1
|
Grenier F, Baby V, Allard S, Lévesque S, Papale F, Sullivan R, Landecker HL, Higgins PG, Rodrigue S, Haraoui LP. Isolation of a blaNDM-1-positive strain in Israel predating the earliest observations from India. Microbiol Spectr 2024:e0100224. [PMID: 39320107 DOI: 10.1128/spectrum.01002-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
blaNDM, the most prevalent carbapenemase among carbapenem-resistant Enterobacteriaceae, is thought to have emerged in India, as its initial detection in 2008 was linked to this country, and subsequent retrospective surveys had so far established the earliest blaNDM-positive strains to be isolated in India in 2005. Molecular dating and analyses suggest blaNDM emerged within Acinetobacter species decades prior to 2005 on a Tn125 transposon. Despite early reports of elevated rates of carbapenem-resistant Acinetobacter species in Israel starting in the 1990s, limited molecular data are available from this location. We searched for blaNDM among Acinetobacter species isolated in Israel between 2001 and 2006. One A. junii strain, Ajun-H1-3, isolated in January 2004, carried blaNDM-1 within a Tn125-like transposon on a 49-kb plasmid, pNDM-Ajun-H1-3, making Ajun-H1-3 the earliest NDM-positive isolate observed to date. The pNDM-Ajun-H1-3 plasmid matched numerous BJ01-like NDM-positive plasmids identified from 2005 onward in Acinetobacter species as well as Enterobacterales. These results indicate the need for further retrospective work on global strain archives to shed light on the conditions favoring the emergence as well as subsequent evolution and spread of blaNDM. IMPORTANCE This study presents the earliest observation of blaNDM-1, isolated in a geographical region distant from where it is believed to have originated. In doing so, this study provides novel insights into the emergence and spread of blaNDM, the most prevalent carbapenemase among carbapenem-resistant Enterobacteriaceae, and its associated mobile genetic elements. It also sheds light on the conditions that foster the evolution of antimicrobial resistance, one of the greatest public health challenges we face.
Collapse
Affiliation(s)
- Frédéric Grenier
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Sherbrooke, Québec, Canada
| | - Vincent Baby
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Sherbrooke, Québec, Canada
| | - Sarah Allard
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Simon Lévesque
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
- CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - François Papale
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Richard Sullivan
- Conflict and Health Research Group, King's College London, London, United Kingdom
| | | | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), partner site Cologne-Bonn, Cologne, Germany
| | - Sébastien Rodrigue
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Sherbrooke, Québec, Canada
| | - Louis-Patrick Haraoui
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
- Centre de recherche Charles-Le Moyne, CISSS Montérégie-Centre, Longueuil, Québec, Canada
| |
Collapse
|
2
|
Liao YC, Huang YT, Tseng CH, Liu CW, Liu PY. Comparative Genomics Identified PenR E151V Substitution Associated with Carbapenem-Resistance Burkholderia cepacia Complex and a Novel Burkholderia cepacia Complex Specific OXA-1043 Subgroup. Infect Drug Resist 2023; 16:5627-5635. [PMID: 37662974 PMCID: PMC10473398 DOI: 10.2147/idr.s418969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
Purpose Burkholderia cepacia complex (Bcc) is a known significant opportunistic pathogen causing morbidity and mortality, particularly in those with cystic fibrosis, chronic granulomatous disease, or immunocompromising host. Mortality of Bcc bloodstream infections among non-cystic fibrosis patients remained high. The antibiotic treatment for Bcc infection is quite challenging due to its intrinsic resistance to most antibiotics, and the resistance to carbapenems was the biggest concern among them. We aimed to realize the mechanism of carbapenem resistance in Bcc. Patients and Methods Ten strains of Bcc were identified by the MALDI-TOF MS, and the drug susceptibility test was using VITEK 2 system. The Burkholderia cepacia complex genomes were sequenced via Nanopore GridIon. We also downloaded another ninety-five strains of Bcc from the National Center for Biotechnology Information database to evaluate the divergence between carbapenem-resistance and carbapenem-sensitive strains. Results The genetic organization between carbapenem-sensitive and carbapenem-resistant strains of Bcc showed no difference. However, in the carbapenem-sensitive strain, E151V substitution in PenR was detected. In addition, a novel specific OXA family subgroup, blaOXA-1043 in Burkholderia cenocepacia was discovered. Conclusion The E151V substitution in PenR may be associated with carbapenem-sensitive in Bcc. Moreover, the V151E mutation in PenR may be related to the activation of PenB, leading to Bcc resistance to carbapenems. Besides, a novel OXA family subgroup, blaOXA-1043, was found in Burkholderia cenocepacia, which differs from the previous OXA family.
Collapse
Affiliation(s)
- Ya-Chun Liao
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yao-Ting Huang
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Chien-Hao Tseng
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chia-Wei Liu
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Po-Yu Liu
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
- Genome Center for Infectious Diseases, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
3
|
Ramírez-Castillo FY, Guerrero-Barrera AL, Avelar-González FJ. An overview of carbapenem-resistant organisms from food-producing animals, seafood, aquaculture, companion animals, and wildlife. Front Vet Sci 2023; 10:1158588. [PMID: 37397005 PMCID: PMC10311504 DOI: 10.3389/fvets.2023.1158588] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Carbapenem resistance (CR) is a major global health concern. CR is a growing challenge in clinical settings due to its rapid dissemination and low treatment options. The characterization of its molecular mechanisms and epidemiology are highly studied. Nevertheless, little is known about the spread of CR in food-producing animals, seafood, aquaculture, wildlife, their environment, or the health risks associated with CR in humans. In this review, we discuss the detection of carbapenem-resistant organisms and their mechanisms of action in pigs, cattle, poultry, seafood products, companion animals, and wildlife. We also pointed out the One Health approach as a strategy to attempt the emergency and dispersion of carbapenem-resistance in this sector and to determine the role of carbapenem-producing bacteria in animals among human public health risk. A higher occurrence of carbapenem enzymes in poultry and swine has been previously reported. Studies related to poultry have highlighted P. mirabilis, E. coli, and K. pneumoniae as NDM-5- and NDM-1-producing bacteria, which lead to carbapenem resistance. OXA-181, IMP-27, and VIM-1 have also been detected in pigs. Carbapenem resistance is rare in cattle. However, OXA- and NDM-producing bacteria, mainly E. coli and A. baumannii, are cattle's leading causes of carbapenem resistance. A high prevalence of carbapenem enzymes has been reported in wildlife and companion animals, suggesting their role in the cross-species transmission of carbapenem-resistant genes. Antibiotic-resistant organisms in aquatic environments should be considered because they may act as reservoirs for carbapenem-resistant genes. It is urgent to implement the One Health approach worldwide to make an effort to contain the dissemination of carbapenem resistance.
Collapse
Affiliation(s)
- Flor Y. Ramírez-Castillo
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, Mexico
| | - Alma L. Guerrero-Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, Mexico
| | - Francisco J. Avelar-González
- Laboratorio de Estudios Ambientales, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, Mexico
| |
Collapse
|
4
|
Jiang X, Miao B, Zhao X, Bai X, Yuan M, Chen X, Gong X, Liu Z, Li J, Meng S, Han X, Li J. Unveiling the Emergence and Genetic Diversity of OXA-48-like Carbapenemase Variants in Shewanella xiamenensis. Microorganisms 2023; 11:1325. [PMID: 37317299 DOI: 10.3390/microorganisms11051325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
An increase in the carbapenem-hydrolyzing capacity of class D β-lactamase has been observed in strains of multiple species, posing a significant challenge to the control of antibiotic resistance. In this study, we aimed to investigate the genetic diversity and phylogenetic characteristics of new blaOXA-48-like variants derived from Shewanella xiamenensis. Three ertapenem-non-susceptible S. xiamenensis strains were identified, one isolated from the blood sample of an inpatient, the other two isolated from the aquatic environment. Phenotypic characterization confirmed that the strains were carbapenemase producers and exhibited antimicrobial resistance patterns to ertapenem, with some showing lower susceptibility to imipenem, chloramphenicol, ciprofloxacin, and tetracycline. No significant resistance to cephalosporins was observed. Sequence analysis revealed that one strain harbored blaOXA-181 and the other two strains harbored blaOXA-48-like genes, with open reading frame (ORF) similarities with blaOXA-48 ranging from 98.49% to 99.62%. The two novel blaOXA-48-like genes, named blaOXA-1038 and blaOXA-1039, respectively, were cloned and expressed in E. coli. The three OXA-48-like enzymes demonstrated significant hydrolysis activity against meropenem, and the classical β-lactamase inhibitor had no significant inhibitory effect. In conclusion, this study demonstrated the diversity of the blaOXA gene and highlighted the emergence of novel OXA carbapenemases in S. xiamenensis. Further attention to S. xiamenensis and OXA carbapenemases is recommended for the effective prevention and control of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Xueqi Jiang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Beibei Miao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiaofei Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xuemei Bai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Min Yuan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xia Chen
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xinyi Gong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zeliang Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jie Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shuang Meng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiao Han
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Juan Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
5
|
Di DYW, Cao G, Zhong C, Yan T. Diversity of bla POM in carbapenem-resistant opportunistic pathogenic Pseudomonas otitidis in municipal wastewater. JOURNAL OF WATER AND HEALTH 2023; 21:560-570. [PMID: 37254905 PMCID: wh_2023_255 DOI: 10.2166/wh.2023.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Metallo-β-lactamases (MBLs) encoding carbapenem resistance in wastewater are a well-known serious threat to human health. Twelve Pseudomonas otitidis isolates obtained from a municipal wastewater treatment plant (WWTP) in Hawaii were found to possess a subclass B3 MBL - POM (P. otitidis MBL), with a minimum inhibition concentration (MIC) range of 8-16 mg/L. The unrooted neighbor-joining phylogenetic tree showed that these blaPOM genes isolated in wastewater samples (n = 12) were distinctly different from other reference genes isolated from clinical, freshwater, animal, and soil samples except for isolates MR7, MR8, and MR11. MR7, MR8, and MR11 were found to have 4, 3, and 3 amino acid substitutions when compared to the type strain MC10330T and were closely clustered to the clinical reference genes. The meropenem hydrolysis experiment showed that isolates with multiple amino acid substitutions completely hydrolyzed 64 mg/L of meropenem in 7 h. The emergence of the opportunistic pathogen P. otitidis chromosomally encoding blaPOM in the treated municipal wastewater is an alarming call for the spread of this MBL in the environment. Further studies are required to understand the mechanism and regulation of this carbapenem-resistant β-lactamase in order to fill in the knowledge gap.
Collapse
Affiliation(s)
- Doris Yoong Wen Di
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA E-mail: ; D.Y.W.D. and G.X.C contributed equally to the manuscript
| | - Guangxiang Cao
- School of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China; D.Y.W.D. and G.X.C contributed equally to the manuscript
| | - Chuanqing Zhong
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Tao Yan
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA E-mail: ; Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
6
|
Botts RT, Page DM, Bravo JA, Brown ML, Castilleja CC, Guzman VL, Hall S, Henderson JD, Kenney SM, Lensink ME, Paternoster MV, Pyle SL, Ustick L, Walters-Laird CJ, Top EM, Cummings DE. Polluted wetlands contain multidrug-resistance plasmids encoding CTX-M-type extended-spectrum β-lactamases. Plasmid 2023; 126:102682. [PMID: 37023995 PMCID: PMC10213127 DOI: 10.1016/j.plasmid.2023.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
While most detailed analyses of antibiotic resistance plasmids focus on those found in clinical isolates, less is known about the vast environmental reservoir of mobile genetic elements and the resistance and virulence factors they encode. We selectively isolated three strains of cefotaxime-resistant Escherichia coli from a wastewater-impacted coastal wetland. The cefotaxime-resistant phenotype was transmissible to a lab strain of E. coli after one hour, with frequencies as high as 10-3 transconjugants per recipient. Two of the plasmids also transferred cefotaxime resistance to Pseudomonas putida, but these were unable to back-transfer this resistance from P. putida to E. coli. In addition to the cephalosporins, E. coli transconjugants inherited resistance to at least seven distinct classes of antibiotics. Complete nucleotide sequences revealed large IncF-type plasmids with globally distributed replicon sequence types F31:A4:B1 and F18:B1:C4 carrying diverse antibiotic resistance and virulence genes. The plasmids encoded extended-spectrum β-lactamases blaCTX-M-15 or blaCTX-M-55, each associated with the insertion sequence ISEc9, although in different local arrangements. Despite similar resistance profiles, the plasmids shared only one resistance gene in common, the aminoglycoside acetyltransferase aac(3)-IIe. Plasmid accessory cargo also included virulence factors involved in iron acquisition and defense against host immunity. Despite their sequence similarities, several large-scale recombination events were detected, including rearrangements and inversions. In conclusion, selection with a single antibiotic, cefotaxime, yielded conjugative plasmids conferring multiple resistance and virulence factors. Clearly, efforts to limit the spread of antibiotic resistance and virulence among bacteria must include a greater understanding of mobile elements in the natural and human-impacted environments.
