101, 17 K. pneumoniae isolates to PFGE type A and ST1789 (a single locus variant of ST101), 7 K. pneumoniae isolates to PFGE types B or C and ST512, 2 K. pneumoniae isolates to PFGE type D and ST405, and 5 Escherichia coli isolates to PFGE type a and ST131. All K. pneumoniae ST101 and ST1789 isolates were extended-spectrum beta-lactamase (ESBL) producers and carried bla CTX-M-1 group gene; 4 K. pneumoniae ST101 isolates were resistant to colistin. Molecular analysis of beta-lactamase genes identified bla KPC-2 and bla CTX-M-group 1 into conjugative plasmid/s assigned to IncFII incompatibility group in ST101 and ST1789 K. pneumoniae isolates, bla KPC-3 into conjugative plasmid/s assigned to IncF incompatibility group in ST512 and ST405 K. pneumoniae isolates, bla VIM-1 into conjugative plasmid/s assigned to IncN incompatibility group in ST131 E. coli isolates. CONCLUSIONS The spread of CRE in Valle d'Aosta region was caused by the selection of KPC-2 producing K. pneumoniae ST101 and ST1789 epidemic clones belonging to clonal complex 101, KPC-3 producing K. pneumoniae epidemic clones assigned to ST512 and ST405, and VIM-1 producing E.coli ST131 epidemic clone. Carbapenem resistance, along with bla KPC-2, bla KPC-3 and bla VIM-1 carbapenemase genes, was transferred by conjugative plasmids assigned to IncFII, IncF, and IncN incompatibility groups, respectively, in filter mating experiments. The emergence of colistin resistance was observed in KPC-2 producing K. pneumoniae ST101 isolates.
Collapse
Affiliation(s)
| | - Laura Paone
- Department of Public Health, University of Naples 'Federico II', Naples, Italy.
| | - Roberto Novati
- Medical Direction, Aosta Regional Hospital, Aosta, Italy.
| | | | - Maria Bagattini
- Department of Public Health, University of Naples 'Federico II', Naples, Italy.
| | - Chiara Galotto
- Medical Direction, Aosta Regional Hospital, Aosta, Italy.
| | | | - Maria Triassi
- Department of Public Health, University of Naples 'Federico II', Naples, Italy.
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples 'Federico II', Naples, Italy. .,CEINGE Biotecnologie Avanzate, Naples, Italy.
| |
Collapse
|
35
|
Jena J, Debata NK, Sahoo RK, Subudhi E. Phylogenetic study of metallo-β-lactamase producing multidrug resistant Pseudomonas aeruginosa isolates from burn patients. Burns 2015; 41:1758-1763. [PMID: 26188888 DOI: 10.1016/j.burns.2015.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 11/30/2022]
Abstract
The present study was carried out to understand the clonal relationship using enterobacteriaceae repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) among metallo-β-lactamase (MBL) producing multidrug resistant Pseudomonas aeruginosa isolates from burn victims and their susceptibility to commonly used anti-pseudomonal agents. In the present study 94 non-duplicate P. aeruginosa strains from the wound samples of burn patients were included. Identification of the isolates was done by biochemical methods and antibiotic sensitivity was done by disc diffusion method following CLSI (Clinical Laboratory Standard Institute) guidelines. By using imipenem (IPM)-EDTA disk diffusion/double disc synergy method carbapenem resistant organisms were tested for MBL. To define the clonal relationship ERIC-PCR was used. Of the 94 isolates, 18 (19.14%) were found resistant to IPM and MBL production was shown 11 (11.70%) by the IPM-EDTA disc diffusion method. From dendrogram of the ERIC-PCR profile four major clusters were obtained (A, B, C and D). Cluster B contained the majority of the isolates (6 strains 1, 4, 8, 9, 10 and 11). This study using ERIC-PCR of randomly collected isolates exhibits high genetic diversity which rules out cross contamination frequency.
