1
|
Schulz-Mirbach H, Krüsemann JL, Andreadaki T, Nerlich JN, Mavrothalassiti E, Boecker S, Schneider P, Weresow M, Abdelwahab O, Paczia N, Dronsella B, Erb TJ, Bar-Even A, Klamt S, Lindner SN. Engineering new-to-nature biochemical conversions by combining fermentative metabolism with respiratory modules. Nat Commun 2024; 15:6725. [PMID: 39112480 PMCID: PMC11306353 DOI: 10.1038/s41467-024-51029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
Anaerobic microbial fermentations provide high product yields and are a cornerstone of industrial bio-based processes. However, the need for redox balancing limits the array of fermentable substrate-product combinations. To overcome this limitation, here we design an aerobic fermentative metabolism that allows the introduction of selected respiratory modules. These can use oxygen to re-balance otherwise unbalanced fermentations, hence achieving controlled respiro-fermentative growth. Following this design, we engineer and characterize an obligate fermentative Escherichia coli strain that aerobically ferments glucose to stoichiometric amounts of lactate. We then re-integrate the quinone-dependent glycerol 3-phosphate dehydrogenase and demonstrate glycerol fermentation to lactate while selectively transferring the surplus of electrons to the respiratory chain. To showcase the potential of this fermentation mode, we direct fermentative flux from glycerol towards isobutanol production. In summary, our design permits using oxygen to selectively re-balance fermentations. This concept is an advance freeing highly efficient microbial fermentation from the limitations imposed by traditional redox balancing.
Collapse
Affiliation(s)
- Helena Schulz-Mirbach
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jan Lukas Krüsemann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Charitéplatz 1, 10117, Berlin, Germany
| | - Theofania Andreadaki
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jana Natalie Nerlich
- Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Charitéplatz 1, 10117, Berlin, Germany
| | - Eleni Mavrothalassiti
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Simon Boecker
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
- Berliner Hochschule für Technik (BHT), Seestr. 64, 13347, Berlin, Germany
| | - Philipp Schneider
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Moritz Weresow
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Omar Abdelwahab
- Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Charitéplatz 1, 10117, Berlin, Germany
| | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Beau Dronsella
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Straße 14, 35043, Marburg, Germany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
- Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
2
|
Boecker S, Schulze P, Klamt S. Growth-coupled anaerobic production of isobutanol from glucose in minimal medium with Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:148. [PMID: 37789464 PMCID: PMC10548627 DOI: 10.1186/s13068-023-02395-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND The microbial production of isobutanol holds promise to become a sustainable alternative to fossil-based synthesis routes for this important chemical. Escherichia coli has been considered as one production host, however, due to redox imbalance, growth-coupled anaerobic production of isobutanol from glucose in E. coli is only possible if complex media additives or small amounts of oxygen are provided. These strategies have a negative impact on product yield, productivity, reproducibility, and production costs. RESULTS In this study, we propose a strategy based on acetate as co-substrate for resolving the redox imbalance. We constructed the E. coli background strain SB001 (ΔldhA ΔfrdA ΔpflB) with blocked pathways from glucose to alternative fermentation products but with an enabled pathway for acetate uptake and subsequent conversion to ethanol via acetyl-CoA. This strain, if equipped with the isobutanol production plasmid pIBA4, showed robust exponential growth (µ = 0.05 h-1) under anaerobic conditions in minimal glucose medium supplemented with small amounts of acetate. In small-scale batch cultivations, the strain reached a glucose uptake rate of 4.8 mmol gDW-1 h-1, a titer of 74 mM and 89% of the theoretical maximal isobutanol/glucose yield, while secreting only small amounts of ethanol synthesized from acetate. Furthermore, we show that the strain keeps a high metabolic activity also in a pulsed fed-batch bioreactor cultivation, even if cell growth is impaired by the accumulation of isobutanol in the medium. CONCLUSIONS This study showcases the beneficial utilization of acetate as a co-substrate and redox sink to facilitate growth-coupled production of isobutanol under anaerobic conditions. This approach holds potential for other applications with different production hosts and/or substrate-product combinations.
