1
|
De Clercq E. Hydrogen Bonding (Base Pairing) in Antiviral Activity. Viruses 2023; 15:v15051145. [PMID: 37243232 DOI: 10.3390/v15051145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Base pairing based on hydrogen bonding has, since its inception, been crucial in the antiviral activity of arabinosyladenine, 2'-deoxyuridines (i.e., IDU, TFT, BVDU), acyclic nucleoside analogues (i.e., acyclovir) and nucleoside reverse transcriptase inhibitors (NRTIs). Base pairing based on hydrogen bonding also plays a key role in the mechanism of action of various acyclic nucleoside phosphonates (ANPs) such as adefovir, tenofovir, cidofovir and O-DAPYs, thus explaining their activity against a wide array of DNA viruses (human hepatitis B virus (HBV), human immunodeficiency (HIV) and human herpes viruses (i.e., human cytomegalovirus)). Hydrogen bonding (base pairing) also seems to be involved in the inhibitory activity of Cf1743 (and its prodrug FV-100) against varicella-zoster virus (VZV) and in the activity of sofosbuvir against hepatitis C virus and that of remdesivir against SARS-CoV-2 (COVID-19). Hydrogen bonding (base pairing) may also explain the broad-spectrum antiviral effects of ribavirin and favipiravir. This may lead to lethal mutagenesis (error catastrophe), as has been demonstrated with molnutegravir in its activity against SARS-CoV-2.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
2
|
Krečmerová M, Majer P, Rais R, Slusher BS. Phosphonates and Phosphonate Prodrugs in Medicinal Chemistry: Past Successes and Future Prospects. Front Chem 2022; 10:889737. [PMID: 35668826 PMCID: PMC9163707 DOI: 10.3389/fchem.2022.889737] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/26/2022] [Indexed: 12/25/2022] Open
Abstract
Compounds with a phosphonate group, i.e., -P(O)(OH)2 group attached directly to the molecule via a P-C bond serve as suitable non-hydrolyzable phosphate mimics in various biomedical applications. In principle, they often inhibit enzymes utilizing various phosphates as substrates. In this review we focus mainly on biologically active phosphonates that originated from our institute (Institute of Organic Chemistry and Biochemistry in Prague); i.e., acyclic nucleoside phosphonates (ANPs, e.g., adefovir, tenofovir, and cidofovir) and derivatives of non-nucleoside phosphonates such as 2-(phosphonomethyl) pentanedioic acid (2-PMPA). Principal strategies of their syntheses and modifications to prodrugs is reported. Besides clinically used ANP antivirals, a special attention is paid to new biologically active molecules with respect to emerging infections and arising resistance of many pathogens against standard treatments. These new structures include 2,4-diamino-6-[2-(phosphonomethoxy)ethoxy]pyrimidines or so-called "open-ring" derivatives, acyclic nucleoside phosphonates with 5-azacytosine as a base moiety, side-chain fluorinated ANPs, aza/deazapurine ANPs. When transformed into an appropriate prodrug by derivatizing their charged functionalities, all these compounds show promising potential to become drug candidates for the treatment of viral infections. ANP prodrugs with suitable pharmacokinetics include amino acid phosphoramidates, pivaloyloxymethyl (POM) and isopropoxycarbonyloxymethyl (POC) esters, alkyl and alkoxyalkyl esters, salicylic esters, (methyl-2-oxo-1,3-dioxol-4-yl) methyl (ODOL) esters and peptidomimetic prodrugs. We also focus on the story of cytostatics related to 9-[2-(phosphonomethoxy)ethyl]guanine and its prodrugs which eventually led to development of the veterinary drug rabacfosadine. Various new ANP structures are also currently investigated as antiparasitics, especially antimalarial agents e.g., guanine and hypoxanthine derivatives with 2-(phosphonoethoxy)ethyl moiety, their thia-analogues and N-branched derivatives. In addition to ANPs and their analogs, we also describe prodrugs of 2-(phosphonomethyl)pentanedioic acid (2-PMPA), a potent inhibitor of the enzyme glutamate carboxypeptidase II (GCPII), also known as prostate-specific membrane antigen (PSMA). Glutamate carboxypeptidase II inhibitors, including 2-PMPA have been found efficacious in various preclinical models of neurological disorders which are caused by glutamatergic excitotoxicity. Unfortunately its highly polar character and hence low bioavailability severely limits its potential for clinical use. To overcome this problem, various prodrug strategies have been used to mask carboxylates and/or phosphonate functionalities with pivaloyloxymethyl, POC, ODOL and alkyl esters. Chemistry and biological characterization led to identification of prodrugs with 44-80 fold greater oral bioavailability (tetra-ODOL-2-PMPA).
Collapse
Affiliation(s)
- Marcela Krečmerová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia
- *Correspondence: Marcela Krečmerová,
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia
| | - Rana Rais
- Departments of Neurology, Pharmacology and Molecular Sciences, Johns Hopkins Drug Discovery, Baltimore, MD, United States
| | - Barbara S. Slusher
- Departments of Neurology, Pharmacology and Molecular Sciences, Psychiatry and Behavioral Sciences, Neuroscience, Medicine, Oncology, Johns Hopkins Drug Discovery, Baltimore, MD, United States
| |
Collapse
|
3
|
N JB, Goudgaon N. A comprehensive review on pyrimidine analogs-versatile scaffold with medicinal and biological potential. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Groaz E, De Jonghe S. Overview of Biologically Active Nucleoside Phosphonates. Front Chem 2021; 8:616863. [PMID: 33490040 PMCID: PMC7821050 DOI: 10.3389/fchem.2020.616863] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/30/2020] [Indexed: 12/25/2022] Open
Abstract
The use of the phosphonate motif featuring a carbon-phosphorous bond as bioisosteric replacement of the labile P–O bond is widely recognized as an attractive structural concept in different areas of medicinal chemistry, since it addresses the very fundamental principles of enzymatic stability and minimized metabolic activation. This review discusses the most influential successes in drug design with special emphasis on nucleoside phosphonates and their prodrugs as antiviral and cancer treatment agents. A description of structurally related analogs able to interfere with the transmission of other infectious diseases caused by pathogens like bacteria and parasites will then follow. Finally, molecules acting as agonists/antagonists of P2X and P2Y receptors along with nucleotidase inhibitors will also be covered. This review aims to guide readers through the fundamentals of nucleoside phosphonate therapeutics in order to inspire the future design of molecules to target infections that are refractory to currently available therapeutic options.
Collapse
Affiliation(s)
- Elisabetta Groaz
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Alpha-carboxynucleoside phosphonates: direct-acting inhibitors of viral DNA polymerases. Future Med Chem 2019; 11:137-154. [PMID: 30648904 DOI: 10.4155/fmc-2018-0324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acyclic nucleoside phosphonates represent a well-defined class of clinically used nucleoside analogs. All acyclic nucleoside phosphonates need intracellular phosphorylation before they can bind viral DNA polymerases. Recently, a novel class of alpha-carboxynucleoside phosphonates have been designed to mimic the natural 2'-deoxynucleotide 5'-triphosphate substrates of DNA polymerases. They contain a carboxyl group in the phosphonate moiety linked to the nucleobase through a cyclic or acyclic bridge. Alpha-carboxynucleoside phosphonates act as viral DNA polymerase inhibitors without any prior requirement of metabolic conversion. Selective inhibitory activity against retroviral reverse transcriptase and herpesvirus DNA polymerases have been demonstrated. These compounds have a unique mechanism of inhibition of viral DNA polymerases, and provide possibilities for further modifications to optimize and fine tune their antiviral DNA polymerase spectrum.
Collapse
|
6
|
de Castro S, Camarasa MJ. Polypharmacology in HIV inhibition: can a drug with simultaneous action against two relevant targets be an alternative to combination therapy? Eur J Med Chem 2018. [PMID: 29529501 DOI: 10.1016/j.ejmech.2018.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
HIV infection still has a serious health and socio-economical impact and is one of the primary causes of morbidity and mortality all over the world. HIV infection and the AIDS pandemic are still matters of great concern, especially in less developed countries where the access to highly active antiretroviral therapy (HAART) is limited. Patient compliance is another serious drawback. Nowadays, HAART is the treatment of choice although it is not the panacea. Despite the fact that it suppresses viral replication at undetectable viral loads and prevents progression of HIV infection into AIDS HAART has several pitfalls, namely, long-term side-effects, drug resistance development, emergence of drug-resistant viruses, low compliance and the intolerance of some patients to these drugs. Moreover, another serious health concern is the event of co-infection with more than one pathogen at the same time (e.g. HIV and HCV, HBV, herpes viruses, etc). Currently, the multi-target drug approach has become an exciting strategy to address complex diseases and overcome drug resistance development. Such multifunctional molecules combine in their structure pharmacophores that may simultaneously interfere with multiple targets and their use may eventually be more safe and efficacious than that involving a mixture of separate molecules because of avoidance or delay of drug resistance, lower incidence of unwanted drug-drug interactions and improved compliance. In this review we focus on multifunctional molecules with dual activity against different targets of the HIV life cycle or able to block replication, not only of HIV but also of other viruses that are often co-pathogens of HIV. The different approaches are documented by selected examples.