Collapse
Affiliation(s)
- Ryan T Botts
- Department of Mathematics, Information, and Computer Sciences, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Dawne M Page
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Joseph A Bravo
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Madelaine L Brown
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Claudia C Castilleja
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Victoria L Guzman
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Samantha Hall
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Jacob D Henderson
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Shelby M Kenney
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Mariele E Lensink
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Megan V Paternoster
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Sarah L Pyle
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Lucas Ustick
- Department of Mathematics, Information, and Computer Sciences, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America; Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Chara J Walters-Laird
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Eva M Top
- Department of Biological Sciences, Institute for Interdisciplinary Data Sciences (IIDS), University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, United States of America
| | - David E Cummings
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America.
| |
Collapse
|
7
|
Yu K, Huang Z, Xiao Y, Wang D. Shewanella infection in humans: Epidemiology, clinical features and pathogenicity. Virulence 2022; 13:1515-1532. [PMID: 36065099 PMCID: PMC9481105 DOI: 10.1080/21505594.2022.2117831] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The genus Shewanella consists of Gram-negative proteobacteria that are ubiquitously distributed in environment. As the members of this genus have rapidly increased within the past decade, several species have become emerging pathogens worldwide, attracting the attention of the medical community. These species are also associated with severe community- and hospital-acquired infections. Patients infected with Shewanella spp. had experiences of occupational or recreational exposure; meanwhile, the process of infection is complex and the pathogenicity is influenced by a variety of factors. Here, an exhaustive internet-based literature search was carried out in PUBMED using terms “Achromobacter putrefaciens,” “Pseudomonas putrefaciens,” “Alteromonas putrefaciens” and “Shewanella” to search literatures published between 1978 and June 2022. We provided a comprehensive review on the epidemiology, clinical features and pathogenicity of Shewanella, which will contribute a better understanding of its clinical aetiology, and facilitate the timely diagnosis and effective treatment of Shewanella infection for clinicians and public health professionals.
Collapse
Affiliation(s)
- Keyi Yu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China.,Center for Human Pathogenic Culture Collection, China CDC, Beijing, China
| | - Zhenzhou Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China.,Center for Human Pathogenic Culture Collection, China CDC, Beijing, China
| | - Yue Xiao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China.,Center for Human Pathogenic Culture Collection, China CDC, Beijing, China
| | - Duochun Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China.,Center for Human Pathogenic Culture Collection, China CDC, Beijing, China
| |
Collapse
|
8
|
Wen Y, Xie X, Xu P, Yang C, Zhu Z, Zhu J, Lv J, Zhang H, Chen L, Du H. NDM-1 and OXA-48-Like Carbapenemases (OXA-48, OXA-181 and OXA-252) Co-Producing Shewanella xiamenensis from Hospital Wastewater, China. Infect Drug Resist 2022; 15:6927-6938. [PMID: 36471715 PMCID: PMC9719275 DOI: 10.2147/idr.s386345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/09/2022] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Shewanella genus, as an important carrier of resistance genes, has the potential to transmit resistance to many antimicrobials in many circumstances, especially in aquatic environment. The aim of the study was to describe the risk of Shewanella xiamenensis in hospital environment through analysis of genomic comparison and resistance status. METHODS Seven S. xiamenensis strains were isolated from hospital wastewater. PCR and Sanger sequencing were carried out for detection of common carbapenemase genes. Antimicrobial susceptibility testing was performed to determine the antimicrobial profile. Whole genome sequencing was applied, and sequences were further used for genomic analysis. RESULTS Seven Shewanella xiamenensis were all positive for bla NDM and bla OXA-48. Antimicrobial susceptibility testing showed all Shewanella xiamenensis were resistant to cefotaxime, ceftazidime, imipenem, meropenem, gentamycin and trimethoprim-sulfamethoxazole. Whole genome sequencing and phylogenetic analysis demonstrated the diversity of Shewanella xiamenensis despite isolating from one wastewater pool. CONCLUSION To the best of our knowledge, this is the first report of detection of three types bla OXA-48-like genes in one hospital in China. And we have detected multi-drug resistant S. xiamenensis from hospital wastewater. This emphasizes that the presence of naturally existing carbapenemases in the environment may be significantly overlooked and that the bla OXA-48-like genes in China may originate through the horizontal gene transfer from S. xiamenensis to Enterobacterales rather than import from other countries.
Collapse
Affiliation(s)
- Yicheng Wen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Xiaofang Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Ping Xu
- Department of Clinical Laboratory, The Fifth People’s Hospital of Suzhou, Suzhou, Jiangsu, People’s Republic of China
| | - Chengcheng Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Zhichen Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Jie Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Jingnan Lv
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Liang Chen
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
9
|
OXA-48-Like β-Lactamases: Global Epidemiology, Treatment Options, and Development Pipeline. Antimicrob Agents Chemother 2022; 66:e0021622. [PMID: 35856662 PMCID: PMC9380527 DOI: 10.1128/aac.00216-22] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Modern medicine is threatened by the rising tide of antimicrobial resistance, especially among Gram-negative bacteria, where resistance to β-lactams is most often mediated by β-lactamases. The penicillin and cephalosporin ascendancies were, in their turn, ended by the proliferation of TEM penicillinases and CTX-M extended-spectrum β-lactamases. These class A β-lactamases have long been considered the most important. For carbapenems, however, the threat is increasingly from the insidious rise of a class D carbapenemase, OXA-48, and its close relatives. Over the past 20 years, OXA-48 and "OXA-48-like" enzymes have proliferated to become the most prevalent enterobacterial carbapenemases across much of Europe, Northern Africa, and the Middle East. OXA-48-like enzymes are notoriously difficult to detect because they often cause only low-level in vitro resistance to carbapenems, meaning that the true burden is likely underestimated. Despite this, they are associated with carbapenem treatment failures. A highly conserved incompatibility complex IncL plasmid scaffold often carries blaOXA-48 and may carry other antimicrobial resistance genes, leaving limited treatment options. High conjugation efficiency means that this plasmid is sometimes carried by multiple Enterobacterales in a single patient. Producers evade most β-lactam-β-lactamase inhibitor combinations, though promising agents have recently been licensed, notably ceftazidime-avibactam and cefiderocol. The molecular machinery enabling global spread, current treatment options, and the development pipeline of potential new therapies for Enterobacterales that produce OXA-48-like β-lactamases form the focus of this review.
Collapse
|
10
|
Álvarez-Marín MT, Zarzuela L, Camacho EM, Santero E, Flores A. Detection by metagenomic functional analysis and improvement by experimental evolution of β-lactams resistance genes present in oil contaminated soils. Sci Rep 2022; 12:10059. [PMID: 35768448 PMCID: PMC9243250 DOI: 10.1038/s41598-022-13883-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/30/2022] [Indexed: 11/09/2022] Open
Abstract
The spread of antibiotic resistance genes has become a global health concern identified by the World Health Organization as one of the greatest threats to health. Many of antimicrobial resistance determinants found in bacterial pathogens originate from environmental bacteria, so identifying the genes that confer resistance to antibiotics in different habitats is mandatory to better understand resistance mechanisms. Soil is one of the most diverse environments considered reservoir of antimicrobial resistance genes. The aim of this work is to study the presence of genes that provide resistance to antibiotics used in clinical settings in two oil contaminated soils by metagenomic functional analysis. Using fosmid vectors that efficiently transcribe metagenomic DNA, we have selected 12 fosmids coding for two class A β-lactamases, two subclass B1 and two subclass B3 metallo-β-lactamases, one class D β-lactamase and three efflux pumps that confer resistance to cefexime, ceftriaxone, meropenem and/or imipenem. In some of them, detection of the resistance required heterologous expression from the fosmid promoter. Although initially, these environmental genes only provide resistance to low concentrations of antibiotics, we have obtained, by experimental evolution, fosmid derivatives containing β-lactamase ORFs with a single base substitution, which substantially increase their β-lactamase activity and resistance level. None of the mutations affect β-lactamase coding sequences and are all located upstream of them. These results demonstrate the presence of enzymes that confer resistance to relevant β-lactams in these soils and their capacity to rapidly adapt to provide higher resistance levels.
Collapse
Affiliation(s)
- M Teresa Álvarez-Marín
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Laura Zarzuela
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Eva M Camacho
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Eduardo Santero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Amando Flores
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain.
| |
Collapse
|
11
|
Yu D, Ryu K, Zhi S, Otto SJG, Neumann NF. Naturalized Escherichia coli in Wastewater and the Co-evolution of Bacterial Resistance to Water Treatment and Antibiotics. Front Microbiol 2022; 13:810312. [PMID: 35707173 PMCID: PMC9189398 DOI: 10.3389/fmicb.2022.810312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/09/2022] [Indexed: 12/30/2022] Open
Abstract
Antibiotic resistance represents one of the most pressing concerns facing public health today. While the current antibiotic resistance crisis has been driven primarily by the anthropogenic overuse of antibiotics in human and animal health, recent efforts have revealed several important environmental dimensions underlying this public health issue. Antibiotic resistant (AR) microbes, AR genes, and antibiotics have all been found widespread in natural environments, reflecting the ancient origins of this phenomenon. In addition, modern societal advancements in sanitation engineering (i.e., sewage treatment) have also contributed to the dissemination of resistance, and concerningly, may also be promoting the evolution of resistance to water treatment. This is reflected in the recent characterization of naturalized wastewater strains of Escherichia coli-strains that appear to be adapted to live in wastewater (and meat packing plants). These strains carry a plethora of stress-resistance genes against common treatment processes, such as chlorination, heat, UV light, and advanced oxidation, mechanisms which potentially facilitate their survival during sewage treatment. These strains also carry an abundance of common antibiotic resistance genes, and evidence suggests that resistance to some antibiotics is linked to resistance to treatment (e.g., tetracycline resistance and chlorine resistance). As such, these naturalized E. coli populations may be co-evolving resistance against both antibiotics and water treatment. Recently, extraintestinal pathogenic strains of E. coli (ExPEC) have also been shown to exhibit phenotypic resistance to water treatment, seemingly associated with the presence of various shared genetic elements with naturalized wastewater E. coli. Consequently, some pathogenic microbes may also be evolving resistance to the two most important public health interventions for controlling infectious disease in modern society-antibiotic therapy and water treatment.
Collapse
Affiliation(s)
- Daniel Yu
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Antimicrobial Resistance – One Health Consortium, Calgary, AB, Canada
| | - Kanghee Ryu
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Antimicrobial Resistance – One Health Consortium, Calgary, AB, Canada
| | - Shuai Zhi
- School of Medicine, Ningbo University, Ningbo, China
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Simon J. G. Otto
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Antimicrobial Resistance – One Health Consortium, Calgary, AB, Canada
- Human-Environment-Animal Transdisciplinary Antimicrobial Resistance Research Group, School of Public Health, University of Alberta, Edmonton, AB, Canada
- Healthy Environments, Centre for Health Communities, School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Norman F. Neumann
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Antimicrobial Resistance – One Health Consortium, Calgary, AB, Canada
| |
Collapse
|
12
|
Genetic and Phenotypic Study of the Pectobacterium versatile Beta-Lactamase, the Enzyme Most Similar to the Plasmid-Encoded TEM-1. Appl Environ Microbiol 2022; 88:e0022022. [PMID: 35575550 DOI: 10.1128/aem.00220-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genus Pectobacterium bacteria include important agricultural pathogens. Pectobacterium versatile isolates contain a chromosome-borne beta-lactamase, PEC-1. This enzyme is the closest relative of TEM-1, a plasmid-borne beta-lactamase widespread in the Enterobacterales. We performed bioinformatics and phenotypic analyses to investigate the genetic and phenotypic features of PEC-1 and its frequency and ability to spread within genus Pectobacterium. We also compared the characteristics of PEC-1 and TEM-1 and evaluated the likelihood of transfer. We found that blaPEC-1 was present principally in a small number of genetic environments in P. versatile. Identical blaPEC-1 genetic environments were present in closely related species, consistent with the high frequency of genetic exchange within the genus Pectobacterium. Despite the similarities between PEC-1 and TEM-1, their genetic environments displayed no significant identity, suggesting an absence of recent transfer. Phenotypic analyses on clonal constructs revealed similar hydrolysis spectra. Our results suggest that P. versatile is the main reservoir of PEC-1, which seems to transfer to closely related species. The genetic distance between PEC-1 and TEM-1, and the lack of conserved elements in their genetic environments, suggest that any transfer that may have occurred must have taken place well before the antibiotic era. IMPORTANCE This study aimed to compare the chromosomal beta-lactamase from Pectobacterium versatile, PEC-1, with the well-known and globally distributed TEM-1 in terms of genetic and functional properties. Despite the similarities between the enzymes, we obtained no definitive proof of gene transfer for the emergence of blaPEC-1 from blaTEM-1. Indeed, given the limited degree of sequence identity and the absence of a common genetic environment, it seems unlikely that any transfer of this gene has occurred recently. However, although blaPEC-1 was found mostly in one specific clade of the P. versatile species, certain isolates from other closely related species, such as Pectobacterium brasiliense and Pectobacterium polaris, may also carry this gene inserted into common genetic environments. This observation suggests that genetic exchanges are frequent, accounting for the diffusion of blaPEC-1 between isolates from different Pectobacterium species and, potentially, to exogenous mobile genetic elements.
