1
|
Queffeulou M, Leprohon P, Fernandez-Prada C, Ouellette M, Mejía-Jaramillo AM. CRISPR-Cas9 high-throughput screening to study drug resistance in Leishmania infantum. mBio 2024; 15:e0047724. [PMID: 38864609 PMCID: PMC11253630 DOI: 10.1128/mbio.00477-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/23/2024] [Indexed: 06/13/2024] Open
Abstract
Parasites of the genus Leishmania pose a global health threat with limited treatment options. New drugs are urgently needed, and genomic screens have the potential to accelerate target discovery, mode of action, and resistance mechanisms against these new drugs. We describe here our effort in developing a genome-wide CRISPR-Cas9 screen in Leishmania, an organism lacking a functional nonhomologous end joining system that must rely on microhomology-mediated end joining, single-strand annealing, or homologous recombination for repairing Cas9-induced double-stranded DNA breaks. A new vector for cloning and expressing single guide RNAs (sgRNAs) was designed and proven to be effective in a small pilot project while enriching specific sgRNAs during drug selection. We then developed a whole-genome library of 49,754 sgRNAs, targeting all the genes of Leishmania infantum. This library was transfected in L. infantum expressing Cas9, and these cells were selected for resistance to two antileishmanials, miltefosine and amphotericin B. The sgRNAs the most enriched in the miltefosine screen targeted the miltefosine transporter gene, but sgRNAs targeting genes coding for a RING-variant protein and a transmembrane protein were also enriched. The sgRNAs the most enriched by amphotericin B targeted the sterol 24 C methyltransferase genes and a hypothetical gene. Through gene disruption experiments, we proved that loss of function of these genes was associated with resistance. This study describes the feasibility of carrying out whole-genome CRISPR-Cas9 screens in Leishmania provided that a strong selective pressure is applied. Such a screen can be used for accelerating the development of urgently needed antileishmanial drugs.IMPORTANCELeishmaniasis, a global health threat, lacks adequate treatment options and drug resistance exacerbates the challenge. This study introduces a CRISPR-Cas9 screening approach in Leishmania infantum, unraveling mechanisms of drug resistance at a genome-wide scale. Our screen was applied against two main antileishmanial drugs, and guides were enriched upon drug selection. These guides targeted known and new targets, hence validating the use of this screen against Leishmania. This strategy provides a powerful tool to expedite drug discovery as well as potential therapeutic targets against this neglected tropical disease.
Collapse
Affiliation(s)
- Marine Queffeulou
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, Université Laval, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, Université Laval, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Christopher Fernandez-Prada
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, Université Laval, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, Université Laval, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Ana María Mejía-Jaramillo
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, Université Laval, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| |
Collapse
|
2
|
Shahbaz M, Farooq S, Choudhary MI, Yousuf S. Cocrystals of a coumarin derivative: an efficient approach towards anti-leishmanial cocrystals against MIL-resistant Leishmania tropica. IUCRJ 2024; 11:224-236. [PMID: 38427455 PMCID: PMC10916291 DOI: 10.1107/s2052252524001416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
Leishmaniasis is a neglected parasitic tropical disease with numerous clinical manifestations. One of the causative agents of cutaneous leishmaniasis (CL) is Leishmania tropica (L. tropica) known for causing ulcerative lesions on the skin. The adverse effects of the recommended available drugs, such as amphotericin B and pentavalent antimonial, and the emergence of drug resistance in parasites, mean the search for new safe and effective anti-leishmanial agents is crucial. Miltefosine (MIL) was the first recommended oral medication, but its use is now limited because of the rapid emergence of resistance. Pharmaceutical cocrystallization is an effective method to improve the physicochemical and biological properties of active pharmaceutical ingredients (APIs). Herein, we describe the cocrystallization of coumarin-3-carboxylic acid (CU, 1a; 2-oxobenzopyrane-3-carboxylic acid, C10H6O4) with five coformers [2-amino-3-bromopyridine (1b), 2-amino-5-(trifluoromethyl)-pyridine (1c), 2-amino-6-methylpyridine (1d), p-aminobenzoic acid (1e) and amitrole (1f)] in a 1:1 stoichiometric ratio via the neat grinding method. The cocrystals 2-6 obtained were characterized via single-crystal X-ray diffraction, powder X-ray diffraction, differential scanning calorimetry and thermogravimetric analysis, as well as Fourier transform infrared spectroscopy. Non-covalent interactions, such as van der Waals, hydrogen bonding, C-H...π and π...π interactions contribute significantly towards the packing of a crystal structure and alter the physicochemical and biological activity of CU. In this research, newly synthesized cocrystals were evaluated for their anti-leishmanial activity against the MIL-resistant L. tropica and cytotoxicity against the 3T3 (normal fibroblast) cell line. Among the non-cytotoxic cocrystals synthesized (2-6), CU:1b (2, IC50 = 61.83 ± 0.59 µM), CU:1c (3, 125.7 ± 1.15 µM) and CU:1d (4, 48.71 ± 0.75 µM) appeared to be potent anti-leishmanial agents and showed several-fold more anti-leishmanial potential than the tested standard drug (MIL, IC50 = 169.55 ± 0.078 µM). The results indicate that cocrystals 2-4 are promising anti-leishmanial agents which require further exploration.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Saba Farooq
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - M. Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sammer Yousuf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
3
|
Singh R, Kashif M, Srivastava P, Manna PP. Recent Advances in Chemotherapeutics for Leishmaniasis: Importance of the Cellular Biochemistry of the Parasite and Its Molecular Interaction with the Host. Pathogens 2023; 12:pathogens12050706. [PMID: 37242374 DOI: 10.3390/pathogens12050706] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Leishmaniasis, a category 1 neglected protozoan disease caused by a kinetoplastid pathogen called Leishmania, is transmitted through dipteran insect vectors (phlebotomine, sand flies) in three main clinical forms: fatal visceral leishmaniasis, self-healing cutaneous leishmaniasis, and mucocutaneous leishmaniasis. Generic pentavalent antimonials have long been the drug of choice against leishmaniasis; however, their success is plagued with limitations such as drug resistance and severe side effects, which makes them redundant as frontline therapy for endemic visceral leishmaniasis. Alternative therapeutic regimens based on amphotericin B, miltefosine, and paromomycin have also been approved. Due to the unavailability of human vaccines, first-line chemotherapies such as pentavalent antimonials, pentamidine, and amphotericin B are the only options to treat infected individuals. The higher toxicity, adverse effects, and perceived cost of these pharmaceutics, coupled with the emergence of parasite resistance and disease relapse, makes it urgent to identify new, rationalized drug targets for the improvement in disease management and palliative care for patients. This has become an emergent need and more relevant due to the lack of information on validated molecular resistance markers for the monitoring and surveillance of changes in drug sensitivity and resistance. The present study reviewed the recent advances in chemotherapeutic regimens by targeting novel drugs using several strategies including bioinformatics to gain new insight into leishmaniasis. Leishmania has unique enzymes and biochemical pathways that are distinct from those of its mammalian hosts. In light of the limited number of available antileishmanial drugs, the identification of novel drug targets and studying the molecular and cellular aspects of these drugs in the parasite and its host is critical to design specific inhibitors targeting and controlling the parasite. The biochemical characterization of unique Leishmania-specific enzymes can be used as tools to read through possible drug targets. In this review, we discuss relevant metabolic pathways and novel drugs that are unique, essential, and linked to the survival of the parasite based on bioinformatics and cellular and biochemical analyses.
Collapse
Affiliation(s)
- Ranjeet Singh
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Mohammad Kashif
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Prateek Srivastava
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
4
|
Carnielli JB, Dave A, Romano A, Forrester S, de Faria PR, Monti-Rocha R, Costa CH, Dietze R, Graham IA, Mottram JC. 3'Nucleotidase/nuclease is required for Leishmania infantum clinical isolate susceptibility to miltefosine. EBioMedicine 2022; 86:104378. [PMID: 36462405 PMCID: PMC9713291 DOI: 10.1016/j.ebiom.2022.104378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Miltefosine treatment failure in visceral leishmaniasis in Brazil has been associated with deletion of the miltefosine susceptibility locus (MSL) in Leishmania infantum. The MSL comprises four genes, 3'-nucleotidase/nucleases (NUC1 and NUC2); helicase-like protein (HLP); and 3,2-trans-enoyl-CoA isomerase (TEI). METHODS In this study CRISPR-Cas9 was used to either epitope tag or delete NUC1, NUC2, HLP and TEI, to investigate their role in miltefosine resistance mechanisms. Additionally, miltefosine transporter genes and miltefosine-mediated reactive oxygen species homeostasis were assessed in 26 L. infantum clinical isolates. A comparative lipidomic analysis was also performed to investigate the molecular basis of miltefosine resistance. FINDINGS Deletion of both NUC1, NUC2 from the MSL was associated with a significant decrease in miltefosine susceptibility, which was restored after re-expression. Metabolomic analysis of parasites lacking the MSL or NUC1 and NUC2 identified an increase in the parasite lipid content, including ergosterol; these lipids may contribute to miltefosine resistance by binding the drug in the membrane. Parasites lacking the MSL are more resistant to lipid metabolism perturbation caused by miltefosine and NUC1 and NUC2 are involved in this pathway. Additionally, L. infantum parasites lacking the MSL isolated from patients who relapsed after miltefosine treatment were found to modulate nitric oxide accumulation in host macrophages. INTERPRETATION Altogether, these data indicate that multifactorial mechanisms are involved in natural resistance to miltefosine in L. infantum and that the absence of the 3'nucleotidase/nuclease genes NUC1 and NUC2 contributes to the phenotype. FUNDING MRC GCRF and FAPES.
Collapse
Affiliation(s)
- Juliana B.T. Carnielli
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom,Laboratório de Leishmanioses, Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória-ES, Brazil,Corresponding author. York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way Heslington, York, YO10 5DD, United Kingdom.
| | - Anuja Dave
- Centre for Novel Agricultural Products, Department of Biology, University of York, United Kingdom
| | - Audrey Romano
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
| | - Sarah Forrester
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom
| | - Pedro R. de Faria
- Laboratório de Leishmanioses, Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória-ES, Brazil
| | - Renata Monti-Rocha
- Laboratório de Leishmanioses, Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória-ES, Brazil
| | - Carlos H.N. Costa
- Laboratório de Pesquisas em Leishmanioses, Instituto de Doenças Tropicais Natan Portella, Universidade Federal do Piauí, Teresina-PI, Brazil
| | - Reynaldo Dietze
- Laboratório de Leishmanioses, Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória-ES, Brazil,Global Health & Tropical Medicine—Instituto de Higiene e Medicina Tropical—Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ian A. Graham
- Centre for Novel Agricultural Products, Department of Biology, University of York, United Kingdom
| | - Jeremy C. Mottram
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom,Corresponding author. York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way Heslington, York, YO10 5DD, United Kingdom.
| |
Collapse
|
5
|
Anti-leishmanial physalins-Phytochemical investigation, in vitro evaluation against clinical and MIL-resistant L. tropica strains and in silico studies. PLoS One 2022; 17:e0274543. [PMID: 36441782 PMCID: PMC9704608 DOI: 10.1371/journal.pone.0274543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
Cutaneous leishmaniasis (CL) is a major health problem in over 98 countries of the world, including Pakistan. The current treatments are associated with a number of adverse effects and availability problem of drugs. Therefore, there is an urgent need of easily available and cost effective treatments of CL- in Pakistan. The bioassay-guided fractionation and purification of crude extract of Physalis minima has led to the isolation of a new aminophysalin B (1), and eight known physalins, physalin B (2), 5ß,6ß-epoxyphysalin B (3), 5α-ethoxy-6ß-hydroxy-5,6-dihydrophysalin B (4), physalin H (5), 5ß,6ß-epoxyphysalin C (6), and physalin G (7), K (8), and D (9). It is worth noting that compound 1 is the second member of aminophysalin series, whereas compound 6 was fully characterized for the first time. The structures of compounds 1-9 were elucidated by spectroscopic techniques Whereas, the structural assignments of compounds 1 and 8 were also supported by single-crystal X-ray diffraction studies. The anti-leishmanial activity of isolated physlains 1-9 was evaluated against Leishmania major and Leishmania tropica promastigotes. Compounds 2, 3, and 5-7 (IC50 = 9.59 ± 0.27-23.76 ± 1.10 μM) showed several-fold more potent activity against L. tropca than tested drug miltefosine (IC50 = 42.75 ± 1.03 μm) and pentamidine (IC50 = 27.20 ± 0.01 μM). Whereas compounds 2, 3 and 5 (IC50 = 3.04 ± 1.12-3.76 ± 0.85 μM) were found to be potent anti-leishmanial agents against L. major, several fold more active than tested standard miltefosine (IC50 = 25.55 ± 1.03 μM) and pentamidine (IC50 = 27.20 ± 0.015 μM). Compounds 4 (IC50 = 74.65 ± 0.81 μM) and 7 (IC50 = 39.44 ± 0.65 μM) also showed potent anti-leishmanial ativity against the miltefosine-unresponsive L. tropica strain (MIL resistant) (miltefosine IC50 = 169.55 ± 0.78 μM). Molecular docking and predictive binding studies indicated that these inhibitors may act via targeting important enzymes of various metabolic pathways of the parasites.