Collapse
Affiliation(s)
- Sonia de Castro
- Instituto de Química Médica (IQM, CSIC) Juan de La Cierva 3, E-28006 Madrid, Spain
| | - María-José Camarasa
- Instituto de Química Médica (IQM, CSIC) Juan de La Cierva 3, E-28006 Madrid, Spain.
| |
Collapse
|
7
|
Krečmerová M, Dračínský M, Snoeck R, Balzarini J, Pomeisl K, Andrei G. New prodrugs of two pyrimidine acyclic nucleoside phosphonates: Synthesis and antiviral activity. Bioorg Med Chem 2017; 25:4637-4648. [PMID: 28757102 PMCID: PMC7126465 DOI: 10.1016/j.bmc.2017.06.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/21/2017] [Accepted: 06/27/2017] [Indexed: 12/31/2022]
Abstract
New 2,4-diamino-6-[2-(phosphonomethoxy)ethoxy]pyrimidine (PMEO-DAPy) and 1-[2-(phosphonomethoxy)ethyl]-5-azacytosine (PME-5-azaC) prodrugs were prepared with a pro-moiety consisting of carbonyloxymethyl esters (POM, POC), alkoxyalkyl esters, amino acid phosphoramidates and/or tyrosine. The activity of the prodrugs was evaluated in vitro against different virus families. None of the synthesized prodrugs demonstrated activity against RNA viruses but some of them proved active against herpesviruses [including herpes simplex virus (HSV), varicella-zoster virus (VZV), and human cytomegalovirus (HCMV)]. The bis(POC) and the bis(amino acid) phosphoramidate prodrugs of PMEO-DAPy inhibited herpesvirus replication at lower doses than the parent compound although the selectivity against HSV and VZV was only slightly improved compared to PMEO-DAPy. The mono-octadecyl ester of PME-5-azaC emerged as the most potent and selective PME-5-azaC prodrug against HSV, VZV and HCMV with EC50’s of 0.15–1.12 µM while PME-5-azaC only had marginal anti-herpesvirus activity. Although the bis(hexadecylamido-l-tyrosyl) and the bis(POM) esters of PME-5-azaC were also very potent anti-herpesvirus drugs, these were less selective than the mono-octadecyl ester prodrug.
Collapse
Affiliation(s)
- Marcela Krečmerová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-166 10, Prague 6, Czech Republic.
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-166 10, Prague 6, Czech Republic
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1043, B-3000 Leuven, Belgium
| | - Jan Balzarini
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1043, B-3000 Leuven, Belgium
| | - Karel Pomeisl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-166 10, Prague 6, Czech Republic
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1043, B-3000 Leuven, Belgium.
| |
Collapse
|
8
|
Timur SS, Şahin A, Aytekin E, Öztürk N, Polat KH, Tezel N, Gürsoy RN, Çalış S. Design and in vitro evaluation of tenofovir-loaded vaginal gels for the prevention of HIV infections. Pharm Dev Technol 2017; 23:301-310. [PMID: 28503983 DOI: 10.1080/10837450.2017.1329835] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Infection with the human immunodeficiency virus (HIV) is affecting women disproportionally with increasing incidence rates over the last decades. Tenofovir is one of the most commonly used antiretroviral agents, which belongs to the nucleoside/nucleotide reverse transcriptase inhibitor family, for the prevention of HIV acquisition. In scope of this study, a thermogelling system containing tenofovir-loaded chitosan nanoparticles for the controlled release of tenofovir was developed and characterized. The in vitro release studies have shown that the burst release effect was decreased to 27% with f-TFV CS NPs-Gel. Gelation temperature of developed formulation was found as 26.6 ± 0.2 °C, which provides ease of administration while gelation occurs after the administration to the vagina. The work of adhesion values was used as parameters for comparison of mucoadhesive performance and the mucoadhesion of f-TFV CS NPs-Gel was found as 0.516 ± 0.136 N.s at 37 °C. The biocompatibility of blank formulations was evaluated by cell viability studies using L929 cells, in which Gel + CS NPs formulation was found to be safe with 82.4% and 90.2% cell viability for 1:16 and 1:32 dilutions, respectively. In conclusion, an improved tenofovir containing vaginal gel formulation was successfully developed and evaluated for preventing HIV transmission.
Collapse
Affiliation(s)
- Selin Seda Timur
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Adem Şahin
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Eren Aytekin
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Naile Öztürk
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Kerem Heybet Polat
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Nurten Tezel
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Reyhan Neslihan Gürsoy
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Sema Çalış
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| |
Collapse
|
9
|
Conservation of antiviral activity and improved selectivity in PMEO-DAPym upon pyrimidine to triazine scaffold hopping. Antiviral Res 2015; 122:64-8. [DOI: 10.1016/j.antiviral.2015.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/07/2015] [Accepted: 08/09/2015] [Indexed: 12/31/2022]
|
10
|
De Clercq E. Curious discoveries in antiviral drug development: the role of serendipity. Med Res Rev 2015; 35:698-719. [PMID: 25726922 DOI: 10.1002/med.21340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Antiviral drug development has often followed a curious meandrous route, guided by serendipity rather than rationality. This will be illustrated by ten examples. The polyanionic compounds (i) polyethylene alanine (PEA) and (ii) suramin were designed as an antiviral agent (PEA) or known as an antitrypanosomal agent (suramin), before they emerged as, respectively, a depilatory agent, or reverse transcriptase inhibitor. The 2',3'-dideoxynucleosides (ddNs analogues) (iii) have been (and are still) used in the "Sanger" DNA sequencing technique, although they are now commercialized as nucleoside reverse transcriptase inhibitors (NRTIs) in the treatment of HIV infections. (E)-5-(2-Bromovinyl)-2'-deoxyuridine (iv) was discovered as a selective anti-herpes simplex virus compound and is now primarily used for the treatment of varicella-zoster virus infections. The prototype of the acyclic nucleoside phosphonates (ANPs), (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine [(S)-HPMPA], (v) was never commercialized, although it gave rise to several marketed products (cidofovir, adefovir, and tenofovir). 1-[2-(Hydroxyethoxy)methyl]-6-(phenylthio)thymine (vi) and TIBO (tetrahydroimidazo[4,5,1-jk][1,4-benzodiazepin-2(1H)]-one and -thione) (vii) paved the way to a number of compounds (i.e., nevirapine, delavirdine, etravirine, and rilpivirine), which are now collectively called non-NRTIs. The bicyclam AMD3100 (viii) was originally described as an anti-HIV agent before it became later marketed as a stem cell mobilizer. The S-adenosylhomocysteine hydrolase inhibitors (ix), while active against a broad range of (-)RNA viruses and poxviruses may be particularly effective against Ebola virus, and for (x) the O-ANP derivatives, the potential application range encompasses virtually all DNA viruses.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Fernández-Cureses G, de Castro S, Jimeno ML, Balzarini J, Camarasa MJ. Design, synthesis, and biological evaluation of unconventional aminopyrimidine, aminopurine, and amino-1,3,5-triazine methyloxynucleosides. ChemMedChem 2014; 10:321-35. [PMID: 25420933 DOI: 10.1002/cmdc.201402465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Indexed: 12/11/2022]
Abstract
Herein we describe a class of unconventional nucleosides (methyloxynucleosides) that combine unconventional nucleobases such as substituted aminopyrimidines, aminopurines, or aminotriazines with unusual sugars in their structures. The allitollyl or altritollyl derivatives were pursued as ribonucleoside mimics, whereas the tetrahydrofuran analogues were pursued as their dideoxynucleoside analogues. The compounds showed poor, if any, activity against a broad range of RNA and DNA viruses, including human immunodeficiency virus (HIV). This inactivity may be due to lack of an efficient metabolic conversion into their corresponding 5'-triphosphates and poor affinity for their target enzymes (DNA/RNA polymerases). Several compounds showed cytostatic activity against proliferating human CD4(+) T-lymphocyte CEM cells and against several other tumor cell lines, including murine leukemia L1210 and human prostate PC3, kidney CAKI-1, and cervical carcinoma HeLa cells. A few compounds were inhibitory to Moloney murine sarcoma virus (MSV) in C3H/3T3 cell cultures, with the 2,6-diaminotri-O-benzyl-D-allitolyl- and -D-altritolyl pyrimidine analogues being the most potent among them. This series of unconventional nucleosides may represent a novel family of potential antiproliferative agents.