Collapse
|
13
|
Ng WWS, Shum HP, To KKW, Sridhar S. Emerging Infections Due to Shewanella spp.: A Case Series of 128 Cases Over 10 Years. Front Med (Lausanne) 2022; 9:850938. [PMID: 35573023 PMCID: PMC9100594 DOI: 10.3389/fmed.2022.850938] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundShewanella species are emerging pathogens that can cause severe hepatobiliary, skin and soft tissue, gastrointestinal, respiratory infections, and bacteremia. Here we reported the largest case series of infections caused by Shewanella species.AimTo identify the clinical features and risk factors predisposing to Shewanella infections. To evaluate resistance pattern of Shewanella species and appropriateness of antibiotic use in the study cohort.MethodsPatients admitted to a regional hospital in Hong Kong with Shewanella species infection from April 1, 2010 to December 31, 2020 were included. Demographics, antibiotics, microbiology, and outcomes were retrospectively analyzed.FindingsOver the 10 years, we identified 128 patients with Shewanella species infection. 61.7% were male with a median age of 78 (IQR 65–87). Important underlying diseases included hepatobiliary diseases (63.3%), malignancy (26.6%), chronic kidney disease or end-stage renal failure (25.8%), and diabetes mellitus (22.7%). Hepatobiliary infections (60.4%) were the most common clinical manifestation. Majority (92.2%) were infected with Shewanella algae, while 7.8% were infected with Shewanella putrefaciens. The identified organisms were usually susceptible to ceftazidime (98.7%), gentamicin (97.4%), cefoperazone-sulbactam (93.5%) and ciprofloxacin (90.3%). Imipenem-susceptible strains were only present in 76.6% of isolates.ConclusionThis largest case series suggested that Shewanella infections are commonly associated with underlying comorbidities, especially with hepatobiliary diseases and malignancy. Although Shewanella species remained largely susceptible to third and fourth generation cephalosporins and aminoglycosides, carbapenem resistance has been on a significant rise.
Collapse
Affiliation(s)
- Wincy Wing-Sze Ng
- Department of Intensive Care, Pamela Youde Nethersole Eastern Hospital, Hong Kong, Hong Kong SAR, China
- *Correspondence: Wincy Wing-Sze Ng
| | - Hoi-Ping Shum
- Department of Intensive Care, Pamela Youde Nethersole Eastern Hospital, Hong Kong, Hong Kong SAR, China
| | - Kelvin Kai-Wang To
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Siddharth Sridhar
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
14
|
Metagenomic Characterization of Microbial Pollutants and Antibiotic- and Metal-Resistance Genes in Sediments from the Canals of Venice. WATER 2022. [DOI: 10.3390/w14071161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The spread of fecal pollutants and antibiotic resistance in the aquatic environment represents a major public health concern and is predicted to increase in light of climate change consequences and the increasing human population pressure on the lagoon and coastal areas. The city of Venice (Italy) is affected by diverse microbial pollution sources, including domestic wastewaters that, due to the lack of modern sewage treatment infrastructure in the historical city center, are released into canals. The outflowing jets of its tidal inlets thus represent a source of contamination for the nearby beaches on the barrier island separating the lagoon from the sea. Metagenomic analyses of DNA extracted from sediment samples from six sites in the canals of the city’s historic center were undertaken to characterize the microbial community composition, the presence of fecal microbes as well as other non-enteric pathogens, and the content of genes related to antibiotic (AB) and heavy metal (HM) resistance, and virulence. The six sites hosted similar prokaryotic communities, although variations in community composition likely related to oxygen availability were observed. All sites displayed relatively high levels of fecal contamination, including the presence of Fecal Indicator Bacteria, sewage- and alternative feces-associated bacteria. Relatively high levels of other potential pathogens were also found. About 1 in 500 genes identified at these sites are related to AB and HM resistance; conversely, genes related to virulence were rare. Our data suggest the existence of widespread sediment microbial pollution in the canals of Venice, coupled with the prevalence of ARGs to antibiotics frequently used in humans as well as of HMRGs to toxic metals that still persists in the lagoon. All of this evidence raises concerns about the consequences on the water quality of the lagoon and adjacent marine areas and the potential risks for humans, deserving further studies.
Collapse
|
15
|
Vats P, Kaur UJ, Rishi P. Heavy metal-induced selection and proliferation of antibiotic resistance: A review. J Appl Microbiol 2022; 132:4058-4076. [PMID: 35170159 DOI: 10.1111/jam.15492] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/28/2021] [Accepted: 02/11/2022] [Indexed: 11/28/2022]
Abstract
Antibiotic resistance is recognized as a global threat to public health. The selection and evolution of antibiotic resistance in clinical pathogens was believed to be majorly driven by the imprudent use of antibiotics. However, concerns regarding the same, through selection pressure by a multitude of other antimicrobial agents, such as heavy metals, are also growing. Heavy metal contamination co-selects antibiotic and metal resistance through numerous mechanisms, such as co-resistance and cross-resistance. Here, we have reviewed the role of heavy metals as antimicrobial resistance driving agents and the underlying concept and mechanisms of co-selection, while also highlighting the scarcity in studies explicitly inspecting the process of co-selection in clinical settings. Prospective strategies to manage heavy metal-induced antibiotic resistance have also been deliberated, underlining the need to find specific inhibitors so that alternate medicinal combinations can be added to the existing therapeutic armamentarium.
Collapse
Affiliation(s)
- Prakriti Vats
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Ujjwal Jit Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
16
|
Ohama Y, Aoki K, Harada S, Nagasawa T, Sawabe T, Nonaka L, Moriya K, Ishii Y, Tateda K. Genetic Environment Surrounding blaOXA-55-like in Clinical Isolates of Shewanella algae Clade and Enhanced Expression of blaOXA-55-like in a Carbapenem-Resistant Isolate. mSphere 2021; 6:e0059321. [PMID: 34643423 PMCID: PMC8513682 DOI: 10.1128/msphere.00593-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/23/2021] [Indexed: 11/20/2022] Open
Abstract
Although Shewanella spp. are most frequently isolated from marine environments; more rarely, they have been implicated in human infections. Shewanella spp. are also recognized as the origin of genes for carbapenem-hydrolyzing class D β-lactamases. Due to the spread globally among Enterobacterales in recent years, risk assessments of both clinical and environmental Shewanella strains are urgently needed. In this study, we analyzed the whole-genome sequences of 10 clinical isolates and 13 environmental isolates of Shewanella spp. and compared them with those of Shewanella species strains registered in public databases. In addition, the levels of blaOXA-55-like transcription and β-lactamase activity of a carbapenem-resistant Shewanella algae isolate were compared with those of carbapenem-susceptible S. algae clade isolates. All clinical isolates were genetically identified as S. algae clade (S. algae, Shewanella chilikensis, and Shewanella carassii), whereas all but one of the environmental isolates were identified as various Shewanella spp. outside the S. algae clade. Although all isolates of the S. algae clade commonly possessed an approximately 12,500-bp genetic region harboring blaOXA-55-like, genetic structures outside this region were different among species. Among S. algae clade isolates, only one showed carbapenem resistance, and this isolate showed a high level of blaOXA-55-like transcription and β-lactamase activity. Although this study documented the importance of the S. algae clade in human infections and the relationship between enhanced production of OXA-55-like and resistance to carbapenems in S. algae, further studies are needed to elucidate the generalizability of these findings. IMPORTANCEShewanella spp., which are known to carry chromosomally located blaOXA genes, have mainly been isolated from marine environments; however, they can also cause infections in humans. In this study, we compared the molecular characteristics of clinical isolates of Shewanella spp. with those originating from environmental sources. All 10 clinical isolates were genetically identified as members of the Shewanella algae clade (S. algae, S. chilikensis, and S. carassii); however, all but one of the 13 environmental isolates were identified as Shewanella species members outside the S. algae clade. Although all the S. algae clade isolates possessed an approximately 12,500-bp genetic region harboring blaOXA-55-like, only one isolate showed carbapenem resistance. The carbapenem-resistant isolate showed a high level of blaOXA-55-like transcription and β-lactamase activity compared with the carbapenem-susceptible isolates. To confirm the clinical significance and antimicrobial resistance mechanisms of the S. algae clade members, analysis involving more clinical isolates should be performed in the future.
Collapse
Affiliation(s)
- Yuki Ohama
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Tokyo, Japan
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Sohei Harada
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Tokyo, Japan
| | - Tatsuya Nagasawa
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Lisa Nonaka
- Department of Nutritional Science, Faculty of Human Life Science, Shokei Gakuen, Kumamoto, Japan
| | - Kyoji Moriya
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Murray AK, Stanton I, Gaze WH, Snape J. Dawning of a new ERA: Environmental Risk Assessment of antibiotics and their potential to select for antimicrobial resistance. WATER RESEARCH 2021; 200:117233. [PMID: 34038824 DOI: 10.1016/j.watres.2021.117233] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 05/06/2023]
Abstract
Antibiotics and antimicrobials are used, misused and overused in human and veterinary medicine, animal husbandry and aquaculture. These compounds can persist in both human and animal waste and then enter the environment through a variety of mechanisms. Though generally measured environmental concentrations (MECs) of antibiotics in aquatic systems are significantly lower than point of therapeutic use concentrations, there is increasing evidence that suggests these concentrations may still enrich antimicrobial resistant bacteria. In light of this evidence, a rigorous and standardised novel methodology needs to be developed which can perform environmental risk assessment (ERA) of antimicrobials in terms of their selective potential as well as their environmental impact, to ensure that diffuse and point source discharges are safe. This review summarises and critically appraises the current methodological approaches that study selection at below point of therapeutic use, or sub-inhibitory, concentrations of antibiotics. We collate and compare selective concentration data generated to date. We recommend how these data can be interpreted in line with current ERA guidelines; outlining and describing novel concepts unique to risk assessment of AMR (such as direct selection of AMR or increased persistence of AMR). We consolidate terminology used thus far into a single framework that could be adopted moving forward, by proposing predicted no effect concentrations for resistance (PNECRs) and predicted no effect concentrations for persistence (PNECPs) be determined in AMR risk assessment. Such a framework will contribute to antibiotic stewardship and by extension, protection of human health, food security and the global economy.
Collapse
Affiliation(s)
- Aimee K Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment & Sustainability Institute, Penryn Campus, TR10 9FE, United Kingdom.
| | - Isobel Stanton
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment & Sustainability Institute, Penryn Campus, TR10 9FE, United Kingdom
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment & Sustainability Institute, Penryn Campus, TR10 9FE, United Kingdom
| | - Jason Snape
- AstraZeneca Global Sustainability, Alderley Park, Macclesfield, SK10 4TF, United Kingdom
| |
Collapse
|
18
|
Abstract
Class D β-lactamases are composed of 14 families and the majority of the member enzymes are included in the OXA family. The genes for class D β-lactamases are frequently identified in the chromosome as an intrinsic resistance determinant in environmental bacteria and a few of these are found in mobile genetic elements carried by clinically significant pathogens. The most dominant OXA family among class D β-lactamases is superheterogeneous and the family needs to have an updated scheme for grouping OXA subfamilies through phylogenetic analysis. The OXA enzymes, even the members within a subfamily, have a diverse spectrum of resistance. Such varied activity could be derived from their active sites, which are distinct from those of the other serine β-lactamases. Their substrate profile is determined according to the size and position of the P-, Ω- and β5-β6 loops, assembling the active-site channel, which is very hydrophobic. Also, amino acid substitutions occurring in critical structures may alter the range of hydrolysed substrates and one subfamily could include members belonging to several functional groups. This review aims to describe the current class D β-lactamases including the functional groups, occurrence types (intrinsic or acquired) and substrate spectra and, focusing on the major OXA family, a new model for subfamily grouping will be presented.