Collapse
|
6
|
Wijnant GJ, Dumetz F, Dirkx L, Bulté D, Cuypers B, Van Bocxlaer K, Hendrickx S. Tackling Drug Resistance and Other Causes of Treatment Failure in Leishmaniasis. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.837460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis is a tropical infectious disease caused by the protozoan Leishmania parasite. The disease is transmitted by female sand flies and, depending on the infecting parasite species, causes either cutaneous (stigmatizing skin lesions), mucocutaneous (destruction of mucous membranes of nose, mouth and throat) or visceral disease (a potentially fatal infection of liver, spleen and bone marrow). Although more than 1 million new cases occur annually, chemotherapeutic options are limited and their efficacy is jeopardized by increasing treatment failure rates and growing drug resistance. To delay the emergence of resistance to existing and new drugs, elucidating the currently unknown causes of variable drug efficacy (related to parasite susceptibility, host immunity and drug pharmacokinetics) and improved use of genotypic and phenotypic tools to define, measure and monitor resistance in the field are critical. This review highlights recent progress in our understanding of drug action and resistance in Leishmania, ongoing challenges (including setbacks related to the COVID-19 pandemic) and provides an overview of possible strategies to tackle this public health challenge.
Collapse
|
7
|
Olías-Molero AI, de la Fuente C, Cuquerella M, Torrado JJ, Alunda JM. Antileishmanial Drug Discovery and Development: Time to Reset the Model? Microorganisms 2021; 9:2500. [PMID: 34946102 PMCID: PMC8703564 DOI: 10.3390/microorganisms9122500] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 01/27/2023] Open
Abstract
Leishmaniasis is a vector-borne parasitic disease caused by Leishmania species. The disease affects humans and animals, particularly dogs, provoking cutaneous, mucocutaneous, or visceral processes depending on the Leishmania sp. and the host immune response. No vaccine for humans is available, and the control relies mainly on chemotherapy. However, currently used drugs are old, some are toxic, and the safer presentations are largely unaffordable by the most severely affected human populations. Moreover, its efficacy has shortcomings, and it has been challenged by the growing reports of resistance and therapeutic failure. This manuscript presents an overview of the currently used drugs, the prevailing model to develop new antileishmanial drugs and its low efficiency, and the impact of deconstruction of the drug pipeline on the high failure rate of potential drugs. To improve the predictive value of preclinical research in the chemotherapy of leishmaniasis, several proposals are presented to circumvent critical hurdles-namely, lack of common goals of collaborative research, particularly in public-private partnership; fragmented efforts; use of inadequate surrogate models, especially for in vivo trials; shortcomings of target product profile (TPP) guides.
Collapse
Affiliation(s)
- Ana Isabel Olías-Molero
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.I.O.-M.); (C.d.l.F.); (M.C.)
| | - Concepción de la Fuente
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.I.O.-M.); (C.d.l.F.); (M.C.)
| | - Montserrat Cuquerella
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.I.O.-M.); (C.d.l.F.); (M.C.)
| | - Juan J. Torrado
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - José M. Alunda
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.I.O.-M.); (C.d.l.F.); (M.C.)
| |
Collapse
|
8
|
Bulté D, Van Bockstal L, Dirkx L, Van den Kerkhof M, De Trez C, Timmermans JP, Hendrickx S, Maes L, Caljon G. Miltefosine enhances infectivity of a miltefosine-resistant Leishmania infantum strain by attenuating its innate immune recognition. PLoS Negl Trop Dis 2021; 15:e0009622. [PMID: 34292975 PMCID: PMC8330912 DOI: 10.1371/journal.pntd.0009622] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/03/2021] [Accepted: 07/01/2021] [Indexed: 01/08/2023] Open
Abstract
Background Miltefosine (MIL) is currently the only oral drug available to treat visceral leishmaniasis but its use as first-line monotherapy has been compromised by an increasing treatment failure. Despite the scarce number of resistant clinical isolates, MIL-resistance by mutations in a single aminophospholipid transporter gene can easily be selected in a laboratory environment. These mutations result in a reduced survival in the mammalian host, which can partially be restored by exposure to MIL, suggesting a kind of drug-dependency. Methodology/Principal findings To enable a combined study of the infection dynamics and underlying immunological events for differential in vivo survival, firefly luciferase (PpyRE9) / red fluorescent protein (DsRed) double-reporter strains were generated of MIL-resistant (MIL-R) and syngeneic MIL-sensitive (MIL-S) Leishmania infantum. Results in C57Bl/6 and BALB/c mice show that MIL-R parasites induce an increased innate immune response that is characterized by enhanced influx and infection of neutrophils, monocytes and dendritic cells in the liver and elevated serum IFN-γ levels, finally resulting in a less efficient establishment in liver macrophages. The elevated IFN-γ levels were shown to originate from an increased response of hepatic NK and NKT cells to the MIL-R parasites. In addition, we demonstrated that MIL could increase the in vivo fitness of MIL-R parasites by lowering NK and NKT cell activation, leading to a reduced IFN-γ production. Conclusions/Significance Differential induction of innate immune responses in the liver was found to underlie the attenuated phenotype of a MIL-R parasite and its peculiar feature of drug-dependency. The impact of MIL on hepatic NK and NKT activation and IFN-γ production following recognition of a MIL-R strain indicates that this mechanism may sustain infections with resistant parasites and contribute to treatment failure. Visceral leishmaniasis is a neglected tropical disease that is fatal if left untreated. Miltefosine is currently the only oral drug available but is increasingly failing to cure patients, resulting in its discontinuation as first-line drug in some endemic areas. To understand these treatment failures, we investigated the complex interplay of the parasite with the host immune system in the presence and absence of miltefosine. Our data indicate that miltefosine-resistant Leishmania parasites become severely hampered in their in vivo infectivity, which could be attributed to the induction of a pronounced innate immune response. Interestingly, the infection deficit was partially restored in the presence of miltefosine. Our results further indicate that miltefosine can exacerbate infections with resistant parasites by reducing innate immune recognition. This study provides new insights into the complex interplay between parasite, drug and host and discloses an immune-related mechanism of treatment failure.
Collapse
Affiliation(s)
- Dimitri Bulté
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Lieselotte Van Bockstal
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Laura Dirkx
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Magali Van den Kerkhof
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Carl De Trez
- Vrije Universiteit Brussel, Laboratory for Cellular and Molecular Immunology (CMIM), Brussels, Belgium
| | - Jean-Pierre Timmermans
- University of Antwerp, Department of Veterinary Sciences, Laboratory of Cell biology & Histology, Wilrijk, Belgium
| | - Sarah Hendrickx
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Louis Maes
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Guy Caljon
- University of Antwerp, Department of Biomedical Sciences, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
- * E-mail:
| |
Collapse
|
9
|
Espada CR, Albuquerque-Wendt A, Hornillos V, Gluenz E, Coelho AC, Uliana SRB. Ros3 (Lem3p/CDC50) Gene Dosage Is Implicated in Miltefosine Susceptibility in Leishmania (Viannia) braziliensis Clinical Isolates and in Leishmania (Leishmania) major. ACS Infect Dis 2021; 7:849-858. [PMID: 33724800 PMCID: PMC8042657 DOI: 10.1021/acsinfecdis.0c00857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The Ros3 protein is a component of
the MT-Ros3 transporter complex,
considered as the main route of miltefosine entry in Leishmania. L. braziliensis clinical isolates presenting differences
in miltefosine susceptibility and uptake were previously shown to
differentially express ros3. In this work, we showed
that the ros3 gene copy number was increased in the
isolate presenting the highest rates of miltefosine uptake and, thus,
the highest susceptibility to this drug. The role of the ros3 gene dosage in miltefosine susceptibility was then investigated
through a modulation of the gene copy number using two distinct approaches:
through an overexpression of ros3 in a tolerant L. braziliensis clinical isolate and in L. major and by generating mono- and diallelic knockouts of this gene in L. major using clustered regularly interspaced short palindromic
repeats (CRISPR) Cas9 (Cas = CRISPR-associated). Although the levels
of ros3 mRNA were increased at least 40-fold in overexpressing
clones, no significant reduction in the half-maximal effective concentration
(EC50) for miltefosine was observed in these parasites.
The partial or complete deletion of ros3 in L. major, in turn, resulted in a significant increase of
3 and 20 times, respectively, in the EC50 to miltefosine.
We unequivocally showed that the ros3 copy number
is one of the factors involved in the differential susceptibility
and uptake of miltefosine.
Collapse
Affiliation(s)
- Caroline R. Espada
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Andreia Albuquerque-Wendt
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade de Lisboa, Lisboa, Portugal
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Valentín Hornillos
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada, Sevilla, Spain
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Adriano C. Coelho
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Silvia R. B. Uliana
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Ghosh S, Verma A, Kumar V, Pradhan D, Selvapandiyan A, Salotra P, Singh R. Genomic and Transcriptomic Analysis for Identification of Genes and Interlinked Pathways Mediating Artemisinin Resistance in Leishmania donovani. Genes (Basel) 2020; 11:E1362. [PMID: 33213096 PMCID: PMC7698566 DOI: 10.3390/genes11111362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022] Open
Abstract
Current therapy for visceral leishmaniasis (VL), compromised by drug resistance, toxicity, and high cost, demands for more effective, safer, and low-cost drugs. Artemisinin has been found to be an effectual drug alternative in experimental models of leishmaniasis. Comparative genome and transcriptome analysis of in vitro-adapted artesunate-resistant (K133AS-R) and -sensitive wild-type (K133WT) Leishmania donovani parasites was carried out using next-generation sequencing and single-color DNA microarray technology, respectively, to identify genes and interlinked pathways contributing to drug resistance. Whole-genome sequence analysis of K133WT vs. K133AS-R parasites revealed substantial variation among the two and identified 240 single nucleotide polymorphisms (SNPs), 237 insertion deletions (InDels), 616 copy number variations (CNVs) (377 deletions and 239 duplications), and trisomy of chromosome 12 in K133AS-R parasites. Transcriptome analysis revealed differential expression of 208 genes (fold change ≥ 2) in K133AS-R parasites. Functional categorization and analysis of modulated genes of interlinked pathways pointed out plausible adaptations in K133AS-R parasites, such as (i) a dependency on lipid and amino acid metabolism for generating energy, (ii) reduced DNA and protein synthesis leading to parasites in the quiescence state, and (iii) active drug efflux. The upregulated expression of cathepsin-L like protease, amastin-like surface protein, and amino acid transporter and downregulated expression of the gene encoding ABCG2, pteridine receptor, adenylatecyclase-type receptor, phosphoaceylglucosamine mutase, and certain hypothetical proteins are concordant with genomic alterations suggesting their potential role in drug resistance. The study provided an understanding of the molecular basis linked to artemisinin resistance in Leishmania parasites, which may be advantageous for safeguarding this drug for future use.
Collapse
Affiliation(s)
- Sushmita Ghosh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India; (S.G.); (A.V.); (V.K.); (P.S.)
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India;
| | - Aditya Verma
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India; (S.G.); (A.V.); (V.K.); (P.S.)
| | - Vinay Kumar
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India; (S.G.); (A.V.); (V.K.); (P.S.)
| | - Dibyabhaba Pradhan
- ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research, New Delhi 110029, India;
| | | | - Poonam Salotra
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India; (S.G.); (A.V.); (V.K.); (P.S.)
| | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India; (S.G.); (A.V.); (V.K.); (P.S.)
| |
Collapse
|
11
|
Antileishmanial Aminopyrazoles: Studies into Mechanisms and Stability of Experimental Drug Resistance. Antimicrob Agents Chemother 2020; 64:AAC.00152-20. [PMID: 32601168 PMCID: PMC7449183 DOI: 10.1128/aac.00152-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
Current antileishmanial treatment is hampered by limitations, such as drug toxicity and the risk of treatment failure, which may be related to parasitic drug resistance. Given the urgent need for novel drugs, the Drugs for Neglected Diseases initiative (DNDi) has undertaken a drug discovery program, which has resulted in the identification of aminopyrazoles, a highly promising antileishmanial chemical series. Multiple experiments have been performed to anticipate the propensity for resistance development. Current antileishmanial treatment is hampered by limitations, such as drug toxicity and the risk of treatment failure, which may be related to parasitic drug resistance. Given the urgent need for novel drugs, the Drugs for Neglected Diseases initiative (DNDi) has undertaken a drug discovery program, which has resulted in the identification of aminopyrazoles, a highly promising antileishmanial chemical series. Multiple experiments have been performed to anticipate the propensity for resistance development. Resistance selection was performed by successive exposure of Leishmania infantum promastigotes (in vitro) and intracellular amastigotes (both in vitro and in golden Syrian hamsters). The stability of the resistant phenotypes was assessed after passage in mice and Lutzomyia longipalpis sandflies. Whole-genome sequencing (WGS) was performed to identify mutated genes, copy number variations (CNVs), and somy changes. The potential role of efflux pumps (the MDR and MRP efflux pumps) in the development of resistance was assessed by coincubation of aminopyrazoles with specific efflux pump inhibitors (verapamil, cyclosporine, and probenecid). Repeated drug exposure of amastigotes did not result in the emergence of drug resistance either in vitro or in vivo. Selection at the promastigote stage, however, was able to select for parasites with reduced susceptibility (resistance index, 5.8 to 24.5). This phenotype proved to be unstable after in vivo passage in mice and sandflies, suggesting that nonfixed alterations are responsible for the elevated resistance. In line with this, single nucleotide polymorphisms and indels identified by whole-genome sequencing could not be directly linked to the decreased drug susceptibility. Copy number variations were absent, whereas somy changes were detected, which may have accounted for the transient acquisition of resistance. Finally, aminopyrazole activity was not influenced by the MDR and MRP efflux pump inhibitors tested. The selection performed does not suggest the rapid development of resistance against aminopyrazoles in the field. Karyotype changes may confer elevated levels of resistance, but these do not seem to be stable in the vertebrate and invertebrate hosts. MDR/MRP efflux pumps are not likely to significantly impact the activity of the aminopyrazole leads.