Collapse
|
12
|
Zidan AS, Habib MJ. Maximized Mucoadhesion and Skin Permeation of Anti-AIDS-Loaded Niosomal Gels. J Pharm Sci 2014; 103:952-64. [DOI: 10.1002/jps.23867] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/10/2013] [Accepted: 01/03/2014] [Indexed: 01/24/2023]
|
13
|
Heredia A, Davis CE, Reitz MS, Le NM, Wainberg MA, Foulke JS, Wang LX, Redfield RR. Targeting of the purine biosynthesis host cell pathway enhances the activity of tenofovir against sensitive and drug-resistant HIV-1. J Infect Dis 2013; 208:2085-94. [PMID: 23922365 PMCID: PMC3836462 DOI: 10.1093/infdis/jit395] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 06/11/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Targeting host-cell pathways to increase the potency of nucleoside/nucleotide analog reverse transcriptase inhibitors (NRTIs) is an important strategy for clinical investigation. Resveratrol is a natural product that inhibits cellular ribonucleotide reductase, prolonging the S phase of the cell cycle and preferentially lowering dATP levels. METHODS We performed in vitro evaluation of resveratrol on the antiviral activity of adenosine analog tenofovir (TFV) against sensitive and drug-resistant human immunodeficiency virus type 1 (HIV-1), from subtypes B and C, in primary cells. RESULTS Resveratrol enhanced the antiviral activity of TFV by up to 10-fold and restored susceptibility of TFV-resistant viruses. Resveratrol prevented wild-type HIV-1 from developing phenotypic resistance to TFV. Notably, resveratrol enhanced TFV activity against sensitive and resistant HIV-1 from both subtypes B and C. CONCLUSIONS Prolonged wide-scale use of thymidine analogs in the setting of viral failure has limited the efficacy of second-line NRTI-based regimens in Africa. Moreover, the extensive use of ddI and d4T has led to high frequencies of the K65R mutation, further compromising TFV efficacy. In light of increasing resistance to commonly used NRTIs in global HIV treatment programs, targeting nucleoside biosynthesis with resveratrol, or derivatives with improved bioavailabilities, is a potential strategy to maintain, enhance, and restore susceptibility of commonly used NRTIs.
Collapse
Affiliation(s)
- Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Charles E. Davis
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Marvin S. Reitz
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Nhut M. Le
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mark A. Wainberg
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - James S. Foulke
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lai-Xi Wang
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Robert R. Redfield
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
14
|
Balzarini J, Andrei G, Balestra E, Huskens D, Vanpouille C, Introini A, Zicari S, Liekens S, Snoeck R, Holý A, Perno CF, Margolis L, Schols D. A multi-targeted drug candidate with dual anti-HIV and anti-HSV activity. PLoS Pathog 2013; 9:e1003456. [PMID: 23935482 PMCID: PMC3723632 DOI: 10.1371/journal.ppat.1003456] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/08/2013] [Indexed: 11/18/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection is often accompanied by infection with other pathogens, in particular herpes simplex virus type 2 (HSV-2). The resulting coinfection is involved in a vicious circle of mutual facilitations. Therefore, an important task is to develop a compound that is highly potent against both viruses to suppress their transmission and replication. Here, we report on the discovery of such a compound, designated PMEO-DAPym. We compared its properties with those of the structurally related and clinically used acyclic nucleoside phosphonates (ANPs) tenofovir and adefovir. We demonstrated the potent anti-HIV and -HSV activity of this drug in a diverse set of clinically relevant in vitro, ex vivo, and in vivo systems including (i) CD4+ T-lymphocyte (CEM) cell cultures, (ii) embryonic lung (HEL) cell cultures, (iii) organotypic epithelial raft cultures of primary human keratinocytes (PHKs), (iv) primary human monocyte/macrophage (M/M) cell cultures, (v) human ex vivo lymphoid tissue, and (vi) athymic nude mice. Upon conversion to its diphosphate metabolite, PMEO-DAPym markedly inhibits both HIV-1 reverse transcriptase (RT) and HSV DNA polymerase. However, in striking contrast to tenofovir and adefovir, it also acts as an efficient immunomodulator, inducing β-chemokines in PBMC cultures, in particular the CCR5 agonists MIP-1β, MIP-1α and RANTES but not the CXCR4 agonist SDF-1, without the need to be intracellularly metabolized. Such specific β-chemokine upregulation required new mRNA synthesis. The upregulation of β-chemokines was shown to be associated with a pronounced downmodulation of the HIV-1 coreceptor CCR5 which may result in prevention of HIV entry. PMEO-DAPym belongs conceptually to a new class of efficient multitargeted antivirals for concomitant dual-viral (HSV/HIV) infection therapy through inhibition of virus-specific pathways (i.e. the viral polymerases) and HIV transmission prevention through interference with host pathways (i.e. CCR5 receptor down regulation). To contain the HIV-1 epidemic, it is necessary to develop antivirals that prevent HIV-1 transmission. It is well known that HIV infection might be accompanied by other pathogens, which often are engaged with HIV-1 in a vicious circle of mutual facilitation. One of the most common of these pathogens is herpes simplex virus (HSV) type 2. Since there is an urgent need for a next generation antivirals that are multi-targeted, we can now report on the development of the first antiviral of this new generation that efficiently suppresses both HIV-1 and HSV-2. We found that the dual-targeted antiviral drug affects several targets for viral replication. It uniquely combines in one molecule three important abilities: (i) to efficiently suppress HSV-encoded DNA polymerase, (ii) to efficiently suppress HIV-1-encoded reverse transcriptase, and (iii) to stimulate secretion of CC-chemokines that downregulate the HIV-1 coreceptor CCR5. The compound suppresses both viruses in a wide-range of in vitro, ex vivo, and in vivo experimental models. The ability of one molecule to suppress HIV-1 and HSV-2 by combining direct activity against their two key enzymes and indirect immunomodulatory effects is unique in the antiviral field.
Collapse
MESH Headings
- Animals
- Anti-HIV Agents/pharmacology
- Anti-HIV Agents/therapeutic use
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/virology
- Cells, Cultured
- Female
- HIV/drug effects
- HIV/enzymology
- HIV/immunology
- Herpes Simplex/drug therapy
- Herpes Simplex/immunology
- Herpes Simplex/metabolism
- Herpes Simplex/virology
- Herpesvirus 1, Human/drug effects
- Herpesvirus 1, Human/enzymology
- Herpesvirus 1, Human/immunology
- Herpesvirus 2, Human/drug effects
- Herpesvirus 2, Human/enzymology
- Herpesvirus 2, Human/immunology
- Humans
- Immunologic Factors/pharmacology
- Immunologic Factors/therapeutic use
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/virology
- Lymphoid Tissue/drug effects
- Lymphoid Tissue/immunology
- Lymphoid Tissue/metabolism
- Lymphoid Tissue/virology
- Mice
- Mice, Hairless
- Mice, Nude
- Nucleic Acid Synthesis Inhibitors/pharmacology
- Nucleic Acid Synthesis Inhibitors/therapeutic use
- Organophosphonates/pharmacology
- Organophosphonates/therapeutic use
- Prodrugs/pharmacology
- Prodrugs/therapeutic use
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Reverse Transcriptase Inhibitors/pharmacology
- Reverse Transcriptase Inhibitors/therapeutic use
- Tissue Culture Techniques
Collapse
Affiliation(s)
- Jan Balzarini
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
De Clercq E. Dancing with chemical formulae of antivirals: a personal account. Biochem Pharmacol 2013; 86:711-25. [PMID: 23876344 DOI: 10.1016/j.bcp.2013.07.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/08/2013] [Accepted: 07/08/2013] [Indexed: 02/08/2023]
Abstract
A chemical structure is a joy forever, and this is how I perceived the chemical structures of a number of antiviral compounds with which I have been personally acquainted over the past 3 decades: (1) amino acid esters of acyclovir (i.e. valaciclovir); (2) 5-substituted 2'-deoxyuridines (i.e. brivudin); (3) 2',3'-dideoxynucleoside analogues (i.e. stavudine); (4) acyclic nucleoside phosphonates (ANPs) (i.e. cidofovir, adefovir); (5) tenofovir disoproxil fumarate (TDF) and drug combinations therewith; (6) tenofovir alafenamide (TAF, GS-7340), a new phosphonoamidate prodrug of tenofovir; (7) pro-prodrugs of PMEG (i.e. GS-9191 and GS-9219); (8) new ANPs: O-DAPy and 5-aza-C phosphonates; (9) non-nucleoside reverse transcriptase inhibitors (NNRTIs): HEPT and TIBO derivatives; and (10) bicyclam derivatives (i.e. AMD3100).