Collapse
Affiliation(s)
- Simon Boecker
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
- University of Applied Sciences Berlin, Seestr. 64, 13347, Berlin, Germany
| | - Peter Schulze
- Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Steffen Klamt
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany.
| |
Collapse
|
3
|
Cho DH, Kim HJ, Oh SJ, Hwang JH, Shin N, Bhatia SK, Yoon JJ, Jeon JM, Yang YH. Strategy for efficiently utilizing Escherichia coli cells producing isobutanol by combining isobutanol and indigo production systems. J Biotechnol 2023; 367:62-70. [PMID: 37019156 DOI: 10.1016/j.jbiotec.2023.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Isobutanol is a potential biofuel, and its microbial production systems have demonstrated promising results. In a microbial system, the isobutanol produced is secreted into the media; however, the cells remaining after fermentation cannot be used efficiently during the isobutanol recovery process and are discarded as waste. To address this, we aimed to investigate the strategy of utilizing these remaining cells by combining the isobutanol production system with the indigo production system, wherein the product accumulates intracellularly. Accordingly, we constructed E. coli systems with genes, such as acetolactate synthase gene (alsS), ketol-acid reductoisomerase gene (ilvC), dihydroxyl-acid dehydratase (ilvD), and alpha-ketoisovalerate decarboxylase gene (kivD), for isobutanol production and genes, such as tryptophanase gene (tnaA) and flavin-containing monooxygenase gene (FMO), for indigo production. This system produced isobutanol and indigo simultaneously while accumulating indigo within cells. The production of isobutanol and indigo exhibited a strong linear correlation up to 72 h of production time; however, the pattern of isobutanol and indigo production varied. To our knowledge, this study is the first to simultaneously produce isobutanol and indigo and can potentially enhance the economy of biochemical production.
Collapse
Affiliation(s)
- Do Hyun Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Suk Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul, South Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, Republic of Korea.
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul, South Korea.
| |
Collapse
|
4
|
PyMiner: A method for metabolic pathway design based on the uniform similarity of substrate-product pairs and conditional search. PLoS One 2022; 17:e0266783. [PMID: 35404943 PMCID: PMC9000129 DOI: 10.1371/journal.pone.0266783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/26/2022] [Indexed: 11/30/2022] Open
Abstract
Metabolic pathway design is an essential step in the course of constructing an efficient microbial cell factory to produce high value-added chemicals. Meanwhile, the computational design of biologically meaningful metabolic pathways has been attracting much attention to produce natural and non-natural products. However, there has been a lack of effective methods to perform metabolic network reduction automatically. In addition, comprehensive evaluation indexes for metabolic pathway are still relatively scarce. Here, we define a novel uniform similarity to calculate the main substrate-product pairs of known biochemical reactions, and develop further an efficient metabolic pathway design tool named PyMiner. As a result, the redundant information of general metabolic network (GMN) is eliminated, and the number of substrate-product pairs is shown to decrease by 81.62% on average. Considering that the nodes in the extracted metabolic network (EMN) constructed in this work is large in scale but imbalanced in distribution, we establish a conditional search strategy (CSS) that cuts search time in 90.6% cases. Compared with state-of-the-art methods, PyMiner shows obvious advantages and demonstrates equivalent or better performance on 95% cases of experimentally verified pathways. Consequently, PyMiner is a practical and effective tool for metabolic pathway design.
Collapse
|
5
|
Metabolic engineering of Escherichia coli for the production of isobutanol: a review. World J Microbiol Biotechnol 2021; 37:168. [PMID: 34487256 DOI: 10.1007/s11274-021-03140-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
With the ongoing depletion of fossil fuel resources and emerging environmental issues, increasing research effort is being dedicated to producing biofuels from renewable substrates. With its advantages over ethanol in terms of energy density, octane number, and hygroscopicity, isobutanol is considered a potential alternative to traditional gasoline. However, as wild-type microorganisms cannot achieve the production of isobutanol with high titers and yields, rational genetic engineering has been employed to enhance its production. Herein, we review the latest developments in the metabolic engineering of Escherichia coli for the production of isobutanol, including those related to the utilization of diverse carbon sources, balancing the redox state, improving isobutanol tolerance, and application of synthetic biology circuits and tools.