Collapse
|
12
|
Ahmed H, Curtis CR, Tur-Gracia S, Olatunji TO, Carter KC, Williams RAM. Drug combinations as effective anti-leishmanials against drug resistant Leishmania mexicana. RSC Med Chem 2020; 11:905-912. [PMID: 33479685 DOI: 10.1039/d0md00101e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022] Open
Abstract
Leishmania is a parasite that causes the disease leishmaniasis, and 700 000 to 1 million new cases occur each year. There are few drugs that treat the disease and drug resistance in the parasite limits the clinical utility of existing drugs. One way to combat drug resistance is to use combination therapy rather than monotherapy. In this study we have compared the effect of single and combination treatments with four different compounds, i.e. alkylphosphocholine analogues APC12 and APC14, miltefosine (MIL), ketoconazole (KTZ), and amphotericin B (AmpB), on the survival of Leishmania mexicana wild-type promastigotes and a cell line derived from the WT with induced resistance to APC12 (C12Rx). The combination treatment with APC14 and APC16 had a synergistic effect in killing the WT while the combination treatment with KTZ and APC12 or APC14 or APC12 and APC14 had a synergistic effect against C12Rx. More than 90% killing efficiency was obtained using APC12 alone at >1 mg ml-1 against the C12Rx strain; however, combinations with APC14 produced a similar killing efficiency using APC12 at 0.063-0.25 mg ml-1 and APC14 at 0.003-0.5 mg ml-1. These results show that combination therapy can negate induced drug resistance in L. mexicana and that the use of this type of screening system could accelerate the development of drug combinations for clinical use.
Collapse
Affiliation(s)
- Humera Ahmed
- University of the West of Scotland Paisley Campus , UK .
| | | | | | | | | | | |
Collapse
|
13
|
Reimão JQ, Pita Pedro DP, Coelho AC. The preclinical discovery and development of oral miltefosine for the treatment of visceral leishmaniasis: a case history. Expert Opin Drug Discov 2020; 15:647-658. [PMID: 32202449 DOI: 10.1080/17460441.2020.1743674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Visceral leishmaniasis (VL) is a vector-borne disease caused by Leishmania donovani or Leishmania infantum. Closely related to poverty, VL is fatal and represents one of the main burdens on public health in developing countries. Treatment of VL relies exclusively on chemotherapy, a strategy still experiencing numerous limitations. Miltefosine (MF) has been used in the chemotherapy of VL in some endemic areas, and has been expanded to other regions, being considered crucial in eradication programs. AREAS COVERED This article reviews the most relevant preclinical and clinical aspects of MF, its mechanism of action and resistance to Leishmania parasites, as well as its limitations. The authors also give their perspectives on the treatment of VL. EXPERT OPINION The discovery of MF represented an enormous advance in the chemotherapy of VL, since it was the first oral drug for this neglected disease. Beyond selection of resistant parasites due to drug pressure, several other factors can lead to treatment failure such as, for example, factors intrinsic to the host, parasite and the drug itself. Although its efficacy as a monotherapy has reduced over recent years, MF is still an important alternative in VL chemotherapy, especially when used in combination with other drugs.
Collapse
Affiliation(s)
- Juliana Q Reimão
- Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí , Jundiaí, Brazil
| | - Débora P Pita Pedro
- Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí , Jundiaí, Brazil
| | - Adriano C Coelho
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, Brazil
| |
Collapse
|
14
|
Hendrickx S, Van Bockstal L, Bulté D, Mondelaers A, Aslan H, Rivas L, Maes L, Caljon G. Phenotypic adaptations of Leishmania donovani to recurrent miltefosine exposure and impact on sand fly infection. Parasit Vectors 2020; 13:96. [PMID: 32087758 PMCID: PMC7036194 DOI: 10.1186/s13071-020-3972-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/14/2020] [Indexed: 01/06/2023] Open
Abstract
Background Since the introduction of miltefosine (MIL) as first-line therapy in the kala-azar elimination programme in the Indian subcontinent, treatment failure rates have been increasing. Since parasite infectivity and virulence may become altered upon treatment relapse, this laboratory study assessed the phenotypic effects of repeated in vitro and in vivo MIL exposure. Methods Syngeneic Leishmania donovani lines either or not exposed to MIL were compared for drug susceptibility, rate of promastigote multiplication and metacyclogenesis, macrophage infectivity and behaviour in the sand fly vector, Lutzomyia longipalpis. Results Promastigotes of both in vitro and in vivo MIL-selected strains displayed a slightly reduced drug susceptibility that was associated with a reduced MIL-accumulation linked to a lower copy number (disomic state) of chromosome 13 harboring the miltefosine transporter (LdMT) gene. In vitro selected promastigotes showed a lower rate of metacyclogenesis whereas the in vivo derived promastigotes displayed a moderately increased growth rate. Repeated MIL exposure did neither influence the parasite load nor metacyclogenesis in the sand fly vector. Conclusions Recurrent in vitro and in vivo MIL exposure evokes a number of very subtle phenotypic and genotypic changes which could make promastigotes less susceptible to MIL without attaining full resistance. These changes did not significantly impact on infection in the sand fly vector.![]()
Collapse
Affiliation(s)
- Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium.
| | - Lieselotte Van Bockstal
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Dimitri Bulté
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Annelies Mondelaers
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Hamide Aslan
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Luis Rivas
- Centro de investigaciones Biológicas - CSIC, Madrid, Spain
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
15
|
Meade JC. P-type transport ATPases in Leishmania and Trypanosoma. ACTA ACUST UNITED AC 2019; 26:69. [PMID: 31782726 PMCID: PMC6884021 DOI: 10.1051/parasite/2019069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/12/2019] [Indexed: 01/12/2023]
Abstract
P-type ATPases are critical to the maintenance and regulation of cellular ion homeostasis and membrane lipid asymmetry due to their ability to move ions and phospholipids against a concentration gradient by utilizing the energy of ATP hydrolysis. P-type ATPases are particularly relevant in human pathogenic trypanosomatids which are exposed to abrupt and dramatic changes in their external environment during their life cycles. This review describes the complete inventory of ion-motive, P-type ATPase genes in the human pathogenic Trypanosomatidae; eight Leishmania species (L. aethiopica, L. braziliensis, L. donovani, L. infantum, L. major, L. mexicana, L. panamensis, L. tropica), Trypanosoma cruzi and three Trypanosoma brucei subspecies (Trypanosoma brucei brucei TREU927, Trypanosoma brucei Lister strain 427, Trypanosoma brucei gambiense DAL972). The P-type ATPase complement in these trypanosomatids includes the P1B (metal pumps), P2A (SERCA, sarcoplasmic-endoplasmic reticulum calcium ATPases), P2B (PMCA, plasma membrane calcium ATPases), P2D (Na+ pumps), P3A (H+ pumps), P4 (aminophospholipid translocators), and P5B (no assigned specificity) subfamilies. These subfamilies represent the P-type ATPase transport functions necessary for survival in the Trypanosomatidae as P-type ATPases for each of these seven subfamilies are found in all Leishmania and Trypanosoma species included in this analysis. These P-type ATPase subfamilies are correlated with current molecular and biochemical knowledge of their function in trypanosomatid growth, adaptation, infectivity, and survival.
Collapse
Affiliation(s)
- John C Meade
- Department of Microbiology and Immunology, School of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| |
Collapse
|
16
|
Novel fluorinated quaternary ammonium salts and their in vitro activity as trypanocidal agents. Med Chem Res 2019. [DOI: 10.1007/s00044-018-02285-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Espada CR, Magalhães RM, Cruz MC, Machado PR, Schriefer A, Carvalho EM, Hornillos V, Alves JM, Cruz AK, Coelho AC, Uliana SRB. Investigation of the pathways related to intrinsic miltefosine tolerance in Leishmania (Viannia) braziliensis clinical isolates reveals differences in drug uptake. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 11:139-147. [PMID: 30850347 PMCID: PMC6904789 DOI: 10.1016/j.ijpddr.2019.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 12/26/2022]
Abstract
In Brazil, cutaneous leishmaniasis is caused predominantly by L. (V.) braziliensis. The few therapeutic drugs available exhibit several limitations, mainly related to drug toxicity and reduced efficacy in some regions. Miltefosine (MF), the only oral drug available for leishmaniasis treatment, is not widely available and has not yet been approved for human use in Brazil. Our group previously reported the existence of differential susceptibility among L. (V.) braziliensis clinical isolates. In this work, we further characterized three of these isolates of L. (V.) braziliensis chosen because they exhibited the lowest and the highest MF half maximal inhibitory concentrations and were therefore considered less tolerant or more tolerant, respectively. Uptake of MF, and also of phosphocholine, were found to be significantly different in more tolerant parasites compared to the less sensitive isolate, which raised the hypothesis of differences in the MF transport complex Miltefosine Transporter (MT)-Ros3. Although some polymorphisms in those genes were found, they did not correlate with the drug susceptibility phenotype. Drug efflux and compartmentalization were similar in the isolates tested, and amphotericin B susceptibility was retained in MF tolerant parasites, suggesting that increased fitness was also not the basis of observed differences. Transcriptomic analysis revealed that Ros3 mRNA levels were upregulated in the sensitive strain compared to the tolerant ones. Increased mRNA abundance in more tolerant isolates was validated by quantitative PCR. Our results suggest that differential gene expression of the MT transporter complex is the basis of the differential susceptibility in these unselected, naturally occurring parasites. Brazilian L. (V.) braziliensis isolates vary in mitefosine susceptibility. Diminished drug internalization was observed in more tolerant isolates. Drug susceptibility did not correlate with SNPs in MT-Ros3 genes. Drug efflux and compartmentalization were similar in the isolates tested. Increased drug sensitivity is accompanied by Ros3 mRNA upregulation.
Collapse
Affiliation(s)
- Caroline R Espada
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Rubens M Magalhães
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Mario C Cruz
- Centro de Facilidades para Apoio a Pesquisa, CEFAP-USP, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo R Machado
- Serviço de Imunologia, HUPES, Universidade Federal da Bahia, Salvador, Brazil
| | - Albert Schriefer
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Edgar M Carvalho
- Serviço de Imunologia, HUPES, Universidade Federal da Bahia, Salvador, Brazil; Centro de Pesquisas Gonçalo Moniz, Fiocruz-Bahia, Salvador, Brazil
| | - Valentín Hornillos
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Sevilla, Spain
| | - João M Alves
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Angela K Cruz
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Adriano C Coelho
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Silvia R B Uliana
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
18
|
Herrera Acevedo C, Scotti L, Alves MF, de F.F.M. Diniz M, Tullius Scotti M. Hybrid Compounds in the Search for Alternative Chemotherapeutic Agents against Neglected Tropical Diseases. LETT ORG CHEM 2019. [DOI: 10.2174/1570178615666180402123057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neglected tropical diseases (NTDs) affect more than a billion people worldwide, mainly
populations living in poverty conditions. More than 56% of annual NTD deaths are caused by
Leishmaniasis, Sleeping sickness, and Chagas disease. For these three diseases, many problems have
been observed with the chemotherapeutic drugs commonly used, these being mainly resistance, high
toxicity, and low efficacy. In the search for alternative treatments, hybridization is an interesting approach,
which generates new molecules by merging two pharmacophores and then looking for improvements
in biological activity or reduced compound toxicity. Here, we review various studies that
present such hybrid molecules with promising in vitro and in vivo activities against Leishmania and
Trypanosoma parasites.
