1
|
Arshad Z, Shin KH, Hur J. Utilization and applications of stable isotope analysis for wastewater treatment systems: A review. ENVIRONMENTAL RESEARCH 2024; 264:120347. [PMID: 39528035 DOI: 10.1016/j.envres.2024.120347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/28/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Stable isotopic analysis (SIA), traditionally crucial in ecological and geochemical studies, has recently expanded its applications to include wastewater management among other fields. This method is instrumental in verifying natural attenuation processes and deepening understanding of operations within engineering systems, such as groundwater, drinking water, and wastewater treatment. This review explores recent advancements in SIA, emphasizing its significance and potential applications in wastewater treatment. We highlight how this analysis can trace various sources within wastewater treatment processes, elucidate the mechanisms responsible for organic matter and nutrient removal in biological treatments, and facilitate the analysis of microbial communities. The review discusses a wide range of isotopic analytical methods, from bulk analysis and compound-specific approaches, covering sample preparation and extraction techniques. We also examine advanced tools like gas chromatography - isotope ratio mass spectrometer (IRMS) and liquid chromatography-IRMS which enhance the accuracy of source identification and address the limitations of bulk analysis. Literature shows a positive correlation between δ15N assimilation in activated sludge and nitrogen removal performance in reactors. Additionally, the review assesses the role of SIA in identifying active microbes involved in the degradation of specific pollutants in biological wastewater treatment. Finally, we discuss current limitations of SIA in wastewater treatment and propose potential research directions to broaden its applicability.
Collapse
Affiliation(s)
- Zeshan Arshad
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Kyung-Hoon Shin
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, Gyeonggi-do, 15588, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
2
|
Zou D, Zhang C, Liu Y, Li M. Biogeographical distribution and community assembly of Myxococcota in mangrove sediments. ENVIRONMENTAL MICROBIOME 2024; 19:47. [PMID: 39003484 PMCID: PMC11245791 DOI: 10.1186/s40793-024-00593-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Myxococcota, characterized by their distinct social lifestyles, are widely distributed micro-predators in global sediments. They can feed on a wide range of bacterial, archaeal, and fungal prey. Myxococcota are capable of producing diverse secondary metabolites, playing key roles in microbial food webs, and regulating the microbial community structures in different ecosystems. However, Myxococcota are rarely pure cultured due to the challenging and stringent culturing conditions. Their natural distribution, niche differentiation, and predator-prey relationships in a specific habitat are poorly understood. RESULTS In this study, we conducted a comprehensive analysis of the 16S rRNA gene sequence data from public databases and our collection. We compared the abundance, diversity, and distribution patterns of Myxococcota in various habitats, with a specific focus on mangroves. We found that Myxococcota accounted for 1.45% of the total prokaryotes in global sediments based on the abundance of 16S rRNA genes. Myxococcota are abundant and diverse in mangrove sediments. They tend to be more generalistic in mangroves than in other habitats due to their wide niche breadth. Besides, the deterministic processes (variable selection) influenced the assembly of mangrove Myxococcota communities significantly more than stochastic processes. Further, we determined that environmental factors explained a greater amount of total community variation in mangrove Myxococcota than geographical variables (latitude and sediment depth). In the end, through the analysis of microbial co-occurrence networks, Myxococcota emerges as a key component and functions as a connector in the mangrove microbial community. CONCLUSIONS Our study enhances comprehension of mangrove Myxococcota's biogeography, assembly patterns, driving factors, and co-occurrence relationships, as well as highlights their unique niche and ecological importance in mangrove sediments.
Collapse
Affiliation(s)
- Dayu Zou
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Institute for Advanced Study, Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen, 518060, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, 518060, China
| | - Cuijing Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Institute for Advanced Study, Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen, 518060, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, 518060, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
- Institute for Advanced Study, Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen, 518060, China.
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, 518060, China.
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
- Institute for Advanced Study, Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen, 518060, China.
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
3
|
Corral-García LS, Molina MC, Bautista LF, Simarro R, Espinosa CI, Gorines-Cordero G, González-Benítez N. Bacterial Diversity in Old Hydrocarbon Polluted Sediments of Ecuadorian Amazon River Basins. TOXICS 2024; 12:119. [PMID: 38393214 PMCID: PMC10892221 DOI: 10.3390/toxics12020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
The Ecuadorian Amazon rainforest stands out as one of the world's most biodiverse regions, yet faces significant threats due to oil extraction activities dating back to the 1970s in the northeastern provinces. This research investigates the environmental and societal consequences of prolonged petroleum exploitation and oil spills in Ecuador's Amazon. Conducted in June 2015, the study involved a comprehensive analysis of freshwater sediment samples from 24 locations in the Rio Aguarico and Napo basins. Parameters such as water and air temperature, conductivity, soil pH, and hydrocarbon concentrations were examined. Total petroleum hydrocarbon (TPH) concentrations ranged from 9.4 to 847.4 mg kg-1, with polycyclic aromatic hydrocarbon (PAH) levels varying from 10.15 to 711.1 mg kg-1. The pristane/phytane ratio indicated historic hydrocarbon pollution in 8 of the 15 chemically analyzed sediments. Using non-culturable techniques (Illumina), bacterial analyses identified over 350 ASV, with prominent families including Comamonadaceae, Chitinophagaceae, Anaeromyxobacteraceae, Sphingomonadaceae, and Xanthobacteraceae. Bacterial diversity, assessed in eight samples, exhibited a positive correlation with PAH concentrations. The study provides insights into how microbial communities respond to varying levels of hydrocarbon pollution, shedding light on the enduring impact of oil exploitation in the Amazonian region. Its objective is to deepen our understanding of the environmental and human well-being in the affected area, underscoring the pressing need for remedial actions in the face of ongoing ecological challenges.
Collapse
Affiliation(s)
- Lara S. Corral-García
- Centro de Investigación en Biodiversidad y Cambio Global, Department of Ecology, Universidad Autónoma de Madrid, C/Darwin, 2, 28049 Madrid, Spain
| | - María Carmen Molina
- Biodiversity and Conservation Unit, Department of Biology and Geology, Physics and Inorganic Chemistry, Instituto de Investigación en Cambio Global, Universidad Rey Juan Carlos, Tulipán s/n, Mostoles, 28933 Madrid, Spain; (M.C.M.); (N.G.-B.)
| | - Luis Fernando Bautista
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, Tulipán s/n, Mostoles, 28933 Madrid, Spain;
| | - Raquel Simarro
- Plant Pathology Laboratory (DTEVL), INIA-CSIC, Ctra, de La Coruña, Km 7.5, 28040 Madrid, Spain;
| | - Carlos Iván Espinosa
- Department of Biological and Agricultural Sciences, Universidad Técnica Particular de Loja, San Cayetano alto s/n, Loja 1101608, Ecuador;
| | - Guillermo Gorines-Cordero
- Biodiversity and Conservation Unit, Department of Biology and Geology, Physics and Inorganic Chemistry, Instituto de Investigación en Cambio Global, Universidad Rey Juan Carlos, Tulipán s/n, Mostoles, 28933 Madrid, Spain; (M.C.M.); (N.G.-B.)
| | - Natalia González-Benítez
- Biodiversity and Conservation Unit, Department of Biology and Geology, Physics and Inorganic Chemistry, Instituto de Investigación en Cambio Global, Universidad Rey Juan Carlos, Tulipán s/n, Mostoles, 28933 Madrid, Spain; (M.C.M.); (N.G.-B.)
| |
Collapse
|
4
|
Johnson J, Jain KR, Patel A, Parmar N, Joshi C, Madamwar D. Chronic industrial perturbation and seasonal change induces shift in the bacterial community from gammaproteobacteria to betaproteobacteria having catabolic potential for aromatic compounds at Amlakhadi canal. World J Microbiol Biotechnol 2023; 40:52. [PMID: 38146029 DOI: 10.1007/s11274-023-03848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 11/19/2023] [Indexed: 12/27/2023]
Abstract
Escalating proportions of industrially contaminated sites are one of the major catastrophes faced at the present time due to the industrial revolution. The difficulties associated with culturing the microbes, has been circumvent by the direct use of metagenomic analysis of various complex niches. In this study, a metagenomic approach using next generation sequencing technologies was applied to exemplify the taxonomic abundance and metabolic potential of the microbial community residing in Amlakhadi canal, Ankleshwar at two different seasons. All the metagenomes revealed a predominance of Proteobacteria phylum. However, difference was observed within class level where Gammaproteobacteria was relatively high in polluted metagenome in Summer while in Monsoon the abundance shifted to Betaproteobacteria. Similarly, significant statistical differences were obtained while comparing the genera amongst contaminated sites where Serratia, Achromobacter, Stenotrophomonas and Pseudomonas were abundant in summer season and the dominance changed to Thiobacillus, Thauera, Acidovorax, Nitrosomonas, Sulfuricurvum, Novosphingobium, Hyphomonas and Geobacter in monsoon. Further upon functional characterization, the microbiomes revealed the diverse survival mechanisms, in response to the prevailing ecological conditions (such as degradation of aromatic compounds, heavy metal resistance, oxidative stress responses and multidrug resistance efflux pumps, etc.). The results have important implications in understanding and predicting the impacts of human-induced activities on microbial communities inhabiting natural niche and their responses in coping with the fluctuating pollution load.
Collapse
Affiliation(s)
- Jenny Johnson
- Post Graduate Department of Biosciences, Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol (Anand), Gujarat, 388 315, India
| | - Kunal R Jain
- Post Graduate Department of Biosciences, Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol (Anand), Gujarat, 388 315, India
| | - Anand Patel
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388 001, India
| | - Nidhi Parmar
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388 001, India
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre, 6th Floor, M. S. Building, Sector 11, Gandhinagar, Gujarat, 382011, India
| | - Datta Madamwar
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa (Anand), Gujarat, 388 421, India.
| |
Collapse
|
5
|
Kim J, Hwangbo M, Shih CH, Chu KH. Advances and perspectives of using stable isotope probing (SIP)-based technologies in contaminant biodegradation. WATER RESEARCH X 2023; 20:100187. [PMID: 37671037 PMCID: PMC10477051 DOI: 10.1016/j.wroa.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 09/07/2023]
Abstract
Stable isotope probing (SIP) is a powerful tool to study microbial community structure and function in both nature and engineered environments. Coupling with advanced genomics and other techniques, SIP studies have generated substantial information to allow researchers to draw a clearer picture of what is occurring in complex microbial ecosystems. This review provides an overview of the advances of SIP-based technologies over time, summarizes the status of SIP applications to contaminant biodegradation, provides critical perspectives on ecological interactions within the community, and important factors (controllable and non-controllable) to be considered in SIP experimental designs and data interpretation. Current trend and perspectives of adapting SIP techniques for environmental applications are also discussed.
