1
|
Wassif RK, Elkayal M, Shamma RN, Elkheshen SA. Recent advances in the local antibiotics delivery systems for management of osteomyelitis. Drug Deliv 2021; 28:2392-2414. [PMID: 34755579 PMCID: PMC8583938 DOI: 10.1080/10717544.2021.1998246] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic osteomyelitis is a challenging disease due to its serious rates of mortality and morbidity while the currently available treatment strategies are suboptimal. In contrast to the adopted systemic treatment approaches after surgical debridement in chronic osteomyelitis, local drug delivery systems are receiving great attention in the recent decades. Local drug delivery systems using special carriers have the pros of enhancing the feasibility of penetration of antimicrobial agents to bone tissues, providing sustained release and localized concentrations of the antimicrobial agents in the infected area while avoiding the systemic side effects and toxicity. Most important, the incorporation of osteoinductive and osteoconductive materials in these systems assists bones proliferation and differentiation, hence the generation of new bone materials is enhanced. Some of these systems can also provide mechanical support for the long bones during the healing process. Most important, if the local systems are designed to be injectable to the affected site and biodegradable, they will reduce the level of invasion required for implantation and can win the patients’ compliance and reduce the healing period. They will also allow multiple injections during the course of therapy to guard against the side effect of the long-term systemic therapy. The current review presents different available approaches for delivering antimicrobial agents for the treatment of osteomyelitis focusing on the recent advances in researches for local delivery of antibiotics.HIGHLIGHTS Chronic osteomyelitis is a challenging disease due to its serious mortality and morbidity rates and limited effective treatment options. Local drug delivery systems are receiving great attention in the recent decades. Osteoinductive and osteoconductive materials in the local systems assists bones proliferation and differentiation Local systems can be designed to provide mechanical support for the long bones during the healing process. Designing the local system to be injectable to the affected site and biodegradable will reduces the level of invasion and win the patients’ compliance.
Collapse
Affiliation(s)
- Reem Khaled Wassif
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Maha Elkayal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Rehab Nabil Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Seham A Elkheshen
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Hasan R, Schaner K, Mulinti P, Brooks A. A Bioglass-Based Antibiotic (Vancomycin) Releasing Bone Void Filling Putty to Treat Osteomyelitis and Aid Bone Healing. Int J Mol Sci 2021; 22:7736. [PMID: 34299362 PMCID: PMC8304857 DOI: 10.3390/ijms22147736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
While the infection rate after primary total joint replacements (TJR) sits at 1-2%, for trauma-related surgery, it can be as high as 3.6 to 21.2% based on the type of trauma; the risk of reinfection after revision surgery is even higher. Current treatments with antibiotic-releasing PMMA-based bone cement/ beads and/or systemic antibiotic after surgical debridement do not provide effective treatment due to fluctuating antibiotic levels at the site of infection, leading to insufficient local antibiotic concentration. In addition, non-biodegradable PMMA does not support bone regrowth in the debrided void spaces and often must be removed in an additional surgery. Here, we report a bioactive glass or bioglass (BG) substrate-based biodegradable, easy to fabricate "press fitting" antibiotic-releasing bone void filling (ABVF-BG) putty to provide effective local antibiotic release at the site of infection along with support for bone regeneration. The ABVF-BG putty formulation had homogenously distributed BG particles, a porous structure, and showed putty-like ease of handling. Furthermore, the ABVF-BG putty demonstrated in vitro antibacterial activity for up to 6 weeks. Finally, the ABVF-BG putty was biodegradable in vivo and showed 100% bacterial eradication (as shown by bacterial cell counts) in the treatment group, which received ABVF-BG putty, compared to the infection control group, where all the rats had a high bacterial load (4.63 × 106 ± 7.9 × 105 CFU/gram bone) and sustained osteomyelitis. The ABVF-BG putty also supported bone growth in the void space as indicated by a combination of histology, µCT, and X-ray imaging. The potential for simultaneous infection treatment and bone healing using the developed BG-based ABVF-BG putty is promising as an alternative treatment option for osteomyelitis.