Collapse
Affiliation(s)
- Jayanti Jena
- Department of Microbiology, IMS & SUM Hospital, Siksha 'O' Anusandhan University, Khandagiri, Bhubaneswar, Odisha 751003, India.
| | - Nagen Kumar Debata
- Department of Microbiology, IMS & SUM Hospital, Siksha 'O' Anusandhan University, Khandagiri, Bhubaneswar, Odisha 751003, India.
| | - Rajesh Kumar Sahoo
- Centre of Biotechnology, Siksha 'O' Anusandhan University, Khandagiri, Bhubaneswar, Odisha 751003, India.
| | - Enketeswara Subudhi
- Centre of Biotechnology, Siksha 'O' Anusandhan University, Khandagiri, Bhubaneswar, Odisha 751003, India.
| |
Collapse
|
36
|
Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. Int J Antimicrob Agents 2015; 45:568-85. [PMID: 25857949 DOI: 10.1016/j.ijantimicag.2015.03.001] [Citation(s) in RCA: 457] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 02/07/2023]
Abstract
Multidrug resistance is quite common among non-fermenting Gram-negative rods, in particular among clinically relevant species including Pseudomonas aeruginosa and Acinetobacter baumannii. These bacterial species, which are mainly nosocomial pathogens, possess a diversity of resistance mechanisms that may lead to multidrug or even pandrug resistance. Extended-spectrum β-lactamases (ESBLs) conferring resistance to broad-spectrum cephalosporins, carbapenemases conferring resistance to carbapenems, and 16S rRNA methylases conferring resistance to all clinically relevant aminoglycosides are the most important causes of concern. Concomitant resistance to fluoroquinolones, polymyxins (colistin) and tigecycline may lead to pandrug resistance. The most important mechanisms of resistance in P. aeruginosa and A. baumannii and their most recent dissemination worldwide are detailed here.
Collapse
Affiliation(s)
- Anaïs Potron
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Laurent Poirel
- Emerging Antibiotic Resistance Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland.
| | - Patrice Nordmann
- Emerging Antibiotic Resistance Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland; HFR - Hôpital Cantonal de Fribourg, Fribourg, Switzerland
| |
Collapse
|
37
|
Miraula M, Whitaker JJ, Schenk G, Mitić N. β-Lactam antibiotic-degrading enzymes from non-pathogenic marine organisms: a potential threat to human health. J Biol Inorg Chem 2015; 20:639-51. [PMID: 25773168 DOI: 10.1007/s00775-015-1250-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
Abstract
Metallo-β-lactamases (MBLs) are a family of Zn(II)-dependent enzymes that inactivate most of the commonly used β-lactam antibiotics. They have emerged as a major threat to global healthcare. Recently, we identified two novel MBL-like proteins, Maynooth IMipenemase-1 (MIM-1) and Maynooth IMipenemase-2 (MIM-2), in the marine organisms Novosphingobium pentaromativorans and Simiduia agarivorans, respectively. Here, we demonstrate that MIM-1 and MIM-2 have catalytic activities comparable to those of known MBLs, but from the pH dependence of their catalytic parameters it is evident that both enzymes differ with respect to their mechanisms, with MIM-1 preferring alkaline and MIM-2 acidic conditions. Both enzymes require Zn(II) but activity can also be reconstituted with other metal ions including Co(II), Mn(II), Cu(II) and Ca(II). Importantly, the substrate preference of MIM-1 and MIM-2 appears to be influenced by their metal ion composition. Since neither N. pentaromativorans nor S. agarivorans are human pathogens, the precise biological role(s) of MIM-1 and MIM-2 remains to be established. However, due to the similarity of at least some of their in vitro functional properties to those of known MBLs, MIM-1 and MIM-2 may provide essential structural insight that may guide the design of as of yet elusive clinically useful MBL inhibitors.
