1
|
Rosati D, Valentine M, Bruno M, Pradhan A, Dietschmann A, Jaeger M, Leaves I, van de Veerdonk FL, Joosten LA, Roy S, Stappers MHT, Gow NA, Hube B, Brown AJ, Gresnigt MS, Netea MG. Lactic acid in the vaginal milieu modulates the Candida-host interaction. Virulence 2025; 16:2451165. [PMID: 39843417 PMCID: PMC11760238 DOI: 10.1080/21505594.2025.2451165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/07/2024] [Accepted: 12/28/2024] [Indexed: 01/24/2025] Open
Abstract
Vulvovaginal candidiasis (VVC) is one of the most common infections caused by Candida albicans. VVC is characterized by an inadequate hyperinflammatory response and clinical symptoms associated with Candida colonization of the vaginal mucosa. Compared to other host niches in which C. albicans can cause infection, the vaginal environment is extremely rich in lactic acid that is produced by the vaginal microbiota. We examined how lactic acid abundance in the vaginal niche impacts the interaction between C. albicans and the human immune system using an in vitro culture in vaginal simulative medium (VSM). The presence of lactic acid in VSM (VSM+LA) increased C. albicans proliferation, hyphal length, and its ability to cause damage during subsequent infection of vaginal epithelial cells. The cell wall of C. albicans cells grown in VSM+LA displayed a robust mannan fibrillar structure, β-glucan exposure, and low chitin content. These cell wall changes were associated with altered immune responses and an increased ability of the fungus to induce trained immunity. Neutrophils were compromised in clearing C. albicans grown in VSM+LA conditions, despite mounting stronger oxidative responses. Collectively, we found that fungal adaptation to lactic acid in a vaginal simulative context increases its immunogenicity favouring a pro-inflammatory state. This potentially contributes to the immune response dysregulation and neutrophil recruitment observed during recurrent VVC.
Collapse
Affiliation(s)
- Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, T
he Netherlands
| | - Marisa Valentine
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
| | - Mariolina Bruno
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, T
he Netherlands
| | - Arnab Pradhan
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Axel Dietschmann
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
| | - Martin Jaeger
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, T
he Netherlands
| | - Ian Leaves
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Frank L. van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, T
he Netherlands
| | - Leo A.B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, T
he Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sumita Roy
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Mark H. T. Stappers
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Neil A.R. Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| | - Alistair J.P. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Mark S. Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, T
he Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Bednarek A, Kabut A, Rapala-Kozik M, Satala D. Exploring the effects of culture conditions on Yapsin ( YPS) gene expression in Nakaseomyces glabratus. Open Life Sci 2024; 19:20220995. [PMID: 39655190 PMCID: PMC11627043 DOI: 10.1515/biol-2022-0995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 12/12/2024] Open
Abstract
Nakaseomyces glabratus, previously known as Candida glabrata, has the great potential to cause systemic fungal infections despite its similarity to baker's yeast. Its pathogenicity is attributed to the production of numerous virulence factors, among which the YPS genes (YPS1-YPS11) encoding aspartyl proteases have yet to be sufficiently characterized, and limited studies suggest their involvement in cellular homeostasis. The study's novelty is an investigation of the role of YPS in N. glabratus's ability to adapt to different host environments. For this purpose, we isolated RNA from N. glabratus cells grown in both host niche-mimicking culture media, such as artificial saliva (AS) and vagina-simulating media (VS), as well as standard yeast media (RPMI 1640 and YPDA). We then performed quantitative real-time PCR to evaluate YPS gene expression at different growth phases. At the early logarithmic phase, we observed a general increase in the expression levels of YPS genes; however, at the stationary phase, high expression levels were maintained for YPS7 in RPMI 1640 and YPDA media and YPS6 in RPMI 1640 and AS media. In addition, although the VS medium does not promote the proliferation of N. glabratus, the yeast can survive in an acidic environment, and the significantly overexpressed gene is YPS7. These findings underscore the significant modulation of N. glabratus YPS gene expression in response to external environmental conditions. This research provides insights into the molecular basis of N. glabratus pathogenicity and highlights new potential targets for antifungal therapy.
Collapse
Affiliation(s)
- Aneta Bednarek
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Kabut
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
3
|
Clack K, Sallam M, Matheson C, Muyldermans S, Nguyen NT. Towards a Wearable Feminine Hygiene Platform for Detection of Invasive Fungal Pathogens via Gold Nanoparticle Aggregation. MICROMACHINES 2024; 15:899. [PMID: 39064410 PMCID: PMC11278863 DOI: 10.3390/mi15070899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Candida albicans is an opportunistic fungus that becomes pathogenic and problematic under certain biological conditions. C. albicans may cause painful and uncomfortable symptoms, as well as deaths in immunocompromised patients. Therefore, early detection of C. albicans is essential. However, conventional detection methods are costly, slow, and inaccessible to women in remote or developing areas. To address these concerns, we have developed a wearable and discrete naked-eye detectable colorimetric platform for C. albicans detection. With some modification, this platform is designed to be directly adhered to existing feminine hygiene pads. Our platform is rapid, inexpensive, user-friendly, and disposable and only requires three steps: (i) the addition of vaginal fluid onto sample pads; (ii) the addition of gold nanoparticle gel and running buffer, and (iii) naked eye detection. Our platform is underpinned by selective thiolated aptamer-based recognition of 1,3-β-D glucan molecules-a hallmark of C. albicans cell walls. In the absence of C. albicans, wearable sample pads turn bright pink. In the presence of C. albicans, the wearable pads turn dark blue due to significant nanoparticle target-induced aggregation. We demonstrate naked-eye colorimetric detection of 4.4 × 106C. albicans cells per ml and nanoparticle stability over a pH range of 3.0-8.0. We believe that this proof-of-concept platform has the potential to have a significant impact on women's health globally.
Collapse
Affiliation(s)
- Kimberley Clack
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia; (K.C.); (M.S.)
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia;
| | - Mohamed Sallam
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia; (K.C.); (M.S.)
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia;
- Griffith Institute for Drug Discovery (GRIDD), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Carney Matheson
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia;
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology (CMIM), Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia; (K.C.); (M.S.)
| |
Collapse
|
4
|
Pasamba EC, Orda MA, Villanueva BHA, Tsai PW, Tayo LL. Transcriptomic Analysis of Hub Genes Reveals Associated Inflammatory Pathways in Estrogen-Dependent Gynecological Diseases. BIOLOGY 2024; 13:397. [PMID: 38927277 PMCID: PMC11201105 DOI: 10.3390/biology13060397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Gynecological diseases are triggered by aberrant molecular pathways that alter gene expression, hormonal balance, and cellular signaling pathways, which may lead to long-term physiological consequences. This study was able to identify highly preserved modules and key hub genes that are mainly associated with gynecological diseases, represented by endometriosis (EM), ovarian cancer (OC), cervical cancer (CC), and endometrial cancer (EC), through the weighted gene co-expression network analysis (WGCNA) of microarray datasets sourced from the Gene Expression Omnibus (GEO) database. Five highly preserved modules were observed across the EM (GSE51981), OC (GSE63885), CC (GSE63514), and EC (GSE17025) datasets. The functional annotation and pathway enrichment analysis revealed that the highly preserved modules were heavily involved in several inflammatory pathways that are associated with transcription dysregulation, such as NF-kB signaling, JAK-STAT signaling, MAPK-ERK signaling, and mTOR signaling pathways. Furthermore, the results also include pathways that are relevant in gynecological disease prognosis through viral infections. Mutations in the ESR1 gene that encodes for ERα, which were shown to also affect signaling pathways involved in inflammation, further indicate its importance in gynecological disease prognosis. Potential drugs were screened through the Drug Repurposing Encyclopedia (DRE) based on the up-and downregulated hub genes, wherein a bacterial ribosomal subunit inhibitor and a benzodiazepine receptor agonist were the top candidates. Other drug candidates include a dihydrofolate reductase inhibitor, glucocorticoid receptor agonists, cholinergic receptor agonists, selective serotonin reuptake inhibitors, sterol demethylase inhibitors, a bacterial antifolate, and serotonin receptor antagonist drugs which have known anti-inflammatory effects, demonstrating that the gene network highlights specific inflammatory pathways as a therapeutic avenue in designing drug candidates for gynecological diseases.
Collapse
Affiliation(s)
- Elaine C. Pasamba
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines; (E.C.P.); (M.A.O.); (B.H.A.V.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines
| | - Marco A. Orda
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines; (E.C.P.); (M.A.O.); (B.H.A.V.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines
| | - Brian Harvey Avanceña Villanueva
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines; (E.C.P.); (M.A.O.); (B.H.A.V.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines
| | - Po-Wei Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Lemmuel L. Tayo
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines; (E.C.P.); (M.A.O.); (B.H.A.V.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines
- Department of Biology, School of Health Sciences, Mapúa University, Makati City 1203, Philippines
| |
Collapse
|
5
|
Mira NP, Marshall R, Pinheiro MJF, Dieckmann R, Dahouk SA, Skroza N, Rudnicka K, Lund PA, De Biase D. On the potential role of naturally occurring carboxylic organic acids as anti-infective agents: opportunities and challenges. Int J Infect Dis 2024; 140:119-123. [PMID: 38325748 DOI: 10.1016/j.ijid.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Carboxylic organic acids are intermediates of central carbon metabolic pathways (e.g. acetic, propionic, citric, and lactic acid) long known to have potent antimicrobial potential, mainly at acidic pHs. The food industry has been leveraging those properties for years, using many of these acids as preservatives to inhibit the growth of pathogenic and/or spoilage fungal and bacterial species. A few of these molecules (the most prominent being acetic acid) have been used as antiseptics since Hippocratic medicine, mainly to treat infected wounds in patients with burns. With the growth of antibiotic therapy, the use of carboxylic acids (and other chemical antiseptics) in clinical settings lost relevance; however, with the continuous emergence of multi-antibiotic/antifungal resistant strains, the search for alternatives has intensified. This prospective article raises awareness of the potential of carboxylic acids to control infections in clinical settings, considering not only their previous exploitation in this context (which we overview) but also the positive experience of their safe use in food preservation. At a time of great concern with antimicrobial resistance and the slow arrival of new antimicrobial therapeutics to the market, further exploration of organic acids as anti-infective molecules may pave the way to more sustainable prophylactic and therapeutic approaches.