Collapse
Affiliation(s)
- Eun-Jeong Yoon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
19
|
Tietgen M, Leukert L, Sommer J, Kramer JS, Brunst S, Wittig I, Proschak E, Göttig S. Characterization of the novel OXA-213-like β-lactamase OXA-822 from Acinetobacter calcoaceticus. J Antimicrob Chemother 2021; 76:626-634. [PMID: 33201995 DOI: 10.1093/jac/dkaa488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/29/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES This study analysed the novel carbapenem-hydrolysing class D β-lactamase OXA-822 identified in the clinical Acinetobacter calcoaceticus isolate AC_2117. METHODS WGS was employed for identification of β-lactamases. Micro-broth dilution was used for evaluation of antibiotic susceptibility of AC_2117 and transformants containing blaOXA-822. After heterologous purification of OXA-822, OXA-359 and OXA-213, enzyme kinetics were determined using spectrometry. The effect of OXA-822 upon meropenem treatment was analysed in the Galleria mellonella in vivo infection model. RESULTS OXA-822 is a member of the intrinsic OXA-213-like family found in A. calcoaceticus and Acinetobacter pittii. Amino acid sequence similarity to the nearest related OXA-359 was 97%. Production of OXA-822, OXA-359 and OXA-213 in Acinetobacter baumannii ATCC® 19606T resulted in elevated MICs for carbapenems (up to 16-fold). Penicillinase activity of the purified OXA-822 revealed high KM values, in the millimolar range, combined with high turnover numbers. OXA-822 showed the highest affinity to carbapenems, but affinity to imipenem was ∼10-fold lower compared with other carbapenems. Molecular modelling revealed that imipenem does not interact with a negatively charged side chain of OXA-822, as doripenem does, leading to the lower affinity. Presence of OXA-822 decreased survival of infected Galleria mellonella larvae after treatment with meropenem. Only 52.7% ± 7.7% of the larvae survived after 24 h compared with 90.9% ± 3.7% survival in the control group. CONCLUSIONS The novel OXA-822 from a clinical A. calcoaceticus isolate displayed penicillinase and carbapenemase activity in vitro, elevated MICs in different species and decreased carbapenem susceptibility in A. baumannii in vivo.
Collapse
Affiliation(s)
- Manuela Tietgen
- Institute for Medical Microbiology and Infection Control, Hospital of the Goethe University, Frankfurt am Main, Germany.,Faculty of Biological Sciences of the Goethe University, Frankfurt am Main, Germany.,University Center of Competence for Infection Control of the State of Hesse, Frankfurt am Main, Germany
| | - Laura Leukert
- Institute for Medical Microbiology and Infection Control, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Julian Sommer
- Institute for Medical Microbiology and Infection Control, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Jan S Kramer
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Steffen Brunst
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, Hospital of the Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
20
|
Yin J, Zhang T, Cai J, Lou J, Cheng D, Zhou W, Xu C, Liu Y, Gao H, Yu Z. PBP1a glycosyltransferase and transpeptidase activities are both required for maintaining cell morphology and envelope integrity in Shewanella oneidensis. FEMS Microbiol Lett 2021; 367:5731804. [PMID: 32037461 DOI: 10.1093/femsle/fnaa026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/07/2020] [Indexed: 12/29/2022] Open
Abstract
In rod-shaped Gram-negative bacteria, penicillin binding protein 1a (PBP1a) and 1b (PBP1b) form peptidoglycan-synthesizing complexes with the outer membrane lipoprotein LpoA and LpoB, respectively. Escherichia coli mutants lacking PBP1b/LpoB are sicker than those lacking PBP1a/LpoA. However, we previously found that mutants lacking PBP1a/LpoA but not PBP1b/LpoB are deleterious in Shewanella oneidensis. Here, we show that S. oneidensis PBP1a (SoPBP1a) contains conserved signature motifs with its E. coli counterpart, EcPBP1a. Although EcPBP1a play a less prominent role in E. coli, it is capable of substituting for the SoPBP1a in a manner dependent on SoLpoA. In S. oneidensis, expression of PBP1b is lower than PBP1a, and therefore the additional expression of SoPBP1b at low levels can functionally compensate for the absence of SoPBP1a. Importantly, S. oneidensis PBP1a variants lacking either glycosyltransferase (GTase) or transpeptidase (TPase) activity fail to maintain normal morphology and cell envelope integrity. Similarly, SoPBP1b variants also fail to compensate for the loss of SoPBP1a. Furthermore, overproduction of variants of SoPBP1a, but not SoPBP1b, has detrimental effects on cell morphology in S. oneidensis wild type cells. Overall, our results indicate that the combined enzymatic activities of SoPBP1a are essential for cell wall homeostasis.
Collapse
Affiliation(s)
- Jianhua Yin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| | - Ting Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| | - Jingxiao Cai
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| | - Jie Lou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| | - Dan Cheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| | - Weifeng Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| | - Chaoyi Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| | - Yanqiu Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| | - Haichun Gao
- College of Life sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang Province, China
| | - Zhiliang Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| |
Collapse
|
21
|
Rivera-Izquierdo M, Láinez-Ramos-Bossini AJ, Rivera-Izquierdo C, López-Gómez J, Fernández-Martínez NF, Redruello-Guerrero P, Martín-delosReyes LM, Martínez-Ruiz V, Moreno-Roldán E, Jiménez-Mejías E. OXA-48 Carbapenemase-Producing Enterobacterales in Spanish Hospitals: An Updated Comprehensive Review on a Rising Antimicrobial Resistance. Antibiotics (Basel) 2021; 10:antibiotics10010089. [PMID: 33477731 PMCID: PMC7832331 DOI: 10.3390/antibiotics10010089] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/16/2021] [Indexed: 12/14/2022] Open
Abstract
Carbapenemase-producing Enterobacterales (CPE) are significant contributors to the global public health threat of antimicrobial resistance. OXA-48-like enzymes and their variants are unique carbapenemases with low or null hydrolytic activity toward carbapenems but no intrinsic activity against expanded-spectrum cephalosporins. CPEs have been classified by the WHO as high-priority pathogens given their association with morbidity and mortality and the scarce number of effective antibiotic treatments. In Spain, the frequency of OXA-48 CPE outbreaks is higher than in other European countries, representing the major resistance mechanism of CPEs. Horizontal transfer of plasmids and poor effective antibiotic treatment are additional threats to the correct prevention and control of these hospital outbreaks. One of the most important risk factors is antibiotic pressure, specifically carbapenem overuse. We explored the use of these antibiotics in Spain and analyzed the frequency, characteristics and prevention of CPE outbreaks. Future antibiotic stewardship programs along with specific preventive measures in hospitalized patients must be reinforced and updated in Spain.
Collapse
Affiliation(s)
- Mario Rivera-Izquierdo
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain; (C.R.-I.); (L.M.M.-d.); (V.M.-R.); (E.M.-R.); (E.J.-M.)
- Service of Preventive Medicine and Public Health, Hospital Clínico San Cecilio, 18016 Granada, Spain
- Biosanitary Institute of Granada, ibs.GRANADA, 18012 Granada, Spain
- Correspondence:
| | | | - Carlos Rivera-Izquierdo
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain; (C.R.-I.); (L.M.M.-d.); (V.M.-R.); (E.M.-R.); (E.J.-M.)
- Service of Ginecology and Obstetrics, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Jairo López-Gómez
- Service of Internal Medicine, San Cecilio University Hospital, 18016 Granada, Spain;
| | - Nicolás Francisco Fernández-Martínez
- Department of Preventive Medicine and Public Health, Reina Sofía University Hospital, 14004 Córdoba, Spain;
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), 14001 Córdoba, Spain
| | | | - Luis Miguel Martín-delosReyes
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain; (C.R.-I.); (L.M.M.-d.); (V.M.-R.); (E.M.-R.); (E.J.-M.)
| | - Virginia Martínez-Ruiz
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain; (C.R.-I.); (L.M.M.-d.); (V.M.-R.); (E.M.-R.); (E.J.-M.)
- Biosanitary Institute of Granada, ibs.GRANADA, 18012 Granada, Spain
- CIBER of Epidemiology and Public Health of Spain (CIBERESP), 28029 Madrid, Spain
| | - Elena Moreno-Roldán
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain; (C.R.-I.); (L.M.M.-d.); (V.M.-R.); (E.M.-R.); (E.J.-M.)
- Biosanitary Institute of Granada, ibs.GRANADA, 18012 Granada, Spain
| | - Eladio Jiménez-Mejías
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain; (C.R.-I.); (L.M.M.-d.); (V.M.-R.); (E.M.-R.); (E.J.-M.)
- Biosanitary Institute of Granada, ibs.GRANADA, 18012 Granada, Spain
- CIBER of Epidemiology and Public Health of Spain (CIBERESP), 28029 Madrid, Spain
- Teaching and Research in Family Medicine SEMERGEN-UGR, University of Granada, 18016 Granada, Spain
| |
Collapse
|
22
|
Zhang X, Ouyang J, He W, Zeng T, Liu B, Jiang H, Zhang Y, Zhou L, Zhou H, Liu Z, Liu L. Co-occurrence of Rapid Gene Gain and Loss in an Interhospital Outbreak of Carbapenem-Resistant Hypervirulent ST11-K64 Klebsiella pneumoniae. Front Microbiol 2020; 11:579618. [PMID: 33281772 PMCID: PMC7688671 DOI: 10.3389/fmicb.2020.579618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
We report an outbreak of carbapenemase-producing hypervirulent Klebsiella pneumoniae in two hospitals that undergo frequent patient transfers. Analysis of 11 completely assembled genomes showed that the bacteria were ST11-K64 strains. Moreover, 12 single nucleotide polymorphisms (SNPs) identified the strains as having originated from the same cluster, and were also indicative of the interhospital transmission of infection. Five plasmids were assembled in each of the strains. One plasmid carried several virulence genes, including the capsular polysaccharide regulators rmpA and rmpA2. Two others carried antimicrobial-resistance genes, including one for carbapenem resistance, blaKPC–2. Comparative genomic analysis indicated the occurrence of frequent and rapid gain and loss of genomic content along transmissions and the co-existence of progeny strains in the same ward. A 10-kbp fragment harboring antimicrobial resistance-conferring genes flanked by insert sequences was missing in a plasmid from strain KP20194c in patient 3, and this strain also likely subsequently infected patient 4. However, strains containing the 10-kbp fragment were also isolated from the ward environment at approximately the same time, and harbored different chromosome indels. Tn1721 and multiple additional insert sequence-mediated transpositions were also seen. These results indicated that there is a rapid reshaping and diversification of the genomic pool of K. pneumoniae facilitated by mobile genetic elements, even a short time after outbreak onset. ST11-K64 CR-hvKP strains have the potential to become new significant superbugs and a threat to public health.
Collapse
Affiliation(s)
- XiaoTuan Zhang
- Clinical Laboratory, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - JingLin Ouyang
- Department of Ultrasound Medicine, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - WenWen He
- Clinical Laboratory, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Tong Zeng
- Clinical Laboratory, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Bin Liu
- Clinical Laboratory, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Hongtao Jiang
- Department of Organ Transplantation, The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Yunsheng Zhang
- Clinical Research Center, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Linlin Zhou
- Clinical Research Center, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Haijian Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhuoran Liu
- Clinical Laboratory, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Logen Liu
- Clinical Research Center, The Second Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
23
|
Hammer-Dedet F, Jumas-Bilak E, Licznar-Fajardo P. The Hydric Environment: A Hub for Clinically Relevant Carbapenemase Encoding Genes. Antibiotics (Basel) 2020; 9:antibiotics9100699. [PMID: 33076221 PMCID: PMC7602417 DOI: 10.3390/antibiotics9100699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/31/2022] Open
Abstract
Carbapenems are β-lactams antimicrobials presenting a broad activity spectrum and are considered as last-resort antibiotic. Since the 2000s, carbapenemase producing Enterobacterales (CPE) have emerged and are been quickly globally spreading. The global dissemination of carbapenemase encoding genes (CEG) within clinical relevant bacteria is attributed in part to its location onto mobile genetic elements. During the last decade, carbapenemase producing bacteria have been isolated from non-human sources including the aquatic environment. Aquatic ecosystems are particularly impacted by anthropic activities, which conduce to a bidirectional exchange between aquatic environments and human beings and therefore the aquatic environment may constitute a hub for CPE and CEG. More recently, the isolation of autochtonous aquatic bacteria carrying acquired CEG have been reported and suggest that CEG exchange by horizontal gene transfer occurred between allochtonous and autochtonous bacteria. Hence, aquatic environment plays a central role in persistence, dissemination and emergence of CEG both within environmental ecosystem and human beings, and deserves to be studied with particular attention.
Collapse
Affiliation(s)
- Florence Hammer-Dedet
- UMR 5569 HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, 34090 Montpellier, France; (F.H.-D.); (E.J.-B.)
| | - Estelle Jumas-Bilak
- UMR 5569 HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, 34090 Montpellier, France; (F.H.-D.); (E.J.-B.)
- Département d’Hygiène Hospitalière, CHU Montpellier, 34090 Montpellier, France
| | - Patricia Licznar-Fajardo
- UMR 5569 HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, 34090 Montpellier, France; (F.H.-D.); (E.J.-B.)