Collapse
Affiliation(s)
- Jinha Kim
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Myung Hwangbo
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
- School of Earth, Environmental and Marine Sciences, The University of Texas – Rio Grande Valley, Brownsville, TX, USA
| | - Chih-Hsuan Shih
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| |
Collapse
|
6
|
Kundu A, Harrisson O, Ghoshal S. Impacts of Arctic diesel contamination on microbial community composition and degradative gene abundance during hydrocarbon biodegradation with and without nutrients: A case study of seven sub-Arctic soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161777. [PMID: 36709895 DOI: 10.1016/j.scitotenv.2023.161777] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Although a number of studies have assessed hydrocarbon degradation or microbial responses in petroleum contaminated soils, few have examined both and/or assessed impacts in multiple soils simultaneously. In this study petroleum hydrocarbon biodegradation and microbial activity was monitored in seven sub-Arctic soils at similar levels (∼3500-4000 mg/kg) of Arctic diesel (DSL), amended with moisture and nutrients (70 mg-N/kg, 78 mg-P/kg), and incubated at site-representative summer temperatures (∼7 °C) under water unsaturated conditions. Total petroleum hydrocarbon (TPH) biodegradation extents (42.7-85.4 %) at 50 days were slightly higher in nutrient amended (DSL + N,P) than unamended (DSL) systems in all but one soil. Semi-volatile (C10-C16) hydrocarbons were degraded to a greater extent (40-80 %) than non-volatile (C16-C24) hydrocarbons (20-40 %). However, more significant shifts in microbial diversity and relative abundance of genera belonging to Actinobacteria and Proteobacteria phyla were observed in DSL + N,P than in DSL systems in all soils. Moreover, higher abundance of the alkane degrading gene alkB were observed in DSL + N,P systems than in DSL systems for all soils. The more significant microbial community response in the DSL + N,P systems indicate that addition of nutrients may have influenced the microbial community involved in degradation of carbon sources other than the diesel compounds, such as the soil organic matter or degradation intermediates of diesel compounds. Nocardioides, Arthrobacter, Marmoricola, Pseudomonas, Polaromonas, and Massilia genera were present in high relative abundance in the DSL systems suggesting those genera contained hydrocarbon degraders. Overall, the results suggest that the extents of microbial community shifts or alkB copy number increases may not be closely correlated to the increase in hydrocarbon biodegradation and thus bioremediation performance between various treatments or across different soils.
Collapse
Affiliation(s)
- Anirban Kundu
- Department of Civil Engineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Orfeo Harrisson
- Department of Civil Engineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, Montreal, QC H3A 0C3, Canada.
| |
Collapse
|
7
|
Jameson E, Taubert M, Angel R, Coyotzi S, Chen Y, Eyice Ö, Schäfer H, Murrell JC, Neufeld JD, Dumont MG. DNA-, RNA-, and Protein-Based Stable-Isotope Probing for High-Throughput Biomarker Analysis of Active Microorganisms. Methods Mol Biol 2023; 2555:261-282. [PMID: 36306091 DOI: 10.1007/978-1-0716-2795-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Stable-isotope probing (SIP) enables researchers to target active populations within complex microbial communities, which is achieved by providing growth substrates enriched in heavy isotopes, usually in the form of 13C, 18O, or 15N. After growth on the substrate and subsequent extraction of microbial biomarkers, typically nucleic acids or proteins, the SIP technique is used for the recovery and analysis of isotope-labelled biomarkers from active microbial populations. In the years following the initial development of DNA- and RNA-based SIP, it was common practice to characterize labelled populations by targeted gene analysis. Such approaches usually involved fingerprint-based analyses or sequencing clone libraries containing 16S rRNA genes or functional marker gene amplicons. Although molecular fingerprinting remains a valuable approach for rapid confirmation of isotope labelling, recent advances in sequencing technology mean that it is possible to obtain affordable and comprehensive amplicon profiles, or even metagenomes and metatranscriptomes from SIP experiments. Not only can the abundance of microbial groups be inferred from metagenomes, but researchers can bin, assemble, and explore individual genomes to build hypotheses about the metabolic capabilities of labelled microorganisms. Analysis of labelled mRNA is a more recent advance that can provide independent metatranscriptome-based analysis of active microorganisms. The power of metatranscriptomics is that mRNA abundance often correlates closely with the corresponding activity of encoded enzymes, thus providing insight into microbial metabolism at the time of sampling. Together, these advances have improved the sensitivity of SIP methods and allowed using labelled substrates at environmentally relevant concentrations. Particularly as methods improve and costs continue to drop, we expect that the integration of SIP with multiple omics-based methods will become prevalent components of microbial ecology studies, leading to further breakthroughs in our understanding of novel microbial populations and elucidation of the metabolic function of complex microbial communities. In this chapter, we provide protocols for obtaining labelled DNA, RNA, and proteins that can be used for downstream omics-based analyses.
Collapse
Affiliation(s)
- Eleanor Jameson
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Martin Taubert
- Aquatic Geochemistry, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Roey Angel
- Soil & Water Research Infrastructure and Institute of Soil Biology, Biology Centre CAS, České Budějovice, Czechia
| | - Sara Coyotzi
- Department of Biology, University of Waterloo, Waterloo, Canada
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Özge Eyice
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Hendrik Schäfer
- School of Life Sciences, University of Warwick, Coventry, UK
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Josh D Neufeld
- Department of Biology, University of Waterloo, Waterloo, Canada
| | - Marc G Dumont
- School of Biological Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
8
|
Jiang L, Zhu X, Luo C, Song D, Song M. The synergistic toxicity effect of di(2-ethylhexyl)phthalate and plant growth disturbs the structure and function of soil microbes in the rhizosphere. ENVIRONMENT INTERNATIONAL 2022; 170:107629. [PMID: 36395556 DOI: 10.1016/j.envint.2022.107629] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a dominant phthalic acid ester in the environment and commonly occurs at high concentration in agricultural soils. Its influence on the soil microbial community has been widely reported, while research related to its effects on microbial structure, function, and interactions in the rhizosphere, a microbial hotspot region in the terrestrial ecosystem, is still limited. This study investigated the response of microbes in the rhizosphere to DEHP contamination. DEHP reduced microbial quantity, shifted the microbial community structure, and enriched the soil bacteria with potential DEHP degraders. Although the rhizosphere can alleviate DEHP toxicity, DEHP still played an important role in microbial community construction in the rhizosphere. Interestingly, some microbes were influenced by the synergistic toxicity effect of DEHP addition and plant growth, and there were significant differences in their relative abundance and alpha diversity in soil treated with both DEHP and planting compared to soils with just DEHP spiking or planting. The genes related to cell motility, metabolism of terpenoids and polyketides, protein families, genetic information processing, and replication and repair pathways changed only in soil treated with both DEHP and planting further proved the existence of synergistic toxicity. Anyway, the impact of DEHP on microbial function in the rhizosphere was important with 52.42‰ of the genes being changed. The change in cell motility, biofilm formation, and genes related to the quorum sensing pathway might affect the relationship between microbes, which play a crucial role in ecosystem function. This was further proven by changes in the microbial co-occurrence pattern. Our results can benefit risk evaluation of DEHP to microbial community in the rhizosphere, which is important for the effective function of terrestrial ecosystems and soil health.
Collapse
Affiliation(s)
- Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Xiaoping Zhu
- The Pearl River Hydraulic Research Institute, Guangzhou 510000, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Dandan Song
- Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Mengke Song
- Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, China.
| |
Collapse
|
9
|
Xu P, Chen X, Li K, Meng R, Pu Y. Metagenomic Analysis of Microbial Alliances for Efficient Degradation of PHE: Microbial Community Structure and Reconstruction of Metabolic Network. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12039. [PMID: 36231339 PMCID: PMC9565075 DOI: 10.3390/ijerph191912039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons are a widespread organic pollutant worldwide. In this study, a highly efficient phenanthrene (PHE)-degrading microbial community was enriched from oil extraction soil, which could degrade 500 mg/L PHE within 4 days. Using 16S rRNA sequencing, the dominant bacteria in this community at the phylum level were found to be Proteobacteria, Actinobacteria, and Firmicutes. Metagenomic annotation of genes revealed the metabolic pathways and the contribution of different bacteria to the degradation process. Pseudomonadaceae contributed multiple functional genes in the degradation process. This study revealed the functional genes, metabolic pathways, and microbial interactions of the microbial community, which are expected to provide guidance for practical management.
Collapse
Affiliation(s)
- Pan Xu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaoxiao Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Kai Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Rong Meng
- The Husbandry Technology Promotion Center of Inner Mongolia, Hohhot 010051, China
| | - Yuewu Pu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
10
|
Ganesan M, Mani R, Sai S, Kasivelu G, Awasthi MK, Rajagopal R, Wan Azelee NI, Selvi PK, Chang SW, Ravindran B. Bioremediation by oil degrading marine bacteria: An overview of supplements and pathways in key processes. CHEMOSPHERE 2022; 303:134956. [PMID: 35588873 DOI: 10.1016/j.chemosphere.2022.134956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Oil spillage is one of the most common pollutants which brings greater economic loss and damage to the environment. The intensity and amount of the damage may vary depending on factors such as the type of oil, the location of the spill, and the climatic parameters in the area. As for any pollution management, the guidelines are Reduce, Re-use, Recover and Disposal. Amongst the other remediation processes, Bioremediation is amongst the most significant environmentally friendly and cost-effective approaches for marine biological restoration because it allows complex petroleum hydrocarbons in spilt oil to decompose completely into harmless compounds. Mainly, the necessity and essence of bioremediation were talked about. This review discussed the bacteria identified which are capable of degrading various oil related pollutants and their components. Also, it covered the various media components used for screening and growing the oil degrading bacteria and the pathways that are associated with oil degradation. This article also reviewed the recent research carried out related to the oil degrading bacteria.