Collapse
|
6
|
Patel A, Carlson RP, Henson MA. In silico analysis of synthetic multispecies biofilms for cellobiose-to-isobutanol conversion reveals design principles for stable and productive communities. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Garcia S, Trinh CT. Computational design and analysis of modular cells for large libraries of exchangeable product synthesis modules. Metab Eng 2021; 67:453-463. [PMID: 34339856 DOI: 10.1016/j.ymben.2021.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/19/2022]
Abstract
Microbial metabolism can be harnessed to produce a large library of useful chemicals from renewable resources such as plant biomass. However, it is laborious and expensive to create microbial biocatalysts to produce each new product. To tackle this challenge, we have recently developed modular cell (ModCell) design principles that enable rapid generation of production strains by assembling a modular (chassis) cell with exchangeable production modules to achieve overproduction of target molecules. Previous computational ModCell design methods are limited to analyze small libraries of around 20 products. In this study, we developed a new computational method, named ModCell-HPC, that can design modular cells for large libraries with hundreds of products with a highly-parallel and multi-objective evolutionary algorithm and enable us to elucidate modular design properties. We demonstrated ModCell-HPC to design Escherichia coli modular cells towards a library of 161 endogenous production modules. From these simulations, we identified E. coli modular cells with few genetic manipulations that can produce dozens of molecules in a growth-coupled manner with different types of fermentable sugars. These designs revealed key genetic manipulations at the chassis and module levels to accomplish versatile modular cells, involving not only in the removal of major by-products but also modification of branch points in the central metabolism. We further found that the effect of various sugar degradation on redox metabolism results in lower compatibility between a modular cell and production modules for growth on pentoses than hexoses. To better characterize the degree of compatibility, we developed a method to calculate the minimal set cover, identifying that only three modular cells are all needed to couple with all of 161 production modules. By determining the unknown compatibility contribution metric, we further elucidated the design features that allow an existing modular cell to be re-purposed towards production of new molecules. Overall, ModCell-HPC is a useful tool for understanding modularity of biological systems and guiding more efficient and generalizable design of modular cells that help reduce research and development cost in biocatalysis.
Collapse
Affiliation(s)
- Sergio Garcia
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, United States; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, United States; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.
| |
Collapse
|
8
|
Porokhin V, Amin SA, Nicks TB, Gopinarayanan VE, Nair NU, Hassoun S. Analysis of metabolic network disruption in engineered microbial hosts due to enzyme promiscuity. Metab Eng Commun 2021; 12:e00170. [PMID: 33850714 PMCID: PMC8039717 DOI: 10.1016/j.mec.2021.e00170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/22/2021] [Accepted: 03/01/2021] [Indexed: 11/30/2022] Open
Abstract
Increasing understanding of metabolic and regulatory networks underlying microbial physiology has enabled creation of progressively more complex synthetic biological systems for biochemical, biomedical, agricultural, and environmental applications. However, despite best efforts, confounding phenotypes still emerge from unforeseen interplay between biological parts, and the design of robust and modular biological systems remains elusive. Such interactions are difficult to predict when designing synthetic systems and may manifest during experimental testing as inefficiencies that need to be overcome. Transforming organisms such as Escherichia coli into microbial factories is achieved via several engineering strategies, used individually or in combination, with the goal of maximizing the production of chosen target compounds. One technique relies on suppressing or overexpressing selected genes; another involves introducing heterologous enzymes into a microbial host. These modifications steer mass flux towards the set of desired metabolites but may create unexpected interactions. In this work, we develop a computational method, termed Metabolic Disruption Workflow (MDFlow), for discovering interactions and network disruptions arising from enzyme promiscuity – the ability of enzymes to act on a wide range of molecules that are structurally similar to their native substrates. We apply MDFlow to two experimentally verified cases where strains with essential genes knocked out are rescued by interactions resulting from overexpression of one or more other genes. We demonstrate how enzyme promiscuity may aid cells in adapting to disruptions of essential metabolic functions. We then apply MDFlow to predict and evaluate a number of putative promiscuous reactions that can interfere with two heterologous pathways designed for 3-hydroxypropionic acid (3-HP) production. Using MDFlow, we can identify putative enzyme promiscuity and the subsequent formation of unintended and undesirable byproducts that are not only disruptive to the host metabolism but also to the intended end-objective of high biosynthetic productivity and yield. As we demonstrate, MDFlow provides an innovative workflow to systematically identify incompatibilities between the native metabolism of the host and its engineered modifications due to enzyme promiscuity. Engineering modifications to cellular hosts result in undesirable byproducts. Metabolic Disruption: changes in engineered host due to enzyme promiscuity. Metabolic Disruption Workflow (MDFlow) uncovers metabolic disruption. MDFlow corroborates previously experimentally verified promiscuous interactions. MDFlow compares disruption due to heterologous pathways targeting 3-HP production.