Collapse
Affiliation(s)
- Chonny Herrera Acevedo
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, 58051-900 Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, 58051-900 Joao Pessoa, PB, Brazil
| | - Mateus F. Alves
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, 58051-900 Joao Pessoa, PB, Brazil
| | - Margareth de F.F.M. Diniz
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, 58051-900 Joao Pessoa, PB, Brazil
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, 58051-900 Joao Pessoa, PB, Brazil
| |
Collapse
|
19
|
Hendrickx S, Bulté D, Van den Kerkhof M, Cos P, Delputte P, Maes L, Caljon G. Immunosuppression of Syrian golden hamsters accelerates relapse but not the emergence of resistance in Leishmania infantum following recurrent miltefosine pressure. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 9:1-7. [PMID: 30562667 PMCID: PMC6296292 DOI: 10.1016/j.ijpddr.2018.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 11/16/2022]
Abstract
Although miltefosine (MIL) has only been approved for the treatment of visceral leishmaniasis (VL) in 2002, its application in monotherapy already led to the development of two confirmed MIL-resistant isolates by 2009. Although liposomal amphotericin B is recommended as first-line treatment in Europe, MIL is still occasionally used in HIV co-infected patients. Since their immune system is incapable of controlling the infection, high parasite burdens and post-treatment relapses are common. Linked to the particular pharmacokinetic profile of MIL, successive treatment of recurrent relapses could in principle facilitate the emergence of drug resistance. This study evaluated the effect of immunosuppression (cyclophosphamide 150 mg/kg once weekly) on the development of MIL-resistance in Syrian golden hamsters infected with Leishmania infantum. The hamsters were treated with MIL (20 mg/kg orally for 5 days) whenever clinical signs of infection or relapse were observed. The immunosuppression resulted in a significant depletion of CD4+ lymphocytes and MHCII-expressing cells in peripheral blood, and a concomitant increase in tissue parasite burdens and shorter time to relapse, but the strain's susceptibility upon repeated MIL exposure remained unaltered. This study demonstrates that immunosuppression accelerates the occurrence of relapse without expediting MIL resistance development.
Collapse
Affiliation(s)
- S Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - D Bulté
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - M Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - P Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - P Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - L Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - G Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
20
|
Hanadate Y, Saito-Nakano Y, Nakada-Tsukui K, Nozaki T. Identification and Characterization of the Entamoeba Histolytica Rab8a Binding Protein: A Cdc50 Homolog. Int J Mol Sci 2018; 19:ijms19123831. [PMID: 30513690 PMCID: PMC6321534 DOI: 10.3390/ijms19123831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/31/2022] Open
Abstract
Membrane traffic plays a pivotal role in virulence in the enteric protozoan parasite Entamoeba histolytica. EhRab8A small GTPase is a key regulator of membrane traffic at the endoplasmic reticulum (ER) of this protist and is involved in the transport of plasma membrane proteins. Here we identified the binding proteins of EhRab8A. The Cdc50 homolog, a non-catalytic subunit of lipid flippase, was identified as an EhRab8A binding protein candidate by affinity coimmunoprecipitation. Binding of EhRab8A to EhCdc50 was also confirmed by reciprocal immunoprecipitation and blue-native polyacrylamide gel electrophoresis, the latter of which revealed an 87 kDa complex. Indirect immunofluorescence imaging with and without Triton X100 showed that endogenous EhCdc50 localized on the surface in the absence of permeabilizing agent but was observed on the intracellular structures and overlapped with the ER marker Bip when Triton X100 was used. Overexpression of N-terminal HA-tagged EhCdc50 impaired its translocation to the plasma membrane and caused its accumulation in the ER. As reported previously in other organisms, overexpression and accumulation of Cdc50 in the ER likely inhibited surface transport and function of the plasma membrane lipid flippase P4-ATPase. Interestingly, HA-EhCdc50-expressing trophozoites gained resistance to miltefosine, which is consistent with the prediction that HA-EhCdc50 overexpression caused its accumulation in the ER and mislocalization of the unidentified lipid flippase. Similarly, EhRab8A gene silenced trophozoites showed increased resistance to miltefosine, supporting EhRab8A-dependent transport of EhCdc50. This study demonstrated for the first time that EhRab8A mediates the transport of EhCdc50 and lipid flippase P4-ATPase from the ER to the plasma membrane.
Collapse
Affiliation(s)
- Yuki Hanadate
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.
| |
Collapse
|
21
|
Chanquia SN, Larregui F, Puente V, Labriola C, Lombardo E, García Liñares G. Synthesis and biological evaluation of new quinoline derivatives as antileishmanial and antitrypanosomal agents. Bioorg Chem 2018; 83:526-534. [PMID: 30469145 DOI: 10.1016/j.bioorg.2018.10.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 10/28/2022]
Abstract
As a part of our project aimed at developing new safe chemotherapeutic agents against tropical diseases, a series of aryl derivatives of 2- and 3-aminoquinoline, some of them new compounds, was designed, synthesized, and evaluated as antiproliferative agents against Trypanosoma cruzi, the parasite responsible for American trypanosomiasis (Chagas' disease), and Leishmania mexicana, the etiological agent of Leishmaniasis. Some of them showed a remarkable activity as parasite growth inhibitors. Fluorine-containing derivatives 11b and 11c were more than twice more potent than geneticin against intracellular promastigote form of Leishmania mexicana exhibiting both IC50 values of 41.9 μM. The IC50 values corresponding to fluorine and chlorine derivatives 11b-d were in the same order than benznidazole against epimastigote form. These drugs are interesting examples of effective antiparasitic agents with outstanding potential not only as lead drugs but also to be used for further in vivo studies. In addition, the obtained compounds showed no toxicity in Vero cells, which makes them good candidates to control tropical diseases. Regarding the probable mode of action, assayed quinoline derivatives interacted with hemin, inhibiting its degradation and generating oxidative stress that is not counteracted by the antioxidant defense system of the parasite.
Collapse
Affiliation(s)
- Santiago N Chanquia
- Laboratorio de Biocatálisis. Departamento de Química Orgánica y UMYMFOR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, piso 3, C1428EGA Buenos Aires, Argentina
| | - Facundo Larregui
- Laboratorio de Biocatálisis. Departamento de Química Orgánica y UMYMFOR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, piso 3, C1428EGA Buenos Aires, Argentina
| | - Vanesa Puente
- Centro de Investigaciones sobre Porfirias y Porfirinas (CIPYP, UBA-CONICET), Hospital de Clínicas José de San Martín, Avenida Córdoba 2351, 1120 Buenos Aires, Argentina
| | - Carlos Labriola
- Instituto de Investigaciones Bioquímicas, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Elisa Lombardo
- Centro de Investigaciones sobre Porfirias y Porfirinas (CIPYP, UBA-CONICET), Hospital de Clínicas José de San Martín, Avenida Córdoba 2351, 1120 Buenos Aires, Argentina.
| | - Guadalupe García Liñares
- Laboratorio de Biocatálisis. Departamento de Química Orgánica y UMYMFOR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, piso 3, C1428EGA Buenos Aires, Argentina.
| |
Collapse
|
22
|
Lipase Precursor-Like Protein Promotes Miltefosine Tolerance in Leishmania donovani by Enhancing Parasite Infectivity and Eliciting Anti-inflammatory Responses in Host Macrophages. Antimicrob Agents Chemother 2018; 62:AAC.00666-18. [PMID: 30297367 DOI: 10.1128/aac.00666-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/28/2018] [Indexed: 01/02/2023] Open
Abstract
The oral drug miltefosine (MIL) was introduced in the Indian subcontinent in the year 2002 for the treatment of visceral leishmaniasis (VL). However, recent reports on its declining efficacy and increasing relapse rates pose a serious concern. An understanding of the factors contributing to MIL tolerance in Leishmania parasites is critical. In the present study, we assessed the role of the lipase precursor-like protein (Lip) in conferring tolerance to miltefosine by episomally overexpressing Lip in Leishmania donovani (LdLip++). We observed a significant increase (∼3-fold) in the MIL 50% inhibitory concentration (IC50) at both the promastigote (3.90 ± 0.68 µM; P < 0.05) and intracellular amastigote (9.10 ± 0.60 µM; P < 0.05) stages compared to the wild-type counterpart (LdNeo) (MIL IC50s of 1.49 ± 0.20 µM at the promastigote stage and 3.95 ± 0.45 µM at the amastigote stage). LdLip++ parasites exhibited significantly (P < 0.05) increased infectivity to host macrophages and increased metacyclogenesis and tolerance to MIL-induced oxidative stress. The susceptibility of LdLip++ to other antileishmanial drugs (sodium antimony gluconate and amphotericin B) remained unchanged. In comparison to LdNeo, the LdLip++ parasites elicited high host interleukin-10 (IL-10) cytokine expression levels (1.6-fold; P < 0.05) with reduced expression of the cytokine tumor necrosis factor alpha (TNF-α) (1.5-fold; P < 0.05), leading to a significantly (P < 0.01) increased ratio of IL-10/TNF-α. The above-described findings suggest a role of lipase precursor-like protein in conferring tolerance to the oral antileishmanial drug MIL in L. donovani parasites.
Collapse
|
23
|
Yépes AF, Bahsas A, Escobar P, Cobo J, Palma A, Garro Martinez JC, Enriz R. Synthesis, anti-parasitic activity and QSAR study of a new library of polysubstituted tetrahydronaphtho[1,2-b]azepines. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2232-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Rastrojo A, García-Hernández R, Vargas P, Camacho E, Corvo L, Imamura H, Dujardin JC, Castanys S, Aguado B, Gamarro F, Requena JM. Genomic and transcriptomic alterations in Leishmania donovani lines experimentally resistant to antileishmanial drugs. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:246-264. [PMID: 29689531 PMCID: PMC6039315 DOI: 10.1016/j.ijpddr.2018.04.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/10/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022]
Abstract
Leishmaniasis is a serious medical issue in many countries around the World, but it remains largely neglected in terms of research investment for developing new control and treatment measures. No vaccines exist for human use, and the chemotherapeutic agents currently used are scanty. Furthermore, for some drugs, resistance and treatment failure are increasing to alarming levels. The aim of this work was to identify genomic and trancriptomic alterations associated with experimental resistance against the common drugs used against VL: trivalent antimony (SbIII, S line), amphotericin B (AmB, A line), miltefosine (MIL, M line) and paromomycin (PMM, P line). A total of 1006 differentially expressed transcripts were identified in the S line, 379 in the A line, 146 in the M line, and 129 in the P line. Also, changes in ploidy of chromosomes and amplification/deletion of particular regions were observed in the resistant lines regarding the parental one. A series of genes were identified as possible drivers of the resistance phenotype and were validated in both promastigotes and amastigotes from Leishmania donovani, Leishmania infantum and Leishmania major species. Remarkably, a deletion of the gene LinJ.36.2510 (coding for 24-sterol methyltransferase, SMT) was found to be associated with AmB-resistance in the A line. In the P line, a dramatic overexpression of the transcripts LinJ.27.T1940 and LinJ.27.T1950 that results from a massive amplification of the collinear genes was suggested as one of the mechanisms of PMM resistance. This conclusion was reinforced after transfection experiments in which significant PMM-resistance was generated in WT parasites over-expressing either gene LinJ.27.1940 (coding for a D-lactate dehydrogenase-like protein, D-LDH) or gene LinJ.27.1950 (coding for an aminotransferase of branched-chain amino acids, BCAT). This work allowed to identify new drivers, like SMT, the deletion of which being associated with resistance to AmB, and the tandem D-LDH-BCAT, the amplification of which being related to PMM resistance.
Collapse
Affiliation(s)
- Alberto Rastrojo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Paola Vargas
- Instituto de Parasitología y Biomedicina ''López-Neyra'' (IPBLN-CSIC), Granada, Spain
| | - Esther Camacho
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Corvo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Hideo Imamura
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jean-Claude Dujardin
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Santiago Castanys
- Instituto de Parasitología y Biomedicina ''López-Neyra'' (IPBLN-CSIC), Granada, Spain
| | - Begoña Aguado
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina ''López-Neyra'' (IPBLN-CSIC), Granada, Spain.
| | - Jose M Requena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
25
|
Borsari C, Quotadamo A, Ferrari S, Venturelli A, Cordeiro-da-Silva A, Santarem N, Costi MP. Scaffolds and Biological Targets Avenue to Fight Against Drug Resistance in Leishmaniasis. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2018. [DOI: 10.1016/bs.armc.2018.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Ponte-Sucre A, Gamarro F, Dujardin JC, Barrett MP, López-Vélez R, García-Hernández R, Pountain AW, Mwenechanya R, Papadopoulou B. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl Trop Dis 2017; 11:e0006052. [PMID: 29240765 PMCID: PMC5730103 DOI: 10.1371/journal.pntd.0006052] [Citation(s) in RCA: 560] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Reevaluation of treatment guidelines for Old and New World leishmaniasis is urgently needed on a global basis because treatment failure is an increasing problem. Drug resistance is a fundamental determinant of treatment failure, although other factors also contribute to this phenomenon, including the global HIV/AIDS epidemic with its accompanying impact on the immune system. Pentavalent antimonials have been used successfully worldwide for the treatment of leishmaniasis since the first half of the 20th century, but the last 10 to 20 years have witnessed an increase in clinical resistance, e.g., in North Bihar in India. In this review, we discuss the meaning of “resistance” related to leishmaniasis and discuss its molecular epidemiology, particularly for Leishmania donovani that causes visceral leishmaniasis. We also discuss how resistance can affect drug combination therapies. Molecular mechanisms known to contribute to resistance to antimonials, amphotericin B, and miltefosine are also outlined. Chemotherapy is central to the control and management of leishmaniasis. Antimonials remain the primary drugs against different forms of leishmaniasis in several regions. However, resistance to antimony has necessitated the use of alternative medications, especially in the Indian subcontinent (ISC). Compounds, notably the orally available miltefosine (MIL), parenteral paromomycin, and amphotericin B (AmB), are increasingly used to treat leishmaniasis. Although treatment failure (TF) has been observed in patients treated with most anti-leishmanials, its frequency of appearance may be important in patients treated with MIL, which has replaced antimonials within the kala-azar elimination program in the ISC. AmB is highly efficacious, and the associated toxic effects—when administered in its free deoxycholate form—are somewhat ameliorated in its liposomal formulation. Regrettably, laboratory experimentation has demonstrated a risk of resistance towards AmB as well. The rise of drug resistance impacts treatment outcome, and understanding its causes, spread, and impact will help us manage the risks it imposes. Here, we review the problem of TF in leishmaniasis and the contribution of drug resistance to the problem. Molecular mechanisms causing resistance to anti-leishmanials are discussed along with the appropriate use of additional available drugs, as well as the urgent need to consolidate strategies to monitor drug efficacy, epidemiological surveillance, and local policies. Coordination of these activities in national and international programs against leishmaniasis might represent a successful guide to further research and prevention activities.