Collapse
Affiliation(s)
- Mirunalini Ganesan
- Centre for Ocean Research, Col. Dr. Jeppiaar Ocean Research Field Facility, ESTC Cell Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Ravi Mani
- Centre for Ocean Research, Col. Dr. Jeppiaar Ocean Research Field Facility, ESTC Cell Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Sakthinarenderan Sai
- Centre for Ocean Research, Col. Dr. Jeppiaar Ocean Research Field Facility, ESTC Cell Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Govindaraju Kasivelu
- Centre for Ocean Research, Col. Dr. Jeppiaar Ocean Research Field Facility, ESTC Cell Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi, 712100, PR China.
| | - Rajinikanth Rajagopal
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
| | - Nur Izyan Wan Azelee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor, Malaysia
| | - P K Selvi
- Central Pollution Control Board, Nisarga Bhawan, Shivanagar, Bengaluru, India
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea; Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India.
| |
Collapse
|
11
|
Liu Q, Wu H, Huang C, Lin H, Li W, Zhao X, Li Z, Lv S. Microbial compositions, ecological networks, and metabolomics in sediments of black-odour water in Dongguan, China. ENVIRONMENTAL RESEARCH 2022; 210:112918. [PMID: 35181306 DOI: 10.1016/j.envres.2022.112918] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Black-odour water with organic compounds and heavy metals caused by domestic and industrial activities has aroused people's attention in recent years, yet little is known about the ecological effects on aquatic organisms, especially microorganisms in sediments. To explore the response of microbial communities to environmental factors, the community and metabolites of nine river sediments with different pollution in Dongguan city, China were investigated using 16S rRNA gene sequencing and liquid chromatography tandem-mass. The results revealed that the composition and structure of sedimentary microbial communities significantly changed in rivers with varying pollution levels. Cyanobacteria were the most abundant organisms in the sediment of black-odorous rivers, while the relative abundance of Thaumarchaeota was gradually increased with the river quality gets better. The relative abundance of organic acids (including amino acids), alcohols, esters, and ketones associated with microbial metabolism in sediments of polluted rivers was increased. The 16S rRNA gene sequencing-based molecular ecological network analysis indicated that the interactions amongst bacteria were enhanced in severely contaminated communities. Sphingomonadaceae and Cyanobacteria have important roles in bacterial community structures of polluted rivers and those with ongoing treatment. The correlation analysis showed significant metal resistance and/or tolerance of the following bacteria species Thalassiosira weissflogii, Aminicenantes bacterium clone OPB95, 'Candidatus Halomonas phosphatis', and archaeal species Methanolinea and unidentified Thermoplasmata. These results indicated that sedimentary microbial communities may shift in composition and structure, as well as their interaction network, to adapt and resist environmental contamination and promote restoration.
Collapse
Affiliation(s)
- Qian Liu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Haowen Wu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Cong Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Hui Lin
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Wei Li
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - XiuFang Zhao
- Ecological Science Institute, LingNan Eco & Culture-Tourism Co.Ltd., Dongguan, 523125, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Sihao Lv
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| |
Collapse
|
12
|
Bacterial diversity and competitors for degradation of hazardous oil refining waste under selective pressures of temperature and oxygen. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128201. [PMID: 34999399 DOI: 10.1016/j.jhazmat.2021.128201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023]
Abstract
Oil refining waste (ORW) contains complex, hazardous, and refractory components, causing more severe long-term environmental pollution than petroleum. Here, ORW was used to simulate the accelerated domestication of bacteria from oily sludges and polymer-flooding wastewater, and the effects of key factors, oxygen and temperature, on the ORW degradation were evaluated. Bacterial communities acclimated respectively in 30/60 °C, aerobic/anaerobic conditions showed differentiated degradation rates of ORW, ranging from 5% to 34%. High-throughput amplicon sequencing and ORW component analysis revealed significant correlation between bacterial diversity/biomass and degradation efficiency/substrate preference. Under mesophilic and oxygen-rich condition, the high biomass and abundant biodiversity with diverse genes and pathways for petroleum hydrocarbons degradation, effectively promoted the rapid and multi-component degradation of ORW. While under harsh conditions, a few dominant genera still contributed to ORW degradation, although the biodiversity was severely restricted. The typical dominant facultative anaerobes Bacillus (up to 99.8% abundance anaerobically) and Geobacillus (up to 99.9% abundance aerobically and anaerobically) showed oxygen-independent sustainable degradation ability and broad-spectrum of temperature adaptability, making them promising and competitive bioremediation candidates for future application. Our findings provide important strategies for practical bioremediation of varied environments polluted by hazardous ORW.
Collapse
|
13
|
Sarma H, Joshi SJ. Metagenomics Combined with Stable Isotope Probe (SIP) for the Discovery of Novel Dehalogenases Producing Bacteria. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:478-484. [PMID: 32978646 DOI: 10.1007/s00128-020-03004-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Halogenated compounds are one of the largest groups of environmental-hazardous chemicals. The removal of the halogen atom from the substrate is possible by the catalytic activity of a type of enzyme called dehalogenase. Hydrolytic dehalogenases are suggested to be a good biodegradation catalyst for halogenated compounds with potential bioremediation applications. Therefore, the identification of possible bacterial strains that produce dehalogenase is of great importance. Soil microorganisms that are regularly exposed to halogenated pesticides are a major source of hydrolytic dehalogenase. Their proper identification may be useful in the production of high-quality dehalogenase. DNA stable isotope probing (DNA-SIP) is quite a useful technique for the identification of active microorganisms that assimilate specific carbon substrates and nutrients. Metagenomics combined with a stable isotope probe (SIP) technique could therefore be used to detect bacterial dehalogenases in pesticides exposed agricultural soil.
Collapse
Affiliation(s)
- Hemen Sarma
- Department of Botany, N. N. Saikia College, Titabar, Assam, 785630, India.
| | - Sanket J Joshi
- Oil & Gas Research Center, Central Analytical and Applied Research Unit, Sultan Qaboos University, Muscat, Oman.
| |
Collapse
|
14
|
Cabral L, Giovanella P, Pellizzer EP, Teramoto EH, Kiang CH, Sette LD. Microbial communities in petroleum-contaminated sites: Structure and metabolisms. CHEMOSPHERE 2022; 286:131752. [PMID: 34426136 DOI: 10.1016/j.chemosphere.2021.131752] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Over recent decades, hydrocarbon concentrations have been augmented in soil and water, mainly derived from accidents or operations that input crude oil and petroleum into the environment. Different techniques for remediation have been proposed and used to mitigate oil contamination. Among the available environmental recovery approaches, bioremediation stands out since these hydrocarbon compounds can be used as growth substrates for microorganisms. In turn, microorganisms can play an important role with significant contributions to the stabilization of impacted areas. In this review, we present the current knowledge about responses from natural microbial communities (using DNA barcoding, multiomics, and functional gene markers) and bioremediation experiments (microcosm and mesocosm) conducted in the presence of petroleum and chemical dispersants in different samples, including soil, sediment, and water. Additionally, we present metabolic mechanisms for aerobic/anaerobic hydrocarbon degradation and alternative pathways, as well as a summary of studies showing functional genes and other mechanisms involved in petroleum biodegradation processes.
Collapse
Affiliation(s)
- Lucélia Cabral
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Patricia Giovanella
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elisa Pais Pellizzer
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elias Hideo Teramoto
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Chang Hung Kiang
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Lara Durães Sette
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
15
|
Xu T, Liu T, Jiang D, Yuan Z, Jia X. Attainment and characterization of a microbial consortium that efficiently degrades biphenyl and related substances. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Suominen S, Dombrowski N, Sinninghe Damsté JS, Villanueva L. A diverse uncultivated microbial community is responsible for organic matter degradation in the Black Sea sulphidic zone. Environ Microbiol 2021; 23:2709-2728. [PMID: 31858660 PMCID: PMC8359207 DOI: 10.1111/1462-2920.14902] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 11/27/2022]
Abstract
Organic matter degradation in marine environments is essential for the recycling of nutrients, especially under conditions of anoxia where organic matter tends to accumulate. However, little is known about the diversity of the microbial communities responsible for the mineralization of organic matter in the absence of oxygen, as well as the factors controlling their activities. Here, we determined the active heterotrophic prokaryotic community in the sulphidic water column of the Black Sea, an ideal model system, where a tight coupling between carbon, nitrogen and sulphur cycles is expected. Active microorganisms degrading both dissolved organic matter (DOM) and protein extracts were determined using quantitative DNA stable isotope probing incubation experiments. These results were compared with the metabolic potential of metagenome-assembled genomes obtained from the water column. Organic matter incubations showed that groups like Cloacimonetes and Marinimicrobia are generalists degrading DOM. Based on metagenomic profiles the degradation proceeds in a potential interaction with members of the Deltaproteobacteria and Chloroflexi Dehalococcoidia. On the other hand, microbes with small genomes like the bacterial phyla Parcubacteria, Omnitrophica and of the archaeal phylum Woesearchaeota, were the most active, especially in protein-amended incubations, revealing the potential advantage of streamlined microorganisms in highly reduced conditions.
Collapse
Affiliation(s)
- Saara Suominen
- Department of Marine Microbiology and BiogeochemistryNIOZ Royal Netherlands Institute for Sea Research and Utrecht UniversityDen HoornThe Netherlands
| | - Nina Dombrowski
- Department of Marine Microbiology and BiogeochemistryNIOZ Royal Netherlands Institute for Sea Research and Utrecht UniversityDen HoornThe Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and BiogeochemistryNIOZ Royal Netherlands Institute for Sea Research and Utrecht UniversityDen HoornThe Netherlands
- Department of Earth Sciences, Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and BiogeochemistryNIOZ Royal Netherlands Institute for Sea Research and Utrecht UniversityDen HoornThe Netherlands
| |
Collapse
|
17
|
DeBofsky A, Xie Y, Challis JK, Jain N, Brinkmann M, Jones PD, Giesy JP. Responses of juvenile fathead minnow (Pimephales promelas) gut microbiome to a chronic dietary exposure of benzo[a]pyrene. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116821. [PMID: 33706240 DOI: 10.1016/j.envpol.2021.116821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/10/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
The microbiome has been described as an additional host "organ" with well-established beneficial roles. However, the effects of exposures to chemicals on both structure and function of the gut microbiome of fishes are understudied. To determine effects of benzo[a]pyrene (BaP), a model persistent organic pollutant, on structural shifts of gut microbiome in juvenile fathead minnows (Pimephales promelas), fish were exposed ad libitum in the diet to concentrations of 1, 10, 100, or 1000 μg BaP g-1 food, in addition to a vehicle control, for two weeks. To determine the link between exposure to BaP and changes in the microbial community, concentrations of metabolites of BaP were measured in fish bile and 16S rRNA amplicon sequencing was used to evaluate the microbiome. Exposure to BaP only reduced alpha-diversity at the greatest exposure concentrations. However, it did alter community composition assessed as differential abundance of taxa and reduced network complexity of the microbial community in all exposure groups. Results presented here illustrate that environmentally-relevant concentrations of BaP can alter the diversity of the gut microbiome and community network connectivity.