Collapse
Affiliation(s)
- Manfredi Miraula
- Department of Chemistry, Maynooth University, Maynooth, Co., Kildare, Ireland
| | | | | | | |
Collapse
|
38
|
Jean SS, Lee WS, Lam C, Hsu CW, Chen RJ, Hsueh PR. Carbapenemase-producing Gram-negative bacteria: current epidemics, antimicrobial susceptibility and treatment options. Future Microbiol 2015; 10:407-25. [DOI: 10.2217/fmb.14.135] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT Carbapenemases, with versatile hydrolytic capacity against β-lactams, are now an important cause of resistance of Gram-negative bacteria. The genes encoding for the acquired carbapenemases are associated with a high potential for dissemination. In addition, infections due to Gram-negative bacteria with acquired carbapenemase production would lead to high clinical mortality rates. Of the acquired carbapenemases, Klebsiella pneumoniae carbapenemase (Ambler class A), Verona integron-encoded metallo-β-lactamase (Ambler class B), New Delhi metallo-β-lactamase (Ambler class B) and many OXA enzymes (OXA-23-like, OXA-24-like, OXA-48-like, OXA-58-like, class D) are considered to be responsible for the worldwide resistance epidemics. As compared with monotherapy with colistin or tigecycline, combination therapy has been shown to effectively lower case-fatality rates. However, development of new antibiotics is crucial in the present pandrug-resistant era.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Emergency Medicine, Wan Fang Hospital, Taipei Medical University; and Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Sen Lee
- Division of infectious Diseases, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Carlos Lam
- Department of Emergency Medicine, Wan Fang Hospital, Taipei Medical University; and Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Wang Hsu
- Department of Emergency & Critical Medicine, Taipei Medical University, Wan Fang Hospital, Taipei, Taiwan
| | - Ray-Jade Chen
- Department of Emergency & Critical Medicine, Taipei Medical University, Wan Fang Hospital, Taipei, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine & Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
39
|
OXA-23 Carbapenemase in Multidrug-ResistantAcinetobacter baumanniiST2 Type: First Identification in L'Aquila Hospital (Italy). Microb Drug Resist 2015; 21:97-101. [DOI: 10.1089/mdr.2014.0056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
40
|
Lin MF, Lan CY. Antimicrobial resistance in Acinetobacter baumannii: From bench to bedside. World J Clin Cases 2014; 2:787-814. [PMID: 25516853 PMCID: PMC4266826 DOI: 10.12998/wjcc.v2.i12.787] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 08/25/2014] [Accepted: 10/27/2014] [Indexed: 02/05/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is undoubtedly one of the most successful pathogens in the modern healthcare system. With invasive procedures, antibiotic use and immunocompromised hosts increasing in recent years, A. baumannii has become endemic in hospitals due to its versatile genetic machinery, which allows it to quickly evolve resistance factors, and to its remarkable ability to tolerate harsh environments. Infections and outbreaks caused by multidrug-resistant A. baumannii (MDRAB) are prevalent and have been reported worldwide over the past twenty or more years. To address this problem effectively, knowledge of species identification, typing methods, clinical manifestations, risk factors, and virulence factors is essential. The global epidemiology of MDRAB is monitored by persistent surveillance programs. Because few effective antibiotics are available, clinicians often face serious challenges when treating patients with MDRAB. Therefore, a deep understanding of the resistance mechanisms used by MDRAB can shed light on two possible strategies to combat the dissemination of antimicrobial resistance: stringent infection control and antibiotic treatments, of which colistin-based combination therapy is the mainstream strategy. However, due to the current unsatisfying therapeutic outcomes, there is a great need to develop and evaluate the efficacy of new antibiotics and to understand the role of other potential alternatives, such as antimicrobial peptides, in the treatment of MDRAB infections.
Collapse
|
41
|
Pegg KM, Liu EM, George AC, LaCuran AE, Bethel CR, Bonomo RA, Oelschlaeger P. Understanding the determinants of substrate specificity in IMP family metallo-β-lactamases: the importance of residue 262. Protein Sci 2014; 23:1451-60. [PMID: 25131397 DOI: 10.1002/pro.2530] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 11/11/2022]
Abstract
In Gram-negative bacteria, resistance to β-lactam antibacterials is largely due to β-lactamases and is a growing public health threat. One of the most concerning β-lactamases to evolve in bacteria are the Class B enzymes, the metallo-β-lactamases (MBLs). To date, penams and cephems resistant to hydrolysis by MBLs have not yet been found. As a result of this broad substrate specificity, a better understanding of the role of catalytically important amino acids in MBLs is necessary to design novel β-lactams and inhibitors. Two MBLs, the wild type IMP-1 with serine at position 262, and an engineered variant with valine at the same position (IMP-1-S262V), were previously found to exhibit very different substrate spectra. These findings compelled us to investigate the impact of a threonine at position 262 (IMP-1-S262T) on the substrate spectrum. Here, we explore MBL sequence-structure-activity relationships by predicting and experimentally validating the effect of the S262T substitution in IMP-1. Using site-directed mutagenesis, threonine was introduced at position 262, and the IMP-1-S262T enzyme, as well as the other two enzymes IMP-1 and IMP-1-S262V, were purified and kinetic constants were determined against a range of β-lactam antibacterials. Catalytic efficiencies (kcat /KM ) obtained with IMP-1-S262T and minimum inhibitory concentrations (MICs) observed with bacterial cells expressing the protein were intermediate or comparable to the corresponding values with IMP-1 and IMP-1-S262V, validating the role of this residue in catalysis. Our results reveal the important role of IMP residue 262 in β-lactam turnover and support this approach to predict activities of certain novel MBL variants.