Collapse
Affiliation(s)
| | - Sara A Amin
- Department of Computer Science, Tufts University, Medford, MA, USA
| | - Trevor B Nicks
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA
| | | | - Nikhil U Nair
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA
| | - Soha Hassoun
- Department of Computer Science, Tufts University, Medford, MA, USA.,Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
9
|
Mustila H, Kugler A, Stensjö K. Isobutene production in Synechocystis sp. PCC 6803 by introducing α-ketoisocaproate dioxygenase from Rattus norvegicus. Metab Eng Commun 2021; 12:e00163. [PMID: 33552898 PMCID: PMC7856465 DOI: 10.1016/j.mec.2021.e00163] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/28/2022] Open
Abstract
Cyanobacteria can be utilized as a platform for direct phototrophic conversion of CO2 to produce several types of carbon-neutral biofuels. One promising compound to be produced photobiologically in cyanobacteria is isobutene. As a volatile compound, isobutene will quickly escape the cells without building up to toxic levels in growth medium or get caught in the membranes. Unlike liquid biofuels, gaseous isobutene may be collected from the headspace and thus avoid the costly extraction of a chemical from culture medium or from cells. Here we investigate a putative synthetic pathway for isobutene production suitable for a photoautotrophic host. First, we expressed α-ketoisocaproate dioxygenase from Rattus norvegicus (RnKICD) in Escherichia coli. We discovered isobutene formation with the purified RnKICD with the rate of 104.6 ± 9 ng (mg protein)-1 min-1 using α-ketoisocaproate as a substrate. We further demonstrate isobutene production in the cyanobacterium Synechocystis sp. PCC 6803 by introducing the RnKICD enzyme. Synechocystis strain heterologously expressing the RnKICD produced 91 ng l−1 OD750−1 h−1. Thus, we demonstrate a novel sustainable platform for cyanobacterial production of an important building block chemical, isobutene. These results indicate that RnKICD can be used to further optimize the synthetic isobutene pathway by protein and metabolic engineering efforts. Photosynthetic isobutene production is demonstrated in a cyanobacterium. A Synechocystis strain capable of continuous direct conversion of CO2 to isobutene. α-ketoisocaproate dioxygenase from R. norvegicus (RnKICD) is determined to form isobutene. RnKICD can convert α-ketoisocaproate to isobutene both in vitro and in vivo.
Collapse
Affiliation(s)
- Henna Mustila
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Amit Kugler
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| |
Collapse
|
10
|
Acedos MG, de la Torre I, Santos VE, García-Ochoa F, García JL, Galán B. Modulating redox metabolism to improve isobutanol production in Shimwellia blattae. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:8. [PMID: 33407735 PMCID: PMC7789792 DOI: 10.1186/s13068-020-01862-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/17/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Isobutanol is a candidate to replace gasoline from fossil resources. This higher alcohol can be produced from sugars using genetically modified microorganisms. Shimwellia blattae (p424IbPSO) is a robust strain resistant to high concentration of isobutanol that can achieve a high production rate of this alcohol. Nevertheless, this strain, like most strains developed for isobutanol production, has some limitations in its metabolic pathway. Isobutanol production under anaerobic conditions leads to a depletion of NADPH, which is necessary for two enzymes in the metabolic pathway. In this work, two independent approaches have been studied to mitigate the co-substrates imbalance: (i) using a NADH-dependent alcohol dehydrogenase to reduce the NADPH dependence of the pathway and (ii) using a transhydrogenase to increase NADPH level. RESULTS The addition of the NADH-dependent alcohol dehydrogenase from Lactococcus lactis (AdhA) to S. blattae (p424IbPSO) resulted in a 19.3% higher isobutanol production. The recombinant strain S. blattae (p424IbPSO, pIZpntAB) harboring the PntAB transhydrogenase produced 39.0% more isobutanol than the original strain, reaching 5.98 g L-1 of isobutanol. In both strains, we observed a significant decrease in the yields of by-products such as lactic acid or ethanol. CONCLUSIONS The isobutanol biosynthesis pathway in S. blattae (p424IbPSO) uses the endogenous NADPH-dependent alcohol dehydrogenase YqhD to complete the pathway. The addition of NADH-dependent AdhA leads to a reduction in the consumption of NADPH that is a bottleneck of the pathway. The higher consumption of NADH by AdhA reduces the availability of NADH required for the transformation of pyruvate into lactic acid and ethanol. On the other hand, the expression of PntAB from E. coli increases the availability of NADPH for IlvC and YqhD and at the same time reduces the availability of NADH and thus, the production of lactic acid and ethanol. In this work it is shown how the expression of AdhA and PntAB enzymes in Shimwellia blattae increases yield from 11.9% to 14.4% and 16.4%, respectively.