Collapse
Affiliation(s)
- Alicia Ponte-Sucre
- Department of Physiological Sciences, Laboratory of Molecular Physiology, Institute of Experimental Medicine, Luis Razetti School of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
- * E-mail: (BP); (APS)
| | - Francisco Gamarro
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López-Neyra, Spanish National Research Council (IPBLN-CSIC), Granada, Spain
| | - Jean-Claude Dujardin
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Michael P. Barrett
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Rogelio López-Vélez
- Department of Infectious Diseases, National Referral Unit for Tropical Diseases, Ramón y Cajal University Hospital, Madrid, Spain
| | - Raquel García-Hernández
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López-Neyra, Spanish National Research Council (IPBLN-CSIC), Granada, Spain
| | - Andrew W. Pountain
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Roy Mwenechanya
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Barbara Papadopoulou
- Research Center in Infectious Diseases, CHU de Quebec Research Center and Department of Microbiology-Infectious Disease and Immunology, University Laval, Quebec, Canada
- * E-mail: (BP); (APS)
| |
Collapse
|
27
|
Mondelaers A, Hendrickx S, Van Bockstal L, Maes L, Caljon G. Miltefosine-resistant Leishmania infantum strains with an impaired MT/ROS3 transporter complex retain amphotericin B susceptibility. J Antimicrob Chemother 2017; 73:392-394. [DOI: 10.1093/jac/dkx407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022] Open
Affiliation(s)
- Annelies Mondelaers
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Lieselotte Van Bockstal
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| |
Collapse
|
28
|
Lezama-Dávila CM, Isaac-Márquez AP. Treating murine Kala-azar with a Mayan plant induces immunochemical changes. Parasite Immunol 2017; 40. [PMID: 28984989 DOI: 10.1111/pim.12495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/30/2017] [Indexed: 11/30/2022]
Abstract
Pentalinon andrieuxii Muell Arg is a Mexican-Central American plant anciently used by local people to treat cutaneous leishmaniasis. We evaluated a hexane extract of the root we called PAE for its chemical content and for its immunochemical and in vitro activity against Leishmania donovani and healing of experimental Kala-azar. Chemical analysis using gas chromatography coupled to mass spectrometry (GC-MS) identified hexadecanoic acid, hexadecanoic acid ethyl ester, 9, 12-octadecadienoic acid ethyl ester, octadecanoic acid ethyl ester, 9-octadecenoic acid ethyl ester and diethyl phthalate as the main compounds present in PAE. We also demonstrated PAE kills promastigotes and amastigotes in vitro and significantly reduces parasite loads in liver and spleen of infected Balb/c mice. PAE induces expression of NFkB/AP-1 transcription factors and production of IL-2 and IFN-γ by spleen cells of PAE treated but not in the untreated control mice. Furthermore, there were not IL-6, IL-10 nor TNF production in macrophages treated in vitro with PAE. We developed an affordable extract of P. andrieuxii effective to treat experimental Kala-azar in Balb/c mice.
Collapse
Affiliation(s)
- C M Lezama-Dávila
- Centro de Investigaciones Biomédicas, Universidad Autónoma de Campeche, Campeche, México
| | - A P Isaac-Márquez
- Centro de Investigaciones Biomédicas, Universidad Autónoma de Campeche, Campeche, México
| |
Collapse
|
29
|
Villa-Pulgarín JA, Gajate C, Botet J, Jimenez A, Justies N, Varela-M RE, Cuesta-Marbán Á, Müller I, Modolell M, Revuelta JL, Mollinedo F. Mitochondria and lipid raft-located FOF1-ATP synthase as major therapeutic targets in the antileishmanial and anticancer activities of ether lipid edelfosine. PLoS Negl Trop Dis 2017; 11:e0005805. [PMID: 28829771 PMCID: PMC5568728 DOI: 10.1371/journal.pntd.0005805] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/13/2017] [Indexed: 11/18/2022] Open
Abstract
Background Leishmaniasis is the world’s second deadliest parasitic disease after malaria, and current treatment of the different forms of this disease is far from satisfactory. Alkylphospholipid analogs (APLs) are a family of anticancer drugs that show antileishmanial activity, including the first oral drug (miltefosine) for leishmaniasis and drugs in preclinical/clinical oncology trials, but their precise mechanism of action remains to be elucidated. Methodology/Principal findings Here we show that the tumor cell apoptosis-inducer edelfosine was the most effective APL, as compared to miltefosine, perifosine and erucylphosphocholine, in killing Leishmania spp. promastigotes and amastigotes as well as tumor cells, as assessed by DNA breakdown determined by flow cytometry. In studies using animal models, we found that orally-administered edelfosine showed a potent in vivo antileishmanial activity and diminished macrophage pro-inflammatory responses. Edelfosine was also able to kill Leishmania axenic amastigotes. Edelfosine was taken up by host macrophages and killed intracellular Leishmania amastigotes in infected macrophages. Edelfosine accumulated in tumor cell mitochondria and Leishmania kinetoplast-mitochondrion, and led to mitochondrial transmembrane potential disruption, and to the successive breakdown of parasite mitochondrial and nuclear DNA. Ectopic expression of Bcl-XL inhibited edelfosine-induced cell death in both Leishmania parasites and tumor cells. We found that the cytotoxic activity of edelfosine against Leishmania parasites and tumor cells was associated with a dramatic recruitment of FOF1-ATP synthase into lipid rafts following edelfosine treatment in both parasites and cancer cells. Raft disruption and specific FOF1-ATP synthase inhibition hindered edelfosine-induced cell death in both Leishmania parasites and tumor cells. Genetic deletion of FOF1-ATP synthase led to edelfosine drug resistance in Saccharomyces cerevisiae yeast. Conclusions/Significance The present study shows that the antileishmanial and anticancer actions of edelfosine share some common signaling processes, with mitochondria and raft-located FOF1-ATP synthase being critical in the killing process, thus identifying novel druggable targets for the treatment of leishmaniasis. Leishmaniasis is a major health problem worldwide, and can result in loss of human life or a lifelong stigma because of bodily scars. According to World Health Organization, leishmaniasis is considered as an emerging and uncontrolled disease, and its current treatment is far from ideal, with only a few drugs available that could lead to drug resistance or cause serious side-effects. Here, we have found that mitochondria and raft-located FOF1-ATPase synthase are efficient druggable targets, through which an ether lipid named edelfosine exerts its antileishmanial action. Edelfosine effectively kills Leishmania spp. promastigotes and amastigotes. Our experimental animal models demonstrate that oral administration of edelfosine exerts a potent antileishmanial activity, while inhibits macrophage pro-inflammatory responses. Our results show that both Leishmania and tumor cells share mitochondria and raft-located FOF1-ATPase synthase as major druggable targets in leishmaniasis and cancer therapy. These data, showing a potent antileishmanial activity of edelfosine and unveiling its mechanism of action, together with the inhibition of the inflammatory responses elicited by macrophages, suggest that the ether lipid edelfosine is a promising oral drug for leishmaniasis, and highlight mitochondria and lipid raft-located FOF1-ATP synthase as major therapeutic targets for the treatment of this disease.
Collapse
Affiliation(s)
- Janny A Villa-Pulgarín
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Consuelo Gajate
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Laboratory of Cell Death and Cancer Therapy, Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Javier Botet
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca, Spain
| | - Alberto Jimenez
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca, Spain
| | - Nicole Justies
- Department of Cellular Immunology, Max-Planck-Institut für Immunbiologie und Epigenetik, Freiburg, Germany
| | - Rubén E Varela-M
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Álvaro Cuesta-Marbán
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Ingrid Müller
- Department of Medicine, Section of Immunology, St. Mary's Campus, Imperial College London, London, United Kingdom
| | - Manuel Modolell
- Department of Cellular Immunology, Max-Planck-Institut für Immunbiologie und Epigenetik, Freiburg, Germany
| | - José L Revuelta
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca, Spain
| | - Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Laboratory of Cell Death and Cancer Therapy, Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
30
|
Deep DK, Singh R, Bhandari V, Verma A, Sharma V, Wajid S, Sundar S, Ramesh V, Dujardin JC, Salotra P. Increased miltefosine tolerance in clinical isolates of Leishmania donovani is associated with reduced drug accumulation, increased infectivity and resistance to oxidative stress. PLoS Negl Trop Dis 2017; 11:e0005641. [PMID: 28575060 PMCID: PMC5470736 DOI: 10.1371/journal.pntd.0005641] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 06/14/2017] [Accepted: 05/13/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Miltefosine (MIL) is an oral antileishmanial drug used for treatment of visceral leishmaniasis (VL) in the Indian subcontinent. Recent reports indicate a significant decline in its efficacy with a high rate of relapse in VL as well as post kala-azar dermal leishmaniasis (PKDL). We investigated the parasitic factors apparently involved in miltefosine unresponsiveness in clinical isolates of Leishmania donovani. METHODOLOGY L. donovani isolated from patients of VL and PKDL at pretreatment stage (LdPreTx, n = 9), patients that relapsed after MIL treatment (LdRelapse, n = 7) and parasites made experimentally resistant to MIL (LdM30) were included in this study. MIL uptake was estimated using liquid chromatography coupled mass spectrometry. Reactive oxygen species and intracellular thiol content were measured fluorometrically. Q-PCR was used to assess the differential expression of genes associated with MIL resistance. RESULTS LdRelapse parasites exhibited higher IC50 both at promastigote level (7.92 ± 1.30 μM) and at intracellular amastigote level (11.35 ± 6.48 μM) when compared with LdPreTx parasites (3.27 ± 1.52 μM) and (3.85 ± 3.11 μM), respectively. The percent infectivity (72 hrs post infection) of LdRelapse parasites was significantly higher (80.71 ± 5.67%, P<0.001) in comparison to LdPreTx (60.44 ± 2.80%). MIL accumulation was significantly lower in LdRelapse parasites (1.7 fold, P<0.001) and in LdM30 parasites (2.4 fold, P<0.001) when compared with LdPreTx parasites. MIL induced ROS levels were significantly lower (p<0.05) in macrophages infected with LdRelapse while intracellular thiol content were significantly higher in LdRelapse compared to LdPreTx, indicating a better tolerance for oxidative stress in LdRelapse isolates. Genes associated with oxidative stress, metabolic processes and transporters showed modulated expression in LdRelapse and LdM30 parasites in comparison with LdPreTx parasites. CONCLUSION The present study highlights the parasitic factors and pathways responsible for miltefosine unresponsiveness in VL and PKDL.
Collapse
Affiliation(s)
- Deepak Kumar Deep
- National Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi, India
- Department of Biotechnology, Faculty of Science, Jamia Hamdard, New Delhi, India
| | - Ruchi Singh
- National Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi, India
| | - Vasundhra Bhandari
- National Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi, India
| | - Aditya Verma
- National Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi, India
| | - Vanila Sharma
- National Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi, India
| | - Saima Wajid
- Department of Biotechnology, Faculty of Science, Jamia Hamdard, New Delhi, India
| | - Shyam Sundar
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - V. Ramesh
- Dermatology Department, Safdarjung Hospital and Vardhman Mahavir Medical College (VMMC), New Delhi, India
| | - Jean Claude Dujardin
- Unit of Molecular Parasitology, Department of Parasitology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Poonam Salotra
- National Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi, India
| |
Collapse
|
31
|
Copper salisylaldoxime (CuSAL) imparts protective efficacy against visceral leishmaniasis by targeting Leishmania donovani topoisomerase IB. Exp Parasitol 2017; 175:8-20. [DOI: 10.1016/j.exppara.2017.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 01/11/2017] [Accepted: 02/03/2017] [Indexed: 10/20/2022]
|
32
|
Insight into the mechanism of action of temporin-SHa, a new broad-spectrum antiparasitic and antibacterial agent. PLoS One 2017; 12:e0174024. [PMID: 28319176 PMCID: PMC5358776 DOI: 10.1371/journal.pone.0174024] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/22/2017] [Indexed: 12/28/2022] Open
Abstract
Antimicrobial peptides (AMPs) are promising drugs to kill resistant pathogens. In contrast to bacteria, protozoan parasites, such as Leishmania, were little studied. Therefore, the antiparasitic mechanism of AMPs is still unclear. In this study, we sought to get further insight into this mechanism by focusing our attention on temporin-SHa (SHa), a small broad-spectrum AMP previously shown to be active against Leishmania infantum. To improve activity, we designed analogs of SHa and compared the antibacterial and antiparasitic mechanisms. [K3]SHa emerged as a highly potent compound active against a wide range of bacteria, yeasts/fungi, and trypanosomatids (Leishmania and Trypanosoma), with leishmanicidal intramacrophagic activity and efficiency toward antibiotic-resistant strains of S. aureus and antimony-resistant L. infantum. Multipassage resistance selection demonstrated that temporins-SH, particularly [K3]SHa, are not prone to induce resistance in Escherichia coli. Analysis of the mode of action revealed that bacterial and parasite killing occur through a similar membranolytic mechanism involving rapid membrane permeabilization and depolarization. This was confirmed by high-resolution imaging (atomic force microscopy and field emission gun-scanning electron microscopy). Multiple combined techniques (nuclear magnetic resonance, surface plasmon resonance, differential scanning calorimetry) allowed us to detail peptide-membrane interactions. [K3]SHa was shown to interact selectively with anionic model membranes with a 4-fold higher affinity (KD = 3 x 10−8 M) than SHa. The amphipathic α-helical peptide inserts in-plane in the hydrophobic lipid bilayer and disrupts the acyl chain packing via a detergent-like effect. Interestingly, cellular events, such as mitochondrial membrane depolarization or DNA fragmentation, were observed in L. infantum promastigotes after exposure to SHa and [K3]SHa at concentrations above IC50. Our results indicate that these temporins exert leishmanicidal activity via a primary membranolytic mechanism but can also trigger apoptotis-like death. The many assets demonstrated for [K3]SHa make this small analog an attractive template to develop new antibacterial/antiparasitic drugs.