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
16
|
De Clercq E. The Acyclic Nucleoside Phosphonates (ANPs): Antonín Holý's Legacy. Med Res Rev 2013; 33:1278-303. [DOI: 10.1002/med.21283] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research; KU Leuven, B-3000 Leuven Belgium
| |
Collapse
|
17
|
Roux L, Priet S, Payrot N, Weck C, Fournier M, Zoulim F, Balzarini J, Canard B, Alvarez K. Ester prodrugs of acyclic nucleoside thiophosphonates compared to phosphonates: synthesis, antiviral activity and decomposition study. Eur J Med Chem 2013; 63:869-81. [PMID: 23603046 DOI: 10.1016/j.ejmech.2013.02.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/30/2013] [Accepted: 02/26/2013] [Indexed: 12/25/2022]
Abstract
9-[2-(Thiophosphonomethoxy)ethyl]adenine [S-PMEA, 8] and (R)-9-[2-(Thiophosphonomethoxy)propyl]adenine [S-PMPA, 9] are acyclic nucleoside thiophosphonates we described recently that display the same antiviral spectrum (DNA viruses) as approved and potent phosphonates PMEA and (R)-PMPA. Here, we describe the synthesis, antiviral activities in infected cell cultures and decomposition study of bis(pivaloyloxymethoxy)-S-PMEA [Bis-POM-S-PMEA, 13] and bis(isopropyloxymethylcarbonyl)-S-PMPA [Bis-POC-S-PMPA, 14] as orally bioavailable prodrugs of the S-PMEA 8 and S-PMPA 9, in comparison to the equivalent "non-thio" derivatives [Bis-POM-PMEA, 11] and [Bis-POC-PMPA, 12]. Compounds 11, 12, 13 and 14 were evaluated for their in vitro antiviral activity against HIV-1-, HIV-2-, HBV- and a broad panel of DNA viruses, and found to exhibit moderate to potent antiviral activity. In order to determine the decomposition pathway of the prodrugs 11, 12, 13 and 14 into parent compounds PMEA, PMPA, 8 and 9, kinetic data and decomposition pathways in several media are presented. As expected, bis-POM-S-PMEA 13 and bis-POC-S-PMPA 14 behaved as prodrugs of S-PMEA 8 and S-PMPA 9. However, thiophosphonates 8 and 9 were released very smoothly in cell extracts, in contrast to the release of PMEA and PMPA from "non-thio" prodrugs 11 and 12.
Collapse
Affiliation(s)
- Loïc Roux
- Laboratoire d'Architecture et Fonction des Macromolécules Biologiques, UMR CNRS 7257, Equipe Chimie Médicinale et Virologie Structurale, Université Aix-Marseille, Parc scientifique de Luminy, 163 av. de Luminy, 13288 Marseille Cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kaiser MM, Jansa P, Dračínský M, Janeba Z. A novel type of acyclic nucleoside phosphonates derived from 2-(phosphonomethoxy)propanoic acid. Tetrahedron 2012; 68:4003-4012. [PMID: 32287422 PMCID: PMC7111817 DOI: 10.1016/j.tet.2012.03.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 02/27/2012] [Accepted: 03/19/2012] [Indexed: 11/28/2022]
Abstract
A convenient and efficient synthesis of a novel class of acyclic nucleoside phosphonates derived from 2-(phosphonomethoxy)propanoic acid has been developed. The key step of the synthesis is the optimized oxidation of the 3-hydroxy-2-(phosphonomethoxy)propyl (HPMP) analogues to the corresponding 2'-carboxy-PME (CPME) derivatives using the TEMPO/NaClO2/NaClO oxidizing system. Although (S)-3-(adenin-9-yl)-2-(phosphonomethoxy)propanoic acid ((S)-CPMEA) has been designed as a compound with potential anti-HIV activity, none of the newly prepared CPME analogues exhibited any antiviral activity.
Collapse
Affiliation(s)
| | | | | | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|
19
|
Pertusat F, Serpi M, McGuigan C. Medicinal Chemistry of Nucleoside Phosphonate Prodrugs for Antiviral Therapy. ACTA ACUST UNITED AC 2012; 22:181-203. [DOI: 10.3851/imp2012] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2011] [Indexed: 10/15/2022]
Abstract
Considerable attention has been focused on the development of phosphonate-containing drugs for application in many therapeutic areas. However, phosphonate diacids are deprotonated at physiological pH and thus phosphonate-containing drugs are not ideal for oral administration, an extremely desirable requisite for the treatment of chronic diseases. To overcome this limitation several prodrug structures of biologically active phosphonate analogues have been developed. The rationale behind the design of such agents is to achieve temporary blockade of the free phosphonic functional group until their systemic absorption and delivery, allowing the release of the active drug only once at the target. In this paper, an overview of acyclic and cyclic nucleoside phosphonate prodrugs, designed as antiviral agents, is presented.
Collapse
Affiliation(s)
| | - Michaela Serpi
- Welsh School of Pharmacy, Cardiff University, Cardiff, UK
| | | |
Collapse
|
20
|
Jansa P, Hradil O, Baszczyňski O, Dračínský M, Klepetářová B, Holý A, Balzarini J, Janeba Z. An efficient microwave-assisted synthesis and biological properties of polysubstituted pyrimidinyl- and 1,3,5-triazinylphosphonic acids. Tetrahedron 2011; 68:865-871. [PMID: 32287424 PMCID: PMC7125588 DOI: 10.1016/j.tet.2011.11.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/26/2011] [Accepted: 11/14/2011] [Indexed: 11/29/2022]
Abstract
Polysubstituted pyrimidinylphosphonic and 1,3,5-triazinylphosphonic acids with potential biological properties were prepared in high yields by the microwave-assisted Michaelis-Arbuzov reaction of trialkyl phosphite with the corresponding halopyrimidines and halo-1,3,5-triazines, respectively, followed by the standard deprotection of the phosphonate group using TMSBr in acetonitrile. 4,6-Diamino-5-chloropyrimidin-2-ylphosphonic acid (7a) was found to exhibit a weak to moderate anti-influenza activity (28-50 μM) and may represent a novel hit for further SAR studies and antiviral improvement.
Collapse
Affiliation(s)
- Petr Jansa
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Ondřej Hradil
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Ondřej Baszczyňski
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Blanka Klepetářová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Antonín Holý
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Jan Balzarini
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|
21
|
De Clercq E. The clinical potential of the acyclic (and cyclic) nucleoside phosphonates. The magic of the phosphonate bond. Biochem Pharmacol 2011; 82:99-109. [DOI: 10.1016/j.bcp.2011.03.027] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 11/29/2022]
|
22
|
Abstract
While cidofovir, adefovir and tenofovir are the three acyclic nucleoside phosphonates (ANPs) that have been licensed for clinical use (the latter as a single-, double- and triple-drug combination), there are many more ANPs that await their application for medical or veterinary use: (S)-HPMPA, (S)-HPMPDAP, cPrPMEDAP, (R)-HPMPO-DAPy, PMEO-DAPy, 5-X-PMEO-DAPy, (R)-PMPO-DAPy, (S)-HPMP-5-azaC, and cyclic (S)-HPMP-5-azaC, and alkoxyalkyl prodrugs thereof.
Collapse
|
23
|
Meng J, Sturgis TF, Youan BBC. Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. Eur J Pharm Sci 2011; 44:57-67. [PMID: 21704704 DOI: 10.1016/j.ejps.2011.06.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/16/2011] [Accepted: 06/10/2011] [Indexed: 01/12/2023]
Abstract
The objective of this study was to engineer a model anti-HIV microbicide (tenofovir) loaded chitosan based nanoparticles (NPs). Box-Behnken design allowed to assess the influence of formulation variables on the size of NPs and drug encapsulation efficiency (EE%) that were analyzed by dynamic light scattering and UV spectroscopy, respectively. The effect of the NPs on vaginal epithelial cells and Lactobacillus crispatus viability and their mucoadhesion to porcine vaginal tissue were assessed by cytotoxicity assays and fluorimetry, respectively. In the optimal aqueous conditions, the EE% and NPs size were 5.83% and 207.97nm, respectively. With 50% (v/v) ethanol/water as alternative solvent, these two responses increased to 20% and 602 nm, respectively. Unlike small size (182nm) exhibiting burst release, drug release from medium (281 nm) and large (602 nm)-sized NPs fitted the Higuchi (r(2)=0.991) and first-order release (r(2)=0.999) models, respectively. These NPs were not cytotoxic to both the vaginal epithelial cell line and L. crispatus for 48h. When the diameter of the NPs decreased from 900 to 188 nm, the mucoadhesion increased from 6% to 12%. However, the combinatorial effect of EE% and percent mucoadhesion for larger size NPs was the highest. Overall, large-size, microbicide loaded chitosan NPs appeared to be promising nanomedicines for the prevention of HIV transmission.