Collapse
Affiliation(s)
- Raquib Hasan
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA;
| | - Kambri Schaner
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA;
| | - Pranothi Mulinti
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA;
| | - Amanda Brooks
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA;
- Department of Research and Scholarly Activity, Rocky Vista University, Ivins, UT 84734, USA
| |
Collapse
|
3
|
Maale GE, Eager JJ, Mohammadi DK, Calderon FA. Elution Profiles of Synthetic CaSO 4 Hemihydrate Beads Loaded with Vancomycin and Tobramycin. Eur J Drug Metab Pharmacokinet 2021; 45:547-555. [PMID: 32328932 PMCID: PMC7359161 DOI: 10.1007/s13318-020-00622-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Backgrounds and Objectives The use of local antibiotic delivery vehicles is common in the management of biofilm-related infections as they provide high concentrations of local antibiotics while simultaneously avoiding complications from systemic toxicity. We present a 100% pure synthetic calcium sulfate hemi-hydrate mixed with 240 mg tobramycin and 500 mg vancomycin per 10 cc mixture for use in revision surgeries of periprosthetic joint infections (PJIs). The purified carrier demonstrates bioabsorbablity, promotion of bone growth, a physiologically favorable pH, and hydrophilicity. These unique properties may alleviate persistent postoperative wound drainage seen in patients with PJI. Our questions consist of two parts: (1) does the novel calcium sulfate carrier provide therapeutic concentrations of antibiotic locally that can kill biofilm related infections? (2) Are serum concentrations of antibiotic significant to cause concern for systemic toxicity? Methods To address these questions, we assayed the elution of antibiotic concentrations obtained from surgical drains and serum among 50 patients in the first 5 postoperative days. Results The elution of vancomycin and tobramycin was greatest on day 1 compared with those concentrations obtained on days 2, 3, 4, and 5; serum concentrations were largely undetectable. Our findings demonstrate that this calcium sulfate preparation provides therapeutic delivery of vancomycin and tobramycin locally at log 2–3 above the minimum inhibitory concentration (MIC), while avoiding toxic serum concentrations. Conclusions When used in one-stage revision arthroplasties, the bioabsorbable, purified carrier delivers high concentrations of antibiotic while avoiding systemic toxicity.
Collapse
Affiliation(s)
- Gerhard E Maale
- Orthopaedic Oncology, Dallas Fort Worth Sarcoma Group, 4708 Alliance Blvd Ste 710., Plano, TX, 75093, USA.
| | - John J Eager
- University of Texas Medical School At Houston, 6431 Fannin Street, Box 20708, Houston, TX, 77225, USA
| | - Daniel K Mohammadi
- Orthopaedic Oncology, Dallas Fort Worth Sarcoma Group, 4708 Alliance Blvd Ste 710., Plano, TX, 75093, USA
| | - Flavio A Calderon
- Orthopaedic Oncology, Dallas Fort Worth Sarcoma Group, 4708 Alliance Blvd Ste 710., Plano, TX, 75093, USA
| |
Collapse
|
4
|
Vanamala K, Tatiparti K, Bhise K, Sau S, Scheetz MH, Rybak MJ, Andes D, Iyer AK. Novel approaches for the treatment of methicillin-resistant Staphylococcus aureus: Using nanoparticles to overcome multidrug resistance. Drug Discov Today 2021; 26:31-43. [PMID: 33091564 PMCID: PMC7855522 DOI: 10.1016/j.drudis.2020.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/15/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes serious infections in both community and hospital settings, with high mortality rates. Treatment of MRSA infections is challenging because of the rapidly evolving resistance mechanisms combined with the protective biofilms of S. aureus. Together, these characteristic resistance mechanisms continue to render conventional treatment modalities ineffective. The use of nanoformulations with unique modes of transport across bacterial membranes could be a useful strategy for disease-specific delivery. In this review, we summarize treatment approaches for MRSA, including novel techniques in nanoparticulate designing for better therapeutic outcomes; and facilitate an understanding that nanoparticulate delivery systems could be a robust approach in the successful treatment of MRSA.