Collapse
Affiliation(s)
- Nuno Pereira Mira
- iBB, Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Robert Marshall
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Maria Joana F Pinheiro
- iBB, Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ralf Dieckmann
- German Federal Institute for Risk Assessment, Department of Biological Safety, Berlin, Germany
| | - Sascha Al Dahouk
- German Federal Institute for Risk Assessment, Department of Biological Safety, Berlin, Germany
| | - Nevena Skroza
- Unit of Dermatology, Department of Medico-Surgical Science and Biotechnologies, Sapienza University of Rome, A. Fiorini Hospital, Latina, Italy
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Peter A Lund
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Antunes M, Sá-Correia I. The role of ion homeostasis in adaptation and tolerance to acetic acid stress in yeasts. FEMS Yeast Res 2024; 24:foae016. [PMID: 38658183 PMCID: PMC11092280 DOI: 10.1093/femsyr/foae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024] Open
Abstract
Maintenance of asymmetric ion concentrations across cellular membranes is crucial for proper yeast cellular function. Disruptions of these ionic gradients can significantly impact membrane electrochemical potential and the balance of other ions, particularly under stressful conditions such as exposure to acetic acid. This weak acid, ubiquitous to both yeast metabolism and industrial processes, is a major inhibitor of yeast cell growth in industrial settings and a key determinant of host colonization by pathogenic yeast. Acetic acid toxicity depends on medium composition, especially on the pH (H+ concentration), but also on other ions' concentrations. Regulation of ion fluxes is essential for effective yeast response and adaptation to acetic acid stress. However, the intricate interplay among ion balancing systems and stress response mechanisms still presents significant knowledge gaps. This review offers a comprehensive overview of the mechanisms governing ion homeostasis, including H+, K+, Zn2+, Fe2+/3+, and acetate, in the context of acetic acid toxicity, adaptation, and tolerance. While focus is given on Saccharomyces cerevisiae due to its extensive physiological characterization, insights are also provided for biotechnologically and clinically relevant yeast species whenever available.
Collapse
Affiliation(s)
- Miguel Antunes
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| |
Collapse
|
7
|
Wu H, Wang L, Wang W, Shao Z, Jia X, Xiao H, Chen J. The secretory Candida effector Sce1 licenses fungal virulence by masking the immunogenic β-1,3-glucan and promoting apoptosis of the host cells. MLIFE 2023; 2:159-177. [PMID: 38817625 PMCID: PMC10989805 DOI: 10.1002/mlf2.12066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2024]
Abstract
Candida albicans deploys a variety of mechanisms such as morphological switch and elicitor release to promote virulence. However, the intricate interactions between the fungus and the host remain poorly understood, and a comprehensive inventory of fungal virulence factors has yet to be established. In this study, we identified a C. albicans secretory effector protein Sce1, whose induction and secretion are associated with vagina-simulative conditions and chlamydospore formation. Sequence alignment showed that Sce1 belongs to a Pir family in C. albicans, which is conserved across several fungi and primarily characterized as a β-glucan binding protein in the Saccharomyces cerevisiae. Mechanically, Sce1 is primarily localized to the cell wall in a cleaved form as an alkali-labile β-1,3-glucan binding protein and plays a role in masking β-glucan in acidic environments and chlamydospores, a feature that might underline C. albicans' ability to evade host immunity. Further, a cleaved short form of Sce1 protein could be released into extracellular compartments and presented in bone marrow-derived macrophages infected with chlamydospores. This cleaved short form of Sce1 also demonstrated a unique ability to trigger the caspases-8/9-dependent apoptosis in various host cells. Correspondingly, genetic deletion of SCE1 led to dampened vaginal colonization of C. albicans and diminished fungal virulence during systemic infection. The discovery of Sce1 as a versatile virulence effector that executes at various compartments sheds light on the fungus-host interactions and C. albicans pathogenesis.
Collapse
Affiliation(s)
- Hongyu Wu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Li Wang
- The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Wenjuan Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Zhugui Shao
- The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical SciencesShandong UniversityJinanChina
| | - Xin‐Ming Jia
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Hui Xiao
- The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Jiangye Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
8
|
Yoshida Y, Ida H, Mino T, Sakamoto M. Formal [3 + 2] Cycloaddition of α-Imino Esters with Azo Compounds: Facile Construction of Pentasubstituted 1,2,4-Triazoline Skeletons. Molecules 2023; 28:molecules28114339. [PMID: 37298816 DOI: 10.3390/molecules28114339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
1,2,4-Triazole and 1,2,4-triazoline are important components of bioactive molecules and catalysts employed in organic synthesis. Therefore, the efficient synthesis of these components has received significant research attention. However, studies on their structural diversity remain lacking. Previously, we developed chiral phase-transfer-catalyzed asymmetric reactions of α-imino carbonyl compounds with α,β-unsaturated carbonyl compounds and haloalkanes. In this study, we demonstrate the formal [3 + 2] cycloaddition reaction of α-imino esters with azo compounds under Brønsted base catalysis, resulting in the corresponding 1,2,4-triazolines in high yields. The results revealed that a wide range of substrates and reactants can be applied, irrespective of their steric and electronic characteristics. The present reaction made the general preparation of 3-aryl pentasubstituted 1,2,4-triazolines possible for the first time. Furthermore, a mechanistic study suggested that the reaction proceeds without isomerization into the aldimine form.
Collapse
Affiliation(s)
- Yasushi Yoshida
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi 263-8522, Japan
| | - Hidetoshi Ida
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi 263-8522, Japan
| | - Takashi Mino
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi 263-8522, Japan
| | - Masami Sakamoto
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi 263-8522, Japan
| |
Collapse
|
9
|
Pedro NA, Fontebasso G, Pinto SN, Alves M, Mira NP. Acetate modulates the inhibitory effect of Lactobacillus gasseri against the pathogenic yeasts Candida albicans and Candida glabrata. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:88-102. [PMID: 37009625 PMCID: PMC10054710 DOI: 10.15698/mic2023.04.795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023]
Abstract
The exploration of the interference prompted by commensal bacteria over fungal pathogens is an interesting alternative to develop new therapies. In this work we scrutinized how the presence of the poorly studied vaginal species Lactobacillus gasseri affects relevant pathophysiological traits of Candida albicans and Candida glabrata. L. gasseri was found to form mixed biofilms with C. albicans and C. glabrata resulting in pronounced death of the yeast cells, while bacterial viability was not affected. Reduced viability of the two yeasts was also observed upon co-cultivation with L. gasseri under planktonic conditions. Either in planktonic cultures or in biofilms, the anti-Candida effect of L. gasseri was augmented by acetate in a concentration-dependent manner. During planktonic co-cultivation the two Candida species counteracted the acidification prompted by L. gasseri thus impacting the balance between dissociated and undissociated organic acids. This feature couldn't be phenocopied in single-cultures of L. gasseri resulting in a broth enriched in acetic acid, while in the co-culture the non-toxic acetate prevailed. Altogether the results herein described advance the design of new anti-Candida therapies based on probiotics, in particular, those based on vaginal lactobacilli species, helping to reduce the significant burden that infections caused by Candida have today in human health.
Collapse
Affiliation(s)
- Nuno A. Pedro
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico – Department of Bioengineering, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Gabriela Fontebasso
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico – Department of Bioengineering, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sandra N. Pinto
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico – Department of Bioengineering, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marta Alves
- CQE-Centro Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Nuno P. Mira
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico – Department of Bioengineering, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- * Corresponding Author: Nuno P Mira, Instituto Superior Técnico, Department of Bioengineering, University of Lisbon, Portugal; E-mail:
| |
Collapse
|
10
|
Agrawal P, Yazdy G, Ghanem KG, Handa VL, Schumacher CM, Sobel JD, Zhang SX, Tuddenham S. Vaginal Candida albicans: High Frequency of in Vitro Fluconazole Resistance in a Select Population-A Brief Note. Sex Transm Dis 2023; 50:121-123. [PMID: 36630418 DOI: 10.1097/olq.0000000000001730] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
In this select population, we found a high frequency of in vitro fluconazole resistance in vaginal Candida albicans. Resistance did not reliably predict future susceptibility.
Among clinician-ordered vaginal cultures positive for Candida albicans, 30% exhibited fluconazole resistance. Resistance did not reliably predict future susceptibility. Prospective studies to verify associations with demographic and clinical factors as well as to correlate in vitro resistance with treatment response and longitudinal resistance patterns are needed.
Collapse
Affiliation(s)
| | | | | | | | - Christina M Schumacher
- Center for Child and Community Health Research, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jack D Sobel
- Division of Infectious Disease, Wayne State University, Detroit, MI
| | - Sean X Zhang
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | |
Collapse
|
11
|
Lycopene, Mesoporous Silica Nanoparticles and Their Association: A Possible Alternative against Vulvovaginal Candidiasis? Molecules 2022; 27:molecules27238558. [PMID: 36500650 PMCID: PMC9738730 DOI: 10.3390/molecules27238558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Commonly found colonizing the human microbiota, Candida albicans is a microorganism known for its ability to cause infections, mainly in the vulvovaginal region known as vulvovaginal candidiasis (VVC). This pathology is, in fact, one of the main C. albicans clinical manifestations, changing from a colonizer to a pathogen. The increase in VVC cases and limited antifungal therapy make C. albicans an increasingly frequent risk in women's lives, especially in immunocompromised patients, pregnant women and the elderly. Therefore, it is necessary to develop new therapeutic options, especially those involving natural products associated with nanotechnology, such as lycopene and mesoporous silica nanoparticles. From this perspective, this study sought to assess whether lycopene, mesoporous silica nanoparticles and their combination would be an attractive product for the treatment of this serious disease through microbiological in vitro tests and acute toxicity tests in an alternative in vivo model of Galleria mellonella. Although they did not show desirable antifungal activity for VVC therapy, the present study strongly encourages the use of mesoporous silica nanoparticles impregnated with lycopene for the treatment of other human pathologies, since the products evaluated here did not show toxicity in the in vivo test performed, being therefore, a topic to be further explored.
Collapse
|
12
|
Humelnicu AC, Samoilă P, Cojocaru C, Dumitriu R, Bostănaru AC, Mareș M, Harabagiu V, Simionescu BC. Chitosan-Based Therapeutic Systems for Superficial Candidiasis Treatment. Synergetic Activity of Nystatin and Propolis. Polymers (Basel) 2022; 14:689. [PMID: 35215602 PMCID: PMC8876245 DOI: 10.3390/polym14040689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
The paper deals with new approaches to chitosan (CS)-based antifungal therapeutic formulations designed to fulfill the requirements of specific applications. Gel-like formulations were prepared by mixing CS dissolved in aqueous lactic acid (LA) solution with nystatin (NYS) powder and/or propolis (PRO) aqueous solution dispersed in glycerin, followed by water evaporation to yield flexible mesoporous (pore widths of 2-4 nm) films of high specific surfaces between 1 × 103 and 1.7 × 103 m2/g. Morphological evaluation of the antifungal films showed uniform dispersion and downsizing of NYS crystallites (with initial sizes up to 50 μm). Their mechanical properties were found to be close to those of soft tissues (Young's modulus values between 0.044-0.025 MPa). The films presented hydration capacities in physiological condition depending on their composition, i.e., higher for NYS-charged (628%), as compared with PRO loaded films (118-129%). All NYS charged films presented a quick release for the first 10 min followed by a progressive increase of the release efficiency at 48.6%, for the samples containing NYS alone and decreasing values with increasing amount of PRO to 45.9% and 42.8% after 5 h. By in vitro analysis, the hydrogels with acidic pH values around 3.8 were proven to be active against Candida albicans and Candida glabrata species. The time-killing assay performed during 24 h on Candida albicans in synthetic vagina-simulative medium showed that the hydrogel formulations containing both NYS and PRO presented the faster slowing down of the fungal growth, from colony-forming unit (CFU)/mL of 1.24 × 107 to CFU/mL < 10 (starting from the first 6 h).