Collapse
Affiliation(s)
- Miguel G Acedos
- Chemical and Materials Engineering Department, Chemical Sciences School, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Isabel de la Torre
- Chemical and Materials Engineering Department, Chemical Sciences School, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Victoria E Santos
- Chemical and Materials Engineering Department, Chemical Sciences School, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Félix García-Ochoa
- Chemical and Materials Engineering Department, Chemical Sciences School, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - José L García
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Beatriz Galán
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain.
| |
Collapse
|
11
|
Ferreira S, Pereira R, Wahl SA, Rocha I. Metabolic engineering strategies for butanol production in Escherichia coli. Biotechnol Bioeng 2020; 117:2571-2587. [PMID: 32374413 DOI: 10.1002/bit.27377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 11/06/2022]
Abstract
The global market of butanol is increasing due to its growing applications as solvent, flavoring agent, and chemical precursor of several other compounds. Recently, the superior properties of n-butanol as a biofuel over ethanol have stimulated even more interest. (Bio)butanol is natively produced together with ethanol and acetone by Clostridium species through acetone-butanol-ethanol fermentation, at noncompetitive, low titers compared to petrochemical production. Different butanol production pathways have been expressed in Escherichia coli, a more accessible host compared to Clostridium species, to improve butanol titers and rates. The bioproduction of butanol is here reviewed from a historical and theoretical perspective. All tested rational metabolic engineering strategies in E. coli to increase butanol titers are reviewed: manipulation of central carbon metabolism, elimination of competing pathways, cofactor balancing, development of new pathways, expression of homologous enzymes, consumption of different substrates, and molecular biology strategies. The progress in the field of metabolic modeling and pathway generation algorithms and their potential application to butanol production are also summarized here. The main goals are to gather all the strategies, evaluate the respective progress obtained, identify, and exploit the outstanding challenges.
Collapse
Affiliation(s)
- Sofia Ferreira
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| | - Rui Pereira
- SilicoLife Lda, Braga, Portugal.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - S A Wahl
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Isabel Rocha
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| |
Collapse
|
12
|
Qiu M, Shen W, Yan X, He Q, Cai D, Chen S, Wei H, Knoshaug EP, Zhang M, Himmel ME, Yang S. Metabolic engineering of Zymomonas mobilis for anaerobic isobutanol production. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:15. [PMID: 31998408 PMCID: PMC6982386 DOI: 10.1186/s13068-020-1654-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/11/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Biofuels and value-added biochemicals derived from renewable biomass via biochemical conversion have attracted considerable attention to meet global sustainable energy and environmental goals. Isobutanol is a four-carbon alcohol with many advantages that make it attractive as a fossil-fuel alternative. Zymomonas mobilis is a highly efficient, anaerobic, ethanologenic bacterium making it a promising industrial platform for use in a biorefinery. RESULTS In this study, the effect of isobutanol on Z. mobilis was investigated, and various isobutanol-producing recombinant strains were constructed. The results showed that the Z. mobilis parental strain was able to grow in the presence of isobutanol below 12 g/L while concentrations greater than 16 g/L inhibited cell growth. Integration of the heterologous gene encoding 2-ketoisovalerate decarboxylase such as kdcA from Lactococcus lactis is required for isobutanol production in Z. mobilis. Moreover, isobutanol production increased from nearly zero to 100-150 mg/L in recombinant strains containing the kdcA gene driven by the tetracycline-inducible promoter Ptet. In addition, we determined that overexpression of a heterologous als gene and two native genes (ilvC and ilvD) involved in valine metabolism in a recombinant Z. mobilis strain expressing kdcA can divert pyruvate from ethanol production to isobutanol biosynthesis. This engineering improved isobutanol production to above 1 g/L. Finally, recombinant strains containing both a synthetic operon, als-ilvC-ilvD, driven by Ptet and the kdcA gene driven by the constitutive strong promoter, Pgap, were determined to greatly enhance isobutanol production with a maximum titer about 4.0 g/L. Finally, isobutanol production was negatively affected by aeration with more isobutanol being produced in more poorly aerated flasks. CONCLUSIONS This study demonstrated that overexpression of kdcA in combination with a synthetic heterologous operon, als-ilvC-ilvD, is crucial for diverting pyruvate from ethanol production for enhanced isobutanol biosynthesis. Moreover, this study also provides a strategy for harnessing the valine metabolic pathway for future production of other pyruvate-derived biochemicals in Z. mobilis.