Collapse
Affiliation(s)
- Kushal Vanamala
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Katyayani Tatiparti
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Ketki Bhise
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Samaresh Sau
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Marc H Scheetz
- Departments of Pharmacy Practice and Pharmacology, Midwestern University Chicago College of Pharmacy and Graduate Studies, Pharmacometric Center of Excellence, Chicago, IL, USA
| | - Michael J Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA; Division of Infectious Diseases, Department of Medicine, School of Medicine, Wayne State University, Detroit, MI, USA
| | - David Andes
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Arun K Iyer
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA; Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
5
|
Algharib SA, Dawood A, Xie S. Nanoparticles for treatment of bovine Staphylococcus aureus mastitis. Drug Deliv 2020; 27:292-308. [PMID: 32036717 PMCID: PMC7034104 DOI: 10.1080/10717544.2020.1724209] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the most important zoonotic bacterial pathogens, infecting human beings and a wide range of animals, in particular, dairy cattle. Globally. S. aureus causing bovine mastitis is one of the biggest problems and an economic burden facing the dairy industry with a strong negative impact on animal welfare, productivity, and food safety. Furthermore, its smart pathogenesis, including facultative intracellular parasitism, increasingly serious antimicrobial resistance, and biofilm formation, make it challenging to be treated by conventional therapy. Therefore, the development of nanoparticles, especially liposomes, polymeric nanoparticles, solid lipid nanoparticles, nanogels, and inorganic nanoparticles, are gaining traction and excellent tools for overcoming the therapeutic difficulty accompanied by S. aureus mastitis. Therefore, in this review, the current progress and challenges of nanoparticles in enhancing the S. aureus mastitis therapy are focused stepwise. Firstly, the S. aureus treatment difficulties by the antimicrobial drugs are analyzed. Secondly, the advantages of nanoparticles in the treatment of S. aureus mastitis, including improving the penetration and accumulation of their payload drugs intracellular, decreasing the antimicrobial resistance, and preventing the biofilm formation, are also summarized. Thirdly, the progression of different types from the nanoparticles for controlling the S. aureus mastitis are provided. Finally, the difficulties that need to be solved, and future prospects of nanoparticles for S. aureus mastitis treatment are highlighted. This review will provide the readers with enough information about the challenges of the nanosystem to help them to design and fabricate more efficient nanoformulations against S. aureus infections.
Collapse
Affiliation(s)
- Samah Attia Algharib
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Hasan R, Wohlers A, Shreffler J, Mulinti P, Ostlie H, Schaper C, Brooks B, Brooks A. An Antibiotic-Releasing Bone Void Filling (ABVF) Putty for the Treatment of Osteomyelitis. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5080. [PMID: 33187199 PMCID: PMC7698155 DOI: 10.3390/ma13225080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022]
Abstract
The number of total joint replacements (TJR) is on the rise with a corresponding increase in the number of infected TJR, which necessitates revision surgeries. Current treatments with either non-biodegradable, antibiotic-releasing polymethylmethacrylate (PMMA) based bone cement, or systemic antibiotic after surgical debridement do not provide effective treatment due to fluctuating antibiotic levels at the site of infection. Here, we report a biodegradable, easy-to-use "press-fitting" antibiotic-releasing bone void filling (ABVF) putty that not only provides efficient antibiotic release kinetics at the site of infection but also allows efficient osseointegration. The ABVF formulation was prepared using poly (D,L-lactide-co-glycolide) (PLGA), polyethylene glycol (PEG), and polycaprolactone (PCL) as the polymer matrix, antibiotic vancomycin, and osseointegrating synthetic bone PRO OSTEON for bone-growth support. ABVF was homogenous, had a porous structure, was moldable, and showed putty-like mechanical properties. The ABVF putty released vancomycin for 6 weeks at therapeutic level. Furthermore, the released vancomycin showed in vitro antibacterial activity against Staphylococcus aureus for 6 weeks. Vancomycin was not toxic to osteoblasts. Finally, ABVF was biodegradable in vivo and showed an effective infection control with the treatment group showing significantly higher bone growth (p < 0.001) compared to the control group. The potential of infection treatment and osseointegration makes the ABVF putty a promising treatment option for osteomyelitis after TJR.
Collapse
Affiliation(s)
- Raquib Hasan
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA; (R.H.); (J.S.); (P.M.)
| | - Abbey Wohlers
- Department of Pharmacy, North Dakota State University, Fargo, ND 58102, USA;
| | - Jacob Shreffler
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA; (R.H.); (J.S.); (P.M.)
| | - Pranothi Mulinti
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA; (R.H.); (J.S.); (P.M.)
| | - Hunter Ostlie
- School of Medicine, St. George’s University, University Centre Grenada, West Indies, Grenada;
| | - Codi Schaper
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA;
| | - Benjamin Brooks
- Department of Biomedical Sciences, Rocky Vista University, Ivins, UT 84734, USA;
| | - Amanda Brooks
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA; (R.H.); (J.S.); (P.M.)