Collapse
Affiliation(s)
- Andra-Cristina Humelnicu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.-C.H.); (P.S.); (C.C.); (R.D.); (B.C.S.)
| | - Petrișor Samoilă
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.-C.H.); (P.S.); (C.C.); (R.D.); (B.C.S.)
| | - Corneliu Cojocaru
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.-C.H.); (P.S.); (C.C.); (R.D.); (B.C.S.)
| | - Raluca Dumitriu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.-C.H.); (P.S.); (C.C.); (R.D.); (B.C.S.)
| | - Andra-Cristina Bostănaru
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania;
| | - Mihai Mareș
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania;
| | - Valeria Harabagiu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.-C.H.); (P.S.); (C.C.); (R.D.); (B.C.S.)
| | - Bogdan C. Simionescu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.-C.H.); (P.S.); (C.C.); (R.D.); (B.C.S.)
| |
Collapse
|
13
|
Role of Cellular Metabolism during Candida-Host Interactions. Pathogens 2022; 11:pathogens11020184. [PMID: 35215128 PMCID: PMC8875223 DOI: 10.3390/pathogens11020184] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Microscopic fungi are widely present in the environment and, more importantly, are also an essential part of the human healthy mycobiota. However, many species can become pathogenic under certain circumstances, with Candida spp. being the most clinically relevant fungi. In recent years, the importance of metabolism and nutrient availability for fungi-host interactions have been highlighted. Upon activation, immune and other host cells reshape their metabolism to fulfil the energy-demanding process of generating an immune response. This includes macrophage upregulation of glucose uptake and processing via aerobic glycolysis. On the other side, Candida modulates its metabolic pathways to adapt to the usually hostile environment in the host, such as the lumen of phagolysosomes. Further understanding on metabolic interactions between host and fungal cells would potentially lead to novel/enhanced antifungal therapies to fight these infections. Therefore, this review paper focuses on how cellular metabolism, of both host cells and Candida, and the nutritional environment impact on the interplay between host and fungal cells.
Collapse
|
14
|
Baldewijns S, Sillen M, Palmans I, Vandecruys P, Van Dijck P, Demuyser L. The Role of Fatty Acid Metabolites in Vaginal Health and Disease: Application to Candidiasis. Front Microbiol 2021; 12:705779. [PMID: 34276639 PMCID: PMC8282898 DOI: 10.3389/fmicb.2021.705779] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 12/28/2022] Open
Abstract
Although the vast majority of women encounters at least one vaginal infection during their life, the amount of microbiome-related research performed in this area lags behind compared to alternative niches such as the intestinal tract. As a result, effective means of diagnosis and treatment, especially of recurrent infections, are limited. The role of the metabolome in vaginal health is largely elusive. It has been shown that lactate produced by the numerous lactobacilli present promotes health by limiting the chance of infection. Short chain fatty acids (SCFA) have been mainly linked to dysbiosis, although the causality of this relationship is still under debate. In this review, we aim to bring together information on the role of the vaginal metabolome and microbiome in infections caused by Candida. Vulvovaginal candidiasis affects near to 70% of all women at least once in their life with a significant proportion of women suffering from the recurrent variant. We assess the role of fatty acid metabolites, mainly SCFA and lactate, in onset of infection and virulence of the fungal pathogen. In addition, we pinpoint where lack of research limits our understanding of the molecular processes involved and restricts the possibility of developing novel treatment strategies.
Collapse
Affiliation(s)
- Silke Baldewijns
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Mart Sillen
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Ilse Palmans
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Paul Vandecruys
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Liesbeth Demuyser
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| |
Collapse
|
15
|
Transient Mitochondria Dysfunction Confers Fungal Cross-Resistance against Phagocytic Killing and Fluconazole. mBio 2021; 12:e0112821. [PMID: 34061590 PMCID: PMC8262853 DOI: 10.1128/mbio.01128-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Loss or inactivation of antivirulence genes is an adaptive strategy in pathogen evolution. Candida glabrata is an important opportunistic pathogen related to baker’s yeast, with the ability to both quickly increase its intrinsic high level of azole resistance and persist within phagocytes. During C. glabrata’s evolution as a pathogen, the mitochondrial DNA polymerase CgMip1 has been under positive selection. We show that CgMIP1 deletion not only triggers loss of mitochondrial function and a petite phenotype, but increases C. glabrata’s azole and endoplasmic reticulum (ER) stress resistance and, importantly, its survival in phagocytes. The same phenotype is induced by fluconazole and by exposure to macrophages, conferring a cross-resistance between antifungals and immune cells, and can be found in clinical isolates despite a slow growth of petite strains. This suggests that petite constitutes a bet-hedging strategy of C. glabrata and, potentially, a relevant cause of azole resistance. Mitochondrial function may therefore be considered a potential antivirulence factor.
Collapse
|
16
|
Lactate Like Fluconazole Reduces Ergosterol Content in the Plasma Membrane and Synergistically Kills Candida albicans. Int J Mol Sci 2021; 22:ijms22105219. [PMID: 34069257 PMCID: PMC8156871 DOI: 10.3390/ijms22105219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 01/04/2023] Open
Abstract
Candida albicans is an opportunistic pathogen that induces vulvovaginal candidiasis (VVC), among other diseases. In the vaginal environment, the source of carbon for C. albicans can be either lactic acid or its dissociated form, lactate. It has been shown that lactate, similar to the popular antifungal drug fluconazole (FLC), reduces the expression of the ERG11 gene and hence the amount of ergosterol in the plasma membrane. The Cdr1 transporter that effluxes xenobiotics from C. albicans cells, including FLC, is delocalized from the plasma membrane to a vacuole under the influence of lactate. Despite the overexpression of the CDR1 gene and the increased activity of Cdr1p, C. albicans is fourfold more sensitive to FLC in the presence of lactate than when glucose is the source of carbon. We propose synergistic effects of lactate and FLC in that they block Cdr1 activity by delocalization due to changes in the ergosterol content of the plasma membrane.
Collapse
|
17
|
d'Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, Kosmala D, Marsaux B, Fróis-Martins R, Morelli M, Rosati D, Valentine M, Xie Z, Emritloll Y, Warn PA, Bequet F, Bougnoux ME, Bornes S, Gresnigt MS, Hube B, Jacobsen ID, Legrand M, Leibundgut-Landmann S, Manichanh C, Munro CA, Netea MG, Queiroz K, Roget K, Thomas V, Thoral C, Van den Abbeele P, Walker AW, Brown AJP. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev 2021; 45:fuaa060. [PMID: 33232448 PMCID: PMC8100220 DOI: 10.1093/femsre/fuaa060] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.
Collapse
Affiliation(s)
- Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Ann-Kristin Kaune
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Leovigildo-Rey Alaban
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Sayoni Chakraborty
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Nathaniel Cole
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Margot Delavy
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Daria Kosmala
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Benoît Marsaux
- ProDigest BV, Technologiepark 94, B-9052 Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 9000 Ghent, Belgium
| | - Ricardo Fróis-Martins
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Moran Morelli
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Marisa Valentine
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Zixuan Xie
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Yoan Emritloll
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Peter A Warn
- Magic Bullet Consulting, Biddlecombe House, Ugbrook, Chudleigh Devon, TQ130AD, UK
| | - Frédéric Bequet
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Stephanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF0545, 20 Côte de Reyne, 15000 Aurillac, France
| | - Mark S Gresnigt
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Ilse D Jacobsen
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Salomé Leibundgut-Landmann
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Chaysavanh Manichanh
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Karla Queiroz
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Karine Roget
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | - Vincent Thomas
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Claudia Thoral
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | | | - Alan W Walker
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J P Brown
- MRC Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
18
|
Makvandi P, Josic U, Delfi M, Pinelli F, Jahed V, Kaya E, Ashrafizadeh M, Zarepour A, Rossi F, Zarrabi A, Agarwal T, Zare EN, Ghomi M, Kumar Maiti T, Breschi L, Tay FR. Drug Delivery (Nano)Platforms for Oral and Dental Applications: Tissue Regeneration, Infection Control, and Cancer Management. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004014. [PMID: 33898183 PMCID: PMC8061367 DOI: 10.1002/advs.202004014] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/12/2020] [Indexed: 05/09/2023]
Abstract
The oral cavity and oropharynx are complex environments that are susceptible to physical, chemical, and microbiological insults. They are also common sites for pathological and cancerous changes. The effectiveness of conventional locally-administered medications against diseases affecting these oral milieus may be compromised by constant salivary flow. For systemically-administered medications, drug resistance and adverse side-effects are issues that need to be resolved. New strategies for drug delivery have been investigated over the last decade to overcome these obstacles. Synthesis of nanoparticle-containing agents that promote healing represents a quantum leap in ensuring safe, efficient drug delivery to the affected tissues. Micro/nanoencapsulants with unique structures and properties function as more favorable drug-release platforms than conventional treatment approaches. The present review provides an overview of newly-developed nanocarriers and discusses their potential applications and limitations in various fields of dentistry and oral medicine.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Chemistry Department, Faculty of ScienceShahid Chamran University of AhvazAhvaz6153753843Iran
| | - Uros Josic
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaVia San Vitale 59Bologna40125Italy
| | - Masoud Delfi
- Department of Chemical SciencesUniversity of Naples “Federico II”Complesso Universitario Monte S. Angelo, Via CintiaNaples80126Italy
| | - Filippo Pinelli
- Department of Chemistry, Materials and Chemical EngineeringPolitecnico di Milano Technical UniversityMilano20133Italy
| | - Vahid Jahed
- Biomedical Engineering Division, Faculty of Chemical EngineeringTarbiat Modares UniversityTehranIran
| | - Emine Kaya
- Faculty of DentistryIstanbul Okan UniversityTuzla CampusTuzlaIstanbul34959Turkey
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural SciencesSabanci UniversityOrta Mahalle, Üniversite Caddesi No. 27, OrhanlıTuzlaIstanbul34956Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM)TuzlaIstanbul34956Turkey
| | - Atefeh Zarepour
- Sabanci University Nanotechnology Research and Application Center (SUNUM)TuzlaIstanbul34956Turkey
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical EngineeringPolitecnico di Milano Technical UniversityMilano20133Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM)TuzlaIstanbul34956Turkey
| | - Tarun Agarwal
- Department of BiotechnologyIndian Institute of Technology KharagpurKharagpurWest Bengal721302India
| | | | - Matineh Ghomi
- Chemistry Department, Faculty of ScienceShahid Chamran University of AhvazAhvaz6153753843Iran
| | - Tapas Kumar Maiti
- Department of BiotechnologyIndian Institute of Technology KharagpurKharagpurWest Bengal721302India
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaVia San Vitale 59Bologna40125Italy
| | - Franklin R Tay
- The Dental College of GeorgiaAugusta University1430 John Wesley Gilbert DriveAugustaGA30192USA
- The Graduate SchoolAugusta UniversityAugustaGA30912USA
| |
Collapse
|
19
|
Exogenous Reproductive Hormones nor Candida albicans Colonization Alter the Near Neutral Mouse Vaginal pH. Infect Immun 2021; 89:IAI.00550-20. [PMID: 33106292 DOI: 10.1128/iai.00550-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
While human vaginal pH in childbearing-age women is conclusively acidic, the mouse vaginal pH is reported as being near neutral. However, this information appears to be somewhat anecdotal with respect to vulvovaginal candidiasis, as such claims in the literature frequently lack citations of studies that specifically address this physiological factor. Given the disparate pH between mice and humans, the role of exogenous hormones and colonization by the fungal pathogen Candida albicans in shaping vaginal pH was assessed. Use of a convenient modified vaginal lavage technique with the pH indicator dye phenol red demonstrated that indeed vaginal pH was near neutral (7.2 ± 0.24) and was not altered by delivery of progesterone or estrogen in C57BL/6 mice. These trends were conserved in DBA/2 and CD-1 mouse backgrounds, commonly used in the mouse model of vaginitis. It was also determined that vaginal colonization with C. albicans did not alter the globally neutral vaginal pH over the course of one week. Construction and validation of a C. albicans reporter strain expressing GFPy, driven by the pH-responsive PHR1 promoter, confirmed the murine vaginal pH to be at least ≥6.0. Collectively, our data convincingly demonstrate a stable and conserved near neutrality of the mouse vaginal pH during vulvovaginal candidiasis and should serve as a definitive source for future reference. Implications and rationale for disparate pH in this model system are also discussed.