Collapse
|
33
|
Hefnawy A, Berg M, Dujardin JC, De Muylder G. Exploiting Knowledge on Leishmania Drug Resistance to Support the Quest for New Drugs. Trends Parasitol 2016; 33:162-174. [PMID: 27993477 DOI: 10.1016/j.pt.2016.11.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/04/2016] [Accepted: 11/08/2016] [Indexed: 12/20/2022]
Abstract
New drugs are needed to control leishmaniasis and efforts are currently on-going to counter the neglect of this disease. We discuss here the utility and the impact of associating drug resistance (DR) studies to drug discovery pipelines. We use as paradigm currently used drugs, antimonials and miltefosine, and complement our reflection by interviewing three experts in the field. We suggest DR studies to be involved at two different stages of drug development: (i) the efficiency of novel compounds should be confirmed on sets of strains including recent clinical isolates with DR; (ii) experimental DR should be generated to promising compounds at an early stage of their development, to further optimize them and monitor clinical trials.
Collapse
Affiliation(s)
- Aya Hefnawy
- Institute of Tropical Medicine, Antwerp, Belgium
| | - Maya Berg
- Institute of Tropical Medicine, Antwerp, Belgium
| | | | | |
Collapse
|
34
|
Vacchina P, Norris-Mullins B, Carlson ES, Morales MA. A mitochondrial HSP70 (HSPA9B) is linked to miltefosine resistance and stress response in Leishmania donovani. Parasit Vectors 2016; 9:621. [PMID: 27906059 PMCID: PMC5133764 DOI: 10.1186/s13071-016-1904-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/22/2016] [Indexed: 11/29/2022] Open
Abstract
Background Protozoan parasites of the genus Leishmania are responsible for leishmaniasis, a neglected tropical disease affecting millions worldwide. Visceral leishmaniasis (VL), caused by Leishmania donovani, is the most severe form of leishmaniasis with high rates of mortality if left untreated. Current treatments include pentavalent antimonials and amphotericin B. However, high toxicity and emergence of resistance hinder the success of these options. Miltefosine (HePC) is the first oral treatment available for leishmaniasis. While treatment with HePC has proven effective, higher tolerance to the drug has been observed, and experimental resistance is easily developed in an in vitro environment. Several studies, including ours, have revealed that HePC resistance has a multi-factorial origin and this work aims to shed light on this complex mechanism. Methods 2D-DIGE quantitative proteomics comparing the soluble proteomes of sensitive and HePC resistant L. donovani lines identified a protein of interest tentatively involved in drug resistance. To test this link, we employed a gain-of-function approach followed by mutagenesis analysis. Functional studies were complemented with flow cytometry to measure HePC incorporation and cell death. Results We identified a mitochondrial HSP70 (HSPA9B) downregulated in HePC-resistant L. donovani promastigotes. The overexpression of HSPA9B in WT lines confers an increased sensitivity to HePC, regardless of whether the expression is ectopic or integrative. Moreover, the increased sensitivity to HePC is specific to the HSPA9B overexpression since dominant negative mutant lines were able to restore HePC susceptibility to WT values. Interestingly, the augmented susceptibility to HePC did not correlate with an increased HePC uptake. Leishmania donovani promastigotes overexpressing HSPA9B were subjected to different environmental stimuli. Our data suggest that HSPA9B is capable of protecting cells from stressful conditions such as low pH and high temperature. This phenotype was further corroborated in axenic amastigotes overexpressing HSPA9B. Conclusions The results from this study provide evidence to support the involvement of a mitochondrial HSP70 (HSPA9B) in experimental HePC resistance, a mechanism that is not yet fully understood, and reveal potential fundamental roles of HSPA9B in the biology of Leishmania. Overall, our findings are relevant for current and future antileishmanial chemotherapy strategies. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1904-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P Vacchina
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - B Norris-Mullins
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - E S Carlson
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - M A Morales
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
35
|
Abstract
For decades antimonials were the drugs of choice for the treatment of visceral
leishmaniasis (VL), but the recent emergence of resistance has made them redundant as
first-line therapy in the endemic VL region in the Indian subcontinent. The application of
other drugs has been limited due to adverse effects, perceived high cost, need for
parenteral administration and increasing rate of treatment failures. Liposomal
amphotericin B (AmB) and miltefosine (MIL) have been positioned as the effective
first-line treatments; however, the number of monotherapy MIL-failures has increased after
a decade of use. Since no validated molecular resistance markers are yet available,
monitoring and surveillance of changes in drug sensitivity and resistance still depends on
standard phenotypic in vitro promastigote or amastigote susceptibility
assays. Clinical isolates displaying defined MIL- or AmB-resistance are still fairly
scarce and fundamental and applied research on resistance mechanisms and dynamics remains
largely dependent on laboratory-generated drug resistant strains. This review addresses
the various challenges associated with drug susceptibility and -resistance monitoring in
VL, with particular emphasis on the choice of strains, susceptibility model selection and
standardization of procedures with specific read-out parameters and well-defined threshold
criteria. The latter are essential to support surveillance systems and safeguard the
limited number of currently available antileishmanial drugs.
Collapse
|
36
|
Laffitte MCN, Leprohon P, Légaré D, Ouellette M. Deep-sequencing revealing mutation dynamics in the miltefosine transporter gene in Leishmania infantum selected for miltefosine resistance. Parasitol Res 2016; 115:3699-703. [PMID: 27457482 DOI: 10.1007/s00436-016-5195-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/07/2016] [Indexed: 12/30/2022]
Abstract
Miltefosine is the first oral drug used in chemotherapy against leishmaniasis. In vitro studies found that resistance to miltefosine in Leishmania is often associated with the acquisition of point mutations in the miltefosine transporter, leading to a decrease in drug uptake. In this study, the dynamics of mutations upon miltefosine selection was studied by deep-sequencing of the miltefosine transporter gene. Deep-sequencing data revealed that no mutation was detected in the miltefosine transporter at sub-inhibitory concentrations of miltefosine. We show that the prevalence of mutated alleles was increasing when the drug pressure heightened, that more mutations were observed in highly resistant mutants, and that most mutations remained when parasites were cultured for a few passages in the absence of miltefosine.
Collapse
Affiliation(s)
- Marie-Claude N Laffitte
- Centre de Recherche en Infectiologie, CRCHU de Québec, 2705 Boul. Laurier, Québec, Qc, G1V 4G2, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie, CRCHU de Québec, 2705 Boul. Laurier, Québec, Qc, G1V 4G2, Canada
| | - Danielle Légaré
- Centre de Recherche en Infectiologie, CRCHU de Québec, 2705 Boul. Laurier, Québec, Qc, G1V 4G2, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie, CRCHU de Québec, 2705 Boul. Laurier, Québec, Qc, G1V 4G2, Canada.
| |
Collapse
|
37
|
Abstract
Eukaryotic microbial pathogens are major contributors to illness and death globally. Although much of their impact can be controlled by drug therapy as with prokaryotic microorganisms, the emergence of drug resistance has threatened these treatment efforts. Here, we discuss the challenges posed by eukaryotic microbial pathogens and how these are similar to, or differ from, the challenges of prokaryotic antibiotic resistance. The therapies used for several major eukaryotic microorganisms are then detailed, and the mechanisms that they have evolved to overcome these therapies are described. The rapid emergence of resistance and the restricted pipeline of new drug therapies pose considerable risks to global health and are particularly acute in the developing world. Nonetheless, we detail how the integration of new technology, biological understanding, epidemiology and evolutionary analysis can help sustain existing therapies, anticipate the emergence of resistance or optimize the deployment of new therapies.
Collapse
Affiliation(s)
- Alan H. Fairlamb
- Dundee Drug Discovery Unit, Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Neil A. R. Gow
- Aberdeen Fungal Group, Wellcome Trust Strategic Award in Medical Mycology and Fungal Immunology, School of Medical Sciences, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Keith R. Matthews
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Andrew P. Waters
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical and Veterinary Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
38
|
Genomic Appraisal of the Multifactorial Basis for In Vitro Acquisition of Miltefosine Resistance in Leishmania donovani. Antimicrob Agents Chemother 2016; 60:4089-100. [PMID: 27114280 DOI: 10.1128/aac.00478-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/22/2016] [Indexed: 12/16/2022] Open
Abstract
Protozoan parasites of the Leishmania donovani complex are the causative agents of visceral leishmaniasis (VL), the most severe form of leishmaniasis, with high rates of mortality if left untreated. Leishmania parasites are transmitted to humans through the bite of infected female sandflies (Diptera: Phlebotominae), and approximately 500,000 new cases of VL are reported each year. In the absence of a safe human vaccine, chemotherapy, along with vector control, is the sole tool with which to fight the disease. Miltefosine (hexadecylphosphatidylcholine [HePC]), an antitumoral drug, is the only successful oral treatment for VL. In the current study, we describe the phenotypic traits of L. donovani clonal lines that have acquired resistance to HePC. We performed whole-genome and RNA sequencing of these resistant lines to provide an inclusive overview of the multifactorial acquisition of experimental HePC resistance, circumventing the challenge of identifying changes in membrane-bound proteins faced by proteomics. This analysis was complemented by assessment of the in vitro infectivity of HePC-resistant parasites. Our work underscores the importance of complementary "omics" to acquire the most comprehensive insight for multifaceted processes, such as HePC resistance.
Collapse
|
39
|
In Vitro susceptibilities of wild and drug resistant Leishmania donovani amastigotes to piperolactam A loaded hydroxypropyl-β-cyclodextrin nanoparticles. Acta Trop 2016; 158:97-106. [PMID: 26940000 DOI: 10.1016/j.actatropica.2016.02.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 11/20/2022]
Abstract
Leishmaniasis is an epidemic in various countries, and the parasite Leishmania donovani is developing resistance against available drugs. In the present study the antileishmanial action of piperolactam A (PL), isolated after bioactivity guided fractionation from root extracts of Piper betle was accentuated in detail. Activity potentiation was achieved via cyclodextrin complexation. Crude hydro-ethanolic extract (PB) and three fractions obtained from PB and fabricated PL-hydroxypropyl-β-cyclodextrin (HPBCD) nanoparticles were evaluated for antileishmanial activity. Tests were performed against L. donovani wild-type, sodium stibogluconate, paromomycin and field isolated (GE1) resistant strains in axenic amastigote and amastigote in macrophage models. PL-HPBCD complex was characterized and FITC loaded HPBCD nanoparticles were assessed for macrophage internalization in confocal microscopic studies. Isolated and purified PL from most potent, alkaloid rich ethyl acetate fraction of PB showed high level of antileishmanial activities in wild-type (IC50=36 μM), sodium stibogluconate resistant (IC50=103 μM), paromomycin resistant (IC50=91 μM) and field isolated resistant (IC50=72 μM) strains together with cytotoxicity (CC50=900 μM) in mouse peritoneal macrophage cells. Inclusion of PL in HPBCD nanoparticles resulted in 10-fold and 4-10-fold increase in selectivity indexes (CC50/IC50) for wild-type and drug resistant strains, respectively. Drug-carrier interactions were clearly visualized in FT-IR studies. Complete incorporation of PL in HPBCD cavity was ascertained in DSC and XRD analyses. 180nm size stable nanospheres showed macrophage internalization within 1h of incubation. Piperolactam A (PL), a representative of the inchoate skeleton of aristolactam chassis might be the source of safe and affordable antileishmanial agents for the cure of deadly Leishmania infections.
