1
|
Candido ACBB, Pagotti MC, Santos DAD, Paula LADL, Veneziani RCS, Bastos JK, Ambrósio SR, Magalhães LG. Efficacy of Diterpene Polyalthic Acid Combined with Amphotericin B against Leishmania amazonensis In Vitro. Pharmaceuticals (Basel) 2024; 17:1243. [PMID: 39338405 PMCID: PMC11434928 DOI: 10.3390/ph17091243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Leishmaniasis, a neglected disease caused by Leishmania spp. including L. amazonensis, urgently requires new treatments. Polyalthic acid (PA), a natural diterpene from Copaifera spp., has previously demonstrated significant antiparasitic potential. This study evaluated the leishmanicidal effects of polyalthic acid (PA), alone and with amphotericin B (AmpB), on L. amazonensis promastigote and amastigote forms. Results: PA showed significant activity against promastigotes, with 50% effective concentration (EC50) values of 2.01 μM at 24 h and an EC50 of 3.22 μM against amastigotes after 48 h. The PA and AmpB combination exhibited a synergistic effect on both forms without inducing cytotoxicity or hemolysis. Morphological changes in promastigotes, including vacuole formation and cell rounding, were more pronounced with the combination. Conclusions: These findings suggest that PA and AmpB together could form a promising new treatment strategy against Leishmania infections, offering enhanced efficacy without added toxicity.
Collapse
Affiliation(s)
- Ana Carolina Bolela Bovo Candido
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira, Franca 14404-600, SP, Brazil
| | - Mariana Cintra Pagotti
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira, Franca 14404-600, SP, Brazil
| | | | - Lucas Antonio de Lima Paula
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira, Franca 14404-600, SP, Brazil
| | - Rodrigo Cássio Sola Veneziani
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira, Franca 14404-600, SP, Brazil
- Animal Science Post Graduation, University of Franca, Franca 14404-600, SP, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Sérgio Ricardo Ambrósio
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira, Franca 14404-600, SP, Brazil
- Animal Science Post Graduation, University of Franca, Franca 14404-600, SP, Brazil
| | - Lizandra Guidi Magalhães
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles of Oliveira, Franca 14404-600, SP, Brazil
- Animal Science Post Graduation, University of Franca, Franca 14404-600, SP, Brazil
| |
Collapse
|
2
|
Santos ALED, Souza ROS, Barbosa FEV, Santos MHCD, Grangeiro YA, Martins AMC, Santos-Gomes G, Fonseca IPD, Silva CGLD, Teixeira CS. Concanavalin A, lectin from Canavalia ensiformis seeds has Leishmania infantum antipromastigote activity mediated by carbohydrate recognition domain. Chem Biol Interact 2024; 399:111156. [PMID: 39029856 DOI: 10.1016/j.cbi.2024.111156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Leishmaniases, caused by Leishmania parasites, are widespread and pose significant health risks globally. Visceral leishmaniasis (VL) is particularly prevalent in Brazil, with high morbidity and mortality rates. Traditional treatments, such as pentavalent antimonials, have limitations due to toxicity and resistance. Therefore, exploring new compounds like lectins is crucial. Concanavalin A (ConA) has shown promise in inhibiting Leishmania growth. This study aimed to evaluate its leishmanicidal effect on L. infantum promastigotes and understand its mechanism of action. In vitro tests demonstrated inhibition of promastigote growth when treated with ConA, with IC50 values ranging from 3 to 5 μM over 24-72 h. This study suggests that ConA interacts with L. infantum glycans. Additionally, ConA caused damage to the membrane integrity of parasites and induced ROS production, contributing to parasite death. Scanning electron microscopy confirmed morphological alterations in treated promastigotes. ConA combined with the amphotericin B (AmB) showed synergistic effects, reducing the required dose of AmB, and potentially mitigating its toxicity. ConA demonstrated no cytotoxic effects on macrophages, instead stimulating their proliferation. These findings reinforce that lectin exhibits promising leishmanicidal activity against L. infantum promastigotes, making ConA a potential candidate for leishmaniasis treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Alice Maria Costa Martins
- Departamento de Análises Clínicas e toxicológicas, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Gabriela Santos-Gomes
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Isabel Pereira da Fonseca
- CIISA, Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Av. Universidade Técnica, 1300-477, Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal
| | | | - Claudener Souza Teixeira
- Faculdade de Medicina, Universidade Federal do Cariri, Barbalha, CE, Brazil; Centro de Ciências Agrárias e da Biodiversidade, Universidade Federal do Cariri, Crato, CE, Brazil.
| |
Collapse
|
3
|
Cabral FV, Riahi M, Persheyev S, Lian C, Cortez M, Samuel IDW, Ribeiro MS. Photodynamic therapy offers a novel approach to managing miltefosine-resistant cutaneous leishmaniasis. Biomed Pharmacother 2024; 177:116881. [PMID: 38917757 DOI: 10.1016/j.biopha.2024.116881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Cutaneous leishmaniasis (CL) is a neglected disease caused by Leishmania parasites. The oral drug miltefosine is effective, but there is a growing problem of drug resistance, which has led to increasing treatment failure rates and relapse of infections. Photodynamic therapy (PDT) combines a light source and a photoactive drug to promote cell death by oxidative stress. Although PDT is effective against several pathogens, its use against drug-resistant Leishmania parasites remains unexplored. Herein, we investigated the potential of organic light-emitting diodes (OLEDs) as wearable light sources, which would enable at-home use or ambulatory treatment of CL. We also assessed its impact on combating miltefosine resistance in Leishmania amazonensis-induced CL in mice. The in vitro activity of OLEDs combined with 1,9-dimethyl-methylene blue (DMMB) (OLED-PDT) was evaluated against wild-type and miltefosine-resistant L. amazonensis strains in promastigote (EC50 = 0.034 μM for both strains) and amastigote forms (EC50 = 0.052 μM and 0.077 μM, respectively). Cytotoxicity in macrophages and fibroblasts was also evaluated. In vivo, we investigated the potential of OLED-PDT in combination with miltefosine using different protocols. Our results demonstrate that OLED-PDT is effective in killing both strains of L. amazonensis by increasing reactive oxygen species and stimulating nitric oxide production. Moreover, OLED-PDT showed great antileishmanial activity in vivo, allowing the reduction of miltefosine dose by half in infected mice using a light dose of 7.8 J/cm2 and 15 μM DMMB concentration. In conclusion, OLED-PDT emerges as a new avenue for at-home care and allows a combination therapy to overcome drug resistance in cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Fernanda V Cabral
- Center for Lasers and Applications, Nuclear and Energy Research Institute (IPEN-CNEN), São Paulo, Brazil
| | - Mina Riahi
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Saydulla Persheyev
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Cheng Lian
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Mauro Cortez
- Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo, SP, Brazil
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK.
| | - Martha S Ribeiro
- Center for Lasers and Applications, Nuclear and Energy Research Institute (IPEN-CNEN), São Paulo, Brazil.
| |
Collapse
|
4
|
Lessa VL, Gonçalves G, Santos B, Cavalari VC, da Costa Vieira RF, Figueiredo FB. In Vitro Evaluation of the Combinatorial Effect of Naringenin and Miltefosine against Leishmania amazonensis. Pharmaceuticals (Basel) 2024; 17:1014. [PMID: 39204118 PMCID: PMC11357177 DOI: 10.3390/ph17081014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Leishmania amazonensis causes a clinical form called diffuse cutaneous leishmaniasis (DCL) with challenges to treatment, like low efficiency and drug toxicity. Therefore, it is necessary to investigate new therapies using less toxic leishmanicidal compounds, such as flavonoids like naringenin, and their combination with conventional drugs, such as miltefosine. Antileishmanial dose/response activity, isobologram, calculation of dose reduction index (DRI), and fractional inhibitory concentration index (FICI) tests were performed on in vitro assays using reference promastigote forms of L. amazonensis (IFLA/BR/67/PH8) to assess the combinatorial effect between naringenin and miltefosine. The in vitro results of isobologram, DRI, and FICI calculations showed that the combination of the compounds had an additive effect and was able to reduce the half maximal inhibitory concentration (IC50) of miltefosine in the promastigote forms of the parasite compared to the treatment of the drug alone. This study demonstrated in vitro the viability of a combination action of the flavonoid with the treatment with miltefosine, opening space for further investigations on the association of natural compounds with the drugs used for the treatment of L. amazonensis.
Collapse
Affiliation(s)
- Vinícius Lopes Lessa
- Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81310-020, PR, Brazil; (G.G.); (B.S.); (V.C.C.); (F.B.F.)
- Graduate Program in Veterinary Sciences, Federal University of Paraná, Curitiba 80035-060, PR, Brazil
| | - Gustavo Gonçalves
- Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81310-020, PR, Brazil; (G.G.); (B.S.); (V.C.C.); (F.B.F.)
| | - Beatriz Santos
- Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81310-020, PR, Brazil; (G.G.); (B.S.); (V.C.C.); (F.B.F.)
| | - Victoria Cruz Cavalari
- Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81310-020, PR, Brazil; (G.G.); (B.S.); (V.C.C.); (F.B.F.)
| | - Rafael Felipe da Costa Vieira
- Department of Epidemiology and Community Health, College of Health and Human Services, University of North Carolina at Charlotte, Charlotte, NC 28223, USA;
- Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Fabiano Borges Figueiredo
- Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81310-020, PR, Brazil; (G.G.); (B.S.); (V.C.C.); (F.B.F.)
| |
Collapse
|
5
|
Cajas RA, Santos SSB, Espírito-Santo MCC, Garedaghi Y, de Moraes J. In vitro and in vivo efficacy of the amiodarone and praziquantel combination against the blood fluke Schistosoma mansoni. Antimicrob Agents Chemother 2024; 68:e0011424. [PMID: 38780260 PMCID: PMC11232383 DOI: 10.1128/aac.00114-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Schistosomiasis, a widespread parasitic disease caused by the blood fluke of the genus Schistosoma, affects over 230 million people, primarily in developing countries. Praziquantel, the sole drug currently approved for schistosomiasis treatment, demonstrates effectiveness against patent infections. A recent study highlighted the antiparasitic properties of amiodarone, an anti-arrhythmic drug, exhibiting higher efficacy than praziquantel against prepatent infections. This study assessed the efficacy of amiodarone and praziquantel, both individually and in combination, against Schistosoma mansoni through comprehensive in vitro and in vivo experiments. In vitro experiments demonstrated synergistic activity (fractional inhibitory concentration index ≤0.5) for combinations of amiodarone with praziquantel. In a murine model of schistosomiasis featuring prepatent infections, treatments involving amiodarone (200 or 400 mg/kg) followed by praziquantel (200 or 400 mg/kg) yielded a substantial reduction in worm burden (60%-70%). Given the low efficacy of praziquantel in prepatent infections, combinations of amiodarone with praziquantel may offer clinical utility in the treatment of schistosomiasis.
Collapse
Affiliation(s)
- Rayssa A Cajas
- Research Center on Neglected Diseases, Guarulhos University, São Paulo, Brazil
| | - Silvia S B Santos
- Research Center on Neglected Diseases, Guarulhos University, São Paulo, Brazil
| | - Maria Cristina C Espírito-Santo
- Department of Infectious and Parasitic Diseases, Faculty of Medicine, Laboratory of Immunopathology of Schistosomiasis (LIM-06), University of São Paulo, São Paulo, Brazil
- Laboratory of Helminthology, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Yagoob Garedaghi
- Department of Parasitology, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Josué de Moraes
- Research Center on Neglected Diseases, Guarulhos University, São Paulo, Brazil
- Research Center on Neglected Diseases, Scientific and Technological Institute, Brazil University, São Paulo, Brazil
| |
Collapse
|
6
|
van Griensven J, Dorlo TP, Diro E, Costa C, Burza S. The status of combination therapy for visceral leishmaniasis: an updated review. THE LANCET. INFECTIOUS DISEASES 2024; 24:e36-e46. [PMID: 37640031 DOI: 10.1016/s1473-3099(23)00353-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 08/31/2023]
Abstract
For the past 15 years, trials of combination therapy options for visceral leishmaniasis have been conducted with the aim of identifying effective, and safe treatment regimens that were shorter than existing monotherapy regimens and could also prevent or delay the emergence of drug resistance. Although first-line treatment currently relies on combination therapy in east Africa, this is not true in Latin America owing to disappointing trial results, with lower than expected efficacy seen for the combination treatment group. By contrast, several effective combination therapy regimens have been identified through trials on the Indian subcontinent; yet, first-line therapy is still AmBisome monotherapy as the drug is part of a free donation programme and is highly effective in this region. Achieving a short all-oral combination treatment will require new chemical entities, several of which are currently under evaluation. Future studies should systematically include pharmacological substudies to ensure optimal dosing for all patient groups. To achieve maximal impact of new combination treatments, mechanisms to ensure drug availability and access after trials should be established. Enhancing the longevity of current and novel treatments will require effective systems for early detection of emerging drug resistance.