Collapse
|
20
|
New insight of red seaweed derived Callophycin A as an alternative strategy to treat drug resistance vaginal candidiasis. Bioorg Chem 2020; 104:104256. [PMID: 32942217 DOI: 10.1016/j.bioorg.2020.104256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/07/2020] [Accepted: 08/30/2020] [Indexed: 12/12/2022]
Abstract
Marine natural products are recognised as one among the major contributors of several important biological functions. The arguments has made to utilization of natural products against different kinds of infectious diseases. In the present study, Callophycin A was successfully prepared and its anti-candidal activity was evaluated through in-vitro and in-vivo methods. The in-vitro results revealed that, Callophycin A significantly inhibits the azole resistant and sensitive C. albicans. Further, in-vivo animal experiments have shown the effective reduction in CFU of C. albicans from its beginning day of the treatment as compared to the disease control group. At the end of Callophycin A administration, there was a decrease in inflammatory response and immune molecules such as IL-6, IL-12, IL-17, IL-22, TNF-α, macrophages, CD4 and CD8 cells were observed. Whereas the animals in the disease control group expressed all the parameters with the elevated level as compared to the control group. There are no hematological abnormalities such as neutropenia, lymphocytosis and eosinophilia was observed in any animal groups except the disease control group. Finally, the evidence based prediction of anti-candidal efficacious of Callophycin A was demonstrated.
Collapse
|
21
|
Snyder SS, Gleaton JW, Kirui D, Chen W, Millenbaugh NJ. Antifungal Activity of Synthetic Scorpion Venom-Derived Peptide Analogues Against Candida albicans. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10084-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractFungal infections are becoming a serious problem due to their high morbidity and mortality combined with the rise in drug resistance and dearth of new antimycotic drugs. The scorpion venom-derived peptide BmKn2, and its synthetic analogue Kn2–7, were previously observed to have antibacterial activity. These peptides and their d-amino acid analogues (dBmKn2 and dKn2–7) were tested for antifungal activity against drug resistant and clinical isolates of Candida albicans. In planktonic susceptibility studies, dKn2–7 had greater activity than the other three peptides against 6 out of 7 fungal strains, with no apparent correlation between drug resistance and minimum fungicidal concentrations (MFCs). Time kill experiments demonstrated that the fungicidal activity of dKn2–7 began within the first hour and killing rates were dose dependent at ≥ 1 × MFC. Against biofilms, the d-analogues were the most effective, while the l-analogues had low efficacy in most strains even at 10 times the planktonic MFC. Stability testing suggests that this increased efficacy of the d-analogues may be due to increased resistance to protease degradation compared to the l-analogues. Peptides were also assessed for mammalian cell toxicity. BmKn2 and dBmKn2 induced significant hemolysis at levels similar to their MFCs, whereas Kn2–7 and dKn2–7 caused hemolysis at 4–16 times their MFCs. The 50% inhibitory concentration (IC50) for dKn2–7 against murine fibroblasts was greater than or equal to the planktonic MFCs and biofilm IC50s for dKn2–7 in all C. albicans strains tested. These results support the potential for dKn2–7 to be further investigated as a novel antifungal therapeutic.
Collapse
|
22
|
Karkowska-Kuleta J, Satala D, Bochenska O, Rapala-Kozik M, Kozik A. Moonlighting proteins are variably exposed at the cell surfaces of Candida glabrata, Candida parapsilosis and Candida tropicalis under certain growth conditions. BMC Microbiol 2019; 19:149. [PMID: 31269895 PMCID: PMC6609379 DOI: 10.1186/s12866-019-1524-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 06/20/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Adaptability to different environmental conditions is an essential characteristic of pathogenic microorganisms as it facilitates their invasion of host organisms. The most external component of pathogenic yeast-like fungi from the Candida genus is the multilayered cell wall. This structure is composed mainly of complex polysaccharides and proteins that can undergo dynamic changes to adapt to the environmental conditions of colonized niches. RESULTS We utilized cell surface shaving with trypsin and a shotgun proteomic approach to reveal the surface-exposed proteins of three important non-albicans Candida species-C. glabrata, C. parapsilosis and C. tropicalis. These proteinaceous components were identified after the growth of the fungal cells in various culture media, including artificial saliva, artificial urine and vagina-simulative medium under aerobic conditions and anaerobically in rich YPD medium. Several known proteins involved in cell wall maintenance and fungal pathogenesis were identified at the cell surface as were a number of atypical cell wall components-pyruvate decarboxylase (Pdc11), enolase (Eno1) and glyceraldehyde-3-phosphate dehydrogenase (Tdh3) which are so-called 'moonlighting' proteins. Notably, many of these proteins showed significant upregulation at the cell surface in growth media mimicking the conditions of infection compared to defined synthetic medium. CONCLUSIONS Moonlighting proteins are expressed under diverse conditions at the cell walls of the C. glabrata, C. parapsilosis and C. tropicalis fungal pathogens. This indicates a possible universal surface-associated role of these factors in the physiology of these fungi and in the pathology of the infections they cause.
Collapse
Affiliation(s)
- Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| | - Dorota Satala
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Oliwia Bochenska
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
23
|
Lourenço A, Pedro NA, Salazar SB, Mira NP. Effect of Acetic Acid and Lactic Acid at Low pH in Growth and Azole Resistance of Candida albicans and Candida glabrata. Front Microbiol 2019; 9:3265. [PMID: 30671051 PMCID: PMC6331520 DOI: 10.3389/fmicb.2018.03265] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/14/2018] [Indexed: 01/20/2023] Open
Abstract
Successful colonization of the acidic vaginal niche by C. glabrata and C. albicans depends on their ability to cope with the presence of lactic and acetic acids produced by commensal microbiota. As such, the inhibitory effect of these acids at a low pH in growth of C. glabrata and C. albicans was investigated. The effect of the presence of these organic acids in tolerance of the two Candida species to azoles used in treatment of vaginal infections was also investigated including eventual synergistic effects. Under the different experimental conditions tested lactic acid exerted no significant inhibitory effect against C. albicans or C. glabrata, contrasting with the generalized impression that the production of this acid is on the basis of the protective effect exerted by vaginal lactobacilii. Differently, C. glabrata and C. albicans exhibited susceptibility to acetic acid, more prominent at lower pHs and stronger for the latter species. Synergism between acetic acid and azoles was observed both for C. albicans and C. glabrata, while lactic acid-azole synergism was only efficient against C. albicans. Altogether our in vitro results indicate that tolerance to acetic acid at a low pH may play a more relevant role than tolerance to lactic acid in determining competitiveness in the vaginal tract of C. albicans and C. glabrata including under azole stress. Treatment of vaginal candidiasis with azoles may depend on the level of acetic and lactic acids present and improvements could be achieved synergizing the azole with these acids.
Collapse
Affiliation(s)
- Andreia Lourenço
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Nuno Alexandre Pedro
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Sara Barbosa Salazar
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Nuno Pereira Mira
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
24
|
Propeptide genesis by Kex2-dependent cleavage of yeast wall protein 1 (Ywp1) of Candida albicans. PLoS One 2018; 13:e0207955. [PMID: 30475911 PMCID: PMC6258133 DOI: 10.1371/journal.pone.0207955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/08/2018] [Indexed: 02/01/2023] Open
Abstract
Candida albicans is a prevalent fungal resident and opportunistic pathogen of humans, exhibiting a variety of ovoid and filamentous morphologies. Anchored within the cell wall of the ovoid yeast form of C. albicans is an abundant glycoprotein termed yeast wall protein 1 (Ywp1). Ywp1 has an antiadhesive effect that may facilitate yeast cell dispersal; it also contributes to the masking of the glucan matrix of the yeast cell wall, potentially providing shielding from recognition by the human immune system. Mature Ywp1 consists of an O-glycosylated core of 378 amino acids associated with an N-glycosylated propeptide that originates from an N-terminal segment of Ywp1. A tribasic (-RRR-) sequence in the immature Ywp1 polypeptide is separated by 8 amino acids from a dibasic (-KR-) sequence that is a canonical site for cleavage by the intracellular endopeptidase Kex2, and cleavage occurs at both of these sites to generate an 11 kilodalton (kDa) propeptide that remains strongly associated with the mature core of Ywp1. Previous studies demonstrated an absence of the 11 kDa propeptide in strains lacking Kex2, but the presence of lesser amounts of a 12 kDa propeptide ostensibly (and paradoxically) arising from cleavage at the dibasic site. Subsequent studies of wild type strains, however, suggested that post-secretion cleavages were carried out in vitro by acid proteases in unbuffered cultures to generate the 12 kDa propeptide. Here, intact and Gfp-tagged Ywp1 are utilized to show that neither of the two multibasic sites is normally cleaved in the absence of Kex2, but that uncleaved Ywp1 is still N-glycosylated and subsequently anchored to the cell wall. This furthers our understanding of the multistep cleavage of this highly conserved sequence, as well as the possible contributions of the cleaved propeptide to the maturation and functioning of Ywp1.