Collapse
Affiliation(s)
- Kevin M Pegg
- Biological Sciences Department, College of Science, California State Polytechnic University, Pomona, California
| | | | | | | | | | | | | |
Collapse
|
42
|
Epidemiology of carbapenemase-producing Enterobacteriaceae and Acinetobacter baumannii in Mediterranean countries. BIOMED RESEARCH INTERNATIONAL 2014; 2014:305784. [PMID: 24955354 PMCID: PMC4052623 DOI: 10.1155/2014/305784] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 04/22/2014] [Indexed: 01/17/2023]
Abstract
The emergence and global spread of carbapenemase-producing Enterobacteriaceae and Acinetobacter baumannii are of great concern to health services worldwide. These β-lactamases hydrolyse almost all β-lactams, are plasmid-encoded, and are easily transferable among bacterial species. They are mostly of the KPC, VIM, IMP, NDM, and OXA-48 types. Their current extensive spread worldwide in Enterobacteriaceae is an important source of concern. Infections caused by these bacteria have limited treatment options and have been associated with high mortality rates. Carbapenemase producers are mainly identified among Klebsiella pneumoniae, Escherichia coli, and A. baumannii and still mostly in hospital settings and rarely in the community. The Mediterranean region is of interest due to a great diversity and population mixing. The prevalence of carbapenemases is particularly high, with this area constituting one of the most important reservoirs. The types of carbapenemase vary among countries, partially depending on the population exchange relationship between the regions and the possible reservoirs of each carbapenemase. This review described the epidemiology of carbapenemases produced by enterobacteria and A. baumannii in this part of the world highlighting the worrisome situation and the need to screen and detect these enzymes to prevent and control their dissemination.
Collapse
|
43
|
Phelan EK, Miraula M, Selleck C, Ollis DL, Schenk G, Mitić N. Metallo-β-Lactamases: A Major Threat to Human Health. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajmb.2014.43011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Japoni-Nejad A, Farshad S, van Belkum A, Ghaznavi-Rad E. Novel cassette array in a class 1 integron in clinical isolates of Acinetobacter baumannii from central Iran. Int J Med Microbiol 2013; 303:645-50. [PMID: 24161711 DOI: 10.1016/j.ijmm.2013.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/30/2013] [Accepted: 09/01/2013] [Indexed: 10/26/2022] Open
Abstract
Antibiotic resistance in Acinetobacter baumannii is a major problem in the hospital and outbreaks caused by this organism have been reported frequently. The present study aimed at determining the antibiotic susceptibility patterns, the prevalence of different classes of integrons and the characterization of integron class 1 gene cassettes in Iranian A. baumannii isolates. A total of 63 non-duplicate A. baumannii isolates were collected from clinical and environmental specimens in the Vali-Asr hospital in the central province of Iran (March to September, 2011). The antimicrobial susceptibility for 15 antibiotics which are used conventionally was determined by disk diffusion. The presence of different integron classes was investigated by PCR and the size of gene cassettes in class 1 integrons was then determined by PCR as well. Moreover, integron cassette arrays of isolates were delineated by RFLP and sequencing amplicons with different lengths. Of 63 isolates 62 (98.4%) carried a class 1 integron. The prevalence of IntI2 was 15.9% and the length of the amplicons ranged from 500 bp to 3 kb. Sequencing of integrons of class 1 revealed the presence of many resistance genes (aadA, aacA, aacC, dfrA, bla(GES) and bla(IMP)). We identified a completely new gene cassette which contained aacA7-qacF-aadA5-bla(IMP), this cassette has not been reported previously in A. baumannii.