Collapse
Affiliation(s)
- Mengyue Qiu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Wei Shen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Xiongyin Yan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Qiaoning He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Hui Wei
- Biosciences Centers, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Eric P. Knoshaug
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Min Zhang
- Biosciences Centers, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Michael E. Himmel
- Biosciences Centers, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
13
|
Lee JW, Trinh CT. Microbial biosynthesis of lactate esters. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:226. [PMID: 31548868 PMCID: PMC6753613 DOI: 10.1186/s13068-019-1563-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/07/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Green organic solvents such as lactate esters have broad industrial applications and favorable environmental profiles. Thus, manufacturing and use of these biodegradable solvents from renewable feedstocks help benefit the environment. However, to date, the direct microbial biosynthesis of lactate esters from fermentable sugars has not yet been demonstrated. RESULTS In this study, we present a microbial conversion platform for direct biosynthesis of lactate esters from fermentable sugars. First, we designed a pyruvate-to-lactate ester module, consisting of a lactate dehydrogenase (ldhA) to convert pyruvate to lactate, a propionate CoA-transferase (pct) to convert lactate to lactyl-CoA, and an alcohol acyltransferase (AAT) to condense lactyl-CoA and alcohol(s) to make lactate ester(s). By generating a library of five pyruvate-to-lactate ester modules with divergent AATs, we screened for the best module(s) capable of producing a wide range of linear, branched, and aromatic lactate esters with an external alcohol supply. By co-introducing a pyruvate-to-lactate ester module and an alcohol (i.e., ethanol, isobutanol) module into a modular Escherichia coli (chassis) cell, we demonstrated for the first time the microbial biosynthesis of ethyl and isobutyl lactate esters directly from glucose. In an attempt to enhance ethyl lactate production as a proof-of-study, we re-modularized the pathway into (1) the upstream module to generate the ethanol and lactate precursors and (2) the downstream module to generate lactyl-CoA and condense it with ethanol to produce the target ethyl lactate. By manipulating the metabolic fluxes of the upstream and downstream modules through plasmid copy numbers, promoters, ribosome binding sites, and environmental perturbation, we were able to probe and alleviate the metabolic bottlenecks by improving ethyl lactate production by 4.96-fold. We found that AAT is the most rate-limiting step in biosynthesis of lactate esters likely due to its low activity and specificity toward the non-natural substrate lactyl-CoA and alcohols. CONCLUSIONS We have successfully established the biosynthesis pathway of lactate esters from fermentable sugars and demonstrated for the first time the direct fermentative production of lactate esters from glucose using an E. coli modular cell. This study defines a cornerstone for the microbial production of lactate esters as green solvents from renewable resources with novel industrial applications.
Collapse
Affiliation(s)
- Jong-Won Lee
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Cong T. Trinh
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 1512 Middle Dr., DO#432, Knoxville, TN 37996 USA
| |
Collapse
|
14
|
Bedhomme S, Amorós-Moya D, Valero LM, Bonifaci N, Pujana MÀ, Bravo IG. Evolutionary Changes after Translational Challenges Imposed by Horizontal Gene Transfer. Genome Biol Evol 2019; 11:814-831. [PMID: 30753446 PMCID: PMC6427688 DOI: 10.1093/gbe/evz031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2019] [Indexed: 01/24/2023] Open
Abstract
Genes acquired by horizontal gene transfer (HGT) may provide the recipient organism with potentially new functions, but proper expression level and integration of the transferred genes in the novel environment are not granted. Notably, transferred genes can differ from the receiving genome in codon usage preferences, leading to impaired translation and reduced functionality. Here, we characterize the genomic and proteomic changes undergone during experimental evolution of Escherichia coli after HGT of three synonymous versions, presenting very different codon usage preference, of an antibiotic resistance gene. The experimental evolution was conducted with and without the corresponding antibiotic and the mutational patterns and proteomic profiles after 1,000 generations largely depend on the experimental growth conditions (e.g., mutations in antibiotic off-target genes), and on the synonymous gene version transferred (e.g., mutations in genes responsive to translational stress). The transfer of an exogenous gene extensively modifies the whole proteome, and these proteomic changes are different for the different version of the transferred gene. Additionally, we identified conspicuous changes in global regulators and in intermediate metabolism, confirmed the evolutionary ratchet generated by mutations in DNA repair genes and highlighted the plasticity of bacterial genomes accumulating large and occasionally transient duplications. Our results support a central role of HGT in fuelling evolution as a powerful mechanism promoting rapid, often dramatic genotypic and phenotypic changes. The profound reshaping of the pre-existing geno/phenotype allows the recipient bacteria to explore new ways of functioning, far beyond the mere acquisition of a novel function.