Collapse
|
25
|
Time-Kill Kinetics of Rezafungin (CD101) in Vagina-Simulative Medium for Fluconazole-Susceptible and Fluconazole-Resistant Candida albicans and Non- albicans Candida Species. Infect Dis Obstet Gynecol 2018; 2018:7040498. [PMID: 29681727 PMCID: PMC5842704 DOI: 10.1155/2018/7040498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/17/2018] [Indexed: 01/04/2023] Open
Abstract
Background While echinocandins demonstrate excellent efficacy against Candida species in disseminated infections and demonstrate potent minimal inhibitory concentration (MIC) values under standard susceptibility testing conditions, investigation under conditions relevant to the vaginal environment was needed. We assessed the antifungal activity and time-kill kinetics of the novel echinocandin rezafungin (formerly CD101) under such conditions, against Candida species relevant to vulvovaginal candidiasis (VVC). Methods Susceptibility testing of fluconazole-susceptible and fluconazole-resistant C. albicans, C. glabrata, C. tropicalis, C. parapsilosis, and C. krusei was performed in RPMI at pH 7.0 and in vagina-simulative medium (VSM) at pH 4.2 for topical rezafungin, terconazole, fluconazole, and amphotericin B. Time-kill kinetics were evaluated for rezafungin and terconazole at 2, 8, 32, and 128 μg/ml over 72 hours. Results Rezafungin MIC values were the same or 2-fold higher in VSM/pH 4.2 versus RPMI/pH 7.0. Some C. albicans terconazole MIC values were lower, but most were significantly higher in VSM than in RPMI. Rezafungin was fungicidal against 11/14 strains and near-fungicidal against the others. Terconazole (128 μg/ml) was fungicidal against C. krusei and near-fungicidal against susceptible C. parapsilosis but fungistatic versus all other strains evaluated. Conclusion Rezafungin retained anti-Candida activity and fungicidal activity under in vitro conditions relevant to VVC.
Collapse
|
26
|
Fitaihi RA, Aleanizy FS, Elsamaligy S, Mahmoud HA, Bayomi MA. Role of chitosan on controlling the characteristics and antifungal activity of bioadhesive fluconazole vaginal tablets. Saudi Pharm J 2018; 26:151-161. [PMID: 30166911 PMCID: PMC6111229 DOI: 10.1016/j.jsps.2017.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/19/2017] [Indexed: 11/22/2022] Open
Abstract
Vaginal fluconazole (FLZ) prolonged release tablets containing chitosan in physical blends with other bioadhesive polymers were designed. Chitosan was mixed with hydroxypropyl methylcellulose (HPMC), guar gum or sodium carboxymethyl cellulose (NaCMC) at different ratios and directly compressed into tablets. In-vitro release profiles of FLZ were monitored at pH 4.8. Compressing chitosan with HPMC at different ratios slowed FLZ release, however, time for 80% drug release (T80) did not exceed 4.3 h for the slowest formulation (F11). Adding of chitosan to guar gum at 1:2 ratio (F3) showed delayed release with T80 17.4 h while, in presence of PVP at 1:2:1 ratio (F5), T80 was 8.8 h. A blend of chitosan and NaCMC at 1:2 ratio (F15) showed prolonged drug release with T80 11.16 h. Formulations F5 and F15 showed fair physical characteristics for the powder and tablets and were subjected to further studies. Fast swelling was observed for F15 that reached 1160.53 ± 13.02% in 4 h with 2 h bioadhesion time to mouse peritoneum membrane compared with 458.83 ± 7.09% swelling with bioadhesion time exceeding 24 h for F5. Extensive swelling of F15 could indicate possible dehydration effect on vaginal mucosa. Meanwhile, antifungal activity against C. albicans was significantly high for F5.
Collapse
Affiliation(s)
- Rawan A. Fitaihi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fadilah S. Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Samar Elsamaligy
- Department of Pharmaceutics, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo, Egypt
| | - Hanaa A. Mahmoud
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohsen A. Bayomi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
27
|
Alves R, Mota S, Silva S, F Rodrigues C, P Brown AJ, Henriques M, Casal M, Paiva S. The carboxylic acid transporters Jen1 and Jen2 affect the architecture and fluconazole susceptibility of Candida albicans biofilm in the presence of lactate. BIOFOULING 2017; 33:943-954. [PMID: 29094611 DOI: 10.1080/08927014.2017.1392514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
Candida albicans has the ability to adapt to different host niches, often glucose-limited but rich in alternative carbon sources. In these glucose-poor microenvironments, this pathogen expresses JEN1 and JEN2 genes, encoding carboxylate transporters, which are important in the early stages of infection. This work investigated how host microenvironments, in particular acidic containing lactic acid, affect C. albicans biofilm formation and antifungal drug resistance. Multiple components of the extracellular matrix were also analysed, including their impact on antifungal drug resistance, and the involvement of both Jen1 and Jen2 in this process. The results show that growth on lactate affects biofilm formation, morphology and susceptibility to fluconazole and that both Jen1 and Jen2 might play a role in these processes. These results support the view that the adaptation of Candida cells to the carbon source present in the host niches affects their pathogenicity.
Collapse
Affiliation(s)
- Rosana Alves
- a Centre of Molecular and Environmental Biology, Department of Biology , University of Minho , Braga , Portugal
| | - Sandra Mota
- a Centre of Molecular and Environmental Biology, Department of Biology , University of Minho , Braga , Portugal
- b Centre of Health and Environmental Research, School of Allied Health Sciences , Polytechnic Institute of Porto , Porto , Portugal
| | - Sónia Silva
- c Centre of Biological Engineering , LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| | - Célia F Rodrigues
- c Centre of Biological Engineering , LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| | - Alistair J P Brown
- d MRC Centre for Medical Mycology , Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen , Aberdeen , UK
| | - Mariana Henriques
- c Centre of Biological Engineering , LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho , Braga , Portugal
| | - Margarida Casal
- a Centre of Molecular and Environmental Biology, Department of Biology , University of Minho , Braga , Portugal
| | - Sandra Paiva
- a Centre of Molecular and Environmental Biology, Department of Biology , University of Minho , Braga , Portugal
| |
Collapse
|
28
|
Ailincai D, Marin L, Morariu S, Mares M, Bostanaru AC, Pinteala M, Simionescu BC, Barboiu M. Dual crosslinked iminoboronate-chitosan hydrogels with strong antifungal activity against Candida planktonic yeasts and biofilms. Carbohydr Polym 2016; 152:306-316. [PMID: 27516277 DOI: 10.1016/j.carbpol.2016.07.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/29/2016] [Accepted: 07/02/2016] [Indexed: 02/06/2023]
Abstract
Chitosan based hydrogels are a class of cross-linked materials intensely studied for their biomedical, industrial and environmental application, but their biomedical use is limited because of the toxicity of different organic crosslinkers. To overcome this disadvantage, a new strategy to produce supramolecular chitosan hydrogels using low molecular weight compounds able to form covalent linkages and H-bonds to give a dual crosslinking is proposed. For this purpose we used 2-formylphenylboronic acid, which brings the advantage of imine stabilization via iminoboronate formation and potential antifungal activity due to the presence of boric acid residue. FTIR and NMR spectroscopy indicated that the gelling process took place by chemo-physical crosslinking forming a dual iminoboronate-chitosan network. Further, X-ray diffraction demonstrated a three-dimensional nanostructuring of the iminoboronate network with consequences on the micrometer-scale morphology and on the improvement of mechanical properties, as demonstrated by SEM and rheological investigation. The hydrogels proved strong antifungal activity against Candida planktonic yeasts and biofilms, promising to be a friendly treatment of the recurrent vulvovaginitis infections.
Collapse
Affiliation(s)
- Daniela Ailincai
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A, Aleea Gr. Ghica Voda, Iasi, Romania
| | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A, Aleea Gr. Ghica Voda, Iasi, Romania.
| | - Simona Morariu
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A, Aleea Gr. Ghica Voda, Iasi, Romania
| | - Mihai Mares
- "Ion Ionescu de la Brad" University, Laboratory of Antimicrobial Chemotherapy, 8, Aleea Sadoveanu, Iasi, Romania
| | - Andra-Cristina Bostanaru
- "Ion Ionescu de la Brad" University, Laboratory of Antimicrobial Chemotherapy, 8, Aleea Sadoveanu, Iasi, Romania
| | - Mariana Pinteala
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A, Aleea Gr. Ghica Voda, Iasi, Romania
| | - Bogdan C Simionescu
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A, Aleea Gr. Ghica Voda, Iasi, Romania; "Gheorghe Asachi" Technical University of Iasi, 73, Bd. Dimitrie Mangeron, Iasi, Romania
| | - Mihai Barboiu
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A, Aleea Gr. Ghica Voda, Iasi, Romania; Institut Européen des Membranes, F-34095, Place Eugène Bataillon, Montpellier, France
| |
Collapse
|
29
|
Rençber S, Karavana SY, Yılmaz FF, Eraç B, Nenni M, Özbal S, Pekçetin Ç, Gurer-Orhan H, Hoşgör-Limoncu M, Güneri P, Ertan G. Development, characterization, and in vivo assessment of mucoadhesive nanoparticles containing fluconazole for the local treatment of oral candidiasis. Int J Nanomedicine 2016; 11:2641-53. [PMID: 27358561 PMCID: PMC4912316 DOI: 10.2147/ijn.s103762] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
This study aimed to develop a suitable buccal mucoadhesive nanoparticle (NP) formulation containing fluconazole for the local treatment of oral candidiasis. The suitability of the prepared formulations was assessed by means of particle size (PS), polydispersity index, and zeta potential measurements, morphology analysis, mucoadhesion studies, drug entrapment efficiency (EE), in vitro drug release, and stability studies. Based on the optimum NP formulation, ex vivo drug diffusion and in vitro cytotoxicity studies were performed. Besides, evaluation of the antifungal effect of the optimum formulation was evaluated using agar diffusion method, fungicidal activity-related in vitro release study, and time-dependent fungicidal activity. The effect of the optimum NP formulation on the healing of oral candidiasis was investigated in an animal model, which was employed for the first time in this study. The zeta potential, mucoadhesion, and in vitro drug release studies of various NP formulations revealed that chitosan-coated NP formulation containing EUDRAGIT(®) RS 2.5% had superior properties than other formulations. Concerning the stability study of the selected formulation, the formulation was found to be stable for 6 months. During the ex vivo drug diffusion study, no drug was found in receptor phase, and this is an indication of local effect. The in vitro antifungal activity studies showed the in vitro efficacy of the NP against Candida albicans for an extended period. Also, the formulation had no cytotoxic effect at the tested concentration. For the in vivo experiments, infected rabbits were successfully treated with local administration of the optimum NP formulation once a day. This study has shown that the mucoadhesive NP formulation containing fluconazole is a promising candidate with once-a-day application for the local treatment of oral candidiasis.