Collapse
Affiliation(s)
- Alireza Japoni-Nejad
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran; Department of Microbiology and Immunology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | | | | | | |
Collapse
|
45
|
Biochemical characterization of IMP-30, a metallo-β-lactamase with enhanced activity toward ceftazidime. Antimicrob Agents Chemother 2013; 57:5122-6. [PMID: 23836186 DOI: 10.1128/aac.02341-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IMP-type enzymes constitute a clinically important family of metallo-β-lactamases that has grown dramatically in the past decade to its current 45 known members. Here, we report the biochemical characterization of IMP-30 in comparison to IMP-1, from which it deviates by a single E59K mutation. Kinetics, MIC assays, docking, and molecular dynamics simulations support a scenario in which Lys59 interacts with the ceftazidime R1 group, resulting in increased water access and enhanced turnover and MIC of ceftazidime.
Collapse
|
46
|
Patel G, Bonomo RA. "Stormy waters ahead": global emergence of carbapenemases. Front Microbiol 2013; 4:48. [PMID: 23504089 PMCID: PMC3596785 DOI: 10.3389/fmicb.2013.00048] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/20/2013] [Indexed: 01/08/2023] Open
Abstract
Carbapenems, once considered the last line of defense against of serious infections with Enterobacteriaceae, are threatened with extinction. The increasing isolation of carbapenem-resistant Gram-negative pathogens is forcing practitioners to rely on uncertain alternatives. As little as 5 years ago, reports of carbapenem resistance in Enterobacteriaceae, common causes of both community and healthcare-associated infections, were sporadic and primarily limited to case reports, tertiary care centers, intensive care units, and outbreak settings. Carbapenem resistance mediated by β-lactamases, or carbapenemases, has become widespread and with the paucity of reliable antimicrobials available or in development, international focus has shifted to early detection and infection control. However, as reports of Klebsiella pneumoniae carbapenemases, New Delhi metallo-β-lactamase-1, and more recently OXA-48 (oxacillinase-48) become more common and with the conveniences of travel, the assumption that infections with highly resistant Gram-negative pathogens are limited to the infirmed and the heavily antibiotic and healthcare exposed are quickly being dispelled. Herein, we provide a status report describing the increasing challenges clinicians are facing and forecast the “stormy waters” ahead.
Collapse
Affiliation(s)
- Gopi Patel
- Department of Medicine, Mount Sinai School of Medicine New York, NY, USA
| | | |
Collapse
|
47
|
Segawa T, Takeuchi N, Rivera A, Yamada A, Yoshimura Y, Barcaza G, Shinbori K, Motoyama H, Kohshima S, Ushida K. Distribution of antibiotic resistance genes in glacier environments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:127-34. [PMID: 23757141 DOI: 10.1111/1758-2229.12011] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 10/05/2012] [Accepted: 10/12/2012] [Indexed: 05/20/2023]
Abstract
Antibiotic resistance genes are biologically transmitted from microorganism to microorganism in particular micro-environments where dense microbial communities are often exposed to an intensive use of antibiotics, such as intestinal microflora, and the soil microflora of agricultural fields. However, recent studies have detected antibiotic-resistant bacteria and/or antibiotic resistance genes in the natural environment geographically isolated from such areas. Here we sought to examine the prevalence of antibiotic resistance genes in 54 snow and ice samples collected from the Arctic, Antarctic, Central Asia, North and South America and Africa, to evaluate the level of these genes in environments supposedly not affected by anthropogenic factors. We observed a widespread distribution of antibiotic resistance genes in samples from various glaciers in Central Asia, North and South America, Greenland and Africa. In contrast, Antarctic glaciers were virtually free from these genes. Antibiotic resistance genes, of both clinical (i.e. aac(3), blaIMP) and agricultural (i.e. strA and tetW) origin, were detected. Our results show regional geographical distribution of antibiotic resistance genes, with the most plausible modes of transmission through airborne bacteria and migrating birds.