Collapse
Affiliation(s)
- Stéphanie Bedhomme
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD, France
| | - Dolors Amorós-Moya
- Experimental Molecular Evolution, Institute for Evolution and Biodiversity, Westfälische-Wilhelms Universität Münster, Germany
| | - Luz M Valero
- Secció de Proteomica, SCSIE Universitat de Valencia, Spain
| | - Nùria Bonifaci
- ProCURE, Catalan Institute of Oncology (ICO), Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain
| | - Miquel-Àngel Pujana
- ProCURE, Catalan Institute of Oncology (ICO), Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain
| | - Ignacio G Bravo
- Centre National de la Recherche Scientifique (CNRS), Laboratory MIVEGEC (UMR CNRS, IRD, UM), Montpellier, France
| |
Collapse
|
15
|
Comparison of Multi-Objective Evolutionary Algorithms to Solve the Modular Cell Design Problem for Novel Biocatalysis. Processes (Basel) 2019. [DOI: 10.3390/pr7060361] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A large space of chemicals with broad industrial and consumer applications could be synthesized by engineered microbial biocatalysts. However, the current strain optimization process is prohibitively laborious and costly to produce one target chemical and often requires new engineering efforts to produce new molecules. To tackle this challenge, modular cell design based on a chassis strain that can be combined with different product synthesis pathway modules has recently been proposed. This approach seeks to minimize unexpected failure and avoid task repetition, leading to a more robust and faster strain engineering process. In our previous study, we mathematically formulated the modular cell design problem based on the multi-objective optimization framework. In this study, we evaluated a library of state-of-the-art multi-objective evolutionary algorithms (MOEAs) to identify the most effective method to solve the modular cell design problem. Using the best MOEA, we found better solutions for modular cells compatible with many product synthesis modules. Furthermore, the best performing algorithm could provide better and more diverse design options that might help increase the likelihood of successful experimental implementation. We identified key parameter configurations to overcome the difficulty associated with multi-objective optimization problems with many competing design objectives. Interestingly, we found that MOEA performance with a real application problem, e.g., the modular strain design problem, does not always correlate with artificial benchmarks. Overall, MOEAs provide powerful tools to solve the modular cell design problem for novel biocatalysis.
Collapse
|
16
|
Deb SS, Reshamwala SMS, Lali AM. Activation of alternative metabolic pathways diverts carbon flux away from isobutanol formation in an engineered Escherichia coli strain. Biotechnol Lett 2019; 41:823-836. [PMID: 31093837 DOI: 10.1007/s10529-019-02683-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 05/02/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Metabolic engineering efforts are guided by identifying gene targets for overexpression and/or deletion. Isobutanol, a biofuel candidate, is biosynthesized using the valine biosynthesis pathway and enzymes of the Ehrlich pathway. Most reported studies for isobutanol production in Escherichia coli employ multicopy plasmids, an approach that suffers from disadvantages such as plasmid instability, increased metabolic burden, and use of antibiotics to maintain selection pressure. Cofactor imbalance is another issue that may limit production of isobutanol, as two enzymes of the pathway utilize NADPH as a cofactor. RESULTS To address these issues, we constructed E. coli strains with chromosomally-integrated, codon-optimized isobutanol pathway genes (ilvGM, ilvC, kivd, adh) selected on the basis of their cofactor preferences. Genes involved in diverting pyruvate flux toward fermentation byproducts were deleted. Metabolite analyses of the constructed strains revealed extracellular accumulation of significant amounts of isobutyraldehyde, a pathway intermediate, and the overflow metabolites 2,3-butanediol and acetol. CONCLUSIONS These results demonstrate that the genetic modifications carried out led to activation of alternative pathways that diverted carbon flux toward formation of unwanted metabolites. The present study highlights how precursor metabolites can be metabolized through enzymatic routes that have not been considered important in previous studies due to the different strategies employed therein. The insights gained from the present study will allow rational genetic modification of host cells for production of metabolites of interest.
Collapse
Affiliation(s)
- Shalini S Deb
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Nathatlal Parekh Marg, Matunga (East), Mumbai, Maharashtra, 400019, India
| | - Shamlan M S Reshamwala
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Nathatlal Parekh Marg, Matunga (East), Mumbai, Maharashtra, 400019, India.