Collapse
Affiliation(s)
- Seda Rençber
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ege University, Bornova, Turkey
| | - Sinem Yaprak Karavana
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ege University, Bornova, Turkey
| | | | - Bayri Eraç
- Department of Pharmaceutical Microbiology, Ege University, Bornova, Turkey
| | - Merve Nenni
- Department of Pharmaceutical Toxicology, Ege University, Bornova, Turkey
| | - Seda Özbal
- Department of Histology and Embryology, School of Medicine, Dokuz Eylul University, Inciraltı, Turkey
| | - Çetin Pekçetin
- Department of Histology and Embryology, School of Medicine, Dokuz Eylul University, Inciraltı, Turkey
| | - Hande Gurer-Orhan
- Department of Pharmaceutical Toxicology, Ege University, Bornova, Turkey
| | | | - Pelin Güneri
- Faculty of Dentistry, Department of Oral Diagnosis and Radiology, Ege University, Bornova, Turkey
| | - Gökhan Ertan
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ege University, Bornova, Turkey
| |
Collapse
|
30
|
Barros de Andrade E Sousa LC, Kühn C, Tyc KM, Klipp E. Dosage and Dose Schedule Screening of Drug Combinations in Agent-Based Models Reveals Hidden Synergies. Front Physiol 2016; 6:398. [PMID: 26779031 PMCID: PMC4701919 DOI: 10.3389/fphys.2015.00398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 12/07/2015] [Indexed: 12/02/2022] Open
Abstract
The fungus Candida albicans is the most common causative agent of human fungal infections and better drugs or drug combination strategies are urgently needed. Here, we present an agent-based model of the interplay of C. albicans with the host immune system and with the microflora of the host. We took into account the morphological change of C. albicans from the yeast to hyphae form and its dynamics during infection. The model allowed us to follow the dynamics of fungal growth and morphology, of the immune cells and of microflora in different perturbing situations. We specifically focused on the consequences of microflora reduction following antibiotic treatment. Using the agent-based model, different drug types have been tested for their effectiveness, namely drugs that inhibit cell division and drugs that constrain the yeast-to-hyphae transition. Applied individually, the division drug turned out to successfully decrease hyphae while the transition drug leads to a burst in hyphae after the end of the treatment. To evaluate the effect of different drug combinations, doses, and schedules, we introduced a measure for the return to a healthy state, the infection score. Using this measure, we found that the addition of a transition drug to a division drug treatment can improve the treatment reliability while minimizing treatment duration and drug dosage. In this work we present a theoretical study. Although our model has not been calibrated to quantitative experimental data, the technique of computationally identifying synergistic treatment combinations in an agent based model exemplifies the importance of computational techniques in translational research.
Collapse
Affiliation(s)
- Lisa C Barros de Andrade E Sousa
- Theoretische Biophysik, Humboldt-Universität zu BerlinBerlin, Germany; RNA Bioinformatics, Max Planck Institute for Molecular GeneticsBerlin, Germany
| | - Clemens Kühn
- Theoretische Biophysik, Humboldt-Universität zu Berlin Berlin, Germany
| | - Katarzyna M Tyc
- Theoretische Biophysik, Humboldt-Universität zu Berlin Berlin, Germany
| | - Edda Klipp
- Theoretische Biophysik, Humboldt-Universität zu Berlin Berlin, Germany
| |
Collapse
|
31
|
Mota S, Alves R, Carneiro C, Silva S, Brown AJ, Istel F, Kuchler K, Sampaio P, Casal M, Henriques M, Paiva S. Candida glabrata susceptibility to antifungals and phagocytosis is modulated by acetate. Front Microbiol 2015; 6:919. [PMID: 26388859 PMCID: PMC4560035 DOI: 10.3389/fmicb.2015.00919] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/21/2015] [Indexed: 11/13/2022] Open
Abstract
Candida glabrata is considered a major opportunistic fungal pathogen of humans. The capacity of this yeast species to cause infections is dependent on the ability to grow within the human host environment and to assimilate the carbon sources available. Previous studies have suggested that C. albicans can encounter glucose-poor microenvironments during infection and that the ability to use alternative non-fermentable carbon sources, such as carboxylic acids, contributes to the virulence of this fungus. Transcriptional studies on C. glabrata cells identified a similar response, upon nutrient deprivation. In this work, we aimed at analyzing biofilm formation, antifungal drug resistance, and phagocytosis of C. glabrata cells grown in the presence of acetic acid as an alternative carbon source. C. glabrata planktonic cells grown in media containing acetic acid were more susceptible to fluconazole and were better phagocytosed and killed by macrophages than when compared to media lacking acetic acid. Growth in acetic acid also affected the ability of C. glabrata to form biofilms. The genes ADY2a, ADY2b, FPS1, FPS2, and ATO3, encoding putative carboxylate transporters, were upregulated in C. glabrata planktonic and biofilm cells in the presence of acetic acid. Phagocytosis assays with fps1 and ady2a mutant strains suggested a potential role of FPS1 and ADY2a in the phagocytosis process. These results highlight how acidic pH niches, associated with the presence of acetic acid, can impact in the treatment of C. glabrata infections, in particular in vaginal candidiasis.
Collapse
Affiliation(s)
- Sandra Mota
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho Braga, Portugal ; Centre of Health and Environmental Research, School of Allied Health Sciences, Polytechnic Institute of Porto Porto, Portugal
| | - Rosana Alves
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho Braga, Portugal
| | - Catarina Carneiro
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho Braga, Portugal
| | - Sónia Silva
- Centre for Biological Engineering, University of Minho Braga, Portugal
| | - Alistair J Brown
- Institute of Medical Sciences - School of Medical Sciences, University of Aberdeen Aberdeen, UK
| | - Fabian Istel
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna Vienna, Austria
| | - Karl Kuchler
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna Vienna, Austria
| | - Paula Sampaio
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho Braga, Portugal
| | - Margarida Casal
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho Braga, Portugal
| | - Mariana Henriques
- Centre for Biological Engineering, University of Minho Braga, Portugal
| | - Sandra Paiva
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho Braga, Portugal
| |
Collapse
|
32
|
Kasper L, Miramón P, Jablonowski N, Wisgott S, Wilson D, Brunke S, Hube B. Antifungal activity of clotrimazole against Candida albicans depends on carbon sources, growth phase and morphology. J Med Microbiol 2015; 64:714-723. [PMID: 25976001 DOI: 10.1099/jmm.0.000082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vulvovaginal candidiasis, a superficial infection caused predominantly by the pathogenic fungus Candida albicans, is frequently treated with clotrimazole. Some drug formulations contain lactate for improved solubility. Lactate may modify C. albicans physiology and drug sensitivity by serving as a carbon source for the fungus and/or affecting local pH. Here, we explored the effects of lactate, in combination with pH changes, on C. albicans proliferation, morphology and clotrimazole sensitivity. Moreover, we determined the influence of growth phase and morphology per se on drug sensitivity. We showed that utilization of lactate as a carbon source did not promote fast fungal proliferation or filamentation. Lactate had no influence on clotrimazole-mediated killing of C. albicans in standard fungal cultivation medium but had an additive effect on the fungicidal clotrimazole action under in vitro vagina-simulative conditions. Moreover, clotrimazole-mediated killing was growth-phase and morphology dependent. Post-exponential cells were resistant to the fungicidal action of clotrimazole, whilst logarithmic cells were sensitive, and hyphae showed the highest susceptibility. Finally, we showed that treatment of pre-formed C. albicans hyphae with sublethal concentrations of clotrimazole induced a reversion to yeast-phase growth. As C. albicans hyphae are considered the pathogenic morphology during mucosal infections, these data suggest that elevated fungicidal activity of clotrimazole against hyphae plus clotrimazole-induced hyphae-to-yeast reversion may help to dampen acute vaginal infections by reducing the relative proportion of hyphae and thus shifting to a non-invasive commensal-like population. In addition, lactate as an ingredient of clotrimazole formulations may potentiate clotrimazole killing of C. albicans in the vaginal microenvironment.
Collapse
Affiliation(s)
- Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Pedro Miramón
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Nadja Jablonowski
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Stephanie Wisgott
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Duncan Wilson
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.,Integrated Research and Treatment Center, Sepsis und Sepsisfolgen, Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.,Integrated Research and Treatment Center, Sepsis und Sepsisfolgen, Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany.,Friedrich Schiller University, Jena, Germany
| |
Collapse
|
33
|
Antimicrobial and Biocatalytic Potential of Haloalkaliphilic Actinobacteria. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2015. [DOI: 10.1007/978-3-319-14595-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Mandal SM, Mahata D, Migliolo L, Parekh A, Addy PS, Mandal M, Basak A. Glucose directly promotes antifungal resistance in the fungal pathogen, Candida spp. J Biol Chem 2014; 289:25468-73. [PMID: 25053418 PMCID: PMC4162151 DOI: 10.1074/jbc.c114.571778] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/20/2014] [Indexed: 11/06/2022] Open
Abstract
Effects of glucose on the susceptibility of antifungal agents were investigated against Candida spp. Increasing the concentration of glucose decreased the activity of antifungal agents; voriconazole was the most affected drugs followed by amphotericin B. No significant change has been observed for anidulafungin. Biophysical interactions between antifungal agents with glucose molecules were investigated using isothermal titration calorimetry, Fourier transform infrared, and (1)H NMR. Glucose has a higher affinity to bind with voriconazole by hydrogen bonding and decrease the susceptibility of antifungal agents during chemotherapy. In addition to confirming the results observed in vitro, theoretical docking studies demonstrated that voriconazole presented three important hydrogen bonds and amphotericin B presented two hydrogen bonds that stabilized the glucose. In vivo results also suggest that the physiologically relevant higher glucose level in the bloodstream of diabetes mellitus mice might interact with the available selective agents during antifungal therapy, thus decreasing glucose activity by complex formation. Thus, proper selection of drugs for diabetes mellitus patients is important to control infectious diseases.