Collapse
Affiliation(s)
| | - Thomas Pc Dorlo
- Department of Pharmacy, Uppsala University, Uppsala, Sweden; Department of Pharmacy and Pharmacology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ermias Diro
- Department of General Internal Medicine, University of Washington, Seattle, WA, USA
| | - Carlos Costa
- Intelligence Center on Emerging and Neglected Tropical Diseases and Injuries, Federal University of Piauí, Teresina, Brazil
| | - Sakib Burza
- Médecins Sans Frontières, New Delhi, India; London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
7
|
Corman HN, McNamara CW, Bakowski MA. Drug Discovery for Cutaneous Leishmaniasis: A Review of Developments in the Past 15 Years. Microorganisms 2023; 11:2845. [PMID: 38137989 PMCID: PMC10745741 DOI: 10.3390/microorganisms11122845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Leishmaniasis is a group of vector-borne, parasitic diseases caused by over 20 species of the protozoan Leishmania spp. The three major disease classifications, cutaneous, visceral, and mucocutaneous, have a range of clinical manifestations from self-healing skin lesions to hepatosplenomegaly and mucosal membrane damage to fatality. As a neglected tropical disease, leishmaniasis represents a major international health challenge, with nearly 350 million people living at risk of infection a year. The current chemotherapeutics used to treat leishmaniasis have harsh side effects, prolonged and costly treatment regimens, as well as emerging drug resistance, and are predominantly used for the treatment of visceral leishmaniasis. There is an undeniable need for the identification and development of novel chemotherapeutics targeting cutaneous leishmaniasis (CL), largely ignored by concerted drug development efforts. CL is mostly non-lethal and the most common presentation of this disease, with nearly 1 million new cases reported annually. Recognizing this unaddressed need, substantial yet fragmented progress in early drug discovery efforts for CL has occurred in the past 15 years and was outlined in this review. However, further work needs to be carried out to advance early discovery candidates towards the clinic. Importantly, there is a paucity of investment in the translation and development of therapies for CL, limiting the emergence of viable solutions to deal with this serious and complex international health problem.
Collapse
Affiliation(s)
- Hannah N. Corman
- Calibr at Scripps Research, La Jolla, CA 92037, USA; (C.W.M.); (M.A.B.)
| | | | | |
Collapse
|
8
|
Alves AB, da Silva Bortoleti BT, Tomiotto-Pellissier F, Ganaza AFM, Gonçalves MD, Carloto ACM, Rodrigues ACJ, Silva TF, Nakazato G, Kobayashi RKT, Lazarin-Bidóia D, Miranda-Sapla MM, Costa IN, Pavanelli WR, Conchon-Costa I. Synergistic Antileishmanial Effect of Oregano Essential Oil and Silver Nanoparticles: Mechanisms of Action on Leishmania amazonensis. Pathogens 2023; 12:pathogens12050660. [PMID: 37242330 DOI: 10.3390/pathogens12050660] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
American tegumentary leishmaniasis, a zoonotic disease caused by the Leishmania genus, poses significant challenges in treatment, including administration difficulty, low efficacy, and parasite resistance. Novel compounds or associations offer alternative therapies, and natural products such as oregano essential oil (OEO), extracted from Origanum vulgare, have been extensively researched due to biological effects, including antibacterial, antifungal, and antiparasitic properties. Silver nanoparticles (AgNp), a nanomaterial with compelling antimicrobial and antiparasitic activity, have been shown to exhibit potent leishmanicidal properties. We evaluated the in vitro effect of OEO and AgNp-Bio association on L. amazonensis and the death mechanisms of the parasite involved. Our results demonstrated a synergistic antileishmanial effect of OEO + AgNp on promastigote forms and L. amazonensis-infected macrophages, which induced morphological and ultrastructural changes in promastigotes. Subsequently, we investigated the mechanisms underlying parasite death and showed an increase in NO, ROS, mitochondrial depolarization, accumulation of lipid-storage bodies, autophagic vacuoles, phosphatidylserine exposure, and damage to the plasma membrane. Moreover, the association resulted in a reduction in the percentage of infected cells and the number of amastigotes per macrophage. In conclusion, our findings establish that OEO + AgNp elicits a late apoptosis-like mechanism to combat promastigote forms and promotes ROS and NO production in infected macrophages to target intracellular amastigote forms.
Collapse
Affiliation(s)
- Alex Barbosa Alves
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Bruna Taciane da Silva Bortoleti
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
- Carlos Chagas Institute (ICC-Fiocruz-Pr), Curitiba 81310-020, PR, Brazil
| | - Fernanda Tomiotto-Pellissier
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
- Carlos Chagas Institute (ICC-Fiocruz-Pr), Curitiba 81310-020, PR, Brazil
| | - Ana Flávia Marques Ganaza
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Manoela Daiele Gonçalves
- Laboratory of Biotransformation and Phytochemistry, Department of Chemistry, Center of Exact Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Amanda Cristina Machado Carloto
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Ana Carolina Jacob Rodrigues
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Taylon Felipe Silva
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Gerson Nakazato
- Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | | | - Danielle Lazarin-Bidóia
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Milena Menegazzo Miranda-Sapla
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Idessania Nazareth Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Wander Rogério Pavanelli
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Ivete Conchon-Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| |
Collapse
|
9
|
Sasidharan S, Saudagar P. An anti-leishmanial compound 4',7-dihydroxyflavone elicits ROS-mediated apoptosis-like death in Leishmania parasite. FEBS J 2023. [PMID: 36871140 DOI: 10.1111/febs.16770] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/12/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
The treatment for leishmaniasis is currently plagued by side effects such as toxicity and the emergence of drug resistance to the available repertoire of drugs, as well as the expense of these drugs. Considering such rising concerns, we report the anti-leishmanial activity and mechanism of a flavone compound 4',7-dihydroxyflavone (TI 4). Four flavanoids were initially screened for anti-leishmanial activity and cytotoxicity. The results showed that the compound TI 4 exhibited higher activity and selectivity index at the same time as maintaining low cytotoxicity. Preliminary microscopic studies and fluorescence-activated cell sorting analysis reported that the parasite underwent apoptosis on TI 4 treatment. Further in-depth studies revealed high reactive oxygen species (ROS) production and thiol levels in the parasites, suggesting ROS-mediated apoptosis in the parasites upon TI 4 treatment. Other apoptotic indicators such as intracellular Ca2+ and mitochondrial membrane potential also indicated the onset of apoptosis in the treated parasites. The mRNA expression levels signified that the redox metabolism genes were upregulated by two-fold along with the apoptotic genes. In summary, the use of TI 4 on Leishmania parasites induces ROS-mediated apoptosis; therefore, the compound has immense potential to be an anti-leishmanial drug. However, in vivo studies would be required to ascertain its safety and efficacy before we can exploit the compound against the growing leishmaniasis crisis.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, India
| |
Collapse
|
10
|
Nanoassemblies from Amphiphilic Sb Complexes Target Infection Sites in Models of Visceral and Cutaneous Leishmaniases. Pharmaceutics 2022; 14:pharmaceutics14081743. [PMID: 36015369 PMCID: PMC9412331 DOI: 10.3390/pharmaceutics14081743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/27/2022] Open
Abstract
This work aims to evaluate whether nanoassemblies (NanoSb) made from antimony(V) complexes with octanoyl-N-methylglucamide (SbL8) or decanoyl-N-methylglucamide (SbL10) would effectively target the infection sites in visceral and cutaneous leishmaniases (VL and CL). NanoSb were investigated regarding stability at different pHs, accumulation of Sb in the macrophage host cell and liver, and in vitro and in vivo activities in models of leishmaniasis. The kinetic stability assay showed that NanoSb are stable at neutral pH, but release incorporated lipophilic substance after conformational change in media that mimic the gastric fluid and the parasitophorous vacuole. NanoSb promoted greater accumulation of Sb in macrophages and in the liver of mice after parenteral administration, when compared to conventional antimonial Glucantime®. SbL10 was much more active than Glucantime® against intramacrophage Leishmania amastigotes and less cytotoxic than SbL8 against macrophages. The in vitro SbL10 activity was further enhanced with co-incorporated miltefosine. NanoSb showed high antileishmanial activity in the L. donovani murine VL after parenteral administration and moderate activity in the L. amazonensis murine CL after topical treatment. This study supports the ability of NanoSb to effectively deliver a combination of Sb and co-incorporated drug to host cell and infected tissues, in a better way than Glucantime® does.
Collapse
|
11
|
Gulin JEN, Bisio MMC, Rocco D, Altcheh J, Solana ME, García-Bournissen F. Miltefosine and Benznidazole Combination Improve Anti-Trypanosoma cruzi In Vitro and In Vivo Efficacy. Front Cell Infect Microbiol 2022; 12:855119. [PMID: 35865815 PMCID: PMC9294734 DOI: 10.3389/fcimb.2022.855119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
Drug repurposing and combination therapy have been proposed as cost-effective strategies to improve Chagas disease treatment. Miltefosine (MLT), a synthetic alkylphospholipid initially developed for breast cancer and repositioned for leishmaniasis, is a promising candidate against Trypanosoma cruzi infection. This study evaluates the efficacy of MLT as a monodrug and combined with benznidazole (BZ) in both in vitro and in vivo models of infection with T. cruzi (VD strain, DTU TcVI). MLT exhibited in vitro activity on amastigotes and trypomastigotes with values of IC50 = 0.51 µM (0.48 µM; 0,55 µM) and LC50 = 31.17 µM (29.56 µM; 32.87 µM), respectively. Drug interaction was studied with the fixed-ration method. The sum of the fractional inhibitory concentrations (ΣFICs) resulted in ∑FIC= 0.45 for trypomastigotes and ∑FIC= 0.71 for amastigotes, suggesting in vitro synergistic and additive effects, respectively. No cytotoxic effects on host cells were observed. MLT efficacy was also evaluated in a murine model of acute infection alone or combined with BZ. Treatment was well tolerated with few adverse effects, and all treated animals displayed significantly lower mean peak parasitemia and mortality than infected non-treated controls (p<0.05). The in vivo studies showed that MLT led to a dose-dependent parasitostatic effect as monotherapy which could be improved by combining with BZ, preventing parasitemia rebound after a stringent immunosuppression protocol. These results support MLT activity in clinically relevant stages from T. cruzi, and it is the first report of positive interaction with BZ, providing further support for evaluating combined schemes using MLT and exploring synthetic alkylphospholipids as drug candidates.
Collapse
Affiliation(s)
- Julián Ernesto Nicolás Gulin
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)-Gobierno de la Ciudad de Buenos Aires (GCBA), Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños “Dr. Ricardo Gutiérrez, Ministerio de Salud, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina Universidad de Buenos Aires (UBA) – CONICET, Buenos Aires, Argentina
| | - Margarita María Catalina Bisio
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)-Gobierno de la Ciudad de Buenos Aires (GCBA), Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños “Dr. Ricardo Gutiérrez, Ministerio de Salud, Buenos Aires, Argentina
- Instituto Nacional de Parasitología (INP) ‘Dr. Mario Fatala Chaben’-Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) ‘Dr. Carlos G. Malbrán’, CONICET, Buenos Aires, Argentina
| | - Daniela Rocco
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)-Gobierno de la Ciudad de Buenos Aires (GCBA), Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños “Dr. Ricardo Gutiérrez, Ministerio de Salud, Buenos Aires, Argentina
| | - Jaime Altcheh
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)-Gobierno de la Ciudad de Buenos Aires (GCBA), Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños “Dr. Ricardo Gutiérrez, Ministerio de Salud, Buenos Aires, Argentina
| | - María Elisa Solana
- Instituto de Microbiología y Parasitología Médica (IMPaM), Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Buenos Aires, Argentina
| | - Facundo García-Bournissen
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)-Gobierno de la Ciudad de Buenos Aires (GCBA), Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños “Dr. Ricardo Gutiérrez, Ministerio de Salud, Buenos Aires, Argentina
- Division of Pediatric Clinical Pharmacology, Department of Pediatrics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
- *Correspondence: Facundo García-Bournissen,
| |
Collapse
|
12
|
Nosratabadi M, Akhtari J, Faeli L, Haghani I, Aghili SR, Shokohi T, Hedayati MT, Zarrinfar H, Mohammadi R, Najafzadeh MJ, Khodavaisy S, Al-Harrasi A, Javan-Nikkhah M, Kachuei R, Salimi M, Fattahi M, Badali H, Al Hatmi AMS, Abastabar M. In Vitro Antifungal Susceptibility Profile of Miltefosine against a Collection of Azole and Echinocandins Resistant Fusarium Strains. J Fungi (Basel) 2022; 8:jof8070709. [PMID: 35887464 PMCID: PMC9315751 DOI: 10.3390/jof8070709] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Fusarium species are filamentous fungi that cause a variety of infections in humans. Because they are commonly resistant to many antifungal drugs currently available in clinical settings, research into alternative targets in fungal cells and therapeutic approaches is required. The antifungal activity of miltefosine and four comparators, amphotericin B, voriconazole, itraconazole, and caspofungin, were tested in vitro against a collection of susceptible and resistant clinical (n = 68) and environmental (n = 42) Fusarium isolates. Amphotericin B (0.8 μg/mL) had the lowest geometric mean (GM) MICs/MECs values followed by miltefosine (1.44 μg/mL), voriconazole (2.15 μg/mL), caspofungin (7.23 μg/mL), and itraconazole (14.19 μg/mL). Miltefosine was the most effective agent against Fusarium isolates after amphotericin B indicating that miltefosine has the potential to be studied as a novel treatment for Fusarium infections.