Collapse
Affiliation(s)
- Takahiro Segawa
- Transdisciplinary Research Integration Center, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lim Y, Lee Y, Seo Y, Yum JH, Yong D, Lee K, Chong Y. Loss of blaVIM-2and blaIMP-1during the Storage of Gram-Negative Bacilli, Antimicrobial Susceptibility of the Gene-Lost Strain, and Location of the Gene in the Cell. ANNALS OF CLINICAL MICROBIOLOGY 2013. [DOI: 10.5145/acm.2013.16.3.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Youngsik Lim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Yangsoon Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
- Department of Laboratory Medicine, National Health Insurance Corporation Ilsan Hospital, Goyang, Korea
| | - Younghee Seo
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hwa Yum
- Department of Clinical Laboratory Science, Dong-eui University, Busan, Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Kyungwon Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Yunsop Chong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
49
|
Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. Int J Antimicrob Agents 2012; 41:11-9. [PMID: 23127486 DOI: 10.1016/j.ijantimicag.2012.09.008] [Citation(s) in RCA: 361] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 12/22/2022]
Abstract
The rapid expansion of Acinetobacter baumannii clinical isolates exhibiting resistance to carbapenems and most or all available antibiotics during the last decade is a worrying evolution. The apparent predominance of a few successful multidrug-resistant lineages worldwide underlines the importance of elucidating the mode of spread and the epidemiology of A. baumannii isolates in single hospitals, at a country-wide level and on a global scale. The evolutionary advantage of the dominant clonal lineages relies on the capability of the A. baumannii pangenome to incorporate resistance determinants. In particular, the simultaneous presence of divergent strains of the international clone II and their increasing prevalence in international hospitals further support the ongoing adaptation of this lineage to the hospital environment. Indeed, genomic and genetic studies have elucidated the role of mobile genetic elements in the transfer of antibiotic resistance genes and substantiate the rate of genetic alterations associated with acquisition in A. baumannii of various resistance genes, including OXA- and metallo-β-lactamase-type carbapenemase genes. The significance of single nucleotide polymorphisms and transposon mutagenesis in the evolution of A. baumannii has been also documented. Establishment of a network of reference laboratories in different countries would generate a more complete picture and a fuller understanding of the importance of high-risk A. baumannii clones in the international dissemination of antibiotic resistance.
Collapse
|
50
|
Chouchani C, Marrakchi R, Henriques I, Correia A. Occurrence of IMP-8, IMP-10, and IMP-13 metallo-β-lactamases located on class 1 integrons and other extended-spectrum β-lactamases in bacterial isolates from Tunisian rivers. ACTA ACUST UNITED AC 2012; 45:95-103. [PMID: 22992193 DOI: 10.3109/00365548.2012.717712] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Antibiotic-resistant bacteria have been surveyed widely in water bodies, but few studies have determined the diversity of antibiotic-resistant bacteria in river waters. This study was undertaken to investigate the origin of resistance among polluted river bacterial isolates in Tunisia. METHODS In this study 128 isolates resistant to β-lactam antibiotics were obtained from 2 polluted rivers in the north of Tunisia. Isolates were identified using Phoenix phenotyping criteria. The occurrence of bla(TEM), bla(SHV), bla(CTX-M), bla(CMY), bla(VIM), and bla(IMP) was studied by polymerase chain reaction (PCR) amplification and sequencing, and the genetic relatedness of the 16 IMP-producing Klebsiella pneumoniae isolates was analyzed by comparison of XbaI pulsed-field gel electrophoresis (PFGE) profiles. RESULTS Using Phoenix phenotyping criteria, diverse genera of bacteria were identified with different rates of prevalence and with different minimum inhibitory concentrations against different antibiotics. The occurrence of bla(TEM), bla(SHV), bla(CTXM), bla(CMY), bla(VIM), and bla(IMP) genes was confirmed. The DNA sequences upstream and downstream of bla(IMP) genes were determined, revealing that all IMP-encoding genes constituted the first cassette of class 1 integrons, followed by aacA gene cassettes encoding aminoglycoside resistance. Comparison of PFGE profiles showed that only 2 of the isolates were clonal, the other 14 displaying unique profiles. The bla(CTX-M) gene was the most dominant of the extended-spectrum β-lactamase (ESBL) genes, while the bla(TEM) gene was the second-most dominant. CONCLUSION The discovery of highly diverse ESBL-producing bacteria and metallo-β-lactamases, particularly bla(IMP), in polluted river water raises alarms with regard to the potential dissemination of antibiotic-resistant bacteria in communities through river environments.
Collapse
Affiliation(s)
- Chedly Chouchani
- Université de Carthage, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Technopôle de Borj-Cedria, Hammam-Lif, Tunisia.
| | | | | | | |
Collapse
|