Collapse
Affiliation(s)
- Santi M Mandal
- From the Department of Chemistry, Central Research Facility, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India, the Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Denial Mahata
- From the Department of Chemistry, Central Research Facility, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ludovico Migliolo
- the Programa de Pós-Graduação em Biotecnologia, Centro de Pesquisas Bioquímicas e Biofísicas, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil, and
| | - Aditya Parekh
- From the Department of Chemistry, Central Research Facility, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Partha S Addy
- From the Department of Chemistry, Central Research Facility, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mahitosh Mandal
- From the Department of Chemistry, Central Research Facility, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Basak
- From the Department of Chemistry, Central Research Facility, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India,
| |
Collapse
|
35
|
Costa C, Henriques A, Pires C, Nunes J, Ohno M, Chibana H, Sá-Correia I, Teixeira MC. The dual role of candida glabrata drug:H+ antiporter CgAqr1 (ORF CAGL0J09944g) in antifungal drug and acetic acid resistance. Front Microbiol 2013; 4:170. [PMID: 23805133 PMCID: PMC3693063 DOI: 10.3389/fmicb.2013.00170] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/04/2013] [Indexed: 11/28/2022] Open
Abstract
Opportunistic Candida species often have to cope with inhibitory concentrations of acetic acid, in the acidic environment of the vaginal mucosa. Given that the ability of these yeast species to tolerate stress induced by weak acids and antifungal drugs appears to be a key factor in their persistence and virulence, it is crucial to understand the underlying mechanisms. In this study, the drug:H+ antiporter CgAqr1 (ORF CAGL0J09944g), from Candida glabrata, was identified as a determinant of resistance to acetic acid, and also to the antifungal agents flucytosine and, less significantly, clotrimazole. These antifungals were found to act synergistically with acetic acid against this pathogen. The action of CgAqr1 in this phenomenon was analyzed. Using a green fluorescent protein fusion, CgAqr1 was found to localize to the plasma membrane and to membrane vesicles when expressed in C. glabrata or, heterologously, in Saccharomyces cerevisiae. Given its ability to complement the susceptibility phenotype of its S. cerevisiae homolog, ScAqr1, CgAqr1 was proposed to play a similar role in mediating the extrusion of chemical compounds. Significantly, the expression of this gene was found to reduce the intracellular accumulation of 3H-flucytosine and, to a moderate extent, of 3H-clotrimazole, consistent with a direct role in antifungal drug efflux. Interestingly, no effect of CgAQR1 deletion could be found on the intracellular accumulation of 14C-acetic acid, suggesting that its role in acetic acid resistance may be indirect, presumably through the transport of a still unidentified physiological substrate. Although neither of the tested chemicals induces changes in CgAQR1 expression, pre-exposure to flucytosine or clotrimazole was found to make C. glabrata cells more sensitive to acetic acid stress. Results from this study show that CgAqr1 is an antifungal drug resistance determinant and raise the hypothesis that it may play a role in C. glabrata persistent colonization and multidrug resistance.
Collapse
Affiliation(s)
- Catarina Costa
- Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon Lisbon, Portugal ; Biological Sciences Research Group, Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon Lisbon, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Rosa MI, Silva BR, Pires PS, Silva FR, Silva NC, Silva FR, Souza SL, Madeira K, Panatto AP, Medeiros LR. Weekly fluconazole therapy for recurrent vulvovaginal candidiasis: a systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol 2013; 167:132-6. [DOI: 10.1016/j.ejogrb.2012.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 11/01/2012] [Accepted: 12/01/2012] [Indexed: 10/27/2022]
|
37
|
Study of the influence of selected variables on the preparation of prolonged release bioadhesive vaginal carbohydrate microspheres using experimental design. J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50037-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Abstract
For practitioners, selecting successful therapy for vulvovaginal candidiasis is anything but trivial. The dominant problem; however, lies not with selecting the correct antimycotic agent, but with making the correct diagnosis and not treating non-yeast infections and noninfections as yeast-induced. Moreover, not all cases of vulvovaginal candidiasis are equal and practitioners owe patients the obligation of selecting appropriate therapy based upon the specific type and severity of vulvovaginal candidiasis. Uncomplicated candidiasis is readily treated with short-term oral or topical therapy, whereas complicated candidiasis needs additional strategies using the plethora of therapies available. Problematic refractory cases still abound and the pipeline for new, more potent antifungal agents is largely empty. Management strategies for complicated Candida vaginitis are discussed.
Collapse
Affiliation(s)
- Jack Sobel
- Division of Infectious Diseases, Wayne State University School of Medicine, Harper Hospital, 3990 John R, 4 Brush Center, Detroit, MI, USA.
| |
Collapse
|
39
|
A screening assay based on host-pathogen interaction models identifies a set of novel antifungal benzimidazole derivatives. Antimicrob Agents Chemother 2011; 55:4789-801. [PMID: 21746957 DOI: 10.1128/aac.01657-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungal infections are a serious health problem in clinics, especially in the immune-compromised patient. Disease ranges from widespread superficial infections like vulvovaginal infections to life-threatening systemic candidiasis. Especially for systemic mycoses, only a limited arsenal of antifungals is available. The most commonly used classes of antifungal compounds used include azoles, polyenes, and echinocandins. Due to emerging resistance to standard therapy, significant side effects, and high costs for several antifungals, there is a medical need for new antifungals in the clinic and general practice. In order to expand the arsenal of compounds with antifungal activities, we screened a compound library including more than 35,000 individual compounds derived from organic synthesis as well as combinatorial compound collections representing mixtures of compounds for antimycotic activity. In total, more than 100,000 compounds were screened using a new type of activity-selectivity assay, analyzing both the antifungal activity and the compatibility with human cells at the same time. One promising hit, an (S)-2-aminoalkyl benzimidazole derivative, was developed among a series of lead compounds showing potent antifungal activity. (S)-2-(1-Aminoisobutyl)-1-(3-chlorobenzyl) benzimidazole showed the highest antifungal activity and the best compatibility with human cells in several cell culture models and against a number of clinical isolates of several species of pathogenic Candida yeasts. Transcriptional profiling indicates that the newly discovered compound is a potential inhibitor of the ergosterol pathway, in contrast to other benzimidazole derivatives, which target microtubules.
Collapse
|
40
|
Mira NP, Becker JD, Sá-Correia I. Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 14:587-601. [PMID: 20955010 DOI: 10.1089/omi.2010.0048] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The alterations occurring in yeast genomic expression during early response to acetic acid and the involvement of the transcription factor Haa1p in this transcriptional reprogramming are described in this study. Haa1p was found to regulate, directly or indirectly, the transcription of approximately 80% of the acetic acid-activated genes, suggesting that Haa1p is the main player in the control of yeast response to this weak acid. The genes identified in this work as being activated in response to acetic acid in a Haa1p-dependent manner include protein kinases, multidrug resistance transporters, proteins involved in lipid metabolism, in nucleic acid processing, and proteins of unknown function. Among these genes, the expression of SAP30 and HRK1 provided the strongest protective effect toward acetic acid. SAP30 encode a subunit of a histone deacetylase complex and HRK1 encode a protein kinase belonging to a family of protein kinases dedicated to the regulation of plasma membrane transporters activity. The deletion of the HRK1 gene was found to lead to the increase of the accumulation of labeled acetic acid into acid-stressed yeast cells, suggesting that the role of both HAA1 and HRK1 in providing protection against acetic acid is, at least partially, related with their involvement in the reduction of intracellular acetate concentration.
Collapse
Affiliation(s)
- Nuno P Mira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, Lisboa, Portugal
| | | | | |
Collapse
|
41
|
Mira NP, Teixeira MC, Sá-Correia I. Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 14:525-40. [PMID: 20955006 DOI: 10.1089/omi.2010.0072] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Weak acids are widely used as food preservatives (e.g., acetic, propionic, benzoic, and sorbic acids), herbicides (e.g., 2,4-dichlorophenoxyacetic acid), and as antimalarial (e.g., artesunic and artemisinic acids), anticancer (e.g., artesunic acid), and immunosuppressive (e.g., mycophenolic acid) drugs, among other possible applications. The understanding of the mechanisms underlying the adaptive response and resistance to these weak acids is a prerequisite to develop more effective strategies to control spoilage yeasts, and the emergence of resistant weeds, drug resistant parasites or cancer cells. Furthermore, the identification of toxicity mechanisms and resistance determinants to weak acid-based pharmaceuticals increases current knowledge on their cytotoxic effects and may lead to the identification of new drug targets. This review integrates current knowledge on the mechanisms of toxicity and tolerance to weak acid stress obtained in the model eukaryote Saccharomyces cerevisiae using genome-wide approaches and more detailed gene-by-gene analysis. The major features of the yeast response to weak acids in general, and the more specific responses and resistance mechanisms towards a specific weak acid or a group of weak acids, depending on the chemical nature of the side chain R group (R-COOH), are highlighted. The involvement of several transcriptional regulatory networks in the genomic response to different weak acids is discussed, focusing on the regulatory pathways controlled by the transcription factors Msn2p/Msn4p, War1p, Haa1p, Rim101p, and Pdr1p/Pdr3p, which are known to orchestrate weak acid stress response in yeast. The extrapolation of the knowledge gathered in yeast to other eukaryotes is also attempted.
Collapse
Affiliation(s)
- Nuno P Mira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, Lisboa, Portugal
| | | | | |
Collapse
|
42
|
Bulik CC, Sobel JD, Nailor MD. Susceptibility profile of vaginal isolates of Candida albicans prior to and following fluconazole introduction - impact of two decades. Mycoses 2010; 54:34-8. [DOI: 10.1111/j.1439-0507.2009.01752.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Alburquenque C, Bucarey SA, Neira-Carrillo A, Urzúa B, Hermosilla G, Tapia CV. Antifungal activity of low molecular weight chitosan against clinical isolates of Candida spp. Med Mycol 2010; 48:1018-23. [PMID: 20482450 DOI: 10.3109/13693786.2010.486412] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chitosan is a natural polymer derived from chitin, a structural component of fungi, insects and shrimp, which exerts antimicrobial effects against bacteria and fungi. The aim of this study was to investigate the in vitro antifungal activity of low molecular weight chitosan (LMWC), and the potential synergy between chitosan and a currently used antifungal drug, fluconazole. The in vitro minimal inhibitory concentrations (MICs) of chitosan and fluconazole against 105 clinical Candida isolates were measured by the broth microdilution method. LMWC exhibited a significant antifungal activity, inhibiting over 89.9% of the clinical isolates examined (68.6% of which was completely inhibited). The species included several fluconazole-resistant strains and less susceptible species such as C. glabrata, which was inhibited at a concentration of 4.8 mg/l LMWC. Although some strains were susceptible at pH 7.0, a greater antifungal activity of LMWC was observed at pH 4.0. There was no evidence of a synergistic effect of the combination of LMWC and fluconazole at pH 7.0. This is the first report in which the antifungal activity of LMWC was investigated with clinical Candida strains. The use of LMWC as an antifungal compound opens new therapeutic perspectives, as the low toxicity of LMWC in humans supports its use in new applications in an environment of pH 4.0-4.5, such as a topical agent for vulvovaginal candidiasis.