Collapse
Affiliation(s)
- Mohsen Nosratabadi
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran; (M.N.); (L.F.); (I.H.); (S.R.A.); (T.S.); (M.T.H.); (M.S.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 4816983663, Iran
| | - Javad Akhtari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran;
| | - Leila Faeli
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran; (M.N.); (L.F.); (I.H.); (S.R.A.); (T.S.); (M.T.H.); (M.S.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 4816983663, Iran
| | - Iman Haghani
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran; (M.N.); (L.F.); (I.H.); (S.R.A.); (T.S.); (M.T.H.); (M.S.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 4816983663, Iran
| | - Seyed Reza Aghili
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran; (M.N.); (L.F.); (I.H.); (S.R.A.); (T.S.); (M.T.H.); (M.S.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 4816983663, Iran
| | - Tahereh Shokohi
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran; (M.N.); (L.F.); (I.H.); (S.R.A.); (T.S.); (M.T.H.); (M.S.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 4816983663, Iran
| | - Mohammad Taghi Hedayati
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran; (M.N.); (L.F.); (I.H.); (S.R.A.); (T.S.); (M.T.H.); (M.S.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 4816983663, Iran
| | - Hossein Zarrinfar
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad 9176699199, Iran;
| | - Rasoul Mohammadi
- Department of Medical Parasitology and Mycology, Infectious Diseases and Tropical Medicine Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Mohammad Javad Najafzadeh
- Department of Parasitology and Mycology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9176699199, Iran;
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran 1717613151, Iran;
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman;
| | - Mohammad Javan-Nikkhah
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj 3158777871, Iran;
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran;
| | - Maryam Salimi
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran; (M.N.); (L.F.); (I.H.); (S.R.A.); (T.S.); (M.T.H.); (M.S.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 4816983663, Iran
| | - Mahsa Fattahi
- Centre for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran 1416613675, Iran;
| | - Hamid Badali
- South Texas Center for Emerging Infectious Diseases, Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - Abdullah M. S. Al Hatmi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman;
- Center of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Correspondence: (A.M.S.A.H.); (M.A.); Tel.: +968-25446654 (A.M.S.A.H.); +98-9112111347 (M.A.); Fax: +968-25446612 (A.M.S.A.H.); +98-33543248 (M.A.)
| | - Mahdi Abastabar
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran; (M.N.); (L.F.); (I.H.); (S.R.A.); (T.S.); (M.T.H.); (M.S.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 4816983663, Iran
- Correspondence: (A.M.S.A.H.); (M.A.); Tel.: +968-25446654 (A.M.S.A.H.); +98-9112111347 (M.A.); Fax: +968-25446612 (A.M.S.A.H.); +98-33543248 (M.A.)
| |
Collapse
|
13
|
de Castro Barbosa E, Alves TMA, Kohlhoff M, Jangola STG, Pires DEV, Figueiredo ACC, Alves ÉAR, Calzavara-Silva CE, Sobral M, Kroon EG, Rosa LH, Zani CL, de Oliveira JG. Searching for plant-derived antivirals against dengue virus and Zika virus. Virol J 2022; 19:31. [PMID: 35193667 PMCID: PMC8861615 DOI: 10.1186/s12985-022-01751-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 01/23/2022] [Indexed: 12/21/2022] Open
Abstract
Background The worldwide epidemics of diseases as dengue and Zika have triggered an intense effort to repurpose drugs and search for novel antivirals to treat patients as no approved drugs for these diseases are currently available. Our aim was to screen plant-derived extracts to identify and isolate compounds with antiviral properties against dengue virus (DENV) and Zika virus (ZIKV).
Methods Seven thousand plant extracts were screened in vitro for their antiviral properties against DENV-2 and ZIKV by their viral cytopathic effect reduction followed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, previously validated for this purpose. Selected extracts were submitted to bioactivity-guided fractionation using high- and ultrahigh-pressure liquid chromatography. In parallel, high-resolution mass spectrometric data (MSn) were collected from each fraction, allowing compounds into the active fractions to be tracked in subsequent fractionation procedures. The virucidal activity of extracts and compounds was assessed by using the plaque reduction assay. EC50 and CC50 were determined by dose response experiments, and the ratio (EC50/CC50) was used as a selectivity index (SI) to measure the antiviral vs. cytotoxic activity. Purified compounds were used in nuclear magnetic resonance spectroscopy to identify their chemical structures. Two compounds were associated in different proportions and submitted to bioassays against both viruses to investigate possible synergy. In silico prediction of the pharmacokinetic and toxicity (ADMET) properties of the antiviral compounds were calculated using the pkCSM platform. Results We detected antiviral activity against DENV-2 and ZIKV in 21 extracts obtained from 15 plant species. Hippeastrum (Amaryllidaceae) was the most represented genus, affording seven active extracts. Bioactivity-guided fractionation of several extracts led to the purification of lycorine, pretazettine, narciclasine, and narciclasine-4-O-β-D-xylopyranoside (NXP). Another 16 compounds were identified in active fractions. Association of lycorine and pretazettine did not improve their antiviral activity against DENV-2 and neither to ZIKV. ADMET prediction suggested that these four compounds may have a good metabolism and no mutagenic toxicity. Predicted oral absorption, distribution, and excretion parameters of lycorine and pretazettine indicate them as candidates to be tested in animal models. Conclusions Our results showed that plant extracts, especially those from the Hippeastrum genus, can be a valuable source of antiviral compounds against ZIKV and DENV-2. The majority of compounds identified have never been previously described for their activity against ZIKV and other viruses. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01751-z.
Collapse
Affiliation(s)
- Emerson de Castro Barbosa
- Instituto René Rachou - Fiocruz Minas, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Belo Horizonte, Minas Gerais, 30190-002, Brasil
| | - Tânia Maria Almeida Alves
- Instituto René Rachou - Fiocruz Minas, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Belo Horizonte, Minas Gerais, 30190-002, Brasil
| | - Markus Kohlhoff
- Instituto René Rachou - Fiocruz Minas, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Belo Horizonte, Minas Gerais, 30190-002, Brasil
| | - Soraya Torres Gaze Jangola
- Instituto René Rachou - Fiocruz Minas, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Belo Horizonte, Minas Gerais, 30190-002, Brasil
| | - Douglas Eduardo Valente Pires
- Instituto René Rachou - Fiocruz Minas, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Belo Horizonte, Minas Gerais, 30190-002, Brasil.,School of Computing and Information Systems, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Anna Carolina Cançado Figueiredo
- Instituto René Rachou - Fiocruz Minas, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Belo Horizonte, Minas Gerais, 30190-002, Brasil
| | - Érica Alessandra Rocha Alves
- Instituto René Rachou - Fiocruz Minas, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Belo Horizonte, Minas Gerais, 30190-002, Brasil
| | - Carlos Eduardo Calzavara-Silva
- Instituto René Rachou - Fiocruz Minas, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Belo Horizonte, Minas Gerais, 30190-002, Brasil
| | - Marcos Sobral
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco - Praça Dom Helvécio, 74, São João del-Rei, Minas Gerais, 36301-160, Brasil
| | - Erna Geessien Kroon
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31270-901, Brasil
| | - Luiz Henrique Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31270-901, Brasil
| | - Carlos Leomar Zani
- Instituto René Rachou - Fiocruz Minas, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Belo Horizonte, Minas Gerais, 30190-002, Brasil.
| | - Jaquelline Germano de Oliveira
- Instituto René Rachou - Fiocruz Minas, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Belo Horizonte, Minas Gerais, 30190-002, Brasil.
| |
Collapse
|
14
|
Antileishmanial Efficacy of the Calpain Inhibitor MDL28170 in Combination with Amphotericin B. Trop Med Infect Dis 2022; 7:tropicalmed7020029. [PMID: 35202224 PMCID: PMC8878347 DOI: 10.3390/tropicalmed7020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
The necessity of drug combinations to treat leishmaniasis came to the surface mainly because of the toxicity of current treatments and the emergence of resistant strains. The calpain inhibitor MDL28170 has previously shown anti-Leishmania activity, therefore its use in association with standard drugs could provide a new alternative for the treatment strategy against leishmaniasis. In this study, we analyzed the potential of the combination of MDL28170 and the antileishmanial drug amphotericin B against Leishmania amazonensis and Leishmania chagasi. The compounds were tested in the combination of the ½ × IC50 value of MDL28170 plus the ¼ × IC50 value of amphotericin B, which led to an increment in the anti-promastigote activity when compared to the single drug treatments. This drug association revealed several and severe morphophysiological changes on parasite cells, such as loss of plasma membrane integrity, reduced size of flagellum, and depolarization of mitochondrial membrane potential besides increased reactive oxygen species production. In addition, the combination of both drugs had a deleterious effect on the Leishmania–macrophage interaction, reflecting in a significant anti-amastigote action, which achieved a reduction of 50% in the association index. These results indicate that the combination treatment proposed here may represent a new alternative for leishmaniasis chemotherapy.
Collapse
|
15
|
In vitro selection of ketoconazole-pentamidine-resistant Leishmania (Viannia) braziliensis strains. Exp Parasitol 2021; 233:108206. [PMID: 34973293 DOI: 10.1016/j.exppara.2021.108206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/07/2021] [Accepted: 12/25/2021] [Indexed: 11/21/2022]
Abstract
The use of ketoconazole (KTZ) plus pentamidine (PMD) could be an interesting treatment option for New World cutaneous leishmaniasis. The aim of this work was to generate KTZ- and PMD-resistant strains and to determine some characteristics of the selection process and the resulting parasites. Resistance to one or two drugs was selected on promastigotes by progressively increasing drug concentrations for eleven months. The resistance levels (IC50) to one or two drugs (synergism assay) were determined using a colorimetric resazurin methodology. The stability of the resistance phenotype (without drug pressure or after mouse passage), cross resistance with paromomycin and miltefosine, and resistance transference to intracellular amastigotes were determined. In addition, some parasite attributes compared with WT, such as growth kinetics, amastigogenesis, THP-1 cells, and mouse infection, were determined. Promastigotes resistant to KTZ or PMD were obtained three times earlier than the combined KTZ + PMD-resistant strains. Resistant parasites (promastigotes and intracellular amastigotes) were three to twelve times less susceptible to KTZ and PMD than WT parasites. The resistance phenotype on parasites was unstable, and no cross resistance was observed. Similar parasite fitness related to our evaluated characteristics was observed except for in vivo infection, where a delay of the onset of cutaneous lesions was observed after KTZ + PMD-resistant parasite infection. CONCLUSION: Combined treatment with KTZ and PMD delayed the onset of parasite resistance and was more effective in vitro than each drug separately for WT and all resistant strains. Parasites resistant to KTZ and PMD acquired similar in vitro behaviour to WT parasites, were less virulent to mice and maintained their resistance phenotype on intracellular amastigotes but not without drug pressure or after mouse infection.