Collapse
Affiliation(s)
- Abigail DeBofsky
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yuwei Xie
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Jonathan K Challis
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Niteesh Jain
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
18
|
Metagenome-Assembled Genomes of 12 Bacterial Species from Biofouled Plastic Fabrics Harbor Multiple Genes for Degradation of Hydrocarbons. Microbiol Resour Announc 2021; 10:10/18/e01458-20. [PMID: 33958410 PMCID: PMC8103880 DOI: 10.1128/mra.01458-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the metagenome-assembled genomes (MAGs) of 12 different bacterial species recovered from environmental microbiomes associated with biofouled plastic fabrics. The MAGs have estimated sizes of 2.53 to 7.66 Mb with 3,229 to 9,289 proteins, 26.20% to 99.1% genome completeness, 48.9% to 72.6% G+C content, and multiple genes for hydrocarbon degradation.
Collapse
|
19
|
Suominen S, van Vliet DM, Sánchez-Andrea I, van der Meer MTJ, Sinninghe Damsté JS, Villanueva L. Organic Matter Type Defines the Composition of Active Microbial Communities Originating From Anoxic Baltic Sea Sediments. Front Microbiol 2021; 12:628301. [PMID: 34025597 PMCID: PMC8131844 DOI: 10.3389/fmicb.2021.628301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Carbon cycling in anoxic marine sediments is dependent on uncultured microbial communities. Niches of heterotrophic microorganisms are defined by organic matter (OM) type and the different phases in OM degradation. We investigated how OM type defines microbial communities originating from organic-rich, anoxic sediments from the Baltic Sea. We compared changes in the sediment microbial community, after incubation with different stable isotope labeled OM types [i.e., particulate algal organic matter (PAOM), protein, and acetate], by using DNA stable isotope probing (DNA-SIP). Incorporation of 13C and/or 15N label was predominantly detected in members of the phyla Planctomycetes and Chloroflexi, which also formed the majority (>50%) of the original sediment community. While these phylum-level lineages incorporated label from all OM types, phylogenetic analyses revealed a niche separation at the order level. Members of the MSBL9 (Planctomycetes), the Anaerolineales (Chloroflexi), and the class Bathyarchaeota, were identified as initial degraders of carbohydrate-rich OM, while other uncultured orders, like the CCM11a and Phycisphaerales (Planctomycetes), Dehalococcoidia, and JG30-KF-CM66 (Chloroflexi), incorporated label also from protein and acetate. Our study highlights the importance of initial fermentation of complex carbon pools in shaping anoxic sediment microbial communities and reveals niche specialization at the order level for the most important initial degraders in anoxic sediments.
Collapse
Affiliation(s)
- Saara Suominen
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - Daan M. van Vliet
- Wageningen Food and Biobased Research (WFBR), Bornse Weilanden 9, Wageningen, Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | | | - Marcel T. J. van der Meer
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
20
|
Koshlaf E, Shahsavari E, Haleyur N, Osborn AM, Ball AS. Impact of necrophytoremediation on petroleum hydrocarbon degradation, ecotoxicity and soil bacterial community composition in diesel-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31171-31183. [PMID: 32474790 DOI: 10.1007/s11356-020-09339-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 05/18/2020] [Indexed: 05/25/2023]
Abstract
Hydrocarbon degradation is usually measured in laboratories under controlled conditions to establish the likely efficacy of a bioremediation process in the field. The present study used greenhouse-based bioremediation to investigate the effects of natural attenuation (NA) and necrophytoremediation (addition of pea straw (PS)) on hydrocarbon degradation, toxicity and the associated bacterial community structure and composition in diesel-contaminated soil. A significant reduction in total petroleum hydrocarbon (TPH) concentration was detected in both treatments; however, PS-treated soil showed more rapid degradation (87%) after 5 months together with a significant reduction in soil toxicity (EC50 = 91 mg diesel/kg). Quantitative PCR analysis revealed an increase in the number of 16S rRNA and alkB genes in the PS-amended soil. Substantial shifts in soil bacterial community were observed during the bioremediation, including an increased abundance of numerous hydrocarbon-degrading bacteria. The bacterial community shifted from dominance by Alphaproteobacteria and Gammaproteobacteria in the original soil to Actinobacteria during bioremediation. The dominance of two genera of bacteria, Sphingobacteria and Betaproteobacteria, in both NA- and PS-treated soil demonstrated changes occurring within the soil bacterial community through the incubation period. Additionally, pea straw itself was found to harbour a diverse hydrocarbonoclastic community including Luteimonas, Achromobacter, Sphingomonas, Rhodococcus and Microbacterium. At the end of the experiment, PS-amended soil exhibited reduced ecotoxicity and increased bacterial diversity as compared with the NA-treated soil. These findings suggest the rapid growth of species stimulated by the bioremediation treatment and strong selection for bacteria capable of degrading petroleum hydrocarbons during necrophytoremediation. Graphical abstract.
Collapse
Affiliation(s)
- Eman Koshlaf
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, 3083, Australia.
| | - Esmaeil Shahsavari
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Nagalakshmi Haleyur
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Andrew Mark Osborn
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, 3083, Australia
| |
Collapse
|
21
|
Microbial Taxon-Specific Isotope Incorporation with DNA Quantitative Stable Isotope Probing. Methods Mol Biol 2020; 2046:137-149. [PMID: 31407302 DOI: 10.1007/978-1-4939-9721-3_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Quantitative stable isotope probing (qSIP) measures rates of taxon-specific element assimilation in intact microbial communities, utilizing substrates labeled with a heavy isotope.The laboratory protocol for qSIP is nearly identical to that for conventional stable isotope probing, with two key additions: (1) in qSIP, qPCR measurements are conducted on each density fraction recovered after isopycnic separation, and (2) in qSIP, multiple density fractions are sequenced spanning the entire range of densities over which nucleic acids were recovered. qSIP goes beyond identifying taxa assimilating a substrate, as it also allows for measuring that assimilation for each taxon within a given microbial community. Here, we describe an analysis process necessary to determine atom fraction excess of a heavy stable isotope added to an environmental sample for a given taxon's DNA.
Collapse
|
22
|
Zhou L, Wang X, Ren W, Xu Y, Zhao L, Zhang Y, Teng Y. Contribution of autochthonous diazotrophs to polycyclic aromatic hydrocarbon dissipation in contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137410. [PMID: 32120099 DOI: 10.1016/j.scitotenv.2020.137410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/12/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Understanding the role played by autochthonous functional microbes involved in the biotransformation of pollutants would help optimize bioremediation performance at contaminated sites. However, our knowledge of the remediation potential of indigenous diazotrophs in contaminated soils remains inadequate. Using a microcosm experiment, soil nitrogen fixation activity was manipulated by molybdenum (Mo) and tungsten (W), and their effect on the removal of polycyclic aromatic hydrocarbons (PAHs) was determined in agricultural and industrial soils. Results showed that after 42 days of incubation, PAH dissipation efficiency was significantly enhanced by 1.06-fold in 600 μg kg-1 Mo-treated agricultural soil, compared with that in the control. For the industrial soil, 1200 μg kg-1 Mo treatment significantly promoted PAH removal by 90.76% in 21 days, whereas no significant change was observed between treatments and control at the end of the incubation period. W also exerted a similar effect on PAH dissipation. The activity and gene abundance of nitrogenase were also increased under Mo/W treatments in the two soils. Spearman's correlation analysis further indicated that removal of PAHs was positively correlated with nitrogenase activity in soil, which could be due to the elevated abundances of PAH-degrading genes (PAH-RHDα) in these treatments. Our results suggest the importance of autochthonous diazotrophs in PAH-contaminated soils, which indicates a feasible and environmentally friendly biostimulation strategy of manipulating nitrogen fixation capacity.
Collapse
Affiliation(s)
- Lu Zhou
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211800, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yufeng Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211800, China.
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
23
|
Stable Isotope Probing Techniques and Methodological Considerations Using 15N. Methods Mol Biol 2019. [PMID: 31407305 DOI: 10.1007/978-1-4939-9721-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Nitrogen fixation and assimilation processes are vital to the functioning of any ecosystem. Nevertheless, studying these processes using 15N-based stable isotope probing was so far limited because of technical challenges related to the relative rarity of nitrogen in nucleic acids and proteins compared to carbon, and because of its absence in lipids. However, the recent adoption of high-throughput sequencing and statistical modelling methods to SIP studies increased the sensitivity of the method and enabled overcoming some of the challenges. This chapter describes in detail how to perform DNA- and RNA-SIP using 15N.
Collapse
|
24
|
Karppinen EM, Mamet SD, Stewart KJ, Siciliano SD. The Charosphere Promotes Mineralization of 13C-Phenanthrene by Psychrotrophic Microorganisms in Greenland Soils. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:559-567. [PMID: 31180417 DOI: 10.2134/jeq2018.10.0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
When soil is frozen, biochar promotes petroleum hydrocarbon (PHC) degradation, yet we still do not understand why. To investigate microbial biodegradation activity under frozen conditions, we placed 60-μm mesh bags containing 6% (v/v) biochar created from fishmeal, bonemeal, bone chip, or wood into PHC-contaminated soil, which was then frozen to -5°C. This created three soil niches: biochar particles, the charosphere (biochar-contiguous soil), and bulk soil outside of the bags. After 90 d, C-phenanthrene mineralization reached 55% in bonemeal biochar and 84% in bone chip biochar charosphere soil, compared with only 43% in bulk soil and 13% in bone chip biochar particles. Soil pH remained near neutral in bone chip and bonemeal biochar treatments, unlike wood biochar, which increased alkalinity and likely made phosphate unavailable for microorganisms. Generally, charosphere soil had higher aromatic degradative gene abundances than bulk soil, but gene abundance was not directly linked to C-phenanthrene mineralization. In bone chip biochar-amended soils, phosphate successfully predicted microbial community composition, and abundances of and increased in charosphere soil. Biochar effects on charosphere soil were dependent on feedstock material and suggest that optimizing the charosphere in bone-derived biochars may increase remediation success in northern regions.