Collapse
|
44
|
Mira NP, Lourenço AB, Fernandes AR, Becker JD, Sá-Correia I. The RIM101 pathway has a role in Saccharomyces cerevisiae adaptive response and resistance to propionic acid and other weak acids. FEMS Yeast Res 2009; 9:202-16. [PMID: 19220866 DOI: 10.1111/j.1567-1364.2008.00473.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The physiological function of the Saccharomyces cerevisiae RIM101 signaling pathway is extended in this study beyond alkaline pH-induced responses. The transcription factor Rim101p is demonstrated to be required for maximal tolerance to weak acid-induced stress, at pH 4.0, but does not exert protection against low pH itself (range 4.5-2.5), when a strong acid is used as the acidulant. The Rim101p-dependent alterations of the yeast transcriptome following exposure to propionic acid stress (at pH 4.0) include genes of the previously described Rim101p regulon but also new target genes, in particular KNH1, involved in cell wall beta-1,6-glucan synthesis and the uncharacterized ORF YIL029c, both required for maximal propionic acid resistance. Clustering of the genes that provide resistance to propionic acid reveals the enrichment of those involved in protein catabolism through the multivesicular body pathway and in the homeostasis of internal pH and vacuolar function. The analysis of the network of interactions established among all the identified propionic acid resistance determinants shows an enrichment of interactions around the RIM101 gene and highlights the role of proteins involved in Rim101p proteolytic processing. RIM101 expression is shown to be required to counteract propionic acid-induced cytosolic acidification and for proper vacuolar acidification and cell wall structure, these having positive implications for a robust adaptive response and resistance to stress promoted by this food preservative.
Collapse
Affiliation(s)
- Nuno P Mira
- IBB, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Lisboa, Portugal
| | | | | | | | | |
Collapse
|
45
|
Sosinska GJ, de Groot PWJ, Teixeira de Mattos MJ, Dekker HL, de Koster CG, Hellingwerf KJ, Klis FM. Hypoxic conditions and iron restriction affect the cell-wall proteome of Candida albicans grown under vagina-simulative conditions. MICROBIOLOGY-SGM 2008; 154:510-520. [PMID: 18227255 DOI: 10.1099/mic.0.2007/012617-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Proteins that are covalently linked to the skeletal polysaccharides of the cell wall of Candida albicans play a major role in the colonization of the vaginal mucosal surface, which may result in vaginitis. Here we report on the variability of the cell-wall proteome of C. albicans as a function of the ambient O(2) concentration and iron availability. For these studies, cells were cultured at 37 degrees C in vagina-simulative medium and aerated with a gas mixture consisting of 6 % (v/v) CO(2), 0.01-7 % (v/v) O(2) and N(2), reflecting the gas composition in the vaginal environment. Under these conditions, the cells grew exclusively in the non-hyphal form, with the relative growth rate being halved at approximately 0.02 % (v/v) O(2). Using tandem MS and immunoblot analysis, we identified 15 covalently linked glycosylphosphatidylinositol (GPI) proteins in isolated walls (Als1, Als3, Cht2, Crh11, Ecm33, Hwp1, Pga4, Pga10, Phr2, Rbt5, Rhd3, Sod4, Ssr1, Ywp1, Utr2) and 4 covalently linked non-GPI proteins (MP65, Pir1, Sim1/Sun42, Tos1). Five of them (Als3, Hwp1, Sim1, Tos1, Utr2) were absent in cells grown in rich medium. Immunoblot analysis revealed that restricted O(2) availability resulted in higher levels of the non-GPI protein Pir1, a putative beta-1,3-glucan cross-linking protein, and of the GPI-proteins Hwp1, an adhesion protein, and Pga10 and Rbt5, which are involved in iron acquisition. Addition of the iron chelator ferrozine at saturating levels of O(2) resulted in higher cell wall levels of Hwp1 and Rbt5, suggesting that the responses to hypoxic conditions and iron restriction are related.
Collapse
Affiliation(s)
- Grazyna J Sosinska
- Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherlands
| | - Piet W J de Groot
- Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherlands
| | - M Joost Teixeira de Mattos
- Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherlands
| | - Henk L Dekker
- Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherlands
| | - Chris G de Koster
- Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherlands
| | - Klaas J Hellingwerf
- Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherlands
| | - Frans M Klis
- Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Abstract
Despite therapeutic advances, vulvovaginal candidosis remains a common problem worldwide, affecting all strata of society. Understanding of anti-candida host defence mechanisms in the vagina has developed slowly and, despite a growing list of recognised risk factors, a fundamental grasp of pathogenic mechanisms continues to elude us. The absence of rapid, simple, and inexpensive diagnostic tests continues to result in both overdiagnosis and underdiagnosis of vulvovaginal candidosis. I review the epidemiology and pathogenesis of this infection, and also discuss management strategies.
Collapse
Affiliation(s)
- Jack D Sobel
- Department of Medicine, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
47
|
Abstract
The introduction and widespread use of long-term maintenance suppressive fluconazole prophylaxis for recurrent vulvovaginal candidiasis (RVVC) has improved the quality of life for thousands of women worldwide. Moreover, the regimen is no longer expensive, and it is safe and well tolerated. However, the regimen frequently fails to cure the condition and serves only as an effective control measure in many cases. Moreover, some women are unable to tolerate the regimen, and new curative approaches are needed. This review presents the limitations of this suppressive regimen and a discussion of the possible reasons for these limitations and failure to cure. Also, the rationale for new drug development is reviewed here.
Collapse
Affiliation(s)
- Jack D Sobel
- Division of Infectious Diseases, Harper University Hospital, 3990 John R, Detroit, MI 48201, USA.
| |
Collapse
|
48
|
Onyewu C, Afshari NA, Heitman J. Calcineurin promotes infection of the cornea by Candida albicans and can be targeted to enhance fluconazole therapy. Antimicrob Agents Chemother 2006; 50:3963-5. [PMID: 16923949 PMCID: PMC1635197 DOI: 10.1128/aac.00393-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an established Candida albicans murine keratitis model, combination therapy with ophthalmic preparations of fluconazole and cyclosporine A (CsA) demonstrated in vivo drug synergy and effectively resolved wild-type C. albicans infection more rapidly than monotherapy with either drug. Calcineurin, the target of CsA, was also found to contribute to pathogenicity.
Collapse
Affiliation(s)
- Chiatogu Onyewu
- Department of Ophthalmology, Wadsworth Bldg., Box 3802, Erwin Road, Duke University Eye Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
49
|
Abstract
Much progress has been made in the last decade in identifying genes responsible for antifungal resistance in Candida albicans. Attention has focused on five major C. albicans genes: ABC transporter genes CDR1 and CDR2, major facilitator efflux gene MDR1, and ergosterol biosynthesis genes ERG11 and ERG3. Resistance involves mutations in 14C-lanosterol demethylase, targeted by fluconazole (FLZ) and encoded by ERG11, and mutations that up-regulate efflux genes that probably efflux the antifungals. Mutations that affect ERG3 mutations have been understudied as mechanism resistance among clinical isolates. In vitro resistance in clinical isolates typically involves step-wise mutations affecting more than one of these genes, and often unidentified genes. Different approaches are needed to identify these other genes. Very little is understood about reversible adaptive resistance of C. albicans despite its potential clinical significance; most clinical failures to control infections other than oropharyngeal candidiasis (OPC) occur with in vitro susceptible strains. Tolerance of C. albicans to azoles has been attributed to the calcineurin stress-response pathway, offering new potential targets for next generation antifungals. Recent studies have identified genes that regulate CDR1 or ERG genes. The focus of this review is C. albicans, although information on Saccharomyces cerevisiae or Candida glabrata is provided in areas in where Candida research is underdeveloped. With the completion of the C. albicans genomic sequence, and new methods for high throughput gene overexpression and disruption, rapid progress towards understanding the regulation of resistance, novel resistance mechanisms, and adaptive resistance is expected in the near future.
Collapse
Affiliation(s)
- Robert A Akins
- Wayne State University School of Medicine, Departments of Biochemistry & Molecular Biology, 540 East Canfield, Detroit, Michigan 48201, USA.
| |
Collapse
|
50
|
Soares-Silva I, Paiva S, Kötter P, Entian KD, Casal M. The disruption of JEN1 from Candida albicans impairs the transport of lactate. Mol Membr Biol 2005; 21:403-11. [PMID: 15764370 DOI: 10.1080/09687860400011373] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A lactate permease was biochemically identified in Candida albicans RM1000 presenting the following kinetic parameters at pH 5.0: Km 0.33+/-0.09 mM and Vmax 0.85+/-0.06 nmol s(-1) mg dry wt(-1). Lactate uptake was competitively inhibited by pyruvic and propionic acids; acetic acid behaved as a non-competitive substrate. An open reading frame (ORF) homologous to Saccharomyces cerevisiae gene JEN1 was identified (CaJEN1). Deletions of both CaJEN1 alleles of C. albicans (resulting strain CPK2) resulted in the loss of all measurable lactate permease activity. No CaJEN1 mRNA was detectable in glucose-grown cells neither activity for the lactate transporter. In a medium containing lactic acid, CaJEN1 mRNA was detected in the RM1000 strain, and no expression was found in cells of CPK2 strain. In a strain deleted in the CaCAT8 genes the expression of CaJEN1 was significantly reduced, suggesting the role of this gene as an activator for CaJEN1 expression. Both in C. albicans and in S. cerevisiae cells CaJEN1-GFP fusion was expressed and targeted to the plasma membrane. The native CaJEN1 was not functional in a S. cerevisiae jen1delta strain. Changing ser217-CTG codon (encoding leucine in S. cerevisiae) to a TCC codon restored the permease activity in S. cerevisiae, proving that the CaJEN1 gene codes for a monocarboxylate transporter.
Collapse
Affiliation(s)
- Isabel Soares-Silva
- Departamento de Biologia, Universidade do Minho, 4710-057 Braga Codex, Portugal
| | | | | | | | | |
Collapse
|