Collapse
|
16
|
Kar A, Charan Raja MR, Jayaraman A, Srinivasan S, Debnath J, Kar Mahapatra S. Oral combination of eugenol oleate and miltefosine induce immune response during experimental visceral leishmaniasis through nitric oxide generation with advanced cytokine demand. Cytokine 2021; 146:155623. [PMID: 34144446 DOI: 10.1016/j.cyto.2021.155623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022]
Abstract
Conventional therapy of visceral leishmaniasis (VL) remains challenging with the pitfall of toxicity, drug resistance, and expensive. Hence, urgent need for an alternative approach is essential. In this study, we evaluated the potential of combination therapy with eugenol oleate and miltefosine in Leishmania donovani infected macrophages and in the BALB/c mouse model. The interactions between eugenol oleate and miltefosine were found to be additive against promastigotes and amastigotes with xΣFIC 1.13 and 0.68, respectively. Significantly (p < 0.001) decreased arginase activity, increased nitrite generation, improved pro-inflammatory cytokines, and phosphorylated p38MAPK were observed after combination therapy with eugenol oleate and miltefosine. >80% parasite clearance in splenic and hepatic tissue with concomitant nitrite generation, and anti-VL cytokines productions were observed after orally administered miltefosine (5 mg/kg body weight) and eugenol oleate (15 mg/kg body weight) in L. donovani-infected BALB/c mice. Altogether, this study suggested the possibility of an oral combination of miltefosine with eugenol oleate against visceral leishmaniasis.
Collapse
Affiliation(s)
- Amrita Kar
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Mamilla R Charan Raja
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| | - Adithyan Jayaraman
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sujatha Srinivasan
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Joy Debnath
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Santanu Kar Mahapatra
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India; Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore 721129, West Bengal, India.
| |
Collapse
|
17
|
Leishmaniasis: where are we and where are we heading? Parasitol Res 2021; 120:1541-1554. [PMID: 33825036 DOI: 10.1007/s00436-021-07139-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/24/2021] [Indexed: 01/19/2023]
Abstract
Leishmaniasis is a zoonotic disease in humans caused by the bite of a parasite-infected sandfly. The disease, widely referred to as "poor man's disease," affects millions of people worldwide. The clinical manifestation of the disease depends upon the species of the parasite and ranges from physical disfigurement to death if left untreated. Here, we review the past, present, and future of leishmaniasis in detail. The life cycle of Leishmania sp., along with its epidemiology, is discussed, and in addition, the line of therapeutics available for treatment currently is examined. The current status of the disease is critically evaluated, keeping emerging threats like human immunodeficiency virus (HIV) coinfection and post kala-azar dermal leishmaniasis (PKDL) into consideration. In summary, the review proposes a dire need for new therapeutics and reassessment of the measures and policies concerning emerging threats. New strategies are essential to achieve the goal of leishmaniasis eradication in the next few decades.
Collapse
|
18
|
Voak AA, Harris A, Coteron-Lopez JM, Angulo-Barturen I, Ferrer-Bazaga S, Croft SL, Seifert K. Pharmacokinetic / pharmacodynamic relationships of liposomal amphotericin B and miltefosine in experimental visceral leishmaniasis. PLoS Negl Trop Dis 2021; 15:e0009013. [PMID: 33651812 PMCID: PMC7924795 DOI: 10.1371/journal.pntd.0009013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND There is a continued need to develop effective and safe treatments for visceral leishmaniasis (VL). Preclinical studies on pharmacokinetics and pharmacodynamics of anti-infective agents, such as anti-bacterials and anti-fungals, have provided valuable information in the development and dosing of these agents. The aim of this study was to characterise the pharmacokinetic and pharmacodynamic properties of the anti-leishmanial drugs AmBisome and miltefosine in a preclinical disease model of VL. METHODOLOGY / PRINCIPAL FINDINGS BALB/c mice were infected with L. donovani (MHOM/ET/67/HU3) amastigotes. Groups of mice were treated with miltefosine (orally, multi-dose regimen) or AmBisome (intravenously, single dose regimen) or left untreated as control groups. At set time points groups of mice were killed and plasma, livers and spleens harvested. For pharmacodynamics the hepatic parasite burden was determined microscopically from tissue impression smears. For pharmacokinetics drug concentrations were measured in plasma and whole tissue homogenates by LC-MS. Unbound drug concentrations were determined by rapid equilibrium dialysis. Doses exerting maximum anti-leishmanial effects were 40 mg/kg for AmBisome and 150 mg/kg (cumulatively) for miltefosine. AmBisome displayed a wider therapeutic range than miltefosine. Dose fractionation at a total dose of 2.5 mg/kg pointed towards concentration-dependent anti-leishmanial activity of AmBisome, favouring the administration of large doses infrequently. Protein binding was >99% for miltefosine and amphotericin B in plasma and tissue homogenates. CONCLUSION / SIGNIFICANCE Using a PK/PD approach we propose optimal dosing strategies for AmBisome. Additionally, we describe pharmacokinetic and pharmacodynamic properties of miltefosine and compare our findings in a preclinical disease model to available knowledge from studies in humans. This approach also presents a strategy for improved use of animal models in the drug development process for VL.
Collapse
Affiliation(s)
- Andrew A. Voak
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | | | | | | | - Simon L. Croft
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Karin Seifert
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Muraca G, Berti IR, Sbaraglini ML, Fávaro WJ, Durán N, Castro GR, Talevi A. Trypanosomatid-Caused Conditions: State of the Art of Therapeutics and Potential Applications of Lipid-Based Nanocarriers. Front Chem 2020; 8:601151. [PMID: 33324615 PMCID: PMC7726426 DOI: 10.3389/fchem.2020.601151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Trypanosomatid-caused conditions (African trypanosomiasis, Chagas disease, and leishmaniasis) are neglected tropical infectious diseases that mainly affect socioeconomically vulnerable populations. The available therapeutics display substantial limitations, among them limited efficacy, safety issues, drug resistance, and, in some cases, inconvenient routes of administration, which made the scenarios with insufficient health infrastructure settings inconvenient. Pharmaceutical nanocarriers may provide solutions to some of these obstacles, improving the efficacy-safety balance and tolerability to therapeutic interventions. Here, we overview the state of the art of therapeutics for trypanosomatid-caused diseases (including approved drugs and drugs undergoing clinical trials) and the literature on nanolipid pharmaceutical carriers encapsulating approved and non-approved drugs for these diseases. Numerous studies have focused on the obtention and preclinical assessment of lipid nanocarriers, particularly those addressing the two currently most challenging trypanosomatid-caused diseases, Chagas disease, and leishmaniasis. In general, in vitro and in vivo studies suggest that delivering the drugs using such type of nanocarriers could improve the efficacy-safety balance, diminishing cytotoxicity and organ toxicity, especially in leishmaniasis. This constitutes a very relevant outcome, as it opens the possibility to extended treatment regimens and improved compliance. Despite these advances, last-generation nanosystems, such as targeted nanocarriers and hybrid systems, have still not been extensively explored in the field of trypanosomatid-caused conditions and represent promising opportunities for future developments. The potential use of nanotechnology in extended, well-tolerated drug regimens is particularly interesting in the light of recent descriptions of quiescent/dormant stages of Leishmania and Trypanosoma cruzi, which have been linked to therapeutic failure.
Collapse
Affiliation(s)
- Giuliana Muraca
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
- Administración Nacional de Medicamentos, Alimentos y Tecnología Médica (ANMAT), Buenos Aires, Argentina
| | - Ignacio Rivero Berti
- Laboratorio de Nanobiomateriales, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), La Plata, Argentina
| | - María L. Sbaraglini
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
| | - Wagner J. Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, Brazil
| | - Guillermo R. Castro
- Laboratorio de Nanobiomateriales, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), La Plata, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
20
|
Bazin MA, Cojean S, Pagniez F, Bernadat G, Cavé C, Ourliac-Garnier I, Nourrisson MR, Morgado C, Picot C, Leclercq O, Baratte B, Robert T, Späth GF, Rachidi N, Bach S, Loiseau PM, Le Pape P, Marchand P. In vitro identification of imidazo[1,2-a]pyrazine-based antileishmanial agents and evaluation of L. major casein kinase 1 inhibition. Eur J Med Chem 2020; 210:112956. [PMID: 33148491 DOI: 10.1016/j.ejmech.2020.112956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Leishmaniasis constitutes a severe public health problem, with an estimated prevalence of 12 million cases. This potentially fatal disease has a worldwide distribution and in 2012, the fatal Visceral Leishmaniasis (VL) was declared as new emerging disease in Europe, mainly due to global warming, with expected important public health impact. The available treatments are toxic, costly or lead to parasite resistance, thus there is an urgent need for new drugs with new mechanism of action. Previously, we reported the discovery of CTN1122, a potent imidazo[1,2-a]pyrazine-based antileishmanial hit compound targeting L-CK1.2 at low micromolar ranges. Here, we described structurally related, safe and selective compounds endowed with antiparasitic properties, better than miltefosine, the reference therapy by oral route. L-CK1.2 homology model gave the first structural explanations of the role of 4-pyridyl (CTN1122) and 2-aminopyrimidin-4-yl (compound 21) moieties, at the position 3 of the central core, in the low micromolar to nanomolar L-CK1.2 inhibition, whereas N-methylpyrazole derivative 11 remained inactive against the parasite kinase.
Collapse
Affiliation(s)
- Marc-Antoine Bazin
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Sandrine Cojean
- BioCIS Biomolécules: Conception, Isolement, Synthèse, Chimiothérapie Antiparasitaire, UMR CNRS 8076, Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, F-92296, Châtenay-Malabry, France
| | - Fabrice Pagniez
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Guillaume Bernadat
- BioCIS Biomolécules: Conception, Isolement, Synthèse, Chimiothérapie Antiparasitaire, UMR CNRS 8076, Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, F-92296, Châtenay-Malabry, France
| | - Christian Cavé
- BioCIS Biomolécules: Conception, Isolement, Synthèse, Chimiothérapie Antiparasitaire, UMR CNRS 8076, Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, F-92296, Châtenay-Malabry, France
| | - Isabelle Ourliac-Garnier
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Marie-Renée Nourrisson
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Cathy Morgado
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Carine Picot
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Olivier Leclercq
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, F-75015, Paris, France
| | - Blandine Baratte
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, F-29680, Roscoff, France; Sorbonne Université, CNRS, FR2424, Kinase Inhibitor Specialized Screening Facility - KISSf, Station Biologique, F-29680, Roscoff, France
| | - Thomas Robert
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, F-29680, Roscoff, France; Sorbonne Université, CNRS, FR2424, Kinase Inhibitor Specialized Screening Facility - KISSf, Station Biologique, F-29680, Roscoff, France
| | - Gérald F Späth
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, F-75015, Paris, France
| | - Najma Rachidi
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, F-75015, Paris, France
| | - Stéphane Bach
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, F-29680, Roscoff, France; Sorbonne Université, CNRS, FR2424, Kinase Inhibitor Specialized Screening Facility - KISSf, Station Biologique, F-29680, Roscoff, France
| | - Philippe M Loiseau
- BioCIS Biomolécules: Conception, Isolement, Synthèse, Chimiothérapie Antiparasitaire, UMR CNRS 8076, Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, F-92296, Châtenay-Malabry, France
| | - Patrice Le Pape
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000, Nantes, France
| | - Pascal Marchand
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000, Nantes, France.
| |
Collapse
|
21
|
Ramesh V, Dixit KK, Sharma N, Singh R, Salotra P. Assessing the Efficacy and Safety of Liposomal Amphotericin B and Miltefosine in Combination for Treatment of Post Kala-Azar Dermal Leishmaniasis. J Infect Dis 2020; 221:608-617. [PMID: 31854451 DOI: 10.1093/infdis/jiz486] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/08/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND No satisfactory canonical treatment is available for post-kala-azar dermal leishmaniasis (PKDL), clinical sequela of visceral leishmaniasis. Confined treatment options and substantial increase in relapse rate after miltefosine (MIL) treatment warrant the need to adapt resilient combination therapies. In this study, we assessed the safety and efficacy of combination therapy using liposomal amphotericin B (LAmB) and MIL for treating PKDL. METHODS Thirty-two PKDL patients, confirmed by microscopy or quantitative polymerase chain reaction (qPCR), were included in the study. An equal number of cases (n = 16) were put on MIL monotherapy (100 mg/day for 90 days) or MIL and LAmB combination for 45 days (3 injections of LAmB, 5 mg/kg body weight, and 100 mg/day MIL). Parasite load in slit aspirate was monitored using qPCR. RESULTS Patients treated with combination therapy demonstrated a rapid decline in parasite load and achieved 100% cure, with no reports of relapse. Those treated with MIL monotherapy attained clinical cure with a gradual decrease in parasite load; however, 25% relapsed within 18 months of follow-up. CONCLUSIONS Liposomal amphotericin B and MIL combination for treating PKDL is efficacious and safe, with high tolerability. Furthermore, this study established the utility of minimally invasive slit aspirate method for monitoring of parasite load and assessment of cure in PKDL.