- Department of Research and Scholarly Activity, Rocky Vista University, Ivins, UT 84734, USA
| |
Collapse
|
7
|
Labruère R, Sona AJ, Turos E. Anti-Methicillin-Resistant Staphylococcus aureus Nanoantibiotics. Front Pharmacol 2019; 10:1121. [PMID: 31636560 PMCID: PMC6787278 DOI: 10.3389/fphar.2019.01121] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/30/2019] [Indexed: 01/08/2023] Open
Abstract
Nanoparticle-based antibiotic constructs have become a popular area of investigation in the biomedical sciences. Much of this work has pertained to human diseases, largely in the cancer therapy arena. However, considerable research has also been devoted to the nanochemistry for controlling infectious diseases. Among these are ones due to bacterial infections, which can cause serious illnesses leading to death. The onset of multi-drug-resistant (MDR) infections such as those caused by the human pathogen Staphylococcus aureus has created a dearth of problems such as surgical complications, persistent infections, and lack of available treatments. In this article, we set out to review the primary literature on the design and development of new nanoparticle materials for the potential treatment of S. aureus infections, and areas that could be further expanded upon to make nanoparticle antibiotics a mainstay in clinical settings.
Collapse
Affiliation(s)
- Raphaël Labruère
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France
| | - A. J. Sona
- Center for Molecular Diversity in Drug Design, Discovery and Delivery, Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - Edward Turos
- Center for Molecular Diversity in Drug Design, Discovery and Delivery, Department of Chemistry, University of South Florida, Tampa, FL, United States
| |
Collapse
|
8
|
Mahmoudian M, Ganji F. Vancomycin-loaded HPMC microparticles embedded within injectable thermosensitive chitosan hydrogels. Prog Biomater 2017; 6:49-56. [PMID: 28447299 PMCID: PMC5433964 DOI: 10.1007/s40204-017-0066-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/20/2017] [Indexed: 01/01/2023] Open
Abstract
Antibiotic use is an essential method for the treatment of bacterial infections. In certain cases, antibiotics are not effective because of the distribution problems caused by physiological barriers in the body. Such problems are thought to be minimized by development of sustained release systems which involve implantation of antibiotic loaded polymeric systems directly to the site of infection. In this work, a new composite vancomycin hydrochloride release system based on HPMC microparticles and chitosan/glycerophosphate (Ch/Gp) thermosensitive hydrogel was designed for the aim of local treatment of osteomyelitis. Vancomycin-loaded HPMC microparticles (Van-HPMCs) were prepared by spray drying method. The SEM results showed that these particles had a mean diameter of 1.5-6.4 μm with a narrow size distribution and homogeneous particle production. Their drug encapsulation efficiency was 72.6%. The Van-HPMCs were embedded in an injectable Ch/Gp solution to introduce a composite drug release platform (Van/HPMC-Ch/Gp). In vitro release studies indicated that inclusion of the Van-HPMCs into the Ch/Gp hydrogel caused a reduction in both the release rate and total amount of vancomycin release, which suggests that HPMC microparticles entrapped into the Ch/Gp hydrogels showed more suitable sustained release kinetics for local antibiotics delivery.
Collapse
Affiliation(s)
- M Mahmoudian
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, P. O. Box 14115-114, Tehran, Islamic Republic of Iran
| | - F Ganji
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, P. O. Box 14115-114, Tehran, Islamic Republic of Iran.
| |
Collapse
|
9
|
Inzana JA, Schwarz EM, Kates SL, Awad HA. Biomaterials approaches to treating implant-associated osteomyelitis. Biomaterials 2015; 81:58-71. [PMID: 26724454 DOI: 10.1016/j.biomaterials.2015.12.012] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/06/2015] [Accepted: 12/13/2015] [Indexed: 12/13/2022]
Abstract
Orthopaedic devices are the most common surgical devices associated with implant-related infections and Staphylococcus aureus (S. aureus) is the most common causative pathogen in chronic bone infections (osteomyelitis). Treatment of these chronic bone infections often involves combinations of antibiotics given systemically and locally to the affected site via a biomaterial spacer. The gold standard biomaterial for local antibiotic delivery against osteomyelitis, poly(methyl methacrylate) (PMMA) bone cement, bears many limitations. Such shortcomings include limited antibiotic release, incompatibility with many antimicrobial agents, and the need for follow-up surgeries to remove the non-biodegradable cement before surgical reconstruction of the lost bone. Therefore, extensive research pursuits are targeting alternative, biodegradable materials to replace PMMA in osteomyelitis applications. Herein, we provide an overview of the primary clinical treatment strategies and emerging biodegradable materials that may be employed for management of implant-related osteomyelitis. We performed a systematic review of experimental biomaterials systems that have been evaluated for treating established S. aureus osteomyelitis in an animal model. Many experimental biomaterials were not decisively more efficacious for infection management than PMMA when delivering the same antibiotic. However, alternative biomaterials have reduced the number of follow-up surgeries, enhanced the antimicrobial efficacy by delivering agents that are incompatible with PMMA, and regenerated bone in an infected defect. Understanding the advantages, limitations, and potential for clinical translation of each biomaterial, along with the conditions under which it was evaluated (e.g. animal model), is critical for surgeons and researchers to navigate the plethora of options for local antibiotic delivery.