Collapse
|
25
|
Roy A, Sar P, Sarkar J, Dutta A, Sarkar P, Gupta A, Mohapatra B, Pal S, Kazy SK. Petroleum hydrocarbon rich oil refinery sludge of North-East India harbours anaerobic, fermentative, sulfate-reducing, syntrophic and methanogenic microbial populations. BMC Microbiol 2018; 18:151. [PMID: 30348104 PMCID: PMC6198496 DOI: 10.1186/s12866-018-1275-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/28/2018] [Indexed: 11/29/2022] Open
Abstract
Background Sustainable management of voluminous and hazardous oily sludge produced by petroleum refineries remains a challenging problem worldwide. Characterization of microbial communities of petroleum contaminated sites has been considered as the essential prerequisite for implementation of suitable bioremediation strategies. Three petroleum refinery sludge samples from North Eastern India were analyzed using next-generation sequencing technology to explore the diversity and functional potential of inhabitant microorganisms and scope for their on-site bioremediation. Results All sludge samples were hydrocarbon rich, anaerobic and reduced with sulfate as major anion and several heavy metals. High throughput sequencing of V3-16S rRNA genes from sludge metagenomes revealed dominance of strictly anaerobic, fermentative, thermophilic, sulfate-reducing bacteria affiliated to Coprothermobacter, Fervidobacterium, Treponema, Syntrophus, Thermodesulfovibrio, Anaerolinea, Syntrophobacter, Anaerostipes, Anaerobaculum, etc., which have been well known for hydrocarbon degradation. Relatively higher proportions of archaea were detected by qPCR. Archaeal 16S rRNA gene sequences showed presence of methanogenic Methanobacterium, Methanosaeta, Thermoplasmatales, etc. Detection of known hydrocarbon utilizing aerobic/facultative anaerobic (Mycobacterium, Pseudomonas, Longilinea, Geobacter, etc.), nitrate reducing (Gordonia, Novosphigobium, etc.) and nitrogen fixing (Azovibrio, Rhodobacter, etc.) bacteria suggested niche specific guilds with aerobic, facultative anaerobic and strict anaerobic populations. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) predicted putative genetic repertoire of sludge microbiomes and their potential for hydrocarbon degradation; lipid-, nitrogen-, sulfur- and methane- metabolism. Methyl coenzyme M reductase A (mcrA) and dissimilatory sulfite reductase beta-subunit (dsrB) genes phylogeny confirmed methanogenic and sulfate-reducing activities within sludge environment endowed by hydrogenotrophic methanogens and sulfate-reducing Deltaproteobacteria and Firmicutes members. Conclusion Refinery sludge microbiomes were comprised of hydrocarbon degrading, fermentative, sulfate-reducing, syntrophic, nitrogen fixing and methanogenic microorganisms, which were in accordance with the prevailing physicochemical nature of the samples. Analysis of functional biomarker genes ascertained the activities of methanogenic and sulfate-reducing organisms within sludge environment. Overall data provided better insights on microbial diversity and activity in oil contaminated environment, which could be exploited suitably for in situ bioremediation of refinery sludge. Electronic supplementary material The online version of this article (10.1186/s12866-018-1275-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ajoy Roy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, 713 209, India
| | - Pinaki Sar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India
| | - Jayeeta Sarkar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India
| | - Avishek Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India.,School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India
| | - Poulomi Sarkar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India
| | - Abhishek Gupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India
| | - Balaram Mohapatra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India
| | - Siddhartha Pal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, 713 209, India
| | - Sufia K Kazy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, 713 209, India.
| |
Collapse
|
26
|
Correa‐García S, Pande P, Séguin A, St‐Arnaud M, Yergeau E. Rhizoremediation of petroleum hydrocarbons: a model system for plant microbiome manipulation. Microb Biotechnol 2018; 11:819-832. [PMID: 30066464 PMCID: PMC6116750 DOI: 10.1111/1751-7915.13303] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Phytoremediation is a green and sustainable alternative to physico-chemical methods for contaminated soil remediation. One of the flavours of phytoremediation is rhizoremediation, where plant roots stimulate soil microbes to degrade organic contaminants. This approach is particularly interesting as it takes advantage of naturally evolved interaction mechanisms between plant and microorganisms and often results in a complete mineralization of the contaminants (i.e. transformation to water and CO2 ). However, many biotic and abiotic factors influence the outcome of this interaction, resulting in variable efficiency of the remediation process. The difficulty to predict precisely the timeframe associated with rhizoremediation leads to low adoption rates of this green technology. Here, we review recent literature related to rhizoremediation, with a particular focus on soil organisms. We then expand on the potential of rhizoremediation to be a model plant-microbe interaction system for microbiome manipulation studies.
Collapse
Affiliation(s)
- Sara Correa‐García
- Centre INRS‐Institut Armand‐FrappierInstitut national de la recherche scientifiqueUniversité du QuébecLavalQCCanada
- Laurentian Forest CenterNatural Ressources CanadaQuébec CityQCCanada
| | - Pranav Pande
- Centre INRS‐Institut Armand‐FrappierInstitut national de la recherche scientifiqueUniversité du QuébecLavalQCCanada
- Institut de recherche en biologie végétaleUniversité de Montréal and Jardin Botanique de MontréalMontréalQCCanada
| | - Armand Séguin
- Laurentian Forest CenterNatural Ressources CanadaQuébec CityQCCanada
| | - Marc St‐Arnaud
- Institut de recherche en biologie végétaleUniversité de Montréal and Jardin Botanique de MontréalMontréalQCCanada
| | - Etienne Yergeau
- Centre INRS‐Institut Armand‐FrappierInstitut national de la recherche scientifiqueUniversité du QuébecLavalQCCanada
| |
Collapse
|
27
|
Yang J, Li G, Qian Y, Yang Y, Zhang F. Microbial functional gene patterns related to soil greenhouse gas emissions in oil contaminated areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:94-102. [PMID: 29428864 DOI: 10.1016/j.scitotenv.2018.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 05/28/2023]
Abstract
Linking microbial community structure to physiology and ecological processes is a critical focus of microbial ecology. To understand the microbial functional gene patterns related to soil greenhouse gas [carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O)] emissions under oil contamination, we used functional gene array (GeoChip 5.0) analysis and network methods to investigate the feedback responses of soil microbial functional gene patterns and identify keystone genes in Shengli Oilfield, China. The microbial functional gene number, relative abundance and diversity involved in carbon degradation and nitrogen cycling decreased consistently with the reduced CO2 and N2O flux in oil contaminated soils, whereas the gene number and relative abundance of methane-production related genes increased with contamination. Functional molecular ecological networks were built based on random matrix theory, where network structures and properties showed significantly variation between oil contaminated and uncontaminated soils (P<0.05). Network nodes, connectivity and complexity all reduced under oil contamination. The sensitive and the highest connective genes in the network were identified as keystone genes, based on Mann-Whitney U tests and network analysis. Our findings improved the understanding of the microbe-mediated mechanisms affecting soil greenhouse gas emissions.
Collapse
Affiliation(s)
- Juejie Yang
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| | - Guanghe Li
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| | - Yi Qian
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| | - Yunfeng Yang
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| | - Fang Zhang
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
28
|
Deng S, Ke T, Li L, Cai S, Zhou Y, Liu Y, Guo L, Chen L, Zhang D. Impacts of environmental factors on the whole microbial communities in the rhizosphere of a metal-tolerant plant: Elsholtzia haichowensis Sun. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:1088-1097. [PMID: 29153474 DOI: 10.1016/j.envpol.2017.11.037] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 05/08/2023]
Abstract
Rhizospheric microbes play important roles in plant growth and heavy metals (HMs) transformation, possessing great potential for the successful phytoremediation of environmental pollutants. In the present study, the rhizosphere of Elsholtzia haichowensis Sun was comprehensively studied to uncover the influence of environmental factors (EFs) on the whole microbial communities including bacteria, fungi and archaea, via quantitative polymerase chain reaction (qPCR) and high-throughput sequencing. By analyzing molecular ecological network and multivariate regression trees (MRT), we evaluated the distinct impacts of 37 EFs on soil microbial community. Of them, soil pH, HMs, soil texture and nitrogen were identified as the most influencing factors, and their roles varied across different domains. Soil pH was the main environmental variable on archaeal and bacterial community but not fungi, explaining 25.7%, 46.5% and 40.7% variation of bacterial taxonomic composition, archaeal taxonomic composition and a-diversity, respectively. HMs showed important roles in driving the whole microbial community and explained the major variation in different domains. Nitrogen (NH4-N, NO3-N, NO2-N and TN) explained 47.3% variation of microbial population composition and 15.9% of archaeal taxonomic composition, demonstrating its influence in structuring the rhizospheric microbiome, particularly archaeal and bacterial community. Soil texture accounted for 10.2% variation of population composition, 28.9% of fungal taxonomic composition, 19.2% of fungal a-diversity and 7.8% of archaeal a-diversity. Rhizosphere only showed strong impacts on fungi and bacteria, accounting for 14.7% and 4.9% variation of fungal taxonomic composition and bacterial a-diversity. Spatial distance had stronger influence on bacteria and archaea than fungi, but not as significant as other EFs. For the first time, our study provides a complete insight into key influential EFs on rhizospheric microbes and how their roles vary across microbial domains, giving a hand for understanding the construction of microbial communities in rhizosphere.
Collapse
Affiliation(s)
- Songqiang Deng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430079, PR China
| | - Tan Ke
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Longtai Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430079, PR China
| | - Shenwen Cai
- Department of Resources and Environment, Zunyi Normal College, Zunyi 563000, PR China
| | - Yuyue Zhou
- College of Life Sciences, Wuhan University, Wuhan 430079, PR China
| | - Yue Liu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Limin Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430079, PR China.
| | - Lanzhou Chen
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China.
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
29
|
Morrissey EM, Mau RL, Schwartz E, Koch BJ, Hayer M, Hungate BA. Taxonomic patterns in the nitrogen assimilation of soil prokaryotes. Environ Microbiol 2018; 20:1112-1119. [PMID: 29411496 DOI: 10.1111/1462-2920.14051] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/27/2017] [Accepted: 01/14/2018] [Indexed: 11/27/2022]
Abstract
Nitrogen (N) is frequently a limiting nutrient in soil; its availability can govern ecosystem functions such as primary production and decomposition. Assimilation of N by microorganisms impacts the availability of N in soil. Despite its established ecological significance, the contributions of microbial taxa to N assimilation are unknown. Here we measure N uptake and use by microbial phylotypes and taxonomic groups within a diverse assemblage of soil microbes through quantitative stable isotope probing (qSIP) with 15 N. Following incubation with 15 NH4+, distinct patterns of 15 N assimilation among taxonomic groups were observed. For instance, glucose addition stimulated 15 N assimilation in most members of Actinobacteria and Proteobacteria but generally decreased 15 N use by Firmicutes and Bacteriodetes. While NH4+ is considered a preferred and universal source of N to prokaryotes, the majority (> 80%) of N assimilation in our soils could be attributed to a handful of active orders. Characterizing N assimilation of taxonomic groups with 15 N qSIP may provide a basis for understanding how microbial community composition influences N availability in the environment.