Collapse
Affiliation(s)
- V Ramesh
- Department of Dermatology, Safdarjung Hospital and Vardhman Mahavir Medical College, New Delhi, India
| | - Keerti Kaumudee Dixit
- Indian Council of Medical Research- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India.,Faculty of Health and Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Neha Sharma
- Department of Dermatology, Safdarjung Hospital and Vardhman Mahavir Medical College, New Delhi, India
| | - Ruchi Singh
- Indian Council of Medical Research- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Poonam Salotra
- Indian Council of Medical Research- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| |
Collapse
|
22
|
Parvez S, Yadagiri G, Singh A, Karole A, Singh OP, Sundar S, Mudavath SL. Improvising anti-leishmanial activity of amphotericin B and paromomycin using co-delivery in d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) tailored nano-lipid carrier system. Chem Phys Lipids 2020; 231:104946. [PMID: 32621810 DOI: 10.1016/j.chemphyslip.2020.104946] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 01/13/2023]
Abstract
In the current study, we have focused on the design, development and in-vitro evaluation of d-α-tocopheryl polyethylene glycol 1000 succinate modified amphotericin B (AmB) and paromomycin (PM) loaded solid lipid nanoparticles (TPGS-SLNPs) by emulsion-solvent evaporation method. The optimized TPGS-SLNPs had a mean particle size of 199.4 ± 18.9 nm with a polydispersity index of 0.22 ± 0.14 and entrapment efficiency for AmB and PM was found to be 94 ± 1.5 % and 89 ± 0.50 % respectively. The prepared lipid nanoparticles were characterized by Powdered X-ray diffraction study, Fourier transform infrared spectroscopy, Nuclear magnetic resonance spectroscopy to confirm the absence of any interaction between lipids and drugs. The developed formulation showed a sustained drug release over a period of 48 h and were stable at different temperatures. Finally, TPGS-SLNPs (1 μg/mL) was found to significantly (P < 0.001) mitigate the intra-cellular amastigote growth compared to free AmB. The results obtained suggest TPGS-SLNPs could be an efficient carrier for delivering poorly water-soluble drugs and efficiently enhance its therapeutic potential.
Collapse
Affiliation(s)
- Shabi Parvez
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science & Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Ganesh Yadagiri
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science & Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Aakriti Singh
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science & Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Archana Karole
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science & Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Om Prakash Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science & Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India.
| |
Collapse
|
23
|
Raj S, Sasidharan S, Balaji SN, Dubey VK, Saudagar P. Review on natural products as an alternative to contemporary anti-leishmanial therapeutics. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42485-020-00035-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Reimão JQ, Pita Pedro DP, Coelho AC. The preclinical discovery and development of oral miltefosine for the treatment of visceral leishmaniasis: a case history. Expert Opin Drug Discov 2020; 15:647-658. [PMID: 32202449 DOI: 10.1080/17460441.2020.1743674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Visceral leishmaniasis (VL) is a vector-borne disease caused by Leishmania donovani or Leishmania infantum. Closely related to poverty, VL is fatal and represents one of the main burdens on public health in developing countries. Treatment of VL relies exclusively on chemotherapy, a strategy still experiencing numerous limitations. Miltefosine (MF) has been used in the chemotherapy of VL in some endemic areas, and has been expanded to other regions, being considered crucial in eradication programs. AREAS COVERED This article reviews the most relevant preclinical and clinical aspects of MF, its mechanism of action and resistance to Leishmania parasites, as well as its limitations. The authors also give their perspectives on the treatment of VL. EXPERT OPINION The discovery of MF represented an enormous advance in the chemotherapy of VL, since it was the first oral drug for this neglected disease. Beyond selection of resistant parasites due to drug pressure, several other factors can lead to treatment failure such as, for example, factors intrinsic to the host, parasite and the drug itself. Although its efficacy as a monotherapy has reduced over recent years, MF is still an important alternative in VL chemotherapy, especially when used in combination with other drugs.
Collapse
Affiliation(s)
- Juliana Q Reimão
- Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí , Jundiaí, Brazil
| | - Débora P Pita Pedro
- Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí , Jundiaí, Brazil
| | - Adriano C Coelho
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, Brazil
| |
Collapse
|
25
|
Efficient antileishmanial activity of amphotericin B and piperine entrapped in enteric coated guar gum nanoparticles. Drug Deliv Transl Res 2020; 11:118-130. [PMID: 32016707 DOI: 10.1007/s13346-020-00712-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Amphotericin B (AmB) exhibits potential antileishmanial activity, with only a little rate of recurrence. However, low bioavailability and severe nephrotoxicity are among the major shortcomings of AmB-based therapy. Various AmB nanoformulations have been developed, which to an extent, have reduced its toxicity and increased the drug efficacy. To further reduce the nonspecific tissue distribution and the cost of the treatment, the current AmB-based formulations require additional improvements. Combination of natural bioenhancers with AmB is expected to further increase its bioavailability. Therefore, we developed a nanoformulation of AmB and piperine (Pip), a plant alkaloid, known to enhance the bioavailability of various drugs, by entrapping them in guar gum, a macrophage targeting polymer. Owing to the ease of oral delivery, these nanoparticles (NPs) were coated with eudragit to make them suitable for oral administration. The formulated eudragit-coated AmB and Pip-loaded NPs (Eu-HDGG-AmB-Pip-NPs) exhibited controlled release of the loaded therapeutic agents and protected the drug from acidic pH. These NPs exhibited effective suppression of growth of both promastigotes and amastigotes of Leishmania donovani parasite under in vitro. In vivo evaluation of these NPs for therapeutic efficacy in golden hamster-L. donovani model demonstrated enhanced drug bioavailability, non-nephrotoxic nature, and potential antileishmanial activity with up to 96% inhibition of the parasite. Graphical abstract.
Collapse
|
26
|
Chandra Pandey S, Dhami DS, Jha A, Chandra Shah G, Kumar A, Samant M. Identification of trans-2- cis-8-Matricaria-ester from the Essential Oil of Erigeron multiradiatus and Evaluation of Its Antileishmanial Potential by in Vitro and in Silico Approaches. ACS OMEGA 2019; 4:14640-14649. [PMID: 31528820 PMCID: PMC6740194 DOI: 10.1021/acsomega.9b02130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/14/2019] [Indexed: 05/09/2023]
Abstract
The essential oil (EO) composition of the aerial parts of Erigeron multiradiatus (Lindl.ex DC.) Benth growing wild in the central Himalayan region of Uttarakhand, India, was analyzed by capillary gas chromatography with a flame ionization detector and gas chromatography-mass spectrometry. A sum of 12 constituents was identified, representing 97.81% of the oil composition. The oil was composed mainly of oxygenated monoterpenes (88.95%), sesquiterpene hydrocarbons (5.61%), oxygenated sesquiterpenes (3.05%), and monoterpene hydrocarbons (0.20%). Major constituents identified were trans-2-cis-8-matricaria-ester (77.79%), cis-lachnophyllum ester (11.04%), zingiberene (4.43%), and spathulenol (1.59%). Further, the leishmanicidal effect of EO and the purified compound trans-2-cis-8-matricaria-ester has been investigated against Leishmania donovani promastigotes and intracellular amastigotes. EO and trans-2-cis-8-matricaria-ester were safer for the hamster peritoneal macrophage and lethal to promastigotes and intracellular amastigotes at different concentrations. Further, using an in silico approach, these four compounds were tested against 10 major proteins of L. donovani associated with its virulence. Out of them, only trans-2-cis-8-matricaria-ester was found to be effective against the four target proteins, namely, l-asparaginase-1-like protein, metacaspase 2, metacaspase 1, and DNA topoisomerase II of L. donovani. The results indicate that EO contains trans-2-cis-8-matricaria-ester as a major component and showed antileishmanial activity which may facilitate discovery of new lead molecules for developing herbal medicines against visceral leishmaniasis.
Collapse
Affiliation(s)
- Satish Chandra Pandey
- Cell
and Molecular Biology Laboratory, Department of Zoology, Department of Chemistry, Kumaun University, SSJ Campus, Almora 263601, Uttarakhand, India
- Department
of Biotechnology, Kumaun University, Bhimtal Campus, Nainital 263136, Uttarakhand, India
| | - Devendra Singh Dhami
- Cell
and Molecular Biology Laboratory, Department of Zoology, Department of Chemistry, Kumaun University, SSJ Campus, Almora 263601, Uttarakhand, India
| | - Anubhuti Jha
- Department
of Biotechnology, National Institute of
Technology, Raipur 492010, Chhattisgarh, India
| | - Girish Chandra Shah
- Cell
and Molecular Biology Laboratory, Department of Zoology, Department of Chemistry, Kumaun University, SSJ Campus, Almora 263601, Uttarakhand, India
| | - Awanish Kumar
- Department
of Biotechnology, National Institute of
Technology, Raipur 492010, Chhattisgarh, India
- E-mail: (A.K.)
| | - Mukesh Samant
- Cell
and Molecular Biology Laboratory, Department of Zoology, Department of Chemistry, Kumaun University, SSJ Campus, Almora 263601, Uttarakhand, India
- E-mail: (M.S.)
| |
Collapse
|
27
|
Zahid MSH, Johnson MM, Tokarski RJ, Satoskar AR, Fuchs JR, Bachelder EM, Ainslie KM. Evaluation of synergy between host and pathogen-directed therapies against intracellular Leishmania donovani. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 10:125-132. [PMID: 31493763 PMCID: PMC6731340 DOI: 10.1016/j.ijpddr.2019.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 11/24/2022]
Abstract
Visceral leishmaniasis (VL) is associated with treatment complications due to the continued growth of resistant parasites toward currently available pathogen-directed therapeutics. To limit the emergence and combat resistant parasites there is a need to develop new anti-leishmanial drugs and alternative treatment approaches, such as host-directed therapeutics (HDTs). Discovery of new anti-leishmanial drugs including HDTs requires suitable in vitro assay systems. Herein, we modified and evaluated a series of resazurin assays against different life-stages of the VL causing parasite, Leishmania donovani to identify novel HDTs. We further analyzed the synergy of combinatorial interactions between traditionally used pathogen-directed drugs and HDTs for clearance of intracellular L. donovani. The inhibitory concentration at 50% (IC50) of the five evaluated therapies [amphotericin B (AMB), miltefosine, paromomycin, DNER-4, and AR-12 (OSU-03012)] was determined against promastigotes, extracellular amastigotes, and intracellular amastigotes of L. donovani via a resazurin-based assay and compared to image-based microscopy. Using the resazurin-based assay, all evaluated therapies showed reproducible anti-leishmanial activity against the parasite's different life-stages. These results were consistent to the traditional image-based technique. The gold standard of therapy, AMB, showed the highest potency against intracellular L. donovani, and was further evaluated for combinatorial effects with the HDTs. Among the combinations analyzed, pathogen-directed AMB and host-directed AR-12 showed a synergistic reduction of intracellular L. donovani compared to individual treatments. The modified resazurin assay used in this study demonstrated a useful technique to measure new anti-leishmanial drugs against both intracellular and extracellular parasites. The synergistic interactions between pathogen-directed AMB and host-directed AR-12 showed a great promise to combat VL, with the potential to reduce the emergence of drug-resistant strains.