Collapse
Affiliation(s)
- Jason A Inzana
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland; Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, United States; Department of Biomedical Engineering, University of Rochester, 207 Robert B. Goergen Hall, Rochester, NY 14642, United States.
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, United States; Department of Biomedical Engineering, University of Rochester, 207 Robert B. Goergen Hall, Rochester, NY 14642, United States; Department of Orthopedics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Stephen L Kates
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, United States; Department of Orthopedics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Hani A Awad
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, United States; Department of Biomedical Engineering, University of Rochester, 207 Robert B. Goergen Hall, Rochester, NY 14642, United States; Department of Orthopedics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, United States
| |
Collapse
|
10
|
Sezer AD, Kazak Sarılmışer H, Rayaman E, Çevikbaş A, Öner ET, Akbuğa J. Development and characterization of vancomycin-loaded levan-based microparticular system for drug delivery. Pharm Dev Technol 2015; 22:627-634. [DOI: 10.3109/10837450.2015.1116564] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ali Demir Sezer
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Marmara University, Haydarpaşa, Istanbul, Turkey,
| | - Hande Kazak Sarılmışer
- Department of Bioengineering, Faculty of Engineering, Marmara University, Göztepe, Istanbul, Turkey, and
| | - Erkan Rayaman
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Marmara University, Haydarpaşa, Istanbul, Turkey
| | - Adile Çevikbaş
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Marmara University, Haydarpaşa, Istanbul, Turkey
| | - Ebru Toksoy Öner
- Department of Bioengineering, Faculty of Engineering, Marmara University, Göztepe, Istanbul, Turkey, and
| | - Jülide Akbuğa
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Marmara University, Haydarpaşa, Istanbul, Turkey,
| |
Collapse
|
11
|
Ferreira IS, Bettencourt AF, Gonçalves LMD, Kasper S, Bétrisey B, Kikhney J, Moter A, Trampuz A, Almeida AJ. Activity of daptomycin- and vancomycin-loaded poly-epsilon-caprolactone microparticles against mature staphylococcal biofilms. Int J Nanomedicine 2015; 10:4351-66. [PMID: 26185439 PMCID: PMC4500610 DOI: 10.2147/ijn.s84108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to develop novel daptomycin-loaded poly-epsilon-caprolactone (PCL) microparticles with enhanced antibiofilm activity against mature biofilms of clinically relevant bacteria, methicillin-resistant Staphylococcus aureus (MRSA) and polysaccharide intercellular adhesin-positive Staphylococcus epidermidis. Daptomycin was encapsulated into PCL microparticles by a double emulsion-solvent evaporation method. For comparison purposes, formulations containing vancomycin were also prepared. Particle morphology, size distribution, encapsulation efficiency, surface charge, thermal behavior, and in vitro release were assessed. All formulations exhibited a spherical morphology, micrometer size, and negative surface charge. From a very early time stage, the released concentrations of daptomycin and vancomycin were higher than the minimal inhibitory concentration and continued so up to 72 hours. Daptomycin presented a sustained release profile with increasing concentrations of the drug being released up to 72 hours, whereas the release of vancomycin stabilized at 24 hours. The antibacterial activity of the microparticles was assessed by isothermal microcalorimetry against planktonic and sessile MRSA and S. epidermidis. Regarding planktonic bacteria, daptomycin-loaded PCL microparticles presented the highest antibacterial activity against both strains. Isothermal microcalorimetry also revealed that lower concentrations of daptomycin-loaded microparticles were required to completely inhibit the recovery of mature MRSA and S. epidermidis biofilms. Further characterization of the effect of daptomycin-loaded PCL microparticles on mature biofilms was performed by fluorescence in situ hybridization. Fluorescence in situ hybridization showed an important reduction in MRSA biofilm, whereas S. epidermidis biofilms, although inhibited, were not eradicated. In addition, an important attachment of the microparticles to MRSA and S. epidermidis biofilms was observed. Finally, all formulations proved to be biocompatible with both ISO compliant L929 fibroblasts and human MG63 osteoblast-like cells.