Collapse
Affiliation(s)
- Jianing Meng
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, University of Missouri-Kansas City, MO 64108, USA
| | | | | |
Collapse
|
24
|
Topalis D, Pradère U, Roy V, Caillat C, Azzouzi A, Broggi J, Snoeck R, Andrei G, Lin J, Eriksson S, Alexandre JAC, El-Amri C, Deville-Bonne D, Meyer P, Balzarini J, Agrofoglio LA. Novel Antiviral C5-Substituted Pyrimidine Acyclic Nucleoside Phosphonates Selected as Human Thymidylate Kinase Substrates. J Med Chem 2010; 54:222-32. [DOI: 10.1021/jm1011462] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dimitri Topalis
- Groupe d’Enzymologie Moléculaire et Fonctionnelle, UR4-UPMC, Université Pierre et Marie Curie, Sorbonne Universités, case courrier 256, 7, quai St Bernard, 75252 Paris Cedex 05, France
| | - Ugo Pradère
- Institut de Chimie Organique et Analytique, Centre National de Recherche Scientifique Unité Mixte de Recherche 6005, Université d’Orléans, 45067 Orléans, France
| | - Vincent Roy
- Institut de Chimie Organique et Analytique, Centre National de Recherche Scientifique Unité Mixte de Recherche 6005, Université d’Orléans, 45067 Orléans, France
| | - Christophe Caillat
- Laboratoire d’Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique UPR 3082, 91198 Gif-sur-Yvette Cedex, France
| | - Ahmed Azzouzi
- Institut de Chimie Organique et Analytique, Centre National de Recherche Scientifique Unité Mixte de Recherche 6005, Université d’Orléans, 45067 Orléans, France
| | - Julie Broggi
- Institut de Chimie Organique et Analytique, Centre National de Recherche Scientifique Unité Mixte de Recherche 6005, Université d’Orléans, 45067 Orléans, France
| | - Robert Snoeck
- REGA Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Graciela Andrei
- REGA Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jay Lin
- Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, Box 575, Biomedical Center, S-751 24 Uppsala, Sweden
| | - Staffan Eriksson
- Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, Box 575, Biomedical Center, S-751 24 Uppsala, Sweden
| | - Julie A. C. Alexandre
- Groupe d’Enzymologie Moléculaire et Fonctionnelle, UR4-UPMC, Université Pierre et Marie Curie, Sorbonne Universités, case courrier 256, 7, quai St Bernard, 75252 Paris Cedex 05, France
| | - Chahrazade El-Amri
- Groupe d’Enzymologie Moléculaire et Fonctionnelle, UR4-UPMC, Université Pierre et Marie Curie, Sorbonne Universités, case courrier 256, 7, quai St Bernard, 75252 Paris Cedex 05, France
| | - Dominique Deville-Bonne
- Groupe d’Enzymologie Moléculaire et Fonctionnelle, UR4-UPMC, Université Pierre et Marie Curie, Sorbonne Universités, case courrier 256, 7, quai St Bernard, 75252 Paris Cedex 05, France
| | - Philippe Meyer
- Laboratoire d’Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique UPR 3082, 91198 Gif-sur-Yvette Cedex, France
| | - Jan Balzarini
- REGA Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Luigi A. Agrofoglio
- Institut de Chimie Organique et Analytique, Centre National de Recherche Scientifique Unité Mixte de Recherche 6005, Université d’Orléans, 45067 Orléans, France
| |
Collapse
|
25
|
Kumar R, Nair RR, Prakash O. Mild and efficient synthesis of aryliodonium ylides of 2,6-dimethylpyrimidin-4-ol. HETEROATOM CHEMISTRY 2010. [DOI: 10.1002/hc.20608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Břehová P, Dračínský M, Holý A. Efficient Synthesis and Biological Properties of Base Substituted 2,4-Diamino-6-(R)-[3-hydroxy-2-(phosphonomethoxy)propoxy]pyrimidine (HPMPO-DAPy). Antiviral Res 2010. [DOI: 10.1016/j.antiviral.2010.02.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Herman BD, Votruba I, Holy A, Sluis-Cremer N, Balzarini J. The acyclic 2,4-diaminopyrimidine nucleoside phosphonate acts as a purine mimetic in HIV-1 reverse transcriptase DNA polymerization. J Biol Chem 2010; 285:12101-8. [PMID: 20164190 DOI: 10.1074/jbc.m109.096529] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The acyclic pyrimidine nucleoside phosphonate (ANP) phosphonylmethoxyethoxydiaminopyrimidine (PMEO-DAPym) differs from other ANPs in that the aliphatic alkyloxy linker is bound to the C-6 of the 2,4-diaminopyrimidine base through an ether bond, instead of the traditional alkyl linkage to the N-1 or N-9 of the pyrimidine or purine base. In this study, we have analyzed the molecular interactions between PMEO-DAPym-diphosphate (PMEO-DAPym-pp) and the active sites of wild-type (WT) and drug-resistant HIV-1 reverse transcriptase (RT). Pre-steady-state kinetic analyses revealed that PMEO-DAPym-pp is a good substrate for WT HIV-1 RT: its catalytic efficiency of incorporation (k(pol)/K(d)) is only 2- to 3-fold less than that of the corresponding prototype purine nucleotide analogs PMEA-pp or (R)PMPA-pp. HIV-1 RT recognizes PMEO-DAPym-pp as a purine base instead of a pyrimidine base and incorporates it opposite to thymine (in DNA) or uracil (in RNA). Molecular modeling demonstrates that PMEO-DAPym-pp fits into the active site of HIV-1 RT without significant perturbation of key amino acid residues and mimics an open incomplete purine ring that allows the canonical Watson-Crick base pairing to be maintained. PMEO-DAPym-pp is incorporated more efficiently than (R)PMPA-pp by mutant K65R HIV-1 RT and is not as efficiently excised as (R)PMPA by HIV-1 RT containing thymidine analog mutations. Overall, the data revealed that PMEO- DAPym represents the prototype compound of a novel class of pyrimidine acyclic nucleoside phosphonates that are recognized as a purine nucleotide and should form the rational basis for the design and development of novel purine nucleo(s)(t)ide mimetics as potential antiviral or antimetabolic agents.
Collapse
Affiliation(s)
- Brian D Herman
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, PA, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW This review describes the class of nucleotide HIV reverse transcriptase inhibitors and summarises recent findings related to tenofovir and its oral prodrug tenofovir disoproxil fumarate, currently the only nucleotide approved for the treatment of HIV infection. In addition, novel strategies in the design of anti-HIV nucleotides and their prodrugs are discussed. RECENT FINDINGS A number of studies have demonstrated a potent and durable clinical efficacy of tenofovir disoproxil fumarate in combination with other antiretrovirals, particularly lamivudine or emtricitabine and efavirenz. The prophylactic antiretroviral effect of tenofovir and tenofovir disoproxil fumarate has been characterized in various animal models and is currently being evaluated in controlled clinical studies. In addition, efficacy of tenofovir disoproxil fumarate against hepatitis B virus has been established and is currently being explored in phase III trials. The identification of GS-7340, an alternative prodrug of tenofovir has raised the possibility of using phosphonoamidates as novel prodrugs allowing for an effective intracellular delivery of nucleotides. SUMMARY The concept of nucleotides as a novel class of antiretroviral therapeutics has been successfully validated through tenofovir disoproxil fumarate, a nucleotide prodrug that exhibits potent and durable clinical efficacy and favourable safety profile both in treatment-naïve and experienced HIV-infected patients. Several novel nucleotide reverse transcriptase inhibitors such as GS-9148, PMDTA, and PMEO have recently emerged from continuing preclinical drug discovery efforts.