Collapse
|
40
|
Mondelaers A, Sanchez-Cañete MP, Hendrickx S, Eberhardt E, Garcia-Hernandez R, Lachaud L, Cotton J, Sanders M, Cuypers B, Imamura H, Dujardin JC, Delputte P, Cos P, Caljon G, Gamarro F, Castanys S, Maes L. Genomic and Molecular Characterization of Miltefosine Resistance in Leishmania infantum Strains with Either Natural or Acquired Resistance through Experimental Selection of Intracellular Amastigotes. PLoS One 2016; 11:e0154101. [PMID: 27123924 PMCID: PMC4849676 DOI: 10.1371/journal.pone.0154101] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/08/2016] [Indexed: 02/06/2023] Open
Abstract
During the last decade miltefosine (MIL) has been used as first-line treatment for visceral leishmaniasis in endemic areas with antimonial resistance, but a decline in clinical effectiveness is now being reported. While only two MIL-resistant Leishmania infantum strains from HIV co-infected patients have been documented, phenotypic MIL-resistance for L. donovani has not yet been identified in the laboratory. Hence, a better understanding of the factors contributing to increased MIL-treatment failure is necessary. Given the paucity of defined MIL-resistant L. donovani clinical isolates, this study used an experimental amastigote-selected MIL-resistant L. infantum isolate (LEM3323). In-depth exploration of the MIL-resistant phenotype was performed by coupling genomic with phenotypic data to gain insight into gene function and the mutant phenotype. A naturally MIL-resistant L. infantum clinical isolate (LEM5159) was included to compare both datasets. Phenotypically, resistance was evaluated by determining intracellular amastigote susceptibility in vitro and actual MIL-uptake. Genomic analysis provided supportive evidence that the resistance selection model on intracellular amastigotes can be a good proxy for the in vivo field situation since both resistant strains showed mutations in the same inward transporter system responsible for the acquired MIL-resistant phenotype. In line with previous literature findings in promastigotes, our data confirm a defective import machinery through inactivation of the LiMT/LiRos3 protein complex as the main mechanism for MIL-resistance also in intracellular amastigotes. Whole genome sequencing analysis of LEM3323 revealed a 2 base pair deletion in the LiMT gene that led to the formation an early stop codon and a truncation of the LiMT protein. Interestingly, LEM5159 revealed mutations in both the LiMT and LiRos3 genes, resulting in an aberrant expression of the LiMT protein. To verify that these mutations were indeed accountable for the acquired resistance, transfection experiments were performed to re-establish MIL-susceptibility. In LEM3323, susceptibility was restored upon expression of a LiMT wild-type gene, whereas the MIL-susceptibility of LEM5159 could be reversed after expression of the LiRos3 wild-type gene. The aberrant expression profile of the LiMT protein could be restored upon rescue of the LiRos3 gene both in the LEM5159 clinical isolate and a ΔLiRos3 strain, showing that expression of LdMT is dependent on LdRos3 expression. The present findings clearly corroborate the pivotal role of the LiMT/LiRos3 complex in resistance towards MIL.
Collapse
Affiliation(s)
- Annelies Mondelaers
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Maria P. Sanchez-Cañete
- Instituto de Parasitologia y Biomedicina "Lopez-Neyra", Avda. Conocimiento S/N Parque Tecnológico Ciencias de la Salud, 18016, Granada, Spain
| | - Sarah Hendrickx
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Eline Eberhardt
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Raquel Garcia-Hernandez
- Instituto de Parasitologia y Biomedicina "Lopez-Neyra", Avda. Conocimiento S/N Parque Tecnológico Ciencias de la Salud, 18016, Granada, Spain
| | - Laurence Lachaud
- Laboratoire de Parasitologie-Mycologie et Centre National de Référence des Leishmanioses, Centre Hospitalier Universitaire et Université de Montpellier 39, Avenue Charles Flahault, 34295, Montpellier, France
| | - James Cotton
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, Cambridge, United Kingdom
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, Cambridge, United Kingdom
| | - Bart Cuypers
- Molecular Parasitology Unit (MPU), Institute of Tropical Medicine, Nationalestraat 155, B-2000, Antwerp, Belgium
- Advanced Database Research and Modeling (ADReM) research group, University of Antwerp, Middelheimlaan 1,2020, Antwerpen, Belgium
| | - Hideo Imamura
- Molecular Parasitology Unit (MPU), Institute of Tropical Medicine, Nationalestraat 155, B-2000, Antwerp, Belgium
| | - Jean-Claude Dujardin
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
- Molecular Parasitology Unit (MPU), Institute of Tropical Medicine, Nationalestraat 155, B-2000, Antwerp, Belgium
| | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Francisco Gamarro
- Instituto de Parasitologia y Biomedicina "Lopez-Neyra", Avda. Conocimiento S/N Parque Tecnológico Ciencias de la Salud, 18016, Granada, Spain
| | - Santiago Castanys
- Instituto de Parasitologia y Biomedicina "Lopez-Neyra", Avda. Conocimiento S/N Parque Tecnológico Ciencias de la Salud, 18016, Granada, Spain
- * E-mail:
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
- * E-mail:
| |
Collapse
|
41
|
Synthesis of Novel Quaternary Ammonium Salts and Their in Vitro Antileishmanial Activity and U-937 Cell Cytotoxicity. Molecules 2016; 21:381. [PMID: 27043509 PMCID: PMC6273649 DOI: 10.3390/molecules21040381] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 01/17/2023] Open
Abstract
This work describes the synthesis of a series of quaternary ammonium salts and the assessment of their in vitro antileishmanial activity and cytotoxicity. A preliminary discussion on a structure-activity relationship of the compounds is also included. Three series of quaternary ammonium salts were prepared: (i) halomethylated quaternary ammonium salts (series I); (ii) non-halogenated quaternary ammonium salts (series II) and (iii) halomethylated choline analogs (series III). Assessments of their in vitro cytotoxicity in human promonocytic cells U-937 and antileishmanial activity in axenic amastigotes of L. (Viannia) panamensis (M/HOM/87/UA140-pIR-eGFP) were carried out using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) micromethod. Antileishmanial activity was also tested in intracellular amastigotes of L. (V) panamensis using flow cytometry. High toxicity for human U937 cells was found with most of the compounds, which exhibited Lethal Concentration 50 (LC50) values in the range of 9 to 46 μg/mL. Most of the compounds evidenced antileishmanial activity. In axenic amastigotes, the antileishmanial activity varied from 14 to 57 μg/mL, while in intracellular amastigotes their activity varied from 17 to 50 μg/mL. N-Chloromethyl-N,N-dimethyl-N-(4,4-diphenylbut-3-en-1-yl)ammonium iodide (1a), N-iodomethyl-N,N-dimethyl-N-(4,4-diphenylbut-3-en-1-yl)ammonium iodide (2a), N,N,N-trimethyl-N-(4,4-diphenylbut-3-en-1-yl)ammonium iodide (3a) and N,N,N-trimethyl-N-(5,5-diphenylpent-4-en-1-yl)ammonium iodide (3b) turned out to be the most active compounds against intracellular amastigotes of L. (V) panamensis, with EC50 values varying between 24.7 for compound 3b and 38.4 μg/mL for compound 1a. Thus, these compounds represents new “hits” in the development of leishmanicidal drugs.
Collapse
|
42
|
Freitas EO, Nico D, Alves-Silva MV, Morrot A, Clinch K, Evans GB, Tyler PC, Schramm VL, Palatnik-de-Sousa CB. Immucillins ImmA and ImmH Are Effective and Non-toxic in the Treatment of Experimental Visceral Leishmaniasis. PLoS Negl Trop Dis 2015; 9:e0004297. [PMID: 26701750 PMCID: PMC4689457 DOI: 10.1371/journal.pntd.0004297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 11/20/2015] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Immucillins ImmA (IA), ImmH (IH) and SerMe-ImmH (SMIH) are synthetic deazapurine nucleoside analogues that inhibit Leishmania (L.) infantum chagasi and Leishmania (L.) amazonensis multiplication in vitro without macrophage toxicity. Immucillins are compared to the Glucantime standard drug in the chemotherapy of Leishmania (L.) infantum chagasi infection in mice and hamsters. These agents are tested for toxicity and immune system response. METHODOLOGY/PRINCIPAL FINDINGS BALB/c mice were infected with 107 amastigotes, treated with IA, IH, SMIH or Glucantime (2.5mg/kg/day) and monitored for clinical variables, parasite load, antibody levels and splenocyte IFN-γ, TNF-α, and IL-10 expression. Cytokines and CD4+, CD8+ and CD19+ lymphocyte frequencies were assessed in uninfected controls and in response to immucillins. Urea, creatinine, GOT and GPT levels were monitored in sera. Anti-Leishmania-specific IgG1 antibodies (anti-NH36) increased in untreated animals. IgG2a response, high levels of IFN-γ, TNF-α and lower levels of IL-10 were detected in mice treated with the immucillins and Glucantime. Immucillins permitted normal weight gain, prevented hepato-splenomegaly and cleared the parasite infection (85-89%) without renal and hepatic toxicity. Immucillins promoted 35% lower secretion of IFN-γ in uninfected controls than in infected mice. IA and IH increased the CD4+ T and CD19+ B cell frequencies. SMIH increased only the proportion of CD-19 B cells. IA and IH also cured infected hamsters with lower toxicity than Glucantime. CONCLUSIONS/SIGNIFICANCE Immucillins IA, IH and SMIH were effective in treating leishmaniasis in mice. In hamsters, IA and IH were also effective. The highest therapeutic efficacy was obtained with IA, possibly due to its induction of a TH1 immune response. Low immucillin doses were required and showed no toxicity. Our results disclose the potential use of IA and IH in the therapy of visceral leishmaniasis.
Collapse
Affiliation(s)
- Elisangela Oliveira Freitas
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, New York, New York, United States
| | - Dirlei Nico
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcus Vinícius Alves-Silva
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Keith Clinch
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Gary B. Evans
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Peter C. Tyler
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, New York, New York, United States
| | - Clarisa B. Palatnik-de-Sousa
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
43
|
Gupta G, Peine KJ, Abdelhamid D, Snider H, Shelton AB, Rao L, Kotha SR, Huntsman AC, Varikuti S, Oghumu S, Naman CB, Pan L, Parinandi NL, Papenfuss TL, Kinghorn AD, Bachelder EM, Ainslie KM, Fuchs JR, Satoskar AR. A Novel Sterol Isolated from a Plant Used by Mayan Traditional Healers Is Effective in Treatment of Visceral Leishmaniasis Caused by Leishmania donovani. ACS Infect Dis 2015; 1:497-506. [PMID: 27623316 DOI: 10.1021/acsinfecdis.5b00081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Visceral leishmaniasis (VL), caused by the protozoan parasite Leishmania donovani, is a global health problem affecting millions of people worldwide. Treatment of VL largely depends on therapeutic drugs such as pentavalent antimonials, amphotericin B, and others, which have major drawbacks due to drug resistance, toxicity, and high cost. In this study, for the first time, we have successfully demonstrated the synthesis and antileishmanial activity of the novel sterol pentalinonsterol (PEN), which occurs naturally in the root of a Mexican medicinal plant, Pentalinon andrieuxii. In the experimental BALB/c mouse model of VL induced by infection with L. donovani, intravenous treatment with liposome-encapsulated PEN (2.5 mg/kg) led to a significant reduction in parasite burden in the liver and spleen. Furthermore, infected mice treated with liposomal PEN showed a strong host-protective TH1 immune response characterized by IFN-γ production and formation of matured hepatic granulomas. These results indicate that PEN could be developed as a novel drug against VL.