Collapse
Affiliation(s)
- Inês Santos Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Ana F Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Lídia M D Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Stefanie Kasper
- Biofilmcenter, German Heart Institute Berlin, Berlin, Germany
| | - Bertrand Bétrisey
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Judith Kikhney
- Biofilmcenter, German Heart Institute Berlin, Berlin, Germany
| | - Annette Moter
- Biofilmcenter, German Heart Institute Berlin, Berlin, Germany
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Berlin, Germany
| | - António J Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
12
|
Bozhkova SA, Novokshonova AA, Konev VA. Current trends in local antibacterial therapy of periprosthetic infection and osteomyelitis. ACTA ACUST UNITED AC 2015. [DOI: 10.21823/2311-2905-2015-0-3-92-107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
13
|
Uskoković V. Nanostructured platforms for the sustained and local delivery of antibiotics in the treatment of osteomyelitis. Crit Rev Ther Drug Carrier Syst 2015; 32:1-59. [PMID: 25746204 PMCID: PMC4406243 DOI: 10.1615/critrevtherdrugcarriersyst.2014010920] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This article provides a critical view of the current state of the development of nanoparticulate and other solid-state carriers for the local delivery of antibiotics in the treatment of osteomyelitis. Mentioned are the downsides of traditional means for treating bone infection, which involve systemic administration of antibiotics and surgical debridement, along with the rather imperfect local delivery options currently available in the clinic. Envisaged are more sophisticated carriers for the local and sustained delivery of antimicrobials, including bioresorbable polymeric, collagenous, liquid crystalline, and bioglass- and nanotube-based carriers, as well as those composed of calcium phosphate, the mineral component of bone and teeth. A special emphasis is placed on composite multifunctional antibiotic carriers of a nanoparticulate nature and on their ability to induce osteogenesis of hard tissues demineralized due to disease. An ideal carrier of this type would prevent the long-term, repetitive, and systemic administration of antibiotics and either minimize or completely eliminate the need for surgical debridement of necrotic tissue. Potential problems faced by even hypothetically "perfect" antibiotic delivery vehicles are mentioned too, including (i) intracellular bacterial colonies involved in recurrent, chronic osteomyelitis; (ii) the need for mechanical and release properties to be adjusted to the area of surgical placement; (iii) different environments in which in vitro and in vivo testings are carried out; (iv) unpredictable synergies between drug delivery system components; and (v) experimental sensitivity issues entailing the increasing subtlety of the design of nanoplatforms for the controlled delivery of therapeutics.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Richard and Loan Hill Department of Bioengineering, College of Medicine, University of Illinois at Chicago, 851 South Morgan St, #205 Chicago, Illinois, 60607-7052
| |
Collapse
|
14
|
Saravanamoorthy S, Chandra Bose A, Velmathi S. Facile fabrication of polycaprolactone/h-MoO3 nanocomposites and their structural, optical and electrical properties. RSC Adv 2015. [DOI: 10.1039/c5ra17733b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hexagonal molybdenum oxide (h-MoO3) nanocrystals with a flower-like hierarchical structure were successfully incorporated into polycaprolactone (PCL) matrix by a simple solution casting technique.
Collapse
Affiliation(s)
- Somasundaram Saravanamoorthy
- Organic and Polymer Synthesis Laboratory
- Department of Chemistry
- National Institute of Technology
- Tiruchirappalli 620 015
- India
| | - Arumugam Chandra Bose
- Nanomaterials Laboratory
- Department of Physics
- National Institute of Technology
- Tiruchirappalli 620 015
- India
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory
- Department of Chemistry
- National Institute of Technology
- Tiruchirappalli 620 015
- India
| |
Collapse
|
15
|
Odekerken JCE, Arts JJC, Surtel DAM, Walenkamp GHIM, Welting TJM. A rabbit osteomyelitis model for the longitudinal assessment of early post-operative implant infections. J Orthop Surg Res 2013; 8:38. [PMID: 24188807 PMCID: PMC3828396 DOI: 10.1186/1749-799x-8-38] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/17/2013] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Implant infection is one of the most severe complications within the field of orthopaedic surgery, associated with an enormous burden for the healthcare system. During the last decades, attempts have been made to lower the incidence of implant-related infections. In the case of cemented prostheses, the use of antibiotic-containing bone cement can be effective. However, in the case of non-cemented prostheses, osteosynthesis and spinal surgery, local antibacterial prophylaxis is not a standard procedure. For the development of implant coatings with antibacterial properties, there is a need for a reliable animal model to evaluate the preventive capacity of such coatings during a specific period of time. Existing animal models generally present a limited follow-up, with a limited number of outcome parameters and relatively large animal numbers in multiple groups. METHODS To represent an early post-operative implant infection, we established an acute tibial intramedullary nail infection model in rabbits by contamination of the tibial nail with 3.8 × 10⁵ colony forming units of Staphylococcus aureus. Clinical, haematological and radiological parameters for infection were weekly assessed during a 6-week follow-up with post-mortem bacteriological and histological analyses. RESULTS S. aureus implant infection was confirmed by the above parameters. A saline control group did not develop osteomyelitis. By combining the clinical, haematological, radiological, bacteriological and histological data collected during the experimental follow-up, we were able to differentiate between the control and the infected condition and assess the severity of the infection at sequential timepoints in a parameter-dependent fashion. CONCLUSION We herein present an acute early post-operative rabbit implant infection model which, in contrast to previously published models, combines improved in-time insight into the development of an implant osteomyelitis with a relatively low amount of animals.