Collapse
|
29
|
Nucleoside and nucleotide HIV reverse transcriptase inhibitors: 25 years after zidovudine. Antiviral Res 2009; 85:39-58. [PMID: 19887088 DOI: 10.1016/j.antiviral.2009.09.014] [Citation(s) in RCA: 263] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/19/2009] [Accepted: 09/23/2009] [Indexed: 12/29/2022]
Abstract
Twenty-five years ago, nucleoside analog 3'-azidothymidine (AZT) was shown to efficiently block the replication of HIV in cell culture. Subsequent studies demonstrated that AZT acts via the selective inhibition of HIV reverse transcriptase (RT) by its triphosphate metabolite. These discoveries have established the first class of antiretroviral agents: nucleoside and nucleotide reverse transcriptase inhibitors (NRTIs). Over the years that followed, NRTIs evolved into the main component of antiretroviral drug combinations that are now used for the treatment of all populations of HIV infected patients. A total of thirteen NRTI drug products are now available for clinical application: eight individual NRTIs, four fixed-dose combinations of two or three NRTIs, and one complete fixed-dose regimen containing two NRTIs and one non-nucleoside RT inhibitor. Multiple NRTIs or their prodrugs are in various stages of clinical development and new potent NRTIs are still being identified through drug discovery efforts. This article will review basic principles of the in vitro and in vivo pharmacology of NRTIs, discuss their clinical use including limitations associated with long-term NRTI therapy, and describe newly identified NRTIs with promising pharmacological profiles highlighting those in the development pipeline. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, volume 85, issue 1, 2010.
Collapse
|
30
|
Goudgaon NM, Basha NJ, Patil SB. Synthesis and antimicrobial evaluation of 5-iodopyrimidine analogs. Indian J Pharm Sci 2009; 71:672-7. [PMID: 20376222 PMCID: PMC2846474 DOI: 10.4103/0250-474x.59551] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 08/24/2009] [Accepted: 11/25/2009] [Indexed: 12/03/2022] Open
Abstract
4-Substituted-5-iodo-2-benzylthiopyrimidines were prepared efficiently in three steps. 2-Benzylthiopyrimidine on iodination in presence of base gave 5-iodo-2-benzylthiopyrimidine (1), which on chlorination with excess of POCl(3) furnished 4-chloro-5-iodo-2-benzylthiopyrimidine (2). Reaction of 2 with substituted aromatic amines, 2-aminopyridine and hydrazine hydrate yielded 4-amino-5-iodo-2-benzylthiopyrimidines 3(a-e), (3f) and (3g) respectively. Further, 4-hydrazino-5-iodo-2-benzylthiopyrimidine on condensation with substituted aromatic and heterocyclic aldehydes afforded the corresponding schiff bases 4(a-h). The structure of synthesized compounds have been established by spectral studies and elemental analysis. Synthesized compounds have been screened for antimicrobial activity. Compound 3f exhibited good antifungal activity against A. niger. The compounds 4a, 4c, 4d, 4g and 4h exhibited good antibacterial activity.
Collapse
Affiliation(s)
- N. M. Goudgaon
- Department of Studies and Research in Chemistry, Gulbarga University, Gulbarga-585 106, India
| | - N. J. Basha
- Department of Studies and Research in Chemistry, Gulbarga University, Gulbarga-585 106, India
| | - S. B. Patil
- Department of Studies and Research in Chemistry, Gulbarga University, Gulbarga-585 106, India
| |
Collapse
|
31
|
De Clercq E. Highlights in the Discovery of Antiviral Drugs: A Personal Retrospective. J Med Chem 2009; 53:1438-50. [PMID: 19860424 DOI: 10.1021/jm900932g] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| |
Collapse
|
32
|
De Clercq E. Antiviral drug discovery: Ten more compounds, and ten more stories (part B). Med Res Rev 2009; 29:571-610. [DOI: 10.1002/med.20149] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Doláková P, Dracínský M, Masojídková M, Solínová V, Kasicka V, Holý A. Acyclic nucleoside bisphosphonates: synthesis and properties of chiral 2-amino-4,6-bis[(phosphonomethoxy)alkoxy]pyrimidines. Eur J Med Chem 2009; 44:2408-24. [PMID: 18992968 PMCID: PMC2706328 DOI: 10.1016/j.ejmech.2008.09.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 09/15/2008] [Accepted: 09/18/2008] [Indexed: 11/26/2022]
Abstract
2-Amino-4,6-bis[(phosphonomethoxy)alkoxy]pyrimidines bearing two equal or different achiral or chiral phosphonoalkoxy chains have been prepared either by aromatic nucleophilic substitution of 2-amino-4,6-dichloropyrimidine or by alkylation of 4,6-dihydroxy-2-(methylsulfanyl)pyrimidine with appropriate phosphonate-bearing building block. Alkylation of 4,6-dihydroxy-2-(methylsulfanyl)pyrimidine proved to be the method of choice for efficient preparation of variety of bisphosphonates. The enantiomeric purity of selected compounds was determined by capillary electrophoresis. Antiviral activity of bisphosphonates is discussed.
Collapse
Affiliation(s)
- Petra Doláková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic.
| | | | | | | | | | | |
Collapse
|
34
|
Sauer R, El-Tayeb A, Kaulich M, Müller CE. Synthesis of uracil nucleotide analogs with a modified, acyclic ribose moiety as P2Y(2) receptor antagonists. Bioorg Med Chem 2009; 17:5071-9. [PMID: 19523835 DOI: 10.1016/j.bmc.2009.05.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 05/16/2009] [Accepted: 05/23/2009] [Indexed: 11/17/2022]
Abstract
A series of new uracil nucleotide analogs (monophosphates, triphosphates, and phosphonates) was synthesized, in which the ribose moiety was replaced by acyclic chains, including branched or linear alkyl or dialkylether linkers. 1-omega-Bromoalkyluracil derivatives (2) were converted to the corresponding alcohols by treatment with sodium hydroxide and subsequently phosphorylated using phosphorus oxychloride followed by hydrolysis to yield the monophosphates, or by coupling with diphosphate to form the triphosphates. Reaction of 2 with triethyl phosphite followed by deprotection with trimethylsilyl bromide led to the omega-phosphonylalkyluracil derivatives. These products could be further phosphorylated by converting them into their imidazolides and subsequent treatment with diphosphate yielding the corresponding UTP analogs. Nucleoside analogs with an oxygen atom in the 2'-position, which are more similar to the natural ribosides, were synthesized from silylated uracil and trimethylsilyl iodide-treated 1,3-dioxolane, or 1,3-dioxane, respectively, and subsequently phosphorylated by standard procedures. The nucleotide analogs were investigated in a functional assay at NG108-15 cells, a neuroblastomaxglioma hybrid cell line which expresses the UTP- and ATP-activated nucleotide receptor subtype P2Y(2). The acyclic nucleotide analogs were generally weaker ligands than UTP, and-in contrast to UTP-they were antagonistic. The most potent compound was diphosphoric 5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)pentylphosphonic anhydride (5c) with an IC(50) value of 92microM showing that the replacement of the alpha-phosphate by phosphonate, which leads to enhanced stability, was well tolerated.
Collapse
Affiliation(s)
- Roland Sauer
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | | | | | | |
Collapse
|
35
|
Microwave Assisted Synthesis of New N1-Substituted 5-Cyano-pyrimidine Derivatives as Potent Antimicrobial Agents. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2008. [DOI: 10.5012/jkcs.2008.52.1.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Vrbková S, Dračínský M, Holý A. Bifunctional acyclic nucleoside phosphonates: synthesis of chiral 9-{3-hydroxy[1,4-bis(phosphonomethoxy)]butan-2-yl} derivatives of purines. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.tetasy.2007.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Shi M, Wang X, De Clercq E, Takao S, Baba M. Selective inhibition of porcine endogenous retrovirus replication in human cells by acyclic nucleoside phosphonates. Antimicrob Agents Chemother 2007; 51:2600-4. [PMID: 17470654 PMCID: PMC1913248 DOI: 10.1128/aac.00212-07] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several anti-human immunodeficiency virus type 1 reverse transcriptase inhibitors were evaluated for their antiviral activities against porcine endogenous retrovirus in human cells. Among the test compounds, zidovudine was found to be the most active. The order of potency was zidovudine > phosphonylmethoxyethoxydiaminopyrimidine = phosphonylmethoxypropyldiaminopurine > tenofovir > or = adefovir > stavudine.
Collapse
Affiliation(s)
- Minyi Shi
- Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan
| | | | | | | | | |
Collapse
|
38
|
Brunelle MN, Lucifora J, Neyts J, Villet S, Holy A, Trepo C, Zoulim F. In vitro activity of 2,4-diamino-6-[2-(phosphonomethoxy)ethoxy]-pyrimidine against multidrug-resistant hepatitis B virus mutants. Antimicrob Agents Chemother 2007; 51:2240-3. [PMID: 17371827 PMCID: PMC1891401 DOI: 10.1128/aac.01440-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The susceptibilities of drug-resistant hepatitis B virus (HBV) mutants to lamivudine, adefovir, tenofovir, entecavir, and 2,4-diamino-6-[2-(phosphonomethoxy)ethoxy]-pyrimidine (PMEO-DAPym), a novel acyclic pyrimidine analogue, were assessed in vitro. Most drug-resistant mutants, including multidrug-resistant strains, remained sensitive to tenofovir and PMEO-DAPym. Therefore, the latter molecule deserves further evaluation for the treatment of HBV infection.