Collapse
Affiliation(s)
- M Shamim Hasan Zahid
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Monica M Johnson
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Robert J Tokarski
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Abhay R Satoskar
- Department of Pathology, Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
28
|
Carregal VM, Lanza JS, Souza DM, Islam A, Demicheli C, Fujiwara RT, Rivas L, Frézard F. Combination oral therapy against Leishmania amazonensis infection in BALB/c mice using nanoassemblies made from amphiphilic antimony(V) complex incorporating miltefosine. Parasitol Res 2019; 118:3077-3084. [DOI: 10.1007/s00436-019-06419-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/02/2019] [Indexed: 11/27/2022]
|
29
|
Taha M, Uddin I, Gollapalli M, Almandil NB, Rahim F, Farooq RK, Nawaz M, Ibrahim M, Alqahtani MA, Bamarouf YA, Selvaraj M. Synthesis, anti-leishmanial and molecular docking study of bis-indole derivatives. BMC Chem 2019; 13:102. [PMID: 31410413 PMCID: PMC6685257 DOI: 10.1186/s13065-019-0617-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/31/2019] [Indexed: 11/10/2022] Open
Abstract
We have synthesized new series of bisindole analogs (1–27), characterized by 1HNMR and HR-EI-MS and evaluated for their anti-leishmanial potential. All compounds showed outstanding inhibitory potential with IC50 values ranging from 0.7 ± 0.01 to 13.30 ± 0.50 µM respectively when compared with standard pentamidine with IC50 value of 7.20 ± 0.20 µM. All analogs showed greater potential than standard except 10, 19 and 23 when compared with standard. Structure activity relationship has been also established for all compounds. Molecular docking studies were carried out to understand the binding interaction of active molecules.![]()
Collapse
Affiliation(s)
- Muhammad Taha
- 1Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Imad Uddin
- 2Department of Chemistry, Hazara University, Mansehra, 21300 Khyber Pakhtunkhwa Pakistan
| | - Mohammed Gollapalli
- 3Department of Computer Information Systems, College of Computer Science & Information Technology, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Noor Barak Almandil
- 1Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Fazal Rahim
- 2Department of Chemistry, Hazara University, Mansehra, 21300 Khyber Pakhtunkhwa Pakistan
| | - Rai Khalid Farooq
- 4Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Muhammad Nawaz
- 5Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Mohamed Ibrahim
- 1Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Mohammed A Alqahtani
- 1Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Yasser A Bamarouf
- 3Department of Computer Information Systems, College of Computer Science & Information Technology, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Manikandan Selvaraj
- 6Monash University School of Chemical Engineering, 47500 Bandar Sunway, Selangor Malaysia
| |
Collapse
|
30
|
Chakravarty J, Sundar S. Current and emerging medications for the treatment of leishmaniasis. Expert Opin Pharmacother 2019; 20:1251-1265. [DOI: 10.1080/14656566.2019.1609940] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jaya Chakravarty
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
31
|
Thomas M, De Rycker M, Ajakane M, Albrecht S, Álvarez-Pedraglio AI, Boesche M, Brand S, Campbell L, Cantizani-Perez J, Cleghorn LA, Copley RC, Crouch SD, Daugan A, Drewes G, Ferrer S, Ghidelli-Disse S, Gonzalez S, Gresham SL, Hill AP, Hindley SJ, Lowe RM, MacKenzie CJ, MacLean L, Manthri S, Martin F, Miguel-Siles J, Nguyen VL, Norval S, Osuna-Cabello M, Woodland A, Patterson S, Pena I, Quesada-Campos MT, Reid IH, Revill C, Riley J, Ruiz-Gomez JR, Shishikura Y, Simeons FR, Smith A, Smith VC, Spinks D, Stojanovski L, Thomas J, Thompson S, Underwood T, Gray DW, Fiandor JM, Gilbert IH, Wyatt PG, Read KD, Miles TJ. Identification of GSK3186899/DDD853651 as a Preclinical Development Candidate for the Treatment of Visceral Leishmaniasis. J Med Chem 2019; 62:1180-1202. [PMID: 30570265 PMCID: PMC6407917 DOI: 10.1021/acs.jmedchem.8b01218] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 12/14/2022]
Abstract
The leishmaniases are diseases that affect millions of people across the world, in particular visceral leishmaniasis (VL) which is fatal unless treated. Current standard of care for VL suffers from multiple issues and there is a limited pipeline of new candidate drugs. As such, there is a clear unmet medical need to identify new treatments. This paper describes the optimization of a phenotypic hit against Leishmania donovani, the major causative organism of VL. The key challenges were to balance solubility and metabolic stability while maintaining potency. Herein, strategies to address these shortcomings and enhance efficacy are discussed, culminating in the discovery of preclinical development candidate GSK3186899/DDD853651 (1) for VL.
Collapse
Affiliation(s)
- Michael
G. Thomas
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Manu De Rycker
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Myriam Ajakane
- Cellzome
GmbH, A GlaxoSmithKline Company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sébastian Albrecht
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | | | - Markus Boesche
- Cellzome
GmbH, A GlaxoSmithKline Company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Stephen Brand
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Lorna Campbell
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Juan Cantizani-Perez
- Global
Health R&D, GlaxoSmithKline, Calle Severo Ochoa, 2, 28760 Tres Cantos, Madrid Spain
| | - Laura A.T. Cleghorn
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Royston C.B. Copley
- Platform
Technology & Science, GlaxoSmithKline
Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Sabrinia D. Crouch
- Global
Health R&D, GlaxoSmithKline, Calle Severo Ochoa, 2, 28760 Tres Cantos, Madrid Spain
| | - Alain Daugan
- Centre
de Recherche, GlaxoSmithKline, Les Ulis, 25,27 Avenue du Québec, 91140 Villebon sur Yvette France
| | - Gerard Drewes
- Cellzome
GmbH, A GlaxoSmithKline Company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Santiago Ferrer
- Global
Health R&D, GlaxoSmithKline, Calle Severo Ochoa, 2, 28760 Tres Cantos, Madrid Spain
| | - Sonja Ghidelli-Disse
- Cellzome
GmbH, A GlaxoSmithKline Company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Silvia Gonzalez
- Global
Health R&D, GlaxoSmithKline, Calle Severo Ochoa, 2, 28760 Tres Cantos, Madrid Spain
| | - Stephanie L. Gresham
- Platform
Technology & Science, GlaxoSmithKline, David Jack Centre for R&D, Park
Road, Ware, Hertfordshire SG12 0DP, U.K.
| | - Alan P. Hill
- Platform
Technology & Science, GlaxoSmithKline
Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Sean J. Hindley
- Platform
Technology & Science, GlaxoSmithKline
Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Rhiannon M. Lowe
- Platform
Technology & Science, GlaxoSmithKline, David Jack Centre for R&D, Park
Road, Ware, Hertfordshire SG12 0DP, U.K.
| | - Claire J. MacKenzie
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Lorna MacLean
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Sujatha Manthri
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Franck Martin
- Centre
de Recherche, GlaxoSmithKline, Les Ulis, 25,27 Avenue du Québec, 91140 Villebon sur Yvette France
| | - Juan Miguel-Siles
- Global
Health R&D, GlaxoSmithKline, Calle Severo Ochoa, 2, 28760 Tres Cantos, Madrid Spain
| | - Van Loc Nguyen
- Centre
de Recherche, GlaxoSmithKline, Les Ulis, 25,27 Avenue du Québec, 91140 Villebon sur Yvette France
| | - Suzanne Norval
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Maria Osuna-Cabello
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Andrew Woodland
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Stephen Patterson
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Imanol Pena
- Global
Health R&D, GlaxoSmithKline, Calle Severo Ochoa, 2, 28760 Tres Cantos, Madrid Spain
| | | | - Iain H. Reid
- Platform
Technology & Science, GlaxoSmithKline
Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Charlotte Revill
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Jennifer Riley
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Jose Ramon Ruiz-Gomez
- Global
Health R&D, GlaxoSmithKline, Calle Severo Ochoa, 2, 28760 Tres Cantos, Madrid Spain
| | - Yoko Shishikura
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Frederick R.C. Simeons
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Alasdair Smith
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Victoria C. Smith
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Daniel Spinks
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Laste Stojanovski
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - John Thomas
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Stephen Thompson
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Tim Underwood
- Platform
Technology & Science, GlaxoSmithKline
Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - David W. Gray
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Jose M. Fiandor
- Global
Health R&D, GlaxoSmithKline, Calle Severo Ochoa, 2, 28760 Tres Cantos, Madrid Spain
| | - Ian H. Gilbert
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Paul G. Wyatt
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Kevin D. Read
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Timothy J. Miles
- Global
Health R&D, GlaxoSmithKline, Calle Severo Ochoa, 2, 28760 Tres Cantos, Madrid Spain
| |
Collapse
|
32
|
Pandey SC, Jha A, Kumar A, Samant M. Evaluation of antileishmanial potential of computationally screened compounds targeting DEAD-box RNA helicase of Leishmania donovani. Int J Biol Macromol 2019; 121:480-487. [DOI: 10.1016/j.ijbiomac.2018.10.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/03/2018] [Accepted: 10/12/2018] [Indexed: 12/28/2022]
|
33
|
Mostafavi M, Farajzadeh S, Sharifi I, Khazaeli P, Sharifi H. Leishmanicidal effects of amphotericin B in combination with selenium loaded on niosome against Leishmania tropica. J Parasit Dis 2019; 43:176-185. [PMID: 31263321 DOI: 10.1007/s12639-018-1071-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/10/2018] [Indexed: 01/26/2023] Open
Abstract
The strategy for improving the treatment of leishmaniasis by the World Health Organization, is the development of new drugs and combination therapy. The aim of this survey was to investigate the effect of amphotericin B (AmB) in combination with selenium, in a simple or niosomal form, on Leishmania tropica (L. tropica) by in vitro advanced assays. In this study, a niosomal formulation of AmB with selenium was prepared and characterized based on size and morphology. Using MTT assay, macrophage model, flow cytometry, and qPCR, the cytotoxicity and efficiency of the niosomal formulation and simple form of combination were evaluated. No toxicity was reported for both the niosomal and simple form of the combination. The niosomal formulation significantly showed higher inhibitory effect on the promastigote and amastigote forms of L. tropica than simple combination form. Interleukin (IL)-10 significantly decreased while the level of IL-12 and metacasoase as Th-1 activator significantly increased (P < 0.001). The findings of this study indicated that niosomes are the stable carriers for this combination, easy to produce and provide promising results as an effective formulation in the inhibition of extracellular and intracellular forms of L. tropica in compared with simple combination form.
Collapse
Affiliation(s)
- Mahshid Mostafavi
- 1Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeedeh Farajzadeh
- 2Department of Pediatric Dermatology, Kerman University of Medical Sciences, Kerman, 76169-14115 Iran
| | - Iraj Sharifi
- 1Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Payam Khazaeli
- 3Pharmaceutical Research Center, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Sharifi
- 4HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
34
|
Mastroianni A, Gaibani P, Rossini G, Vocale C, Re MC, Ravaglia G, Sambri V, Varani S. Two cases of relapsed HIV-associated visceral leishmaniasis successfully treated with combination therapy. AIDS Res Ther 2018; 15:27. [PMID: 30572924 PMCID: PMC6300903 DOI: 10.1186/s12981-018-0215-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/11/2018] [Indexed: 11/23/2022] Open
Abstract
Background The management of visceral leishmaniasis (VL) in HIV-infected patients is often complex with patients experiencing higher mortality rates, more toxic side effects and a higher possibility of treatment failure and relapse than HIV-negative individuals with VL. Case presentation We report on successful salvage therapy in two HIV-infected patients suffering with disseminated cutaneous and visceral leishmaniasis, recalcitrant to therapy with liposomal amphotericin B. After the employment of combination anti-leishmanial treatment, parasite genomes were not detectable up to the last follow up visit, 57 and 78 weeks after treatment onset, respectively. CD4+ lymphocyte counts fluctuated over time, but were generally higher than counts detected at treatment onset, which likely contributed to protection against VL relapse. Conclusions Results achieved with the anti-leishmanial combination treatment were promising, but are based on only two patients. Future investigation is necessary to confirm the efficacy of this salvage therapy in sustaining the immunological response and control of VL.
Collapse
|
35
|
Sundar S, Chakravarty J, Meena LP. Leishmaniasis: treatment, drug resistance and emerging therapies. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2019.1552853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Jaya Chakravarty
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Lalit P Meena
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
36
|
Valdivieso E, Mejías F, Carrillo E, Sánchez C, Moreno J. Potentiation of the leishmanicidal activity of nelfinavir in combination with miltefosine or amphotericin B. Int J Antimicrob Agents 2018; 52:682-687. [DOI: 10.1016/j.ijantimicag.2018.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 06/20/2018] [Accepted: 06/23/2018] [Indexed: 01/12/2023]
|
37
|
K Pinjari MJS, Somani R, Gilhotra RM. Investigation of in vitro absorption, distribution, metabolism, and excretion and in vivo pharmacokinetics of paromomycin: Influence on oral bioavailability. Indian J Pharmacol 2018; 49:297-303. [PMID: 29326490 PMCID: PMC5754937 DOI: 10.4103/ijp.ijp_651_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE: The objective of this study is to investigate in vitro Caco2 permeability, metabolism and in vivo pharmacokinetic (PK) properties of paromomycin to develop an efficient dosage form with improved oral bioavailability. MATERIALS AND METHODS: For the purpose, Caco2 permeability assay, mouse microsomal stability assay and in vivo PKs in male BALB/c mice were performed. RESULTS: In Caco-2 permeability assay, paromomycin showed negligible permeability in the apical to basolateral (A-to-B) direction and vice versa (B-to-A). Marginal increase in permeability with the use of P-glycoprotein (P-gp) inhibitor, namely, verapamil suggesting paromomycin could be a P-gp substrate. Paromomycin was unstable in liver microsomes of mouse. Paromomycin showed good PK properties after intravenous dose in male BALB/c mice which included low plasma clearance, i.e., <10% of hepatic blood flow in mice, high volume of distribution (Vd), and half-life (T½) of 2.6 h. Following per oral dose, it exhibits low oral bioavailability (0.3%) with carboxymethyl cellulose formulation. Oral plasma exposure increased in mice by 10% and 15% after pretreatment with P-gp inhibitor verapamil and CYP inhibitor 1-Aminobenztriazole, respectively. CONCLUSION: Comparatively significant increase in oral plasma exposure of paromomycin was observed with an alternative oral formulation approach, use of P-gp and CYP inhibitors resulting in improved oral bioavailability up to 16%.