Collapse
Affiliation(s)
| | | | | | | | - Tim J M Welting
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI School for Public Health and Primary Care, Maastricht University Medical Centre, P,O, Box 5800, Maastricht 6202 AZ, the Netherlands.
| |
Collapse
|
16
|
Gautier H, Plumecocq A, Amador G, Weiss P, Merle C, Bouler JM. In Vitro Characterization of Calcium Phosphate Biomaterial Loaded with Linezolid for Osseous Bone Defect Implantation. J Biomater Appl 2010; 26:811-28. [DOI: 10.1177/0885328210381535] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Osteomyelitis is a severe bone infection frequently caused by Staphylococcus aureus, which shows significant resistance to methicillin. One therapeutic treatment would be to insert a bone substitute loaded to an antibiotic, which would enable the bone to be filled while the illness is being treated. Linezolid is an oxazolidinone antibiotic with a large spectrum of action. It is effective against most Gram-positive bacteria and displays a specific mode of action. The aim of this work was to study the association of linezolid with a calcium phosphate-deficient apatite matrix. Granules containing 10% and 50% linezolid were prepared by wet granulation and characterized. Porosity analyses performed by mercury porosimetry and scanning electron microscopy revealed that grain porosity with 50% linezolid was higher than that of the grains containing 10% linezolid. NMR analyses showed no change in structure of linezolid when linked to calcium-deficient apatite. These results were confirmed by studying the antibacterial activity of linezolid, which remained proportional to the quantity of loaded linezolid, proving that the antibiotic released was active. The in vitro release time varied from 9 days for granules containing 10% linezolid to 26 days for granules containing 50% linezolid.
Collapse
Affiliation(s)
- Hélène Gautier
- INSERM, U 791, Laboratoire d’Ingénierie Ostéo-Articulaire et Dentaire, LIOAD, Faculté de Chirurgie Dentaire, 1 place A. Ricordeau, Nantes, F-44042, France
- Faculté de Pharmacie, Laboratoire de Pharmacie Galénique, Université de Nantes, 1, rue Gaston Veil, Nantes, F-44042, France
| | - Adrien Plumecocq
- INSERM, U 791, Laboratoire d’Ingénierie Ostéo-Articulaire et Dentaire, LIOAD, Faculté de Chirurgie Dentaire, 1 place A. Ricordeau, Nantes, F-44042, France
| | - Gilles Amador
- Faculté de Médecine, Laboratoire de Thérapeutiques Cliniques et Expérimentales, Université de Nantes, EA 3826 1, rue Gaston Veil, Nantes, F-44042, France
| | - Pierre Weiss
- INSERM, U 791, Laboratoire d’Ingénierie Ostéo-Articulaire et Dentaire, LIOAD, Faculté de Chirurgie Dentaire, 1 place A. Ricordeau, Nantes, F-44042, France
| | - Christian Merle
- INSERM, U 791, Laboratoire d’Ingénierie Ostéo-Articulaire et Dentaire, LIOAD, Faculté de Chirurgie Dentaire, 1 place A. Ricordeau, Nantes, F-44042, France
- Faculté de Pharmacie, Laboratoire de Pharmacie Galénique, Université de Nantes, 1, rue Gaston Veil, Nantes, F-44042, France
| | - Jean-Michel Bouler
- INSERM, U 791, Laboratoire d’Ingénierie Ostéo-Articulaire et Dentaire, LIOAD, Faculté de Chirurgie Dentaire, 1 place A. Ricordeau, Nantes, F-44042, France
| |
Collapse
|
17
|
Giavaresi G, Borsari V, Fini M, Giardino R, Sambri V, Gaibani P, Soffiatti R. Preliminary investigations on a new gentamicin and vancomycin-coated PMMA nail for the treatment of bone and intramedullary infections: An experimental study in the rabbit. J Orthop Res 2008; 26:785-92. [PMID: 18186130 DOI: 10.1002/jor.20543] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To evaluate a new gentamicin-vancomycin- impregnated (2:1) PMMA coating nail as a drug delivery device to treat bone and intramedullary infections, methicillin-resistant Staphylococcus aureus (MRSA) was used to induce femoral osteomyelitis in 20 New Zealand male rabbits. Four weeks after inoculum, the animals were submitted to debridement of infected femur canal, divided into four groups of five animals each and treated according to the following protocols: Group 1, insertion of a steel AISI316 intramedullary nail; Group 2, insertion of a gentamicin-vancomycin-impregnated PMMA nail; Group 3, no therapy; and Group 4 no fixation device and 1-week systemic antibiotic therapy with teicoplanin i.m. At 7 weeks after inoculum, the femurs were explanted sterilely. The radiological score showed that the lowest and best radiological score was observed in Group 2 that was significantly different from the other groups. The highest bacterial load in the femoral canal was found in Group 1, which was significantly different from Group 2 and Group 4 (p < 0.05). Histology showed that Group 2 produced a marked improvement (p < 0.005) of the bone injuries induced by the osteomyelitis in comparison with the other groups (Smeltzer score). The current findings showed that tested device might effectively lead to MRSA infection healing after surgical debridement and immediate implantation.