Collapse
Affiliation(s)
- Ember M Morrissey
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.,Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, USA
| | - Rebecca L Mau
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Benjamin J Koch
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Michaela Hayer
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
30
|
Jiang B, Jin N, Xing Y, Su Y, Zhang D. Unraveling uncultivable pesticide degraders via stable isotope probing (SIP). Crit Rev Biotechnol 2018; 38:1025-1048. [DOI: 10.1080/07388551.2018.1427697] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, PR China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, PR China
| | - Naifu Jin
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, PR China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, PR China
| | - Yuping Su
- Environmental Science and Engineering College, Fujian Normal University, Fuzhou, PR China
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- Environmental Science and Engineering College, Fujian Normal University, Fuzhou, PR China
- School of Environment, Tsinghua University, Beijing, PR China
| |
Collapse
|
31
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- und tritiummarkierte Verbindungen: Anwendungen in den modernen Biowissenschaften. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201704146] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - William J. Kerr
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| |
Collapse
|
32
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- and Tritium-Labelled Compounds: Applications in the Life Sciences. Angew Chem Int Ed Engl 2018; 57:1758-1784. [PMID: 28815899 DOI: 10.1002/anie.201704146] [Citation(s) in RCA: 421] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/27/2017] [Indexed: 12/19/2022]
Abstract
Hydrogen isotopes are unique tools for identifying and understanding biological and chemical processes. Hydrogen isotope labelling allows for the traceless and direct incorporation of an additional mass or radioactive tag into an organic molecule with almost no changes in its chemical structure, physical properties, or biological activity. Using deuterium-labelled isotopologues to study the unique mass-spectrometric patterns generated from mixtures of biologically relevant molecules drastically simplifies analysis. Such methods are now providing unprecedented levels of insight in a wide and continuously growing range of applications in the life sciences and beyond. Tritium (3 H), in particular, has seen an increase in utilization, especially in pharmaceutical drug discovery. The efforts and costs associated with the synthesis of labelled compounds are more than compensated for by the enhanced molecular sensitivity during analysis and the high reliability of the data obtained. In this Review, advances in the application of hydrogen isotopes in the life sciences are described.
Collapse
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - William J Kerr
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| |
Collapse
|
33
|
Effect of Temperature on Hydrocarbon Bioremediation in Simulated Petroleum-Polluted Seawater Collected from Tokyo Bay. ACTA ACUST UNITED AC 2018. [DOI: 10.2521/jswtb.54.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Bushnaf KM, Mangse G, Meynet P, Davenport RJ, Cirpka OA, Werner D. Mechanisms of distinct activated carbon and biochar amendment effects on petroleum vapour biofiltration in soil. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:1260-1269. [PMID: 28920987 DOI: 10.1039/c7em00309a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We studied the effects of two percent by weight activated carbon versus biochar amendments in 93 cm long sand columns on the biofiltration of petroleum vapours released by a non-aqueous phase liquid (NAPL) source. Activated carbon greatly enhanced, whereas biochar slightly reduced, the biofiltration of volatile petroleum hydrocarbons (VPHs) over 430 days. Sorbent amendment benefitted the VPH biofiltration by retarding breakthrough during the biodegradation lag phase. Subsequently, sorbent amendment briefly reduced the mineralization of petroleum hydrocarbons by limiting their bioavailability. During the last and longest study period, when conditions became less supportive of microbial growth, because of inorganic nutrient scarcity, the sorbents again improved the pollution attenuation by preventing the degrading microorganisms from being overloaded with VPHs. A 16S rRNA gene based analysis showed sorbent amendment effects on soil microbial communities. Nocardioidaceae benefitted the most from petroleum hydrocarbons in activated carbon amended soil, whereas Pseudomonadacea predominated in unamended soil. Whilst the degrading microorganisms were overloaded with VPHs in the unamended soil, the reduced mobility and bioavailability of VPHs in the activated carbon amended soil led to the emergence of communities with higher specific substrate affinity, which removed bioavailable VPHs effectively at low concentrations. A numerical pollutant fate model reproduced these experimental observations by considering sorption effects on the pollutant migration and bioavailability for growth of VPH degrading biomass, which is limited by a maximum soil biomass carrying capacity. Activated carbon was a much stronger sorbent for VPHs than biochar, which explained the diverging effects of the two sorbents in this study.
Collapse
Affiliation(s)
- Khaled M Bushnaf
- Department of Earth and Environmental Sciences, El-mergab University, Khoms, Libya
| | | | | | | | | | | |
Collapse
|
35
|
Alonso-Pernas P, Bartram S, Arias-Cordero EM, Novoselov AL, Halty-deLeon L, Shao Y, Boland W. In Vivo Isotopic Labeling of Symbiotic Bacteria Involved in Cellulose Degradation and Nitrogen Recycling within the Gut of the Forest Cockchafer ( Melolontha hippocastani). Front Microbiol 2017; 8:1970. [PMID: 29075241 PMCID: PMC5643479 DOI: 10.3389/fmicb.2017.01970] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/25/2017] [Indexed: 11/17/2022] Open
Abstract
The guts of insects harbor symbiotic bacterial communities. However, due to their complexity, it is challenging to relate a specific symbiotic phylotype to its corresponding function. In the present study, we focused on the forest cockchafer (Melolontha hippocastani), a phytophagous insect with a dual life cycle, consisting of a root-feeding larval stage and a leaf-feeding adult stage. By combining in vivo stable isotope probing (SIP) with 13C cellulose and 15N urea as trophic links, with Illumina MiSeq (Illumina-SIP), we unraveled bacterial networks processing recalcitrant dietary components and recycling nitrogenous waste. The bacterial communities behind these processes change between larval and adult stages. In 13C cellulose-fed insects, the bacterial families Lachnospiraceae and Enterobacteriaceae were isotopically labeled in larvae and adults, respectively. In 15N urea-fed insects, the genera Burkholderia and Parabacteroides were isotopically labeled in larvae and adults, respectively. Additionally, the PICRUSt-predicted metagenome suggested a possible ability to degrade hemicellulose and to produce amino acids of, respectively, 13C cellulose- and 15N urea labeled bacteria. The incorporation of 15N from ingested urea back into the insect body was confirmed, in larvae and adults, by isotope ratio mass spectrometry (IRMS). Besides highlighting key bacterial symbionts of the gut of M. hippocastani, this study provides example on how Illumina-SIP with multiple trophic links can be used to target microorganisms embracing different roles within an environment.
Collapse
Affiliation(s)
- Pol Alonso-Pernas
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Stefan Bartram
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Erika M Arias-Cordero
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Alexey L Novoselov
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lorena Halty-deLeon
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yongqi Shao
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
36
|
Iffis B, St-Arnaud M, Hijri M. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities. FRONTIERS IN PLANT SCIENCE 2017; 8:1381. [PMID: 28848583 PMCID: PMC5550799 DOI: 10.3389/fpls.2017.01381] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/25/2017] [Indexed: 05/30/2023]
Abstract
Phytoremediation is a promising in situ green technology based on the use of plants to cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, that closely interact with plant roots play key roles in phytoremediation processes. In polluted soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient uptake and may either degrade or sequester a large range of soil pollutants. Therefore, improving the efficiency of phytoremediation requires a thorough knowledge of the microbial diversity living in the rhizosphere and in close association with plant roots in both the surface and the endosphere. This study aims to assess fungal ITS and bacterial 16S rRNA gene diversity using high-throughput sequencing in rhizospheric soils and roots of three plant species (Solidago canadensis, Populus balsamifera, and Lycopus europaeus) growing spontaneously in three petroleum hydrocarbon polluted sedimentation basins. Microbial community structures of rhizospheric soils and roots were compared with those of microbes associated with arbuscular mycorrhizal fungal (AMF) spores to determine the links between the root and rhizosphere communities and those associated with AMF. Our results showed a difference in OTU richness and community structure composition between soils and roots for both bacteria and fungi. We found that petroleum hydrocarbon pollutant (PHP) concentrations have a significant effect on fungal and bacterial community structures in both soils and roots, whereas plant species identity showed a significant effect only on the roots for bacteria and fungi. Our results also showed that the community composition of bacteria and fungi in soil and roots varied from those associated with AMF spores harvested from the same plants. This let us to speculate that in petroleum hydrocarbon contaminated soils, AMF may release chemical compounds by which they recruit beneficial microbes to tolerate or degrade the PHPs present in the soil.
Collapse
|
37
|
Chang S, Zhang G, Chen X, Long H, Wang Y, Chen T, Liu G. The complete genome sequence of the cold adapted crude-oil degrader: Pedobacter steynii DX4. Stand Genomic Sci 2017; 12:45. [PMID: 28770030 PMCID: PMC5531107 DOI: 10.1186/s40793-017-0249-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/29/2017] [Indexed: 11/26/2022] Open
Abstract
Pedobacter steynii DX4 was isolated from the soil of Tibetan Plateau and it can use crude oil as sole carbon and energy source at 15 °C. The genome of Pedobacter steynii DX4 has been sequenced and served as basis for analysis its metabolic mechanism. It is the first genome of crude oil degrading strain in Pedobacter genus. The 6.58 Mb genome has an average G + C content of 41.31% and encodes 5464 genes. In addition, annotation revealed that Pedobacter steynii DX4 has cold shock proteins, abundant response regulators for cell motility, and enzymes involved in energy conversion and fatty acid metabolism. The genomic characteristics could provide information for further study of oil-degrading microbes for recovery of crude oil polluted environment.
Collapse
Affiliation(s)
- Sijing Chang
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049 China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000 China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000 China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Ximing Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000 China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Haozhi Long
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045 China
| | - Yilin Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045 China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000 China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, 730000 China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| |
Collapse
|
38
|
Liu S, Wawrik B, Liu Z. Different Bacterial Communities Involved in Peptide Decomposition between Normoxic and Hypoxic Coastal Waters. Front Microbiol 2017; 8:353. [PMID: 28326069 PMCID: PMC5339267 DOI: 10.3389/fmicb.2017.00353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/20/2017] [Indexed: 11/13/2022] Open
Abstract
Proteins and peptides are key components of the labile dissolved organic matter pool in marine environments. Knowing which types of bacteria metabolize peptides can inform the factors that govern peptide decomposition and further carbon and nitrogen remineralization in marine environments. A 13C-labeled tetrapeptide, alanine-valine-phenylalanine-alanine (AVFA), was added to both surface (normoxic) and bottom (hypoxic) seawater from a coastal station in the northern Gulf of Mexico for a 2-day incubation experiment, and bacteria that incorporated the peptide were identified using DNA stable isotope probing (SIP). The decomposition rate of AVFA in the bottom hypoxic seawater (0.018–0.035 μM h-1) was twice as fast as that in the surface normoxic seawater (0.011–0.017 μM h-1). SIP experiments indicated that incorporation of 13C was highest among the Flavobacteria, Sphingobacteria, Alphaproteobacteria, Acidimicrobiia, Verrucomicrobiae, Cyanobacteria, and Actinobacteria in surface waters. In contrast, highest 13C-enrichment was mainly observed in several Alphaproteobacteria (Thalassococcus, Rhodobacteraceae, Ruegeria) and Gammaproteobacteria genera (Colwellia, Balneatrix, Thalassomonas) in the bottom water. These data suggest that a more diverse group of both oligotrophic and copiotrophic bacteria may be involved in metabolizing labile organic matter such as peptides in normoxic coastal waters, and several copiotrophic genera belonging to Alphaproteobacteria and Gammaproteobacteria and known to be widely distributed may contribute to faster peptide decomposition in the hypoxic waters.