- Département d’Hygiène Hospitalière, CHU Montpellier, 34090 Montpellier, France
- Correspondence:
| |
Collapse
|
24
|
Brehony C, McGrath E, Brennan W, Tuohy A, Whyte T, Brisse S, Maiden M, Jolley K, Morris D, Cormican M. An MLST approach to support tracking of plasmids carrying OXA-48-like carbapenemase. J Antimicrob Chemother 2020; 74:1856-1862. [PMID: 31225613 PMCID: PMC6587408 DOI: 10.1093/jac/dkz136] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES The prevalence of infections caused by OXA-48-like carbapenemase-producing organisms in Ireland has increased dramatically since 2011 and is an urgent public health issue. Genome-based high-resolution genotyping was used to analyse clinical isolates submitted to the Irish Carbapenemase-Producing Enterobacteriaceae Reference Laboratory Service for a 13 month period (2016-17). METHODS A total of 109 OXA-48-producing non-duplicate clinical isolates from 16 submitting centres were sequenced. Using a gene-by-gene approach, isolate genomes were characterized by MLST and core genome MLST, and the presence of antimicrobial resistance determinants was determined. Reference mapping and a novel plasmid MLST-type approach was applied to determine plasmid background. RESULTS The OXA-48-like-producing isolates were Escherichia coli (n = 56), Klebsiella spp. (n = 46) and Enterobacter cloacae (n = 7). Amongst the E. coli isolates there were 37 different STs and amongst the Klebsiella spp. isolates there were 27 different STs. blaOXA-48 was present in 105/109 (96.3%) of isolates. Based on mapping analysis and detection of the pOXA-48 IncL-type plasmid replicon and backbone genes, a pOXA-48-like plasmid was identified in 93/109 isolates (85.3%). The remaining isolates (n = 16; 14.7%) harboured blaOXA-48-like genes in unknown environments. Using a gene-by-gene approach two pOXA-48-like plasmid groups with 2/71 pOXA-48-like locus differences between them were identified. CONCLUSIONS In Ireland we found a diversity of genotypes associated with OXA-48-like-producing clinical isolates with the IncL pOXA-48 plasmid type predominating as the blaOXA-48 genetic environment. A plasmid MLST approach can rapidly identify plasmids associated with outbreaks and monitor spread of types temporally and geographically.
Collapse
Affiliation(s)
- Carina Brehony
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland
| | - Elaine McGrath
- National CPE Reference Laboratory, University Hospital Galway, Galway, Ireland
| | - Wendy Brennan
- National CPE Reference Laboratory, University Hospital Galway, Galway, Ireland
| | - Alma Tuohy
- National CPE Reference Laboratory, University Hospital Galway, Galway, Ireland
| | - Thomas Whyte
- National CPE Reference Laboratory, University Hospital Galway, Galway, Ireland
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Paris, France
| | - Martin Maiden
- Department of Zoology, University of Oxford, Oxford, UK
| | - Keith Jolley
- Department of Zoology, University of Oxford, Oxford, UK
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland
| | - Martin Cormican
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland.,National CPE Reference Laboratory, University Hospital Galway, Galway, Ireland
| |
Collapse
|
25
|
Buongermino Pereira M, Österlund T, Eriksson KM, Backhaus T, Axelson-Fisk M, Kristiansson E. A comprehensive survey of integron-associated genes present in metagenomes. BMC Genomics 2020; 21:495. [PMID: 32689930 PMCID: PMC7370490 DOI: 10.1186/s12864-020-06830-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Background Integrons are genomic elements that mediate horizontal gene transfer by inserting and removing genetic material using site-specific recombination. Integrons are commonly found in bacterial genomes, where they maintain a large and diverse set of genes that plays an important role in adaptation and evolution. Previous studies have started to characterize the wide range of biological functions present in integrons. However, the efforts have so far mainly been limited to genomes from cultivable bacteria and amplicons generated by PCR, thus targeting only a small part of the total integron diversity. Metagenomic data, generated by direct sequencing of environmental and clinical samples, provides a more holistic and unbiased analysis of integron-associated genes. However, the fragmented nature of metagenomic data has previously made such analysis highly challenging. Results Here, we present a systematic survey of integron-associated genes in metagenomic data. The analysis was based on a newly developed computational method where integron-associated genes were identified by detecting their associated recombination sites. By processing contiguous sequences assembled from more than 10 terabases of metagenomic data, we were able to identify 13,397 unique integron-associated genes. Metagenomes from marine microbial communities had the highest occurrence of integron-associated genes with levels more than 100-fold higher than in the human microbiome. The identified genes had a large functional diversity spanning over several functional classes. Genes associated with defense mechanisms and mobility facilitators were most overrepresented and more than five times as common in integrons compared to other bacterial genes. As many as two thirds of the genes were found to encode proteins of unknown function. Less than 1% of the genes were associated with antibiotic resistance, of which several were novel, previously undescribed, resistance gene variants. Conclusions Our results highlight the large functional diversity maintained by integrons present in unculturable bacteria and significantly expands the number of described integron-associated genes.
Collapse
Affiliation(s)
- Mariana Buongermino Pereira
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Tobias Österlund
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - K Martin Eriksson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.,Gothenburg Centre for Sustainable Development, Chalmers University of Technology, Gothenburg, Sweden
| | - Thomas Backhaus
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Marina Axelson-Fisk
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden. .,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
26
|
Antimicrobial Drug-Resistant Gram-Negative Saprophytic Bacteria Isolated from Ambient, Near-Shore Sediments of an Urbanized Estuary: Absence of β-Lactamase Drug-Resistance Genes. Antibiotics (Basel) 2020; 9:antibiotics9070400. [PMID: 32664302 PMCID: PMC7400359 DOI: 10.3390/antibiotics9070400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 01/21/2023] Open
Abstract
We assessed the prevalence of antimicrobial resistance and screened for clinically relevant β-lactamase resistance determinants in Gram-negative bacteria from a large urbanized estuary. In contrast to the broad literature documenting potentially hazardous resistance determinants near wastewater treatment discharge points and other local sources of aquatic pollution, we employed a probabilistic survey design to examine ambient, near-shore sediments. We plated environmental samples from 40 intertidal and shallow subtidal areas around San Francisco Bay (California, USA) on drug-supplemented MacConkey agar, and we tested isolates for antimicrobial resistance and presence of clinically relevant β-lactamase resistance determinants. Of the 74 isolates identified, the most frequently recovered taxa were Vibrio spp. (40%), Shewanella spp. (36%), Pseudomonas spp. (11%), and Aeromonas spp. (4%). Of the 55 isolates tested for antimicrobial resistance, the Vibrio spp. showed the most notable resistance profiles. Most (96%) were resistant to ampicillin, and two isolates showed multidrug-resistant phenotypes: V. alginolyticus (cefotaxime, ampicillin, gentamicin, cefoxitin) and V. fluvialis (cefotaxime, ampicillin, cefoxitin). Targeted testing for class 1 integrons and presence of β-lactam-resistance gene variants TEM, SHV, OXA, CTX-M, and Klebsiella pneumonia carbapenemase (KPC) did not reveal any isolates harboring these resistance determinants. Thus, while drug-resistant, Gram-negative bacteria were recovered from ambient sediments, neither clinically relevant strains nor mobile β-lactam resistance determinants were found. This suggests that Gram-negative bacteria in this well-managed, urbanized estuary are unlikely to constitute a major human exposure hazard at this time.
Collapse
|
27
|
Shewanella harboring antimicrobial and copper resistance genes in sea urchins (Paracentrotus lividus) from the Crozon peninsula (Brittany, France). INFECTION GENETICS AND EVOLUTION 2020; 85:104437. [PMID: 32574704 DOI: 10.1016/j.meegid.2020.104437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022]
Abstract
Shewanella is a genus of aquatic non-fermenting Gram-negative bacteria with increasing numbers of reports of infections in humans and appearance of antimicrobial resistant strains. Cases of infection show a relatively strong association with seafood consumption or exposure to seawater. This study aimed to analyze Shewanella spp. isolated from the sea urchin Paracentrotus lividus collected from the Crozon peninsula (France) with the intention of obtaining insights into the role of this genus as a reservoir of antimicrobial and heavy metal resistance genes. Five among seven Shewanella isolates were resistant to antimicrobials, mainly to broad spectrum beta-lactams. Four isolates displayed multiple resistance to at least three of these antimicrobial classes: broad spectrum beta-lactams, aminoglycosides, macrolide, quinolones and/or tetracycline. Three antimicrobial resistance genes were detected in just one isolate encoding resistance to beta-lactam (blaSHV and blaTEM-1) and macrolide (ermB). In addition, the copper resistance gene cusB, was observed in this isolate which is also a plasmid carrier. Another copper resistance encoding gene, copA, was found among the isolates. These results indicate that the multidrug-resistant (MDR) Shewanella isolates and resistance genes could be potential risks to public health, due to the carrying of these MDR bacteria by sea urchins through human consumption.
Collapse
|
28
|
Zago V, Veschetti L, Patuzzo C, Malerba G, Lleo MM. Shewanella algae and Vibrio spp. strains isolated in Italian aquaculture farms are reservoirs of antibiotic resistant genes that might constitute a risk for human health. MARINE POLLUTION BULLETIN 2020; 154:111057. [PMID: 32174504 DOI: 10.1016/j.marpolbul.2020.111057] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/28/2020] [Accepted: 03/07/2020] [Indexed: 05/27/2023]
Abstract
The aquatic environment can represent a reservoir of antimicrobial resistance genes. In the present study, phenotypical, biochemical and molecular techniques were used to screen a collection of marine strains isolated in Italian aquaculture farms to investigate their beta-lactam resistance profiles. The genome of 12 carbapenemase and/or beta-lactamase producing strains was sequenced and a phylogenetic analysis of the beta-lactamases found in their chromosomes was performed. Gene annotation and prediction revealed the presence of blaAmpC and blaOXA-55-like in all the Shewanella algae isolates whereas in Vibrio anguillarum and Vibrio parahaemolyticus strains, blaAmpC and blaCARB-19 were found, respectively. Multiple alignments of OXA-55-like and AmpC protein sequences showed different point mutations. Finally, comparisons between enzyme phylogeny and strain clusterization based on sampling sites and dates indicate the diffusion of specific Multi Drug Resistant (MDR) Shewanella algae clones along the Italian Adriatic coast.
Collapse
Affiliation(s)
- Vanessa Zago
- Department of Diagnostics and Public Health, University of Verona, Italy
| | - Laura Veschetti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Cristina Patuzzo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Giovanni Malerba
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Maria M Lleo
- Department of Diagnostics and Public Health, University of Verona, Italy.
| |
Collapse
|
29
|
Whole-Genome Characterization of a Shewanella algae Strain Coharboring bla CTX-M-15 and armA Genes on a Novel IncC Plasmid. Antimicrob Agents Chemother 2020; 64:AAC.00267-20. [PMID: 32179520 DOI: 10.1128/aac.00267-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
30
|
Zago V, Veschetti L, Patuzzo C, Malerba G, Lleo MM. Resistome, Mobilome and Virulome Analysis of Shewanella algae and Vibrio spp. Strains Isolated in Italian Aquaculture Centers. Microorganisms 2020; 8:microorganisms8040572. [PMID: 32326629 PMCID: PMC7232470 DOI: 10.3390/microorganisms8040572] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/02/2020] [Accepted: 04/13/2020] [Indexed: 12/27/2022] Open
Abstract
Antimicrobial resistance is a major public health concern restricted not only to healthcare settings but also to veterinary and environmental ones. In this study, we analyzed, by whole genome sequencing (WGS) the resistome, mobilome and virulome of 12 multidrug-resistant (MDR) marine strains belonging to Shewanellaceae and Vibrionaceae families collected at aquaculture centers in Italy. The results evidenced the presence of several resistance mechanisms including enzyme and efflux pump systems conferring resistance to beta-lactams, quinolones, tetracyclines, macrolides, polymyxins, chloramphenicol, fosfomycin, erythromycin, detergents and heavy metals. Mobilome analysis did not find circular elements but class I integrons, integrative and conjugative element (ICE) associated modules, prophages and different insertion sequence (IS) family transposases. These mobile genetic elements (MGEs) are usually present in other aquatic bacteria but also in Enterobacteriaceae suggesting their transferability among autochthonous and allochthonous bacteria of the resilient microbiota. Regarding the presence of virulence factors, hemolytic activity was detected both in the Shewanella algae and in Vibrio spp. strains. To conclude, these data indicate the role as a reservoir of resistance and virulence genes in the environment of the aquatic microbiota present in the examined Italian fish farms that potentially might be transferred to bacteria of medical interest.