Collapse
Affiliation(s)
- M N Brunelle
- INSERM, U871, 151 Cours Albert Thomas, 69424 Lyon cedex 03, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Langley DR, Walsh AW, Baldick CJ, Eggers BJ, Rose RE, Levine SM, Kapur AJ, Colonno RJ, Tenney DJ. Inhibition of hepatitis B virus polymerase by entecavir. J Virol 2007; 81:3992-4001. [PMID: 17267485 PMCID: PMC1866160 DOI: 10.1128/jvi.02395-06] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Entecavir (ETV; Baraclude) is a novel deoxyguanosine analog with activity against hepatitis B virus (HBV). ETV differs from the other nucleoside/tide reverse transcriptase inhibitors approved for HBV therapy, lamivudine (LVD) and adefovir (ADV), in several ways: ETV is >100-fold more potent against HBV in culture and, at concentrations below 1 microM, displays no significant activity against human immunodeficiency virus (HIV). Additionally, while LVD and ADV are obligate DNA chain terminators, ETV halts HBV DNA elongation after incorporating a few additional bases. Three-dimensional homology models of the catalytic center of the HBV reverse transcriptase (RT)-DNA-deoxynucleoside triphosphate (dNTP) complex, based on the HIV RT-DNA structure, were used with in vitro enzyme kinetic studies to examine the mechanism of action of ETV against HBV RT. A novel hydrophobic pocket in the rear of the RT dNTP binding site that accommodates the exocyclic alkene moiety of ETV was predicted, establishing a basis for the superior potency observed experimentally. HBV DNA chain termination by ETV was accomplished through disfavored energy requirements as well as steric constraints during subsequent nucleotide addition. Validation of the model was accomplished through modeling of LVD resistance substitutions, which caused an eightfold decrease in ETV susceptibility and were predicted to reduce, but not eliminate, the ETV-binding pocket, in agreement with experimental observations. ADV resistance changes did not affect the ETV docking model, also agreeing with experimental results. Overall, these studies explain the potency, mechanism, and cross-resistance profile of ETV against HBV and account for the successful treatment of naive and LVD- or ADV-experienced chronic HBV patients.
Collapse
Affiliation(s)
- David R Langley
- Bristol-Myers Squibb Pharmaceutical Research Institute, 5 Research Parkway, Wallingford, CT 06443, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Vrbková S, Dračínský M, Holý A. Bifunctional Acyclic Nucleoside Phosphonates: 2. Symmetrical 2-{[Bis(phosphono)methoxy]methyl}ethyl Derivatives of Purines and Pyrimidines. ACTA ACUST UNITED AC 2007. [DOI: 10.1135/cccc20070965] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Novel bisphosphonate alkylating agent, tetraisopropyl {2-[(mesyloxy)methyl]propane-1,3-diyl}bis(oxymethylene)bisphosphonate 19, was synthesized from diethyl 2,2-bis(hydroxymethyl)malonate. Decarbethoxylation of the diethyl 2,2-dimethyl-1,3-dioxane-5,5-dicarboxylate was followed by chloromethylation of 2-[(benzyloxy)methyl]propane-1,3-diol and Arbuzov reaction with triisopropyl phosphite. Bisphosphonate building block 19 was used in the alkylation of various nucleobases (2-amino-6-chloropurine, adenine, 2-amino-6-(cyclopropyl)aminopurine, cytosine, uracil and 4-methoxy-5-methylpyrimidin-2(1H)-one). N9-Substituted purines and N1-substituted pyrimidines were converted to appropriate free bisphosphonic acids. No antiviral or cytostatic activity was detected.
Collapse
|
41
|
Kotian PL, Kumar VS, Lin TH, El-Kattan Y, Ghosh A, Wu M, Cheng X, Bantia S, Babu YS, Chand P. An efficient synthesis of acyclic N7- and N9-adenine nucleosides via alkylation with secondary carbon electrophiles to introduce versatile functional groups at the C-1 position of acyclic moiety. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 25:121-40. [PMID: 16541957 DOI: 10.1080/15257770500446816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The introduction of versatile functional groups, allyl and ester, at the C-1 position of the acyclic chain in acyclic adenine nucleosides was achieved for the first time directly by alkylation of adenine and N6-potected adenine. Thus, the C-1'-substituted N9-adenine acyclic nucleoside, adenine-9-yl-pent-4-enoic acid ethyl ester (11), was prepared by direct alkylation of adenine with 2-bromopent-4-enoic acid ethyl ester (6), while the corresponding N7-regioisomer, 2-[6-(dimethylaminomethyleneamino)-purin-7-yl]-pent-4-enoic acid ethyl ester (10), was obtained in one step by the coupling of N, N-dimethyl-N'- (9H-purin-6-yl)-formamidine (9) with 2-bromopent-4-enoic acid ethyl ester (6). The functional groups, ester and allyl, were converted to the desired hydroxymethyl and hydroxyethyl groups, and subsequently to phosphonomethyl derivatives and corresponding pyrophosphorylphosphonates.
Collapse
Affiliation(s)
- Pravin L Kotian
- BioCryst Pharmaceuticals, Inc., Birmingham, Alabama 35244, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
El-Kattan Y, Lin TH, Wu M, Kumar VS, Kotian PL, Ghosh A, Cheng X, Bantia S, Babu YS, Chand P. Synthesis of N6-substituted 9-[3-(phosphonomethoxy)propyl]adenine derivatives as possible antiviral agents. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 24:1597-611. [PMID: 16438037 DOI: 10.1080/15257770500265760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A number of N6-substituted 9-[3-(phosphonomethoxy)propyl]adenine derivatives having hydroxymethyl at C-1' position were prepared from the appropriate 6-chloroadenine derivative. The syntheses of the corresponding prodrugs of these compounds are also reported. These compounds showed poor activity against HCV in replicon assay.
Collapse
Affiliation(s)
- Yahya El-Kattan
- BioCryst Pharmaceuticals, Inc., 2190 Parkway Lake Drive, Birmingham, AL 35244, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wu M, El-Kattan Y, Lin TH, Ghosh A, Vadlakonda S, Kotian PL, Babu YS, Chand P. Synthesis of 9-[1-(substituted)-3-(phosphonomethoxy)propyl]adenine derivatives as possible antiviral agents. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 24:1543-68. [PMID: 16438034 DOI: 10.1080/15257770500268673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Acyclic N9 adenine nucleosides substituted at C-1' position were prepared by the Mitsunobu reaction of 1-tert-butyldimethylsilyl-4-pivaloylbutan-1,2,4-triol (5) with adenine. Pivaloyl hydroxyl was modified to the phosphonomethoxy derivatives, and the tert-butyldimethylsilyl hydroxyl was converted to methoxy, azido, amino, fluoro, and c-hydroxyethyl and was eliminated to give vinyl. The resulting phosphonic acids were converted to prodrugs also.
Collapse
Affiliation(s)
- Minwan Wu
- BioCryst Pharmaceuticals inc., Birmingham, Alabama 35244, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Wu M, El-Kattan Y, Lin TH, Ghosh A, Kumar VS, Kotian PL, Cheng X, Bantia S, Babu YS, Chand P. Synthesis of 9-[1-(substituted)-2-(phosphonomethoxy)ethyl]adenine derivatives as possible antiviral agents. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 24:1569-85. [PMID: 16438035 DOI: 10.1080/15257770500265315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Various C-1'-substituted acyclic N9 adenine nucleosides were prepared from 9-[(1-hydroxymethyl)(3-monomethoxytrityloxy)propyl]-N6-monomethoxytrityladenine. The hydroxymethyl was modified to the phosphonomethoxy derivative, and the 3-monomethoxytrityloxy was converted to hydroxyl, methoxy, azido, and amino. Other substituents, such as ethyl and ea-hydroxyethyl were also prepared. The resulting phosphonomethoxy derivatives were converted to prodrugs.