Collapse
Affiliation(s)
- Gaurav Gupta
- Department of Pathology,
The Wexner Medical Center, The Ohio State University, 320 West
10th Avenue, Columbus, Ohio 43210, United States
- Department of Biochemistry and Immunology, School of Medicine of
Ribeirão Preto, University of Sao Paulo, Av. Bandeirantes
3900, 14049-900 Ribeirão Preto, Brazil
| | - Kevin J. Peine
- Molecular,
Cellular and Developmental Biology Graduate Program, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
- Division of Molecular Pharmaceutics, Eshelman School
of Pharmacy, University of North Carolina, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Dalia Abdelhamid
- Division of Medicinal Chemistry and Pharmacognosy, College
of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, United States
- Department
of Medicinal Chemistry, Minia University, Minia, Egypt
| | - Heidi Snider
- Department of Pathology,
The Wexner Medical Center, The Ohio State University, 320 West
10th Avenue, Columbus, Ohio 43210, United States
| | - Andrew B. Shelton
- Division
of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department
of Internal Medicine, The Wexner Medical Center, The Ohio State University, 473 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Latha Rao
- Division
of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department
of Internal Medicine, The Wexner Medical Center, The Ohio State University, 473 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Sainath R. Kotha
- Division
of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department
of Internal Medicine, The Wexner Medical Center, The Ohio State University, 473 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Andrew C. Huntsman
- Division of Medicinal Chemistry and Pharmacognosy, College
of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Sanjay Varikuti
- Department of Pathology,
The Wexner Medical Center, The Ohio State University, 320 West
10th Avenue, Columbus, Ohio 43210, United States
| | - Steve Oghumu
- Department of Pathology,
The Wexner Medical Center, The Ohio State University, 320 West
10th Avenue, Columbus, Ohio 43210, United States
| | - C. Benjamin Naman
- Division of Medicinal Chemistry and Pharmacognosy, College
of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Li Pan
- Division of Medicinal Chemistry and Pharmacognosy, College
of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Narasimham L. Parinandi
- Division
of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department
of Internal Medicine, The Wexner Medical Center, The Ohio State University, 473 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Tracy L. Papenfuss
- Department of Veterinary Biosciences, College of Veterinary
Medicine, The Ohio State University, 1900 Coffey Road, Columbus, Ohio 43210, United States
- Department
of Pathology, WIL Research, Ashland, Ohio 55805, United States
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College
of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Eric M. Bachelder
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, United States
- Division of Molecular Pharmaceutics, Eshelman School
of Pharmacy, University of North Carolina, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Kristy M. Ainslie
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, United States
- Division of Molecular Pharmaceutics, Eshelman School
of Pharmacy, University of North Carolina, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - James R. Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College
of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Abhay R. Satoskar
- Department of Pathology,
The Wexner Medical Center, The Ohio State University, 320 West
10th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
44
|
Turner KG, Vacchina P, Robles-Murguia M, Wadsworth M, McDowell MA, Morales MA. Fitness and Phenotypic Characterization of Miltefosine-Resistant Leishmania major. PLoS Negl Trop Dis 2015; 9:e0003948. [PMID: 26230675 PMCID: PMC4521777 DOI: 10.1371/journal.pntd.0003948] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/03/2015] [Indexed: 12/23/2022] Open
Abstract
Trypanosomatid parasites of the genus Leishmania are the causative agents of leishmaniasis, a neglected tropical disease with several clinical manifestations. Leishmania major is the causative agent of cutaneous leishmaniasis (CL), which is largely characterized by ulcerative lesions appearing on the skin. Current treatments of leishmaniasis include pentavalent antimonials and amphotericin B, however, the toxic side effects of these drugs and difficulty with distribution makes these options less than ideal. Miltefosine (MIL) is the first oral treatment available for leishmaniasis. Originally developed for cancer chemotherapy, the mechanism of action of MIL in Leishmania spp. is largely unknown. While treatment with MIL has proven effective, higher tolerance to the drug has been observed, and resistance is easily developed in an in vitro environment. Utilizing stepwise selection we generated MIL-resistant cultures of L. major and characterized the fitness of MIL-resistant L. major. Resistant parasites proliferate at a comparable rate to the wild-type (WT) and exhibit similar apoptotic responses. As expected, MIL-resistant parasites demonstrate decreased susceptibility to MIL, which reduces after the drug is withdrawn from culture. Our data demonstrate metacyclogenesis is elevated in MIL-resistant L. major, albeit these parasites display attenuated in vitro and in vivo virulence and standard survival rates in the natural sandfly vector, indicating that development of experimental resistance to miltefosine does not lead to an increased competitive fitness in L. major.
Collapse
Affiliation(s)
- Kimbra G. Turner
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Paola Vacchina
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Maricela Robles-Murguia
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Mariha Wadsworth
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Mary Ann McDowell
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Miguel A. Morales
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
45
|
In Vivo Selection of Paromomycin and Miltefosine Resistance in Leishmania donovani and L. infantum in a Syrian Hamster Model. Antimicrob Agents Chemother 2015; 59:4714-8. [PMID: 26014955 DOI: 10.1128/aac.00707-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/20/2015] [Indexed: 12/27/2022] Open
Abstract
In 2002 and 2006, respectively, miltefosine (MIL) and paromomycin (PMM) were licensed in the Indian subcontinent for treatment of visceral leishmaniasis; however, their future routine use might become jeopardized by the development of drug resistance. Although experimental selection of resistant strains in vitro has repeatedly been reported using the less relevant promastigote vector stage, the outcome of resistance selection on intracellular amastigotes was reported to be protocol and species dependent. To corroborate these in vitro findings, selection of resistance in Leishmania donovani and Leishmania infantum was achieved by successive treatment/relapse cycles in infected Syrian golden hamsters. For PMM, resistant amastigotes were already obtained within 3 treatment/relapse cycles, while their promastigotes retained full susceptibility, thereby sharing the same phenotypic characteristics as in vitro-generated PMM-resistant strains. For MIL, even five treatment/relapse cycles failed to induce significant susceptibility changes in either species, which also corresponds with the in vitro observations where selection of an MIL-resistant phenotype proved to be quite challenging. In conclusion, these results argue for cautious use of PMM in the field to avoid rapid emergence of primary resistance and highlight the need for additional research on the mechanisms and dynamics of MIL resistance selection.
Collapse
|
46
|
Intracellular amastigote replication may not be required for successful in vitro selection of miltefosine resistance in Leishmania infantum. Parasitol Res 2015; 114:2561-5. [PMID: 25877390 DOI: 10.1007/s00436-015-4460-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/27/2015] [Indexed: 12/22/2022]
Abstract
Although miltefosine (MIL) has only recently been positioned as a first-line therapeutic option for visceral leishmaniasis, field reports note an increasing trend in treatment failures. Study of laboratory selected MIL-resistant strains is needed in the absence of confirmed resistant clinical isolates. In contrast to promastigotes, experimental in vitro selection of MIL-resistance on intracellular amastigotes has not yet been documented. This study reports for the first time the selection of MIL-resistance in Leishmania infantum LEM3323, a strain which clearly shows active intracellular replication. Starting from the hypothesis that active multiplication may be essential in the resistance selection process; several other L. infantum strains were evaluated. Although strain LEM5269 showed only marginally lower intracellular multiplication, selection for resistance failed, as was also the case for several other strains showing poor or no intracellular replication. These results suggest that intracellular multiplication may not be an absolute prerequisite for the outcome of experimental in vitro MIL-resistance selection in clinical field isolates.
Collapse
|
47
|
Borba-Santos LP, Gagini T, Ishida K, de Souza W, Rozental S. Miltefosine is active against Sporothrix brasiliensis isolates with in vitro low susceptibility to amphotericin B or itraconazole. J Med Microbiol 2015; 64:415-422. [PMID: 25681323 DOI: 10.1099/jmm.0.000041] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/09/2015] [Indexed: 01/02/2023] Open
Abstract
Sporotrichosis is a common mycosis caused by dimorphic fungi from the Sporothrix schenckii complex. In recent years, sporotrichosis incidence rates have increased in the Brazilian state of Rio de Janeiro, where Sporothrix brasiliensis is the species more frequently isolated from patients. The standard antifungals itraconazole and amphotericin B are recommended as first-line therapy for cutaneous/lymphocutaneous and disseminated sporotrichosis, respectively, although decreased sensitivity to these drugs in vitro was reported for clinical isolates of S. brasiliensis. Here, we evaluated the activity of the phospholipid analogue miltefosine - already in clinical use against leishmaniasis - towards the pathogenic yeast form of S. brasiliensis isolates with low sensitivity to itraconazole or amphotericin B in vitro. Miltefosine had fungicidal activity, with minimum inhibitory concentration (MIC) values of 1-2 µg ml(-1). Miltefosine exposure led to loss of plasma membrane integrity, and transmission electron microscopy (TEM) analysis revealed a decrease in cytoplasmic electron density, alterations in the thickness of cell wall layers and accumulation of an electron-dense material in the cell wall. Flow cytometry analysis using an anti-melanin antibody revealed an increase in cell wall melanin in yeasts treated with miltefosine, when compared with control cells. The cytotoxicity of miltefosine was comparable to those of amphotericin B, but miltefosine showed a higher selectivity index towards the fungus. Our results suggest that miltefosine could be an effective alternative for the treatment of S. brasiliensis sporotrichosis, when standard treatment fails. Nevertheless, in vivo studies are required to confirm the antifungal potential of miltefosine for the treatment of sporotrichosis.
Collapse
Affiliation(s)
- Luana Pereira Borba-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thalita Gagini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kelly Ishida
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Wanderley de Souza
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Metrologia, Qualidade e Tecnologia, Inmetro, Duque de Caxias, Brazil
| | - Sonia Rozental
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
48
|
Singh N, Chatterjee M, Sundar S. The overexpression of genes of thiol metabolism contribute to drug resistance in clinical isolates of visceral leishmaniasis (kala azar) in India. Parasit Vectors 2014; 7:596. [PMID: 25515494 PMCID: PMC4280036 DOI: 10.1186/s13071-014-0596-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/08/2014] [Indexed: 01/19/2023] Open
Abstract
Background Visceral leishmaniasis (VL), also called Kala Azar (KA) or black fever in India, claims around 20,000 lives every year. Chemotherapy remains one of the most important tools in the control of VL. Current chemotherapy for Kala Azar in India relies on a rather limited arsenal of drugs including sodium antimony gluconate and amphotericin B in addition to the very expensive drug miltefosine. Pentavalent antimonials have been used for more than half a century in the therapy of leishmaniasis as it is relatively safe and inexpensive, however, the spread of resistance to this drug is forcing clinicians in India to abandon this treatment. Consequently, improvement of antimonial chemotherapy has become a major challenging area of study by leishmaniacs worldwide. The alarming emergence of resistance to the commonly used antleishmanial drug, sodium antimony gluconate, in India, has led us to elucidate the resistance mechanism(s) in clinical isolates. Studies on laboratory mutants have shown that resistance to antimonials is highly dependent on thiol levels. The parasite evades cytotoxic effects of antimonial therapy by enhanced efflux of drug upon conjugation with thiols, through overexpressed membrane proteins belonging to the superfamily of ABC transporters. Methods We have carried out functional studies to determine the activity of the efflux pumps in antimonial resistant clinical isolates collected from disease endemic areas in India and also carried out molecular characterization of thiol levels in these parasites. Results Overexpression of the gene coding for γ glutamylcysteine synthetase was observed in these resistant clinical isolates thereby establishing that thiols represent the key determinants of antimonial resistance. The SbIII/thiol conjugates can be sequestered by ABC transporter multidrug resistance protein A (MRPA) into intracellular organelles or can be directly pumped out by an uncharacterized transporter. Conclusions Our studies investigating antimonial resistance in different L. donovani clinical isolates suggest that over functioning of MRP plays a role in generation of antimony resistance phenotype in some L. donovani clinical isolates.
Collapse
Affiliation(s)
- Neeloo Singh
- Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India.
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata, India.
| | | |
Collapse
|
49
|
Das S, Rani M, Rabidas V, Pandey K, Sahoo GC, Das P. TLR9 and MyD88 are crucial for the maturation and activation of dendritic cells by paromomycin-miltefosine combination therapy in visceral leishmaniasis. Br J Pharmacol 2014; 171:1260-74. [PMID: 24670148 DOI: 10.1111/bph.12530] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 10/30/2013] [Accepted: 11/08/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE The combination of paromomycin-miltefosine is a successful anti-leishmanial therapy in visceral leishmaniasis (VL). This encouraged us to study its effect on Toll-like receptor (TLR)-mediated immunomodulation of dendritic cells (DC), as DC maturation and activation is crucial for anti-leishmanial activity. EXPERIMENTAL APPROACH In silico protein-ligand interaction and biophysical characterization of TLR9-drug interaction was performed. Interaction assays of HEK293 cells with different concentrations of miltefosine and/or paromomycin were performed, and NF-κB promoter activity measured. The role of TLR9 and MyD88 in paromomycin/miltefosine-induced maturation and activation of DCs was evaluated through RNA interference techniques. The effect of drugs on DCs was measured in terms of counter-regulatory production of IL-12 over IL-10, and characterized by chromatin immunoprecipitation assay at the molecular level. KEY RESULTS Computational and biophysical studies revealed that paromomycin/miltefosine interact with TLR9. Both drugs, as a monotherapy/combination, induced TLR9-dependent NF-κB promoter activity through MyD88. Moreover, the drug combination induced TLR9/MyD88-dependent functional maturation of DCs, evident as an up-regulation of co-stimulatory markers, enhanced antigen presentation by increasing MHC II expression, and increased stimulation of naive T-cells to produce IFN-γ. Both drugs, by modifying histone H3 at the promoter level, increased the release of IL-12, but down-regulated IL-10 in a TLR9-dependent manner. CONCLUSIONS AND IMPLICATIONS These results provide the first evidence that the combination of paromomycin-miltefosine critically modifies the maturation, activation and development of host DCs through a mechanism dependent on TLR9 and MyD88. This has implications for evaluating the success of other combination anti-leishmanial therapies that act by targeting host DCs.
Collapse
Affiliation(s)
- Sushmita Das
- Department of Molecular Parasitology, Rajendra Memorial Research Institute of Medical Sciences, Indian Council of Medical Research, Bihar, India
| | | | | | | | | | | |
Collapse
|
50
|
Oh S, Kim S, Kong S, Yang G, Lee N, Han D, Goo J, Siqueira-Neto JL, Freitas-Junior LH, Song R. Synthesis and biological evaluation of 2,3-dihydroimidazo[1,2-a]benzimidazole derivatives against Leishmania donovani and Trypanosoma cruzi. Eur J Med Chem 2014; 84:395-403. [DOI: 10.1016/j.ejmech.2014.07.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 10/25/2022]
|