Collapse
Affiliation(s)
- Vanessa Zago
- Department of Diagnostics and Public Health, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy;
| | - Laura Veschetti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (L.V.); (C.P.); (G.M.)
| | - Cristina Patuzzo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (L.V.); (C.P.); (G.M.)
| | - Giovanni Malerba
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (L.V.); (C.P.); (G.M.)
| | - Maria M. Lleo
- Department of Diagnostics and Public Health, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy;
- Correspondence: ; Tel.: +39-045-802-7194
| |
Collapse
|
31
|
Masseron A, Poirel L, Falgenhauer L, Imirzalioglu C, Kessler J, Chakraborty T, Nordmann P. Ongoing dissemination of OXA-244 carbapenemase-producing Escherichia coli in Switzerland and their detection. Diagn Microbiol Infect Dis 2020; 97:115059. [PMID: 32387849 DOI: 10.1016/j.diagmicrobio.2020.115059] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 01/01/2023]
Abstract
OXA-244 is a derivative of OXA-48 showing weaker carbapenemase activity, compromising the detection of corresponding producers in clinical laboratories. Since 2017, the Swiss National Reference Center for Emerging Antibiotic Resistance noticed an increased identification of OXA-244-producing Escherichia coli (n=15) within the country. Different methods (biochemical and immunoassay tests, screening culture media) were tested for the detection of OXA-244 producers. Whole genome sequencing was used to investigate the genetic relatedness between the isolates and the genetic structures at the origin of the acquisition of the blaOXA-244 gene. The mSuperCARBA® medium and the NG-Test CARBA5 assay were found to be suitable tools for detecting all OXA-244-producing isolates. Other selective media did not perform optimally. Among the fifteen strains, five sequence types were identified, with ST38 being predominant. The blaOXA-244 gene was located on the chromosome for all isolates. Overall, detection of OXA-244 producers is challenging and specific guidelines must be followed.
Collapse
Affiliation(s)
- Amandine Masseron
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Switzerland; INSERM European Unit (IAME, France), University of Fribourg, Switzerland; Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Switzerland.
| | - Linda Falgenhauer
- Institute of Medical Microbiology, and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, Giessen, Germany; Institute of Hygiene and Environmental Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Can Imirzalioglu
- Institute of Medical Microbiology, and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, Giessen, Germany
| | - Julie Kessler
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Switzerland
| | - Trinad Chakraborty
- Institute of Medical Microbiology, and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, Giessen, Germany
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Switzerland; INSERM European Unit (IAME, France), University of Fribourg, Switzerland; Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Switzerland; Institute of Hygiene and Environmental Medicine, Justus Liebig University Giessen, Giessen, Germany; Institute for Microbiology, University of Lausanne and University Hospital Centre, Lausanne, Switzerland
| |
Collapse
|
32
|
Abstract
Surveillance studies have shown that OXA-48-like carbapenemases are the most common carbapenemases in Enterobacterales in certain regions of the world and are being introduced on a regular basis into regions of nonendemicity, where they are responsible for nosocomial outbreaks. OXA-48, OXA-181, OXA-232, OXA-204, OXA-162, and OXA-244, in that order, are the most common enzymes identified among the OXA-48-like carbapenemase group. OXA-48 is associated with different Tn1999 variants on IncL plasmids and is endemic in North Africa and the Middle East. OXA-162 and OXA-244 are derivatives of OXA-48 and are present in Europe. OXA-181 and OXA-232 are associated with ISEcp1, Tn2013 on ColE2, and IncX3 types of plasmids and are endemic in the Indian subcontinent (e.g., India, Bangladesh, Pakistan, and Sri Lanka) and certain sub-Saharan African countries. Overall, clonal dissemination plays a minor role in the spread of OXA-48-like carbapenemases, but certain high-risk clones (e.g., Klebsiella pneumoniae sequence type 147 [ST147], ST307, ST15, and ST14 and Escherichia coli ST38 and ST410) have been associated with the global dispersion of OXA-48, OXA-181, OXA-232, and OXA-204. Chromosomal integration of bla OXA-48 within Tn6237 occurred among E. coli ST38 isolates, especially in the United Kingdom. The detection of Enterobacterales with OXA-48-like enzymes using phenotypic methods has improved recently but remains challenging for clinical laboratories in regions of nonendemicity. Identification of the specific type of OXA-48-like enzyme requires sequencing of the corresponding genes. Bacteria (especially K. pneumoniae and E. coli) with bla OXA-48, bla OXA-181, and bla OXA-232 are emerging in different parts of the world and are most likely underreported due to problems with the laboratory detection of these enzymes. The medical community should be aware of the looming threat that is posed by bacteria with OXA-48-like carbapenemases.
Collapse
|
33
|
Mahon BM, Brehony C, Cahill N, McGrath E, O'Connor L, Varley A, Cormican M, Ryan S, Hickey P, Keane S, Mulligan M, Ruane B, Jolley KA, Maiden MC, Brisse S, Morris D. Detection of OXA-48-like-producing Enterobacterales in Irish recreational water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:1-6. [PMID: 31299565 DOI: 10.1016/j.scitotenv.2019.06.480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
The rapid dissemination of carbapenemase-producing Enterobacterales (CPE) is a major public health concern. The role that the aquatic environment plays in this dissemination is underexplored. This study aimed to examine seawater as a reservoir for CPE. Seawater sampling took place at a bathing site throughout the 2017 bathing season. Each 30 L sample (n = 6) was filtered using the CapE filtration system. Wastewater samples (200 mL) (pre-treatment (n = 3) and post-treatment (n = 3)) were obtained from a nearby secondary wastewater treatment plant, during the same time period. All samples were examined for CPE. Whole genome sequencing of confirmed CPE was carried out using Illumina sequencing. Isolate genomes were hosted in corresponding BIGSdb databases and analyses were performed using multiple web-based tools. CPE was detected in 2/6 seawater samples. It was not detected in any wastewater samples. OXA-48-like-producing ST131 Escherichia coli (Ec_BM707) was isolated from a seawater sample collected in May 2017 and OXA-48-like-producing ST101 Klebsiella pneumoniae (Kp_BM758) was isolated from a seawater sample collected in August 2017. The genomes of the environmental isolates were compared to a collection of previously described Irish clinical OXA-48-like-producing Enterobacterales (n = 105). Ec_BM707 and Kp_BM758 harboured blaOXA-48 on similar mobile genetic elements to those identified in the clinical collection (pOXA-48 fragment in Ec_BM707 and IncL(pOXA-48) plasmid in Kp_BM758). Genetic similarities were observed between Ec_BM707 and several of the clinical ST131 E. coli, with allele matches at up to 98.2% of 2513 core genome multilocus sequence type (cgMLST) loci. In contrast, Kp_BM758 and the 34 clinical K. pneumoniae were genetically distant. The source of the CPE at this site was not identified. The detection of OXA-48-like-producing ST131 E. coli and OXA-48-like-producing ST101 K. pneumoniae in Irish recreational water is a concern. The potential for contamination of the aquatic environment to contribute to dissemination of CPE in Europe warrants further study.
Collapse
Affiliation(s)
- Bláthnaid M Mahon
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Ireland.
| | - Carina Brehony
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland
| | - Niamh Cahill
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Ireland
| | - Elaine McGrath
- Carbapenemase-Producing Enterobacterales Reference Laboratory, Department of Medical Microbiology, University Hospital Galway, Galway, Ireland
| | - Louise O'Connor
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Ireland
| | - Aine Varley
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland
| | - Martin Cormican
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Ireland; Carbapenemase-Producing Enterobacterales Reference Laboratory, Department of Medical Microbiology, University Hospital Galway, Galway, Ireland
| | - Sinead Ryan
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland
| | - Paul Hickey
- Environmental Health Service, HSE West, Galway, Ireland
| | - Shane Keane
- Environmental Health Service, HSE West, Galway, Ireland
| | | | | | - Keith A Jolley
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Martin C Maiden
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Paris, France
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Ireland
| |
Collapse
|
34
|
Cui X, Zhang H, Du H. Carbapenemases in Enterobacteriaceae: Detection and Antimicrobial Therapy. Front Microbiol 2019; 10:1823. [PMID: 31481937 PMCID: PMC6710837 DOI: 10.3389/fmicb.2019.01823] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) have spread rapidly around the world in the past few years, posing great challenges to human health. The plasmid-mediated horizontal transmission of carbapenem-resistance genes is the main cause of the surge in the prevalence of CRE. Therefore, the timely and accurate detection of CRE, especially carbapenemase-producing Enterobacteriaceae, is very important for the clinical prevention and treatment of these infections. A variety of methods for the rapid detection of CRE phenotypes and genotypes have been developed for use in clinical microbiology laboratories. To overcome the lack of efficient antibiotics, CRE infections are often treated with combination therapies. Moreover, novel drugs and emerging strategies appeared successively and in various stages of development. In this article, we summarized the global distribution of various carbapenemases. And we focused on summarizing and comparing the advantages and limitations of the detection methods and the therapeutic strategies of CRE primarily.
Collapse
Affiliation(s)
- Xiaoyan Cui
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
35
|
Mentasti M, Prime K, Sands K, Khan S, Wootton M. Rapid detection of IMP, NDM, VIM, KPC and OXA-48-like carbapenemases from Enterobacteriales and Gram-negative non-fermenter bacteria by real-time PCR and melt-curve analysis. Eur J Clin Microbiol Infect Dis 2019; 38:2029-2036. [DOI: 10.1007/s10096-019-03637-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
|
36
|
Bartley PS, Domitrovic TN, Moretto VT, Santos CS, Ponce-Terashima R, Reis MG, Barbosa LM, Blanton RE, Bonomo RA, Perez F. Antibiotic Resistance in Enterobacteriaceae from Surface Waters in Urban Brazil Highlights the Risks of Poor Sanitation. Am J Trop Med Hyg 2019; 100:1369-1377. [PMID: 30994094 PMCID: PMC6553890 DOI: 10.4269/ajtmh.18-0726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/30/2018] [Indexed: 01/11/2023] Open
Abstract
Surface waters are an unappreciated reservoir of antimicrobial resistance (AMR). Poor sanitation brings different species of environmental bacteria into contact, facilitating horizontal gene transfer. To investigate the role of surface waters as potential reservoirs of AMR, we studied the point prevalence of fecal contamination, AMR genes, and Enterobacteriaceae in an urban lake and rural river system in Northeast Brazil in comparison with a lake and sewer system in Northeast Ohio in the United States. Surface water samples were examined for evidence of human fecal contamination using microbial source tracking and screened for plasmid-mediated fluoroquinolone resistance and carbapenemase genes. Enterobacteriaceae were detected using selective agar followed by antimicrobial susceptibility testing and detection of AMR genes by microarray, and classified by repetitive sequence-based polymerase chain reaction and multilocus sequence typing. Concentrations of human fecal bacteria in the Brazilian urban lake and sewage in Northeast Ohio were similarly high. Filtered water samples from the Brazilian urban lake, however, showed the presence of bla OXA-48, bla KPC, bla VIM-2, qnrS, and aac(6')-lb-cr, whereas only bla VIM-2 was identified in raw sewage from Northeast Ohio. From the Brazilian urban lake, 85% of the Enterobacteriaceae (n = 40) cultured were resistant to at least one clinically important antibiotic, including ST131 Escherichia coli harboring the extended-spectrum beta-lactamase CTX-M. Although two isolates demonstrated polymyxin resistance, mcr-1/2 was not detected. Our findings indicate that surface waters in an urban Brazilian site can serve as an environmental reservoir of AMR and that improving wastewater treatment and sanitation generally may ameliorate AMR dissemination.
Collapse
Affiliation(s)
- Patricia S. Bartley
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - T. Nicholas Domitrovic
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| | | | | | - Rafael Ponce-Terashima
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Mitermayer G. Reis
- Laboratory Oswaldo Cruz Foundation, Salvador, Brazil
- Division of Infectious Diseases, School of Medicine and Public Health, Bahiana University, Salvador, Brazil
| | - Lucio M. Barbosa
- Laboratory Oswaldo Cruz Foundation, Salvador, Brazil
- Division of Infectious Diseases, School of Medicine and Public Health, Bahiana University, Salvador, Brazil
| | - Ronald E. Blanton
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Robert A. Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Medical Service and Geriatrics Research, Education and Clinical Center (GRECC), Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
- Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Case Western Reserve University, Cleveland, Ohio
| | - Federico Perez
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
- Medical Service and Geriatrics Research, Education and Clinical Center (GRECC), Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
- Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
37
|
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE) contribute significantly to the global public health threat of antimicrobial resistance. OXA-48 and its variants are unique carbapenemases with low-level hydrolytic activity toward carbapenems but no intrinsic activity against expanded-spectrum cephalosporins. bla OXA-48 is typically located on a plasmid but may also be integrated chromosomally, and this gene has progressively disseminated throughout Europe and the Middle East. Despite the inability of OXA-48-like carbapenemases to hydrolyze expanded-spectrum cephalosporins, pooled isolates demonstrate high variable resistance to ceftazidime and cefepime, likely representing high rates of extended-spectrum beta-lactamase (ESBL) coproduction. In vitro data from pooled studies suggest that avibactam is the most potent beta-lactamase inhibitor when combined with ceftazidime, cefepime, aztreonam, meropenem, or imipenem. Resistance to novel avibactam combinations such as imipenem-avibactam or aztreonam-avibactam has not yet been reported in OXA-48 producers, although only a few clinical isolates have been tested. Although combination therapy is thought to improve the chances of clinical cure and survival in CPE infection, successful outcomes were seen in ∼70% of patients with infections caused by OXA-48-producing Enterobacteriaceae treated with ceftazidime-avibactam monotherapy. A carbapenem in combination with either amikacin or colistin has achieved treatment success in a few case reports. Uncertainty remains regarding the best treatment options and strategies for managing these infections. Newly available antibiotics such as ceftazidime-avibactam show promise; however, recent reports of resistance are concerning. Newer choices of antimicrobial agents will likely be required to combat this problem.