Collapse
Affiliation(s)
- Shuting Liu
- Marine Science Institute, The University of Texas at Austin, Port Aransas TX, USA
| | - Boris Wawrik
- Department of Microbiology and Plant Biology, The University of Oklahoma, Norman OK, USA
| | - Zhanfei Liu
- Marine Science Institute, The University of Texas at Austin, Port Aransas TX, USA
| |
Collapse
|
39
|
Thijs S, Sillen W, Weyens N, Vangronsveld J. Phytoremediation: State-of-the-art and a key role for the plant microbiome in future trends and research prospects. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:23-38. [PMID: 27484694 DOI: 10.1080/15226514.2016.1216076] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phytoremediation is increasingly adopted as a more sustainable approach for soil remediation. However, significant advances in efficiency are still necessary to attain higher levels of environmental and economic sustainability. Current interventions do not always give the expected outcomes in field settings due to an incomplete understanding of the multicomponent biological interactions. New advances in -omics are gradually implemented for studying microbial communities of polluted land in situ. This opens new perspectives for the discovery of biodegradative strains and provides us new ways of interfering with microbial communities to enhance bioremediation rates. This review presents retrospectives and future perspectives for plant microbiome studies relevant to phytoremediation, as well as some knowledge gaps in this promising research field. The implementation of phytoremediation in soil clean-up management systems is discussed, and an overview of the promoting factors that determine the growth of the phytoremediation market is given. Continuous growth is expected since elimination of contaminants from the environment is demanded. The evolution of scientific thought from a reductionist view to a more holistic approach will boost phytoremediation as an efficient and reliable phytotechnology. It is anticipated that phytoremediation will prove the most promising for organic contaminant degradation and bioenergy crop production on marginal land.
Collapse
Affiliation(s)
- Sofie Thijs
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Wouter Sillen
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Nele Weyens
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Jaco Vangronsveld
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| |
Collapse
|
40
|
Jameson E, Taubert M, Coyotzi S, Chen Y, Eyice Ö, Schäfer H, Murrell JC, Neufeld JD, Dumont MG. DNA-, RNA-, and Protein-Based Stable-Isotope Probing for High-Throughput Biomarker Analysis of Active Microorganisms. Methods Mol Biol 2017; 1539:57-74. [PMID: 27900684 DOI: 10.1007/978-1-4939-6691-2_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Stable-isotope probing (SIP) enables researchers to target active populations within complex microbial communities, which is achieved by providing growth substrates enriched in heavy isotopes, usually in the form of 13C, 18O, or 15N. After growth on the substrate and subsequent extraction of microbial biomarkers, typically nucleic acids or proteins, the SIP technique is used for the recovery and analysis of isotope-labeled biomarkers from active microbial populations. In the years following the initial development of DNA- and RNA-based SIP, it was common practice to characterize labeled populations by targeted gene analysis. Such approaches usually involved fingerprint-based analyses or sequencing of clone libraries containing 16S rRNA genes or functional marker gene amplicons. Although molecular fingerprinting remains a valuable approach for rapid confirmation of isotope labeling, recent advances in sequencing technology mean that it is possible to obtain affordable and comprehensive amplicon profiles, metagenomes, or metatranscriptomes from SIP experiments. Not only can the abundance of microbial groups be inferred from metagenomes, but researchers can bin, assemble, and explore individual genomes to build hypotheses about the metabolic capabilities of labeled microorganisms. Analysis of labeled mRNA is a more recent advance that can provide independent metatranscriptome-based analysis of active microorganisms. The power of metatranscriptomics is that mRNA abundance often correlates closely with the corresponding activity of encoded enzymes, thus providing insight into microbial metabolism at the time of sampling. Together, these advances have improved the sensitivity of SIP methods and allow the use of labeled substrates at ecologically relevant concentrations. Particularly as methods improve and costs continue to drop, we expect that the integration of SIP with multiple omics-based methods will become prevalent components of microbial ecology studies, leading to further breakthroughs in our understanding of novel microbial populations and elucidation of the metabolic function of complex microbial communities. In this chapter we provide protocols for obtaining labeled DNA, RNA, and proteins that can be used for downstream omics-based analyses.
Collapse
Affiliation(s)
- Eleanor Jameson
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Martin Taubert
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Sara Coyotzi
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Özge Eyice
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Hendrik Schäfer
- School of Life Sciences, University of Warwick, Coventry, UK
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Josh D Neufeld
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Marc G Dumont
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
41
|
Yang S, Wen X, Shi Y, Liebner S, Jin H, Perfumo A. Hydrocarbon degraders establish at the costs of microbial richness, abundance and keystone taxa after crude oil contamination in permafrost environments. Sci Rep 2016; 6:37473. [PMID: 27886221 PMCID: PMC5122841 DOI: 10.1038/srep37473] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/11/2016] [Indexed: 01/07/2023] Open
Abstract
Oil spills from pipeline ruptures are a major source of terrestrial petroleum pollution in cold regions. However, our knowledge of the bacterial response to crude oil contamination in cold regions remains to be further expanded, especially in terms of community shifts and potential development of hydrocarbon degraders. In this study we investigated changes of microbial diversity, population size and keystone taxa in permafrost soils at four different sites along the China-Russia crude oil pipeline prior to and after perturbation with crude oil. We found that crude oil caused a decrease of cell numbers together with a reduction of the species richness and shifts in the dominant phylotypes, while bacterial community diversity was highly site-specific after exposure to crude oil, reflecting different environmental conditions. Keystone taxa that strongly co-occurred were found to form networks based on trophic interactions, that is co-metabolism regarding degradation of hydrocarbons (in contaminated samples) or syntrophic carbon cycling (in uncontaminated samples). With this study we demonstrate that after severe crude oil contamination a rapid establishment of endemic hydrocarbon degrading communities takes place under favorable temperature conditions. Therefore, both endemism and trophic correlations of bacterial degraders need to be considered in order to develop effective cleanup strategies.
Collapse
Affiliation(s)
- Sizhong Yang
- State Key Laboratory of Frozen Soils Engineering (SKLFSE), Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China.,GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Xi Wen
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany.,College of Electrical Engineering, Northwest University for Nationalities, Lanzhou, 730030, China
| | - Yulan Shi
- State Key Laboratory of Frozen Soils Engineering (SKLFSE), Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China
| | - Susanne Liebner
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Huijun Jin
- State Key Laboratory of Frozen Soils Engineering (SKLFSE), Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China
| | - Amedea Perfumo
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| |
Collapse
|
42
|
McWatters RS, Wilkins D, Spedding T, Hince G, Raymond B, Lagerewskij G, Terry D, Wise L, Snape I. On site remediation of a fuel spill and soil reuse in Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:963-973. [PMID: 27450263 DOI: 10.1016/j.scitotenv.2016.07.084] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 06/06/2023]
Abstract
The first large-scale remediation of fuel contamination in Antarctica treated 10000L of diesel dispersed in 1700t of soil, and demonstrated the efficacy of on-site bioremediation. The project progressed through initial site assessment and natural attenuation, passive groundwater management, then active remediation and the managed reuse of soil. Monitoring natural attenuation for the first 12years showed contaminant levels in surface soil remained elevated, averaging 5000mg/kg. By contrast, in five years of active remediation (excavation and biopile treatment) contaminant levels decreased by a factor of four. Chemical indicators showed hydrocarbon loss was apportioned to both biodegradation and evaporative processes. Hydrocarbon degradation rates were assessed against biopile soil temperatures, showing a phase of rapid degradation (first 100days above soil temperature threshold of 0°C) followed by slower degradation (beyond 100days above threshold). The biopiles operated successfully within constraints typical of harsh climates and remote sites, including limitations on resources, no external energy inputs and short field seasons. Non-native microorganisms (e.g. inoculations) and other organic materials (e.g. bulking agents) are prohibited in Antarctica making this cold region more challenging for remediation than the Arctic. Biopile operations included an initial fertiliser application, biannual mechanical turning of the soil and minimal leachate recirculation. The biopiles are a practical approach to remediate large quantities of contaminated soil in the Antarctic and already 370t have been reused in a building foundation. The findings presented demonstrate that bioremediation is a viable strategy for Antarctica and other cold regions. Operators can potentially use the modelled relationship between days above 0°C (threshold temperature) and the change in degradation rates to estimate how long it would take to remediate other sites using the biopile technology with similar soil and contaminant types.
Collapse
Affiliation(s)
- R S McWatters
- Antarctic Conservation and Management, Australian Antarctic Division, Kingston, Tasmania, Australia.
| | - D Wilkins
- Antarctic Conservation and Management, Australian Antarctic Division, Kingston, Tasmania, Australia
| | - T Spedding
- Antarctic Conservation and Management, Australian Antarctic Division, Kingston, Tasmania, Australia
| | - G Hince
- Antarctic Conservation and Management, Australian Antarctic Division, Kingston, Tasmania, Australia
| | - B Raymond
- Antarctic Conservation and Management, Australian Antarctic Division, Kingston, Tasmania, Australia
| | - G Lagerewskij
- Antarctic Conservation and Management, Australian Antarctic Division, Kingston, Tasmania, Australia
| | - D Terry
- Antarctic Conservation and Management, Australian Antarctic Division, Kingston, Tasmania, Australia
| | - L Wise
- Antarctic Conservation and Management, Australian Antarctic Division, Kingston, Tasmania, Australia
| | - I Snape
- Antarctic Conservation and Management, Australian Antarctic Division, Kingston, Tasmania, Australia
| |
Collapse
|
43
|
Leewis MC, Uhlik O, Leigh MB. Synergistic Processing of Biphenyl and Benzoate: Carbon Flow Through the Bacterial Community in Polychlorinated-Biphenyl-Contaminated Soil. Sci Rep 2016; 6:22145. [PMID: 26915282 PMCID: PMC4768254 DOI: 10.1038/srep22145] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/08/2016] [Indexed: 11/18/2022] Open
Abstract
Aerobic mineralization of PCBs, which are toxic and persistent organic pollutants, involves the upper (biphenyl, BP) and lower (benzoate, BZ) degradation pathways. The activity of different members of the soil microbial community in performing one or both pathways, and their synergistic interactions during PCB biodegradation, are not well understood. This study investigates BP and BZ biodegradation and subsequent carbon flow through the microbial community in PCB-contaminated soil. DNA stable isotope probing (SIP) was used to identify the bacterial guilds involved in utilizing 13C-biphenyl (unchlorinated analogue of PCBs) and/or 13C-benzoate (product/intermediate of BP degradation and analogue of chlorobenzoates). By performing SIP with two substrates in parallel, we reveal microbes performing the upper (BP) and/or lower (BZ) degradation pathways, and heterotrophic bacteria involved indirectly in processing carbon derived from these substrates (i.e. through crossfeeding). Substrate mineralization rates and shifts in relative abundance of labeled taxa suggest that BP and BZ biotransformations were performed by microorganisms with different growth strategies: BZ-associated bacteria were fast growing, potentially copiotrophic organisms, while microbes that transform BP were oligotrophic, slower growing, organisms. Our findings provide novel insight into the functional interactions of soil bacteria active in processing biphenyl and related aromatic compounds in soil, revealing how carbon flows through a bacterial community.