Collapse
Affiliation(s)
- Gianluca Giavaresi
- Laboratory of Experimental Surgery, Rizzoli Orthopaedic Institute, Via Di Barbiano, 1/10, 40136 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
18
|
Román J, Cabañas MV, Peña J, Doadrio JC, Vallet-Regí M. An optimized β-tricalcium phosphate and agarose scaffold fabrication technique. J Biomed Mater Res A 2008; 84:99-107. [PMID: 17600331 DOI: 10.1002/jbm.a.31394] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Biodegradable scaffolds composed of beta-tricalcium phosphate, and a natural hydrogel, agarose, were prepared by a shaping method based on the thermal gelation of the polymeric component. This technique was modified to facilitate the inclusion, during the scaffold preparation stage, of therapeutic agents that could improve the graft performance. Vancomycin was included in materials containing different amounts of agarose and ceramic without affecting the scaffold consolidation process. These materials, easily injectable, behave like a reinforced hydrogel whose swelling behavior and drug release rate depend on their composition.
Collapse
Affiliation(s)
- J Román
- Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
19
|
Cai XZ, Yan SG, Wu HB, He RX, Dai XS, Chen HX, Yan RJ, Zhao XH. Effect of delayed pulsed-wave ultrasound on local pharmacokinetics and pharmacodynamics of vancomycin-loaded acrylic bone cement in vivo. Antimicrob Agents Chemother 2007; 51:3199-204. [PMID: 17620385 PMCID: PMC2043206 DOI: 10.1128/aac.01465-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study sought to investigate the effect of delayed pulsed-wave ultrasound with low frequency on drug release from and the antimicrobial efficacy of vancomycin-loaded acrylic bone cement in vivo and the possible mechanism of this effect. After the implantation of cement and the inoculation of Staphylococcus aureus into the bilateral hips of rabbits, ultrasound (average intensity, 300 mW/cm(2); frequency, 46.5 kHz; on/off ratio, 20 min/10 min) was applied to animals in the normal ultrasound group (UG(0-12)) from 0 through 12 h after surgery and to those in the delayed-ultrasound group (UG(12-24)) from 12 through 24 h after surgery. The control group (CG) was not exposed to ultrasound. Based on vancomycin concentrations in left hip cavities at projected time intervals, the amount of time during which the local drug concentration exceeded the MIC (T(>MIC)) in UG(12-24) was significantly prolonged compared with that in either CG or UG(0-12), and the ratios between the areas under the concentration-time curves over 24 h and the MIC for UG(0-12) and UG(12-24) were both increased compared with that for CG. The greatest reductions in bacterial densities in both right hip aspirates and right femoral tissues at 48 h were achieved with UG(12-24). Local hemorrhage in rabbits of UG(0-12) during the 12-h insonation was more severe than that in rabbits of UG(12-24). Of four variables, the T(>MIC) and the bioacoustic effect were both identified as parameters predictive of the enhancement of the antimicrobial efficacy of cement by ultrasound. Sustained concentrations above the MIC replaced early high maximum concentrations and long-term subtherapeutic release of the drug, provided that ultrasound was not applied until local hemorrhage was relieved. The enhancement of the antimicrobial efficacy of cement by ultrasound may be attributed to the prolonged T(>MIC) and the bioacoustic effect caused by ultrasound.
Collapse
Affiliation(s)
- Xun-Zi Cai
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88, Hangzhou 310009, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|