Collapse
Affiliation(s)
- M Jakir S K Pinjari
- Department of Research, School of Pharmacy, Suresh Gyan Vihar University, Mahal Jagatpura, Jaipur, Rajasthan, India
| | - Rahul Somani
- Department of Research, School of Pharmacy, Suresh Gyan Vihar University, Mahal Jagatpura, Jaipur, Rajasthan, India
| | - Ritu M Gilhotra
- Department of Research, School of Pharmacy, Suresh Gyan Vihar University, Mahal Jagatpura, Jaipur, Rajasthan, India
| |
Collapse
|
38
|
Emiliano YSS, Almeida-Amaral EE. Efficacy of Apigenin and Miltefosine Combination Therapy against Experimental Cutaneous Leishmaniasis. JOURNAL OF NATURAL PRODUCTS 2018; 81:1910-1913. [PMID: 30095915 DOI: 10.1021/acs.jnatprod.8b00356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Leishmaniasis is a neglected tropical disease caused by several different species of Leishmania. Treatment of leishmaniasis involves a limited drug arsenal that is associated with severe side effects, high costs, and drug resistance. Therefore, combination therapy has emerged as a strategy to improve leishmaniasis treatment. Here, we report the interaction of miltefosine and apigenin in vitro and in vivo. Combination therapy using low doses of these two drugs results in good clinical and parasitological responses.
Collapse
Affiliation(s)
- Yago S S Emiliano
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC) , Fundação Oswaldo Cruz-FIOCRUZ, Pavilhão Leônidas Deane , 4° andar, sala 405A, Manguinhos , 21045-900 , Rio de Janeiro , RJ , Brazil
| | - Elmo E Almeida-Amaral
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC) , Fundação Oswaldo Cruz-FIOCRUZ, Pavilhão Leônidas Deane , 4° andar, sala 405A, Manguinhos , 21045-900 , Rio de Janeiro , RJ , Brazil
| |
Collapse
|
39
|
Cyclin-dependent kinase 12 is a drug target for visceral leishmaniasis. Nature 2018; 560:192-197. [PMID: 30046105 PMCID: PMC6402543 DOI: 10.1038/s41586-018-0356-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 06/11/2018] [Indexed: 01/28/2023]
Abstract
Visceral leishmaniasis causes considerable mortality and morbidity in many parts of the world. There is an urgent need for the development of new, effective treatments for this disease. Here we describe the development of an anti-leishmanial drug-like chemical series based on a pyrazolopyrimidine scaffold. The leading compound from this series (7, DDD853651/GSK3186899) is efficacious in a mouse model of visceral leishmaniasis, has suitable physicochemical, pharmacokinetic and toxicological properties for further development, and has been declared a preclinical candidate. Detailed mode-of-action studies indicate that compounds from this series act principally by inhibiting the parasite cdc-2-related kinase 12 (CRK12), thus defining a druggable target for visceral leishmaniasis.
Collapse
|
40
|
Valdivieso E, Mejías F, Torrealba C, Benaim G, Kouznetsov VV, Sojo F, Rojas-Ruiz FA, Arvelo F, Dagger F. In vitro 4-Aryloxy-7-chloroquinoline derivatives are effective in mono- and combined therapy against Leishmania donovani and induce mitocondrial membrane potential disruption. Acta Trop 2018; 183:36-42. [PMID: 29604246 DOI: 10.1016/j.actatropica.2018.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/27/2018] [Accepted: 03/24/2018] [Indexed: 10/17/2022]
Abstract
The present study evaluates in vitro the effect of two synthetic compounds of the 7-chloro-4-aryloxyquinoline series, QI (C17H12ClNO3) and QII (C18H15ClN4O2S), on Leishmania donovani parasites. The results obtained demonstrate that these compounds are able to inhibit the proliferation of L. donovani promastigotes in a dose-dependent way (QI IC50 = 13.03 ± 3.4 and QII IC50 = 7.90 ± 0.6 μM). Likewise, these compounds significantly reduced the percentage of macrophage infection by amastigotesand the number of amastigotes within macrophage phagolysosomes, the clinical relevant phase of these parasites. Compound QI showed an IC50 value of 0.66 ± 0.2 μM, while for derivative QII, the corresponding IC50 was 1.02 ± 0.17 μM. Interestingly, the amastigotes were more susceptible to the drug treatment when compared to promastigotes. Furthermore, no cytotoxic effect of these compounds was observed on the macrophage cell line at the concentrations tested. The combination of these compounds with miltefosine and amphotericin B on both parasite morphotypes was evaluated. The isobolograms showed a synergistic effect for both combinations; with a Fractional Inhibitory Concentration (FIC) Index lower than 1 for promastigotes and less than 0.3 for intracellular amastigotes. The effect of QI and QII on mitochondrial membrane potential was also studied. The combination of quinolone derivatives compounds with miltefosine and amphotericin B showed 5-8-fold stronger depolarization of membrane mitochondrial potential when compared to drugs alone. The present work validates the combination of drugs as an effective alternative to potentiate the action of anti-Leishmania agents and points to the quinoline compounds studied here as possible leishmanicidal drugs.
Collapse
|
41
|
Abongomera C, Diro E, de Lima Pereira A, Buyze J, Stille K, Ahmed F, van Griensven J, Ritmeijer K. The initial effectiveness of liposomal amphotericin B (AmBisome) and miltefosine combination for treatment of visceral leishmaniasis in HIV co-infected patients in Ethiopia: A retrospective cohort study. PLoS Negl Trop Dis 2018; 12:e0006527. [PMID: 29799869 PMCID: PMC5991765 DOI: 10.1371/journal.pntd.0006527] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/07/2018] [Accepted: 05/14/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND North-west Ethiopia faces the highest burden world-wide of visceral leishmaniasis (VL) and HIV co-infection. VL-HIV co-infected patients have higher (initial) parasitological failure and relapse rates than HIV-negative VL patients. Whereas secondary prophylaxis reduces the relapse rate, parasitological failure rates remain high with the available antileishmanial drugs, especially when administered as monotherapy. We aimed to determine the initial effectiveness (parasitologically-confirmed cure) of a combination of liposomal amphotericin B (AmBisome) and miltefosine for treatment of VL in HIV co-infected patients. METHODOLOGY/PRINCIPAL FINDINGS We conducted a retrospective cohort study at a Médecins Sans Frontières-supported health center in north-west Ethiopia. We included VL-HIV co-infected adults, treated for VL between January 2011 and August 2014, with AmBisome infusion (30 mg/kg total dose) and miltefosine orally for 28 days (100 mg/day). Proportions of initial treatment outcome categories were calculated. Predictors of initial parasitological failure and of death were determined using multivariable logistic regression. Of the 173 patients included, 170 (98.3%) were male and the median age was 32 years. The proportion of patients with primary VL (48.0%) and relapse VL (52.0%) were similar. The majority had advanced HIV disease (n = 111; 73.5%) and were on antiretroviral therapy prior to VL diagnosis (n = 106; 64.2%). Initial cure rate was 83.8% (95% confidence interval [CI], 77.6-88.6); death rate 12.7% (95% CI, 8.5-18.5) and parasitological failure rate 3.5% (95% CI, 1.6-7.4). Tuberculosis co-infection at VL diagnosis was predictive of parasitological failure (adjusted odds ratio (aOR), 8.14; p = 0.02). Predictors of death were age >40 years (aOR, 5.10; p = 0.009), hemoglobin ≤6.5 g/dL (aOR, 5.20; p = 0.002) and primary VL (aOR, 8.33; p = 0.001). CONCLUSIONS/SIGNIFICANCE Initial parasitological failure rates were very low with AmBisome and miltefosine combination therapy. This regimen seems a suitable treatment option. Knowledge of predictors of poor outcome may facilitate better management. These findings remain to be confirmed in clinical trials.
Collapse
Affiliation(s)
- Charles Abongomera
- Médecins Sans Frontières, Abdurafi, Ethiopia
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- * E-mail:
| | - Ermias Diro
- Department of Internal Medicine, University of Gondar, Gondar, Ethiopia
| | | | - Jozefien Buyze
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | - Johan van Griensven
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Koert Ritmeijer
- Public Health Department, Médecins Sans Frontières, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Outcome of E1224-Benznidazole Combination Treatment for Infection with a Multidrug-Resistant Trypanosoma cruzi Strain in Mice. Antimicrob Agents Chemother 2018; 62:AAC.00401-18. [PMID: 29555633 PMCID: PMC5971593 DOI: 10.1128/aac.00401-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 12/17/2022] Open
Abstract
Combination therapy has been proposed as an alternative therapeutic approach for the treatment of Chagas disease. In this study, we evaluated the effect of treatment with benznidazole combined with E1224 (ravuconazole prodrug) in an experimental murine model of acute infection. The first set of experiments assessed the range of E1224 doses required to induce parasitological cure using Trypanosoma cruzi strains with different susceptibilities to benznidazole (Y and Colombian). All E1224 doses were effective in suppressing the parasitemia and preventing death; however, parasitological cure was observed only in mice infected with Y strain. Considering these results, we evaluated the effect of combined treatment against Colombian, a multidrug-resistant T. cruzi strain. After exclusion of antagonistic effects using in vitro assays, infected mice were treated with E1224 and benznidazole in monotherapy or in combination at day 4 or 10 postinoculation. All treatments were well tolerated and effective in suppressing parasitemia; however, parasitological and PCR assays indicated no cure among mice treated with monotherapies. Intriguingly, the outcome of combination therapy was dependent on treatment onset. Early treatment using optimal doses of E1224-benznidazole induced a 100% cure rate, but this association could not eliminate a well-established infection. The beneficial effect of combination therapy was evidenced by further reductions of the patent parasitemia period in the group receiving combined therapy compared with monotherapies. Our results demonstrated a positive interaction between E1224 and benznidazole against murine T. cruzi infection using a multidrug-resistant strain and highlighted the importance of a stringent experimental model in the evaluation of new therapies.
Collapse
|
43
|
Phloroglucinol derivatives from Hypericum species trigger mitochondrial dysfunction in Leishmania amazonensis. Parasitology 2018; 145:1199-1209. [PMID: 29482667 DOI: 10.1017/s0031182018000203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bioactive molecules isolated from plants are promising sources for the development of new therapies against leishmaniasis. We investigated the leishmanicidal activity of cariphenone A (1), isouliginosin B (2) and uliginosin B (3) isolated from Hypericum species. Promastigotes and amastigotes of Leishmania amazonensis were incubated with compounds 1-3 at concentrations 1-100 µm for 48 h. The anti-promastigote effect of compounds was also tested in combinations. The cytotoxicity against macrophages and human erythrocytes were determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) method and hemolysis assay, respectively. The compounds 1-3 showed high leishmanicidal activity against promastigotes, IC50 values of 10.5, 17.5 and 11.3 µm, respectively. Synergistic interactions were found to the associations of compounds 1 and 2 [Σ fractional inhibitory concentration (FIC) = 0.41], and 2 and 3 (ΣFIC = 0.28) on promastigotes. All Hypericum compounds induced mitochondrial hyperpolarization and reactive oxygen species production in promastigotes. The compounds showed low cytotoxicity toward mammalian cells, high selectivity index and killed intracellular amastigotes probably mediated by oxidative stress. These results indicate that these compounds are promising candidates for the development of drugs against leishmaniasis.