Collapse
|
38
|
Flach CF, Genheden M, Fick J, Joakim Larsson DG. A Comprehensive Screening of Escherichia coli Isolates from Scandinavia's Largest Sewage Treatment Plant Indicates No Selection for Antibiotic Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11419-11428. [PMID: 30215260 DOI: 10.1021/acs.est.8b03354] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
There is concern that sewage treatment plants (STPs) serve as hotspots for emergence and selection of antibiotic resistant bacteria. However, field studies investigating resistance selection by comparing bacterial populations in influents and effluents have produced variable and sometimes contradictive results. Also, large taxonomic changes between influents and effluents make interpretation of studies measuring relative gene abundances ambiguous. The aim here was to investigate whether within-species selection occurs by conducting a comprehensive screening of Escherichia coli isolated from composite influent and effluent samples collected at Scandinavia's largest STP, accompanied by analyses of antibiotics residues. In total, 4028 isolates, collected on eight occasions during 18 months, were screened for resistance to seven antibiotics. Although differences in proportions of resistant E. coli between influent and effluent samples were detected for a few antibiotics on two occasions, aggregated data over time showed no such differences for any of the investigated antibiotics. Neither was there any enrichment of multiresistant or extended-spectrum beta-lactamase-producing isolates through the treatment process. Despite some antibiotics were detected at or close to concentrations predicted to provide some selective pressure, field observations of resistance profiles in E. coli do not provide support for systematic selection in the investigated STP.
Collapse
Affiliation(s)
- Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research (CARe) , University of Gothenburg , 41346 Gothenburg , Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , 41346 Gothenburg , Sweden
| | - Maja Genheden
- Centre for Antibiotic Resistance Research (CARe) , University of Gothenburg , 41346 Gothenburg , Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , 41346 Gothenburg , Sweden
| | - Jerker Fick
- Department of Chemistry , Umeå University , 90187 Umeå , Sweden
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe) , University of Gothenburg , 41346 Gothenburg , Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , 41346 Gothenburg , Sweden
| |
Collapse
|
39
|
Lloyd NA, Nazaret S, Barkay T. Whole genome sequences to assess the link between antibiotic and metal resistance in three coastal marine bacteria isolated from the mummichog gastrointestinal tract. MARINE POLLUTION BULLETIN 2018; 135:514-520. [PMID: 30301067 DOI: 10.1016/j.marpolbul.2018.07.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Antibiotic resistance is a global public health issue and metal exposure can co-select for antibiotic resistance. We examined genome sequences of three multi-drug and metal resistant bacteria: one Shewanella sp., and two Vibrio spp., isolated from the gut of the mummichog fish (Fundulus heteroclitus). Our primary goal was to understand the mechanisms of co-selection. Phenotypically, the strains showed elevated resistance to arsenate, mercury, and various types of β-lactams. The genomes contained genes of public health concern including one carbapenemase (blaOXA-48). Our analyses indicate that the co-selection phenotype is mediated by chromosomal resistance genes and cross-resistance. No evidence of co-resistance was found; most resistance genes were chromosomally located. Moreover, the identification of many efflux pump gene homologs indicates that cross-resistance and/or co-regulation may further contribute to resistance. We suggest that the mummichog gut microbiota may be a source of clinically relevant antibiotic resistance genes.
Collapse
Affiliation(s)
- Nicole A Lloyd
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, USA.
| | - Sylvie Nazaret
- UMR 5557 Ecologie Microbienne, CNRS, INRA, VetagroSup, UCBL, Université de Lyon, 43 Boulevard du 11 Novembre, F-69622 Villeurbanne, France
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, USA
| |
Collapse
|
40
|
Genetic and Biochemical Characterization of OXA-535, a Distantly Related OXA-48-Like β-Lactamase. Antimicrob Agents Chemother 2018; 62:AAC.01198-18. [PMID: 30082287 DOI: 10.1128/aac.01198-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/30/2018] [Indexed: 01/15/2023] Open
Abstract
OXA-535 is a chromosome-encoded carbapenemase of Shewanella bicestrii JAB-1 that shares only 91.3% amino acid sequence identity with OXA-48. Catalytic efficiencies are similar to those of OXA-48 for most β-lactams, except for ertapenem, where a 2,000-fold-higher efficiency was observed with OXA-535. OXA-535 and OXA-436, a plasmid-encoded variant of OXA-535 differing by three amino acids, form a novel cluster of distantly related OXA-48-like carbapenemases. Comparison of blaOXA-535 and blaOXA-436 genetic environments suggests that an ISCR1 may be responsible for blaOXA-436 gene mobilization from the chromosome of Shewanella spp. to plasmids.
Collapse
|
41
|
Wilson H, Török ME. Extended-spectrum β-lactamase-producing and carbapenemase-producing Enterobacteriaceae. Microb Genom 2018; 4:e000197. [PMID: 30035710 PMCID: PMC6113871 DOI: 10.1099/mgen.0.000197] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global public-health emergency, which threatens the advances made by modern medical care over the past century. The World Health Organization has recently published a global priority list of antibiotic-resistant bacteria, which includes extended-spectrum β-lactamase-producing Enterobacteriaceae and carbapenemase-producing Enterobacteriaceae. In this review, we highlight the mechanisms of resistance and the genomic epidemiology of these organisms, and the impact of AMR.
Collapse
Affiliation(s)
- Hayley Wilson
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - M. Estée Török
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Clinical Microbiology and Public Health Laboratory, Public Health England, Cambridge, UK
| |
Collapse
|
42
|
Juan C, Torrens G, González-Nicolau M, Oliver A. Diversity and regulation of intrinsic β-lactamases from non-fermenting and other Gram-negative opportunistic pathogens. FEMS Microbiol Rev 2018; 41:781-815. [PMID: 29029112 DOI: 10.1093/femsre/fux043] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/18/2017] [Indexed: 01/22/2023] Open
Abstract
This review deeply addresses for the first time the diversity, regulation and mechanisms leading to mutational overexpression of intrinsic β-lactamases from non-fermenting and other non-Enterobacteriaceae Gram-negative opportunistic pathogens. After a general overview of the intrinsic β-lactamases described so far in these microorganisms, including circa. 60 species and 100 different enzymes, we review the wide array of regulatory pathways of these β-lactamases. They include diverse LysR-type regulators, which control the expression of β-lactamases from relevant nosocomial pathogens such as Pseudomonas aeruginosa or Stenothrophomonas maltophilia or two-component regulators, with special relevance in Aeromonas spp., along with other pathways. Likewise, the multiple mutational mechanisms leading to β-lactamase overexpression and β-lactam resistance development, including AmpD (N-acetyl-muramyl-L-alanine amidase), DacB (PBP4), MrcA (PPBP1A) and other PBPs, BlrAB (two-component regulator) or several lytic transglycosylases among others, are also described. Moreover, we address the growing evidence of a major interplay between β-lactamase regulation, peptidoglycan metabolism and virulence. Finally, we analyse recent works showing that blocking of peptidoglycan recycling (such as inhibition of NagZ or AmpG) might be useful to prevent and revert β-lactam resistance. Altogether, the provided information and the identified gaps should be valuable for guiding future strategies for combating multidrug-resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Mar González-Nicolau
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| |
Collapse
|
43
|
Abstract
Ever since antibiotics were introduced into human and veterinary medicine to treat and prevent bacterial infections there has been a steady selection and increase in the frequency of antibiotic resistant bacteria. To be able to reduce the rate of resistance evolution, we need to understand how various biotic and abiotic factors interact to drive the complex processes of resistance emergence and transmission. We describe several of the fundamental factors that underlay resistance evolution, including rates and niches of emergence and persistence of resistant bacteria, time- and space-gradients of various selective agents, and rates and routes of transmission of resistant bacteria between humans, animals and other environments. Furthermore, we discuss the options available to reduce the rate of resistance evolution and/ or transmission and their advantages and disadvantages.
Collapse
|
44
|
Yin J, Sun Y, Sun Y, Yu Z, Qiu J, Gao H. Deletion of Lytic Transglycosylases Increases Beta-Lactam Resistance in Shewanella oneidensis. Front Microbiol 2018; 9:13. [PMID: 29403465 PMCID: PMC5786531 DOI: 10.3389/fmicb.2018.00013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/05/2018] [Indexed: 01/07/2023] Open
Abstract
Production of chromosome-encoded β-lactamases confers resistance to β-lactams in many Gram-negative bacteria. Some inducible β-lactamases, especially the class C β-lactamase AmpC in Enterobacteriaceae, share a common regulatory mechanism, the ampR-ampC paradigm. Induction of ampC is intimately linked to peptidoglycan recycling, and the LysR-type transcriptional regulator AmpR plays a central role in the process. However, our previous studies have demonstrated that the expression of class D β-lactamase gene blaA in Shewanella oneidensis is distinct from the established paradigm since an AmpR homolog is absent and major peptidoglycan recycling enzymes play opposite roles in β-lactamase expression. Given that lytic transglycosylases (LTs), a class of peptidoglycan hydrolases cleaving the β-1,4 glycosidic linkage in glycan strands of peptidoglycan, can disturb peptidoglycan recycling, and thus may affect induction of blaA. In this study, we investigated impacts of such enzymes on susceptibility to β-lactams. Deletion of three LTs (SltY, MltB and MltB2) increased β-lactam resistance, while four other LTs (MltD, MltD2, MltF, and Slt2) seemed dispensable to β-lactam resistance. The double LT mutants ΔmltBΔmltB2 and ΔsltYΔmltB2 had β-lactam resistance stronger than any of the single mutants. Deletion of ampG (encoding permease AmpG) and mrcA (encoding penicillin binding protein 1a, PBP1a) from both double LT mutants further increased the resistance to β-lactams. Notably, all increased β-lactam resistance phenotypes were in accordance with enhanced blaA expression. Although significant, the increase in β-lactamase activity after inactivating LTs is much lower than that produced by PBP1a inactivation. Our data implicate that LTs play important roles in blaA expression in S. oneidensis.
Collapse
Affiliation(s)
- Jianhua Yin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, China.,College of Life Sciences, Nanchang University, Nanchang, China
| | - Yiyang Sun
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yijuan Sun
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhiliang Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Juanping Qiu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Biodegradation of sulfonamides by Shewanella oneidensis MR-1 and Shewanella sp. strain MR-4. Biodegradation 2018; 29:129-140. [PMID: 29302823 DOI: 10.1007/s10532-017-9818-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 12/29/2017] [Indexed: 10/18/2022]
Abstract
Because of extensive sulfonamides application in aquaculture and animal husbandry and the consequent increase in sulfonamides discharged into the environment, strategies to remediate sulfonamide-contaminated environments are essential. In this study, the resistance of Shewanella oneidensis MR-1 and Shewanella sp. strain MR-4 to the sulfonamides sulfapyridine (SPY) and sulfamethoxazole (SMX) were determined, and sulfonamides degradation by these strains was assessed. Shewanella oneidensis MR-1 and Shewanella sp. strain MR-4 were resistant to SPY and SMX concentrations as high as 60 mg/L. After incubation for 5 days, 23.91 ± 1.80 and 23.43 ± 2.98% of SPY and 59.88 ± 1.23 and 63.89 ± 3.09% of SMX contained in the medium were degraded by S. oneidensis MR-1 and Shewanella sp. strain MR-4, respectively. The effects of the initial concentration of the sulfonamides and initial pH of the medium on biodegradation, and the degradation of different sulfonamides were assessed. The products were measured by LC-MS; with SPY as a substrate, 2-AP (2-aminopyridine) was the main stable metabolite, and with SMX as a substrate, 3A5MI (3-amino-5-methyl-isoxazole) was the main stable metabolite. The co-occurrence of 2-AP or 3A5MI and 4-aminobenzenesulfonic acid suggests that the initial step in the biodegradation of the two sulfonamides is S-N bond cleavage. These results suggest that S. oneidensis MR-1 and Shewanella sp. strain MR-4 are potential bacterial resources for biodegrading sulfonamides and therefore bioremediation of sulfonamide-polluted environments.