Collapse
Affiliation(s)
- Minwan Wu
- BioCryst Pharmaceuticals, Inc., Birmingham, Alabama 35244, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kmonícková E, Potmesil P, Holý A, Zídek Z. Purine P1 receptor-dependent immunostimulatory effects of antiviral acyclic analogues of adenine and 2,6-diaminopurine. Eur J Pharmacol 2005; 530:179-87. [PMID: 16371225 DOI: 10.1016/j.ejphar.2005.11.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 11/14/2005] [Indexed: 11/17/2022]
Abstract
Acyclic nucleoside phosphonates are widely recognised antivirals. The oral prodrugs of prototype compounds, e.g., 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA; adefovir), and 9-(R)-[2-(phosphonomethoxy)propyl]adenine [(R)-PMPA; tenofovir] were approved by FDA for treatment of hepatitis B (Hepsera), and acquired immunodeficiency syndrome (AIDS) (Viread), respectively. A number of acyclic nucleoside phosphonates possess immunostimulatory activity. The present experiments demonstrate that activation of cytokine and chemokine secretion is mediated by adenosine receptors. Included in the study were 9-(R)-[2-(phosphonomethoxy)propyl]adenine [tenofovir], N(6)-cyclopentyl-(R)-9-[2-(phosphonomethoxy)propyl]-2,6-diaminopurine, N(6)-cyclopropyl-(R)-9-[2-(phosphonomethoxy)propyl]-2,6-diaminopurine, and N(6)-isobutyl-9-[2-(phosphonomethoxy)ethyl]-2,6-diaminopurine. All of them activate secretion of tumor necrosis factor-alpha (TNF-alpha), interleukin-10 (IL-10), "regulated on activation of normal T cell expressed and secreted" (RANTES/CCL5), and macrophage inflammatory protein-1alpha (MIP-1alpha/CCL3) in murine macrophages. With exception of MIP-1alpha, the effects were inhibited by antagonists of adenosine A(1), A(2B), and A(3) receptors (not by adenosine A(2A) receptor antagonist). The adenosine A(1) receptor antagonist inhibited TNF-alpha, IL-10, and RANTES, adenosine A(2B) receptor antagonist inhibited TNF-alpha and RANTES, and adenosine A(3) receptor antagonist inhibited IL-10 and RANTES. The suppression is due to decreased transcription of cytokine mRNA. It may be suggested that acyclic nucleoside phosphonates are nonspecific ligands for purine P(1) receptors.
Collapse
Affiliation(s)
- Eva Kmonícková
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague.
| | | | | | | |
Collapse
|
46
|
De Clercq E, Andrei G, Balzarini J, Leyssen P, Naesens L, Neyts J, Pannecouque C, Snoeck R, Ying C, Hocková D, Holý A. Antiviral potential of a new generation of acyclic nucleoside phosphonates, the 6-[2-(phosphonomethoxy)alkoxy]-2,4-diaminopyrimidines. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 24:331-41. [PMID: 16247948 DOI: 10.1081/ncn-200059772] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Three acyclic nucleoside phosphonates (ANPs) have been formally approved for clinical use in the treatment of 1) cytomegalovirus retinitis in AIDS patients (cidofovir, by the intravenous route), 2) chronic hepatitis B virus (HBV) infections (adefovir dipivoxil, by the oral route), and 3) human immunodeficiency virus (HIV) infections (tenofovir disoproxil fumarate, by the oral route). The activity spectrum of cidofovir {(S)- 1-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine [(S)-HPMPC)]}, like that of (S)-HPMPA [(S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]adenine) and (S)-HPMPDAP [(S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-2, 6-diaminopurine), encompasses a broad spectrum of DNA viruses, including polyoma-, papilloma-, adeno-, herpes-, and poxviruses. Adefovir {9-[2-(phosphonomethoxy)ethyl]adenine (PMEA)} and tenofovir [(R)-9-[2-(phosphonomethoxy) propyl]adenine [(R)-PMPA)]} are particularly active against retroviruses (ie., HIV) and hepadnaviruses (ie., HBV); additionally, PMEA also shows activity against herpes- and poxviruses. We have recently identified a new class of ANPs, namely 6-[2-(phosphonomethoxy)alkoxy]-2,4-diaminopyrimidines, named, in analogy with their alkylpurine counterparts, HPMPO-DAPy, PMEO-DAPy, and (R)-PMPO-DAPy. These compounds exhibit an antiviral activity spectrum and potency that is similar to that of (S)-HPMPDAP, PMEA, and (R)-PMPA, respectively. Thus, PMEO-DAPy and (R)-PMPO-DAPy, akin to PMEA and (R)-PMPA, proved particularly active against HIV- 1, HIV-2, and the murine retrovirus Moloney sarcoma virus (MSV). PMEO-DAPy and (R)-PMPO-DAPy also showed potent activity against both wild-type and lamivudine-resistant strains of HBV. HPMPO-DAPy was found to inhibit different poxviruses (ie., vaccinia, cowpox, and orf) at a similar potency as cidofovir. HPMPO-DAPy also proved active against adenoviruses. In vivo, HPMPO-DAPy proved equipotent to cidofovir in suppressing vaccinia virus infection (tail lesion formation) in immunocompetent mice and promoting healing of disseminated vaccinia lesions in athymic-nude mice. The 6-[2-(phosphonomethoxy)alkoxy]-2,4-diaminopyrimidines offer substantial potential for the treatment of a broad range of retro-, hepadna-, herpes-, adeno-, and poxvirus infections.
Collapse
Affiliation(s)
- Erik De Clercq
- Address correspondence to Erik De Clercq, Rega Institute for Medical Research, K.U.Leuven, Minderbroedersstraat 10, Leuven B-3000, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
De Clercq E, Holý A. Acyclic nucleoside phosphonates: a key class of antiviral drugs. Nat Rev Drug Discov 2005; 4:928-40. [PMID: 16264436 DOI: 10.1038/nrd1877] [Citation(s) in RCA: 518] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Almost 20 years after the broad antiviral activity spectrum of the first acyclic nucleoside phosphonates was described, several of these compounds have become important therapies for DNA virus and retrovirus infections. Here, we review the discovery and development of acyclic nucleoside phosphonates, focusing on cidofovir and its potential in the treatment of various herpes-, papilloma-, polyoma-, adeno- and pox-virus infections, adefovir for the treatment of hepatitis B and tenofovir for the treatment of AIDS and the prevention of HIV infections.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
| | | |
Collapse
|
48
|
Ying C, Holy A, Hocková D, Havlas Z, De Clercq E, Neyts J. Novel acyclic nucleoside phosphonate analogues with potent anti-hepatitis B virus activities. Antimicrob Agents Chemother 2005; 49:1177-80. [PMID: 15728921 PMCID: PMC549220 DOI: 10.1128/aac.49.3.1177-1180.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novel acyclic nucleoside phosphonates with a pyrimidine base preferentially containing an amino group at C-2 and C-4 and a 2-(phosphonomethoxy)ethoxy or (R)-2-(phosphonomethoxy)propoxy group at C-6 selectively inhibit the replication of wild-type and lamivudine-resistant hepatitis B viruses. The activity of the most potent compounds was comparable to that of adefovir.
Collapse
Affiliation(s)
- C Ying
- Rega Institute for Medical Research, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
49
|
Balzarini J, Pannecouque C, Naesens L, Andrei G, Snoeck R, De Clercq E, Hocková D, Holý A. 6-[2-phosphonomethoxy)alkoxy]-2,4-diaminopyrimidines: a new class of acyclic pyrimidine nucleoside phosphonates with antiviral activity. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 23:1321-7. [PMID: 15571252 DOI: 10.1081/ncn-200027573] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Acyclic nucleoside phosphonate derivatives containing a pyrimidine base preferably bearing amino groups at C-2 and C-4 (DAPym), and linked at the C-6 position to (S)-[3-hydroxy-2-(phosphonomethoxy)propoxy] (HPMPO), 2-(phosphonomethoxy) ethoxy (PMEO) or (R)-[2-(phosphonomethoxy)propoxy] (PMPO), display an antiviral sensitivity spectrum that closely mimic that of the parental (S)-HPMP-, PME- and (R)-PMP-purine derivatives. Several PMEO-DAPym derivatives proved as potent as PMEA (adefovir) and (R)-PMPA (tenofovir) in inhibiting Moloney murine sarcoma virus (MSV)-induced tumor formation in newborn NMRI mice. The HPMPO-, PMEO- and PMPO-DAPym derivatives represent a novel well-defined subclass among the acyclic nucleoside phosphonates endowed with potent and selective antiviral activity.
Collapse
Affiliation(s)
- J Balzarini
- Rega Institute for Medical Research, K.U. Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
50
|
De Clercq E. Antiviral Research at the Rega Institute (KU Leuven), Now 50 Years Old. Antivir Chem Chemother 2004; 15:223-33. [PMID: 15535044 DOI: 10.1177/095632020401500501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|