Collapse
|
44
|
Antileishmanial Efficacy and Pharmacokinetics of DB766-Azole Combinations. Antimicrob Agents Chemother 2017; 62:AAC.01129-17. [PMID: 29061761 DOI: 10.1128/aac.01129-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/18/2017] [Indexed: 01/04/2023] Open
Abstract
Given the limitations of current antileishmanial drugs and the utility of oral combination therapy for other infections, developing an oral combination against visceral leishmaniasis should be a high priority. In vitro combination studies with DB766 and antifungal azoles against intracellular Leishmania donovani showed that posaconazole and ketoconazole, but not fluconazole, enhanced DB766 potency. Pharmacokinetic analysis of DB766-azole combinations in uninfected Swiss Webster mice revealed that DB766 exposure was increased by higher posaconazole and ketoconazole doses, while DB766 decreased ketoconazole exposure. In L. donovani-infected BALB/c mice, DB766-posaconazole combinations given orally for 5 days were more effective than DB766 or posaconazole alone. For example, 81% ± 1% (means ± standard errors) inhibition of liver parasite burden was observed for 37.5 mg/kg of body weight DB766 plus 15 mg/kg posaconazole, while 37.5 mg/kg DB766 and 15 mg/kg posaconazole administered as monotherapy gave 40% ± 5% and 21% ± 3% inhibition, respectively. Combination index (CI) analysis indicated that synergy or moderate synergy was observed in six of nine combined dose groups, while the other three were nearly additive. Liver concentrations of DB766 and posaconazole increased in almost all combination groups compared to monotherapy groups, although many increases were not statistically significant. For DB766-ketoconazole combinations evaluated in this model, two were antagonistic, one displayed synergy, and one was nearly additive. These data indicate that the efficacy of DB766-posaconazole and DB766-ketoconazole combinations in vivo is influenced in part by the pharmacokinetics of the combination, and that the former combination deserves further consideration in developing new treatment strategies against visceral leishmaniasis.
Collapse
|
45
|
Khan NH, Llewellyn MS, Schönian G, Sutherland CJ. Variability of Cutaneous Leishmaniasis Lesions Is Not Associated with Genetic Diversity of Leishmania tropica in Khyber Pakhtunkhwa Province of Pakistan. Am J Trop Med Hyg 2017; 97:1489-1497. [PMID: 29016290 DOI: 10.4269/ajtmh.16-0887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Leishmania tropica is the causative agent of cutaneous leishmaniasis in Pakistan. Here, intraspecific diversity of L. tropica from northern Pakistan was investigated using multilocus microsatellite typing. Fourteen polymorphic microsatellite markers were typed in 34 recently collected L. tropica isolates from Pakistan along with 158 archival strains of diverse Afro-Eurasian origins. Previously published profiles for 145 strains of L. tropica originating from different regions of Africa, Central Asia, Iran, and Middle East were included for comparison. Six consistently well-supported genetic groups were resolved: 1) Asia, 2) Morroco A, 3) Namibia and Kenya A, 4) Kenya B/Tunisia and Galilee, 5) Morocco B, and 6) Middle East. Strains from northern Pakistan were assigned to Asian cluster except for three that were placed in a geographically distant genetic group; Morocco A. Lesion variability among these Pakistani strains was not associated with specific L. tropica genetic profile. Pakistani strains showed little genetic differentiation from strains of Iraq, Afghanistan, and Syria (FST = 0.00-0.06); displayed evidence of modest genetic flow with India (FST = 0.14). Furthermore, genetic structuring within these isolates was not geographically defined. Pak-Afghan cluster was in significant linkage disequilibrium (IA = 1.43), had low genetic diversity, and displayed comparatively higher heterozygosity (FIS = -0.62). Patterns of genetic diversity observed suggest dominance of a minimally diverse clonal lineage within northern Pakistan. This is surprising as a wide clinical spectrum was observed in patients, suggesting the importance of host and other factors. Further genotyping studies of L. tropica isolates displaying different clinical phenotypes are required to validate this potentially important observation.
Collapse
Affiliation(s)
- Nazma Habib Khan
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan.,Department of Immunology & Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Martin S Llewellyn
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Gabriele Schönian
- Institute of Microbiology and Hygiene, Chariteì-University Medicine Berlin, Hindenburgdamm, Berlin, Germany
| | - Colin J Sutherland
- Department of Immunology & Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
46
|
Acyclic Sesquiterpenes from the Fruit Pericarp of Sapindus saponaria Induce Ultrastructural Alterations and Cell Death in Leishmania amazonensis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5620693. [PMID: 28904555 PMCID: PMC5585602 DOI: 10.1155/2017/5620693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/29/2017] [Accepted: 07/19/2017] [Indexed: 02/06/2023]
Abstract
Previous studies reported antiprotozoal activities of Sapindus saponaria L. The aim of this work was the evaluation of antileishmanial activity and mechanism of action of extract and fractions of S. saponaria L. Hydroethanolic extract (EHA) obtained from fruit pericarps was fractionated using solid-phase extraction in a reversed phase, resulting in fractions enriched with saponins (SAP fraction) and acyclic sesquiterpene oligoglycosides (OGSA fraction). The activities of EHA, SAP, and OGSA were evaluated by antiproliferative assays with promastigote and intracellular amastigote forms. Cytotoxicity on macrophages and hemolytic activity were also analyzed. Morphological and ultrastructural changes in Leishmania amazonensis promastigotes were evaluated by electron microscopy. Flow cytometry was used to investigate mitochondrial dysfunction and phosphatidylserine exposure. OGSA was more selective for parasites than mammalian J774A1 macrophage cells, with selectivity indices of 3.79 and 7.35, respectively. Our results showed that only the OGSA fraction did not present hemolytic activity at its IC50 for promastigote growth. Electron microscopy revealed changes in parasite flagellum, cell body shape, and organelle size, mainly mitochondria. Flow cytometry analysis indicated mitochondrial membrane and cell membrane dysfunction. OGSA showed antileishmanial activity, resulting in several changes to protozoa cells, including mitochondrial depolarization and early phosphatidylserine exposure, suggesting a possible apoptotic induction.
Collapse
|
47
|
In Vitro Evaluation of Antileishmanial Activity of Computationally Screened Compounds against Ascorbate Peroxidase To Combat Amphotericin B Drug Resistance. Antimicrob Agents Chemother 2017; 61:AAC.02429-16. [PMID: 28461317 DOI: 10.1128/aac.02429-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/28/2017] [Indexed: 12/11/2022] Open
Abstract
In visceral leishmaniasis (VL), the host macrophages generate oxidative stress to destroy the pathogen, while Leishmania combats the harmful effect of radicals by redox homeostasis through its unique trypanothione cascade. Leishmania donovani ascorbate peroxidase (LdAPx) is a redox enzyme that regulates the trypanothione cascade and detoxifies the effect of H2O2 The absence of an LdAPx homologue in humans makes it an excellent drug target. In this study, the homology model of LdAPx was built, including heme, and diverse compounds were prefiltered (PAINS, ADMET, and Lipinski's rule of five) and thereafter screened against the LdAPx model. Compounds having good affinity in terms of the Glide XP (extra precision) score were clustered to select diverse compounds for experimental validation. A total of 26 cluster representatives were procured and tested on promastigote culture, yielding 12 compounds with good antileishmanial activity. Out of them, six compounds were safer on the BALB/c peritoneal macrophages and were also effective against disease-causing intracellular amastigotes. Three out of six compounds inhibited recombinant LdAPx in a noncompetitive manner and also demonstrated partial reversion of the resistance property in an amphotericin B (AmB)-resistant strain, which may be due to an increased level of reactive oxygen species (ROS) and decrease of glutathione (GSH) content. However, inhibition of LdAPx in resistant parasites enhanced annexin V staining and activation of metacaspase-like protease activity, which may help in DNA fragmentation and apoptosis-like cell death. Thus, the present study will help in the search for specific hits and templates of potential therapeutic interest and therefore may facilitate the development of new drugs for combination therapy against VL.
Collapse
|
48
|
Combined treatment of miltefosine and paromomycin delays the onset of experimental drug resistance in Leishmania infantum. PLoS Negl Trop Dis 2017; 11:e0005620. [PMID: 28505185 PMCID: PMC5444850 DOI: 10.1371/journal.pntd.0005620] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/25/2017] [Accepted: 05/03/2017] [Indexed: 11/29/2022] Open
Abstract
Background Since miltefosine monotherapy against visceral leishmaniasis (VL) caused by Leishmania donovani has been discontinued in the Indian subcontinent due to an increase in the number of treatment failures, single dose liposomal amphotericin B is now advocated as a treatment option of choice. Paromomycin-miltefosine combination therapy can be used as substitute first-line treatment in regions without cold-chain potential. Previous laboratory studies in the closely related species Leishmania infantum have demonstrated that paromomycin monotherapy fairly rapidly selects for resistance producing a phenotype with increased fitness. Given the possible clinical implications of these findings for the current field situation, the present study aimed to identify the potential hazards of paromomycin-miltefosine combination therapy. Principal findings Drug interaction studies using the fixed-ratio isobologram method revealed an indifferent interaction between paromomycin and miltefosine. In hamsters infected with L. infantum, the combination resulted in cumulative efficacy in reducing parasite burdens in the liver, spleen and bone marrow. Selected resistant lines against the single drugs did not display cross-resistance. When the intracellular amastigote stage was repeatedly exposed to the paromomycin-miltefosine combination, either in vitro or in vivo, no significant susceptibility decrease towards either drug was noted. Conclusions These results suggest that implementation of paromomycin-miltefosine combination therapy indeed could represent a safe and affordable treatment option for L. donovani VL as miltefosine appears to overrule the anticipated rapid development of PMM resistance. Liposomal amphotericin B is presently being used as first-line treatment option against visceral leishmaniasis in the Indian subcontinent. However, the need for temperature-controlled transport and storage limits its widespread use in rural areas. Previous studies already suggested that paromomycin-miltefosine combination therapy could be a valuable alternative, side passing some of the disadvantages associated with monotherapy, such as development of drug resistance. As the first reports of miltefosine resistant clinical isolates have already surfaced and paromomycin resistance could be easily induced under laboratory conditions, it remains essential to assess the risk of developing resistance against both drugs upon combination therapy. This study evaluated the efficacy of combined therapy against a Leishmania species closely related to the agent found in the Indian subcontinent, using both in vitro and in vivo models with the aim to select multidrug-resistant species by simultaneous exposure to paromomycin and miltefosine. The combination of both drugs in the hamster model resulted in a cumulative efficacy but did not lead to a significant susceptibility decrease, indicating that paromomycin-miltefosine combination therapy may represent a safe and affordable treatment option for visceral leishmaniasis.
Collapse
|
49
|
Abstract
The aims of the present work were to test the effect of tamoxifen administered topically and the therapeutic efficacy of tamoxifen and pentavalent antimonial combinations in an experimental model of cutaneous leishmaniasis. BALB/c mice infected with a luciferase expressing line of Leishmania amazonensis were treated with topical tamoxifen in two different formulations (ethanol or oil-free cream) as monotherapy or in co-administration with pentavalent antimonial. Treatment efficacy was evaluated by lesion size and parasite burden, quantified through luminescence, at the end of treatment and 4 weeks later. Topical tamoxifen, formulated in ethanol or as a cream, was shown to be effective. The interaction between tamoxifen and pentavalent antimonial was additive in vitro. Treatment with combined schemes containing tamoxifen and pentavalent antimonial was effective in reducing lesion size and parasite burden. Co-administration of tamoxifen and pentavalent antimonial was superior to monotherapy with antimonial.
Collapse
|
50
|
Nanotized Curcumin and Miltefosine, a Potential Combination for Treatment of Experimental Visceral Leishmaniasis. Antimicrob Agents Chemother 2017; 61:AAC.01169-16. [PMID: 28031196 DOI: 10.1128/aac.01169-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022] Open
Abstract
Leishmaniasis chemotherapy remains very challenging due to high cost of the drug and its associated toxicity and drug resistance, which develops over a period of time. Combination therapies (CT) are now in use to treat many diseases, such as cancer and malaria, since it is more effective and affordable than monotherapy. CT are believed to represent a new explorable strategy for leishmaniasis, a neglected tropical disease caused by the obligate intracellular parasite Leishmania In the present study, we investigated the effect of a combination of a traditional Indian medicine (ayurveda), a natural product curcumin and miltefosine, the only oral drug for visceral leishmaniasis (VL) using a Leishmania donovani-hamster model. We developed an oral nanoparticle-based formulation of curcumin. Nanoformulation of curcumin alone exhibited significant leishmanicidal activity both in vitro and in vivo In combination with miltefosine, it exhibited a synergistic effect on both promastigotes and amastigotes under in vitro conditions. The combination of these two agents also demonstrated increased in vivo leishmanicidal activity accompanied by increased production of toxic reactive oxygen/nitrogen metabolites and enhanced phagocytic activity. The combination also exhibited increased lymphocyte proliferation. The present study thus establishes the possible use of nanocurcumin as an adjunct to antileishmanial chemotherapy.
Collapse
|