Collapse
|
46
|
Dissemination and Characteristics of a Novel Plasmid-Encoded Carbapenem-Hydrolyzing Class D β-Lactamase, OXA-436, Found in Isolates from Four Patients at Six Different Hospitals in Denmark. Antimicrob Agents Chemother 2017; 62:AAC.01260-17. [PMID: 29061750 DOI: 10.1128/aac.01260-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/13/2017] [Indexed: 12/31/2022] Open
Abstract
The diversity of OXA-48-like carbapenemases is continually expanding. In this study, we describe the dissemination and characteristics of a novel carbapenem-hydrolyzing class D β-lactamase (CHDL) named OXA-436. In total, six OXA-436-producing Enterobacteriaceae isolates, including Enterobacter asburiae (n = 3), Citrobacter freundii (n = 2), and Klebsiella pneumoniae (n = 1), were identified in four patients in the period between September 2013 and April 2015. All three species of OXA-436-producing Enterobacteriaceae were found in one patient. The amino acid sequence of OXA-436 showed 90.4 to 92.8% identity to the amino acid sequences of other acquired OXA-48-like variants. Expression of OXA-436 in Escherichia coli and kinetic analysis of purified OXA-436 revealed an activity profile similar to that of OXA-48 and OXA-181, with activity against penicillins, including temocillin; limited or no activity against extended-spectrum cephalosporins; and activity against carbapenems. The blaOXA-436 gene was located on a conjugative ∼314-kb IncHI2/IncHI2A plasmid belonging to plasmid multilocus sequence typing sequence type 1 in a region surrounded by chromosomal genes previously identified to be adjacent to blaOXA genes in Shewanella spp. In conclusion, OXA-436 is a novel CHDL with functional properties similar to those of OXA-48-like CHDLs. The described geographical spread among different Enterobacteriaceae and the plasmid location of blaOXA-436 illustrate its potential for further dissemination.
Collapse
|
47
|
CTX-M-15-Producing Shewanella Species Clinical Isolate Expressing OXA-535, a Chromosome-Encoded OXA-48 Variant, Putative Progenitor of the Plasmid-Encoded OXA-436. Antimicrob Agents Chemother 2017; 62:AAC.01879-17. [PMID: 29038283 DOI: 10.1128/aac.01879-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/11/2017] [Indexed: 11/20/2022] Open
Abstract
Shewanella spp. constitute a reservoir of antibiotic resistance determinants. In a bile sample, we identified three extended-spectrum-β-lactamase (ESBL)-producing bacteria (Escherichia coli, Klebsiella pneumoniae, and Shewanella sp. strain JAB-1) isolated from a child suffering from cholangitis. Our objectives were to characterize the genome and the resistome of the first ESBL-producing isolate of the genus Shewanella and determine whether plasmidic exchange occurred between the three bacterial species. Bacterial isolates were characterized using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), standard biochemical tools, and antimicrobial susceptibility testing. Shewanella sp. JAB-1 and ESBL gene-encoding plasmids were characterized using PacBio and Illumina whole-genome sequencing, respectively. The Shewanella sp. JAB-1 chromosome-encoded OXA-48 variant was cloned and functionally characterized. Whole-genome sequencing (WGS) of the Shewanella sp. clinical isolate JAB-1 revealed the presence of a 193-kb plasmid belonging to the IncA/C incompatibility group and harboring two ESBL genes, blaCTX-M-15 and blaSHV-2ablaCTX-M-15 gene-carrying plasmids belonging to the IncY and IncR incompatibility groups were also found in the E. coli and K. pneumoniae isolates from the same patient, respectively. A comparison of the blaCTX-M-15 genetic environment indicated the independent origin of these plasmids and dismissed in vivo transfers. Furthermore, characterization of the resistome of Shewanella sp. JAB-1 revealed the presence of a chromosome-carried blaOXA-535 gene, likely the progenitor of the plasmid-carried blaOXA-436 gene, a novel blaOXA-48-like gene. The expression of blaOXA-535 in E. coli showed the carbapenem-hydrolyzing activity of OXA-535. The production of OXA-535 in Shewanella sp. JAB-1 could be evidenced using molecular and immunoenzymatic tests, but not with biochemical tests that monitor carbapenem hydrolysis. In this study, we have identified a CTX-M-15-producing Shewanella species that was responsible for a hepatobiliary infection and that is likely the progenitor of OXA-436, a novel plasmid-encoded OXA-48-like class D carbapenemase.
Collapse
|
48
|
Berglund F, Marathe NP, Österlund T, Bengtsson-Palme J, Kotsakis S, Flach CF, Larsson DGJ, Kristiansson E. Identification of 76 novel B1 metallo-β-lactamases through large-scale screening of genomic and metagenomic data. MICROBIOME 2017; 5:134. [PMID: 29020980 PMCID: PMC5637372 DOI: 10.1186/s40168-017-0353-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/25/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Metallo-β-lactamases are bacterial enzymes that provide resistance to carbapenems, the most potent class of antibiotics. These enzymes are commonly encoded on mobile genetic elements, which, together with their broad substrate spectrum and lack of clinically useful inhibitors, make them a particularly problematic class of antibiotic resistance determinants. We hypothesized that there is a large and unexplored reservoir of unknown metallo-β-lactamases, some of which may spread to pathogens, thereby threatening public health. The aim of this study was to identify novel metallo-β-lactamases of class B1, the most clinically important subclass of these enzymes. RESULTS Based on a new computational method using an optimized hidden Markov model, we analyzed over 10,000 bacterial genomes and plasmids together with more than 5 terabases of metagenomic data to identify novel metallo-β-lactamase genes. In total, 76 novel genes were predicted, forming 59 previously undescribed metallo-β-lactamase gene families. The ability to hydrolyze imipenem in an Escherichia coli host was experimentally confirmed for 18 of the 21 tested genes. Two of the novel B1 metallo-β-lactamase genes contained atypical zinc-binding motifs in their active sites, which were previously undescribed for metallo-β-lactamases. Phylogenetic analysis showed that B1 metallo-β-lactamases could be divided into five major groups based on their evolutionary origin. Our results also show that, except for one, all of the previously characterized mobile B1 β-lactamases are likely to have originated from chromosomal genes present in Shewanella spp. and other Proteobacterial species. CONCLUSIONS This study more than doubles the number of known B1 metallo-β-lactamases. The findings have further elucidated the diversity and evolutionary history of this important class of antibiotic resistance genes and prepare us for some of the challenges that may be faced in clinics in the future.
Collapse
Affiliation(s)
- Fanny Berglund
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Nachiket P. Marathe
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tobias Österlund
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Johan Bengtsson-Palme
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stathis Kotsakis
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
49
|
Botts RT, Apffel BA, Walters CJ, Davidson KE, Echols RS, Geiger MR, Guzman VL, Haase VS, Montana MA, La Chat CA, Mielke JA, Mullen KL, Virtue CC, Brown CJ, Top EM, Cummings DE. Characterization of Four Multidrug Resistance Plasmids Captured from the Sediments of an Urban Coastal Wetland. Front Microbiol 2017; 8:1922. [PMID: 29067005 PMCID: PMC5641379 DOI: 10.3389/fmicb.2017.01922] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/21/2017] [Indexed: 11/17/2022] Open
Abstract
Self-transmissible and mobilizable plasmids contribute to the emergence and spread of multidrug-resistant bacteria by enabling the horizontal transfer of acquired antibiotic resistance. The objective of this study was to capture and characterize self-transmissible and mobilizable resistance plasmids from a coastal wetland impacted by urban stormwater runoff and human wastewater during the rainy season. Four plasmids were captured, two self-transmissible and two mobilizable, using both mating and enrichment approaches. Plasmid genomes, sequenced with either Illumina or PacBio platforms, revealed representatives of incompatibility groups IncP-6, IncR, IncN3, and IncF. The plasmids ranged in size from 36 to 144 kb and encoded known resistance genes for most of the major classes of antibiotics used to treat Gram-negative infections (tetracyclines, sulfonamides, β-lactams, fluoroquinolones, aminoglycosides, and amphenicols). The mobilizable IncP-6 plasmid pLNU-11 was discovered in a strain of Citrobacter freundii enriched from the wetland sediments with tetracycline and nalidixic acid, and encodes a novel AmpC-like β-lactamase (blaWDC-1), which shares less than 62% amino acid sequence identity with the PDC class of β-lactamases found in Pseudomonas aeruginosa. Although the IncR plasmid pTRE-1611 was captured by mating wetland bacteria with P. putida KT2440 as recipient, it was found to be mobilizable rather than self-transmissible. Two self-transmissible multidrug-resistance plasmids were also captured: the small (48 kb) IncN3 plasmid pTRE-131 was captured by mating wetland bacteria with Escherichia coli HY842 where it is seemed to be maintained at nearly 240 copies per cell, while the large (144 kb) IncF plasmid pTRE-2011, which was isolated from a cefotaxime-resistant environmental strain of E. coli ST744, exists at just a single copy per cell. Furthermore, pTRE-2011 bears the globally epidemic blaCTX-M-55 extended-spectrum β-lactamase downstream of ISEcp1. Our results indicate that urban coastal wetlands are reservoirs of diverse self-transmissible and mobilizable plasmids of relevance to human health.
Collapse
Affiliation(s)
- Ryan T Botts
- Department of Mathematical, Information and Computer Sciences, Point Loma Nazarene University, San Diego, CA, United States
| | - Brooke A Apffel
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| | - C J Walters
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| | - Kelly E Davidson
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| | - Ryan S Echols
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| | - Michael R Geiger
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| | - Victoria L Guzman
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| | - Victoria S Haase
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| | - Michal A Montana
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| | - Chip A La Chat
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| | - Jenna A Mielke
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| | - Kelly L Mullen
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| | - Cierra C Virtue
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| | - Celeste J Brown
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Eva M Top
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - David E Cummings
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| |
Collapse
|
50
|
Mairi A, Pantel A, Sotto A, Lavigne JP, Touati A. OXA-48-like carbapenemases producing Enterobacteriaceae in different niches. Eur J Clin Microbiol Infect Dis 2017; 37:587-604. [PMID: 28990132 DOI: 10.1007/s10096-017-3112-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 12/26/2022]
Abstract
The emergence of carbapenem-resistant enterobacterial species poses a serious threat to public health worldwide. OXA-48-type carbapenem-hydrolyzing class D β-lactamases are widely distributed among Enterobacteriaceae, with significant geographical differences. To date, 11 OXA-48-like variants have been identified, with classical OXA-48 being the most widespread. These enzymes show high-level hydrolytic activity against penicillins and low-level hydrolysis towards carbapenems. Since the first description of the OXA-48 carbapenemase in Turkey, bacterial strains producing the enzyme have been extensively reported in nosocomial and community outbreaks in many parts of the word, particularly in the Mediterranean area and European countries. The rapid spread of Enterobacteriaceae producing OXA-48-like enzymes in different ecosystems has become a serious issue recently. The number of reservoirs for such organisms is increasing, not only in hospitals, but also in the community, among animals (e.g., livestock, companion animals, and wildlife) and in the environment. This review aims to summarize the main characteristics of the OXA-48-type carbapenemases, covering genetic and enzymatic traits, their epidemiology, clonality and associated genes, correlation with extended-spectrum β-lactamases (ESBLs) or plasmidic AmpC (pAmpC) in different bacterial species worldwide.
Collapse
Affiliation(s)
- Assia Mairi
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, 06000, Bejaia, Algeria.,Institut National de la Santé et de la Recherche Médicale, U1047, Université Montpellier, UFR de Médecine, 186 Chemin du Carreau de Lanes, CS83021, 30908, Nîmes, France
| | - Alix Pantel
- Institut National de la Santé et de la Recherche Médicale, U1047, Université Montpellier, UFR de Médecine, 186 Chemin du Carreau de Lanes, CS83021, 30908, Nîmes, France.,Department of Microbiology, University Hospital of Nîmes, Nîmes, France
| | - Albert Sotto
- Institut National de la Santé et de la Recherche Médicale, U1047, Université Montpellier, UFR de Médecine, 186 Chemin du Carreau de Lanes, CS83021, 30908, Nîmes, France
| | - Jean-Philippe Lavigne
- Institut National de la Santé et de la Recherche Médicale, U1047, Université Montpellier, UFR de Médecine, 186 Chemin du Carreau de Lanes, CS83021, 30908, Nîmes, France. .,Department of Microbiology, University Hospital of Nîmes, Nîmes, France.
| | - Aziz Touati
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, 06000, Bejaia, Algeria
| |
Collapse
|