Collapse
Affiliation(s)
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Mary Beth Leigh
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| |
Collapse
|
44
|
Liang Y, Zhao H, Deng Y, Zhou J, Li G, Sun B. Long-Term Oil Contamination Alters the Molecular Ecological Networks of Soil Microbial Functional Genes. Front Microbiol 2016; 7:60. [PMID: 26870020 PMCID: PMC4737900 DOI: 10.3389/fmicb.2016.00060] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/13/2016] [Indexed: 12/11/2022] Open
Abstract
With knowledge on microbial composition and diversity, investigation of within-community interactions is a further step to elucidate microbial ecological functions, such as the biodegradation of hazardous contaminants. In this work, microbial functional molecular ecological networks were studied in both contaminated and uncontaminated soils to determine the possible influences of oil contamination on microbial interactions and potential functions. Soil samples were obtained from an oil-exploring site located in South China, and the microbial functional genes were analyzed with GeoChip, a high-throughput functional microarray. By building random networks based on null model, we demonstrated that overall network structures and properties were significantly different between contaminated and uncontaminated soils (P < 0.001). Network connectivity, module numbers, and modularity were all reduced with contamination. Moreover, the topological roles of the genes (module hub and connectors) were altered with oil contamination. Subnetworks of genes involved in alkane and polycyclic aromatic hydrocarbon degradation were also constructed. Negative co-occurrence patterns prevailed among functional genes, thereby indicating probable competition relationships. The potential "keystone" genes, defined as either "hubs" or genes with highest connectivities in the network, were further identified. The network constructed in this study predicted the potential effects of anthropogenic contamination on microbial community co-occurrence interactions.
Collapse
Affiliation(s)
- Yuting Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences Nanjing, China
| | - Huihui Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences Nanjing, China
| | - Ye Deng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua UniversityBeijing, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing, China
| | - Jizhong Zhou
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing, China; Department of Botany and Microbiology, Institute for Environmental Genomics, University of Oklahoma, NormanOK, USA
| | - Guanghe Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua UniversityBeijing, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing, China
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences Nanjing, China
| |
Collapse
|
45
|
Yergeau E, Bell TH, Champagne J, Maynard C, Tardif S, Tremblay J, Greer CW. Transplanting Soil Microbiomes Leads to Lasting Effects on Willow Growth, but not on the Rhizosphere Microbiome. Front Microbiol 2015; 6:1436. [PMID: 26733977 PMCID: PMC4685055 DOI: 10.3389/fmicb.2015.01436] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 12/01/2015] [Indexed: 02/01/2023] Open
Abstract
Plants interact closely with microbes, which are partly responsible for plant growth, health, and adaptation to stressful environments. Engineering the plant-associated microbiome could improve plant survival and performance in stressful environments such as contaminated soils. Here, willow cuttings were planted into highly petroleum-contaminated soils that had been gamma-irradiated and subjected to one of four treatments: inoculation with rhizosphere soil from a willow that grew well (LA) or sub-optimally (SM) in highly contaminated soils or with bulk soil in which the planted willow had died (DE) or no inoculation (CO). Samples were taken from the starting inoculum, at the beginning of the experiment (T0) and after 100 days of growth (TF). Short hypervariable regions of archaeal/bacterial 16S rRNA genes and the fungal ITS region were amplified from soil DNA extracts and sequenced on the Illumina MiSeq. Willow growth was monitored throughout the experiment, and plant biomass was measured at TF. CO willows were significantly smaller throughout the experiment, while DE willows were the largest at TF. Microbiomes of different treatments were divergent at T0, but for most samples, had converged on highly similar communities by TF. Willow biomass was more strongly linked to overall microbial community structure at T0 than to microbial community structure at TF, and the relative abundance of many genera at T0 was significantly correlated to final willow root and shoot biomass. Although microbial communities had mostly converged at TF, lasting differences in willow growth were observed, probably linked to differences in T0 microbial communities.
Collapse
Affiliation(s)
- Etienne Yergeau
- Energy Mining and Environment, National Research Council Canada Montreal, QC, Canada
| | - Terrence H Bell
- Biodiversity Centre, Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal Montréal, QC, Canada
| | - Julie Champagne
- Energy Mining and Environment, National Research Council Canada Montreal, QC, Canada
| | - Christine Maynard
- Energy Mining and Environment, National Research Council Canada Montreal, QC, Canada
| | - Stacie Tardif
- Energy Mining and Environment, National Research Council Canada Montreal, QC, Canada
| | - Julien Tremblay
- Energy Mining and Environment, National Research Council Canada Montreal, QC, Canada
| | - Charles W Greer
- Energy Mining and Environment, National Research Council Canada Montreal, QC, Canada
| |
Collapse
|
46
|
Arctic soil microbial diversity in a changing world. Res Microbiol 2015; 166:796-813. [DOI: 10.1016/j.resmic.2015.07.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 01/23/2023]
|
47
|
El Amrani A, Dumas AS, Wick LY, Yergeau E, Berthomé R. "Omics" Insights into PAH Degradation toward Improved Green Remediation Biotechnologies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11281-91. [PMID: 26352597 DOI: 10.1021/acs.est.5b01740] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This review summarizes recent knowledge of polycyclic aromatic hydrocarbons (PAHs) biotransformation by microorganisms and plants. Whereas most research has focused on PAH degradation either by plants or microorganisms separately, this review specifically addresses the interactions of plants with their rhizosphere microbial communities. Indeed, plant roots release exudates that contain various nutritional and signaling molecules that influence bacterial and fungal populations. The complex interactions of these populations play a pivotal role in the biodegradation of high-molecular-weight PAHs and other complex molecules. Emerging integrative approaches, such as (meta-) genomics, (meta-) transcriptomics, (meta-) metabolomics, and (meta-) proteomics studies are discussed, emphasizing how "omics" approaches bring new insight into decipher molecular mechanisms of PAH degradation both at the single species and community levels. Such knowledge address new pictures on how organic molecules are cometabolically degraded in a complex ecosystem and should help in setting up novel decontamination strategies based on the rhizosphere interactions between plants and their microbial associates.
Collapse
Affiliation(s)
- Abdelhak El Amrani
- University of Rennes 1 , CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| | - Anne-Sophie Dumas
- University of Rennes 1 , CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| | - Lukas Y Wick
- UFZ, Department of Environmental Microbiology, Helmholtz Centre for Environmental Research , Permoserstraße 15, D-04318 Leipzig, Germany
| | - Etienne Yergeau
- National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec Canada
| | - Richard Berthomé
- Plant Genomics Research Unit, UMR INRA 1165 - CNRS 8114 - UEVE , 2, Gaston Crémieux St., CP5708, 91057 Evry Cedex, France
| |
Collapse
|
48
|
Peng M, Zi X, Wang Q. Bacterial Community Diversity of Oil-Contaminated Soils Assessed by High Throughput Sequencing of 16S rRNA Genes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:12002-15. [PMID: 26404329 PMCID: PMC4626951 DOI: 10.3390/ijerph121012002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/27/2015] [Accepted: 09/18/2015] [Indexed: 11/16/2022]
Abstract
Soil bacteria play a major role in ecological and biodegradable function processes in oil-contaminated soils. Here, we assessed the bacterial diversity and changes therein in oil-contaminated soils exposed to different periods of oil pollution using 454 pyrosequencing of 16S rRNA genes. No less than 24,953 valid reads and 6246 operational taxonomic units (OTUs) were obtained from all five studied samples. OTU richness was relatively higher in contaminated soils than clean samples. Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Planctomycetes and Proteobacteria were the dominant phyla among all the soil samples. The heatmap plot depicted the relative percentage of each bacterial family within each sample and clustered five samples into two groups. For the samples, bacteria in the soils varied at different periods of oil exposure. The oil pollution exerted strong selective pressure to propagate many potentially petroleum degrading bacteria. Redundancy analysis (RDA) indicated that organic matter was the highest determinant factor for explaining the variations in community compositions. This suggests that compared to clean soils, oil-polluted soils support more diverse bacterial communities and soil bacterial community shifts were mainly controlled by organic matter and exposure time. These results provide some useful information for bioremediation of petroleum contaminated soil in the future.
Collapse
Affiliation(s)
- Mu Peng
- College of Life Science, Northeast Forestry University, No.26 Hexing Street, Xiangfang District, Harbin 150040, China.
| | - Xiaoxue Zi
- College of Life Science, Northeast Forestry University, No.26 Hexing Street, Xiangfang District, Harbin 150040, China.
| | - Qiuyu Wang
- College of Life Science, Northeast Forestry University, No.26 Hexing Street, Xiangfang District, Harbin 150040, China.
| |
Collapse
|
49
|
Profiling microbial community structures across six large oilfields in China and the potential role of dominant microorganisms in bioremediation. Appl Microbiol Biotechnol 2015; 99:8751-64. [DOI: 10.1007/s00253-015-6748-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 05/27/2015] [Accepted: 05/31/2015] [Indexed: 11/25/2022]
|
50
|
Akbari A, Ghoshal S. Effects of diurnal temperature variation on microbial community and petroleum hydrocarbon biodegradation in contaminated soils from a sub-Arctic site. Environ Microbiol 2015; 17:4916-28. [DOI: 10.1111/1462-2920.12846] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 03/08/2015] [Accepted: 03/11/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Ali Akbari
- Department of Civil Engineering; McGill University; Montreal Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering; McGill University; Montreal Canada
| |
Collapse
|