| | - Arvind M Lali
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Nathatlal Parekh Marg, Matunga (East), Mumbai, Maharashtra, 400019, India
- Department of Chemical Engineering, Institute of Chemical Technology, Nathatlal Parekh Marg, Matunga (East), Mumbai, Maharashtra, 400019, India
| |
Collapse
|
17
|
Oyetunde T, Liu D, Martin HG, Tang YJ. Machine learning framework for assessment of microbial factory performance. PLoS One 2019; 14:e0210558. [PMID: 30645629 PMCID: PMC6333410 DOI: 10.1371/journal.pone.0210558] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 12/27/2018] [Indexed: 01/01/2023] Open
Abstract
Metabolic models can estimate intrinsic product yields for microbial factories, but such frameworks struggle to predict cell performance (including product titer or rate) under suboptimal metabolism and complex bioprocess conditions. On the other hand, machine learning, complementary to metabolic modeling necessitates large amounts of data. Building such a database for metabolic engineering designs requires significant manpower and is prone to human errors and bias. We propose an approach to integrate data-driven methods with genome scale metabolic model for assessment of microbial bio-production (yield, titer and rate). Using engineered E. coli as an example, we manually extracted and curated a data set comprising about 1200 experimentally realized cell factories from ~100 papers. We furthermore augmented the key design features (e.g., genetic modifications and bioprocess variables) extracted from literature with additional features derived from running the genome-scale metabolic model iML1515 simulations with constraints that match the experimental data. Then, data augmentation and ensemble learning (e.g., support vector machines, gradient boosted trees, and neural networks in a stacked regressor model) are employed to alleviate the challenges of sparse, non-standardized, and incomplete data sets, while multiple correspondence analysis/principal component analysis are used to rank influential factors on bio-production. The hybrid framework demonstrates a reasonably high cross-validation accuracy for prediction of E.coli factory performance metrics under presumed bioprocess and pathway conditions (Pearson correlation coefficients between 0.8 and 0.93 on new data not seen by the model).
Collapse
Affiliation(s)
- Tolutola Oyetunde
- Department of Energy, Environmental and Chemical Engineering, Washington University, Saint Louis, Missouri, United States of America
| | - Di Liu
- Department of Energy, Environmental and Chemical Engineering, Washington University, Saint Louis, Missouri, United States of America
| | - Hector Garcia Martin
- DOE Joint BioEnergy Institute, Emeryville, California, United States of America
- DOE Agile BioFoundry, Emeryville, California, United States of America
- Biological Systems and Engineering Division, Lawrence Berkeley National Lab, Berkeley, California, United States of America
- BCAM, Basque Center for Applied Mathematics, Bilbao, Spain
| | - Yinjie J. Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University, Saint Louis, Missouri, United States of America
| |
Collapse
|
18
|
Lee JW, Niraula NP, Trinh CT. Harnessing a P450 fatty acid decarboxylase from Macrococcus caseolyticus for microbial biosynthesis of odd chain terminal alkenes. Metab Eng Commun 2018; 7:e00076. [PMID: 30197865 PMCID: PMC6127365 DOI: 10.1016/j.mec.2018.e00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/21/2022] Open
Abstract
Alkenes are industrially important platform chemicals with broad applications. In this study, we report a direct microbial biosynthesis of terminal alkenes from fermentable sugars by harnessing a P450 fatty acid (FA) decarboxylase from Macrococcus caseolyticus (OleTMC). We first characterized OleTMC and demonstrated its in vitro H2O2-independent activities towards linear C10:0-C18:0 FAs, with higher activity for C16:0-C18:0 FAs. Next, we engineered a de novo alkene biosynthesis pathway, consisting of OleTMC and an engineered E. coli thioesterase (TesA) with compatible substrate specificities, and introduced this pathway into E. coli for terminal alkene biosynthesis from glucose. The recombinant E. coli EcNN101 produced a total of 17.78 ± 0.63 mg/L odd-chain terminal alkenes, comprising of 0.9% ± 0.5% C11 alkene, 12.7% ± 2.2% C13 alkene, 82.7% ± 1.7% C15 alkene, and 3.7% ± 0.8% C17 alkene, and a yield of 0.87 ± 0.03 (mg/g) on glucose. To improve alkene production, we identified and overcame the electron transfer limitation in OleTMC, by introducing a two-component redox system, consisting of a putidaredoxin reductase (CamA) and a putidaredoxin (CamB) from Pseudomonas putida, into EcNN101, and demonstrated the alkene production increased ~2.8 fold. Finally, to better understand the substrate specificities of OleTMC observed, we employed in silico protein modeling to illuminate the functional role of FA binding pocket.
Collapse
Affiliation(s)
- Jong-Won Lee
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Narayan P. Niraula
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Cong T. Trinh
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
19
|
Acedos MG, Santos VE, Garcia-Ochoa F. Resting cells isobutanol production by Shimwellia blattae (p424IbPSO): Influence of growth culture conditions. Biotechnol Prog 2018; 34:1073-1080. [PMID: 30281946 DOI: 10.1002/btpr.2705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/31/2018] [Accepted: 08/08/2018] [Indexed: 01/19/2023]
Abstract
Isobutanol is a promising gasoline additive and could even be a potential substitute used directly as combustible. In this work, the production of isobutanol from glucose by Shimwellia blattae (p424IbPSO) in resting cell cultures is studied. This production has two stages, involving a resting cell phase that has not been studied before. The cell growth was carried out under different operating conditions: temperature and medium composition (YE, ammonium, and IPTG concentrations), looking for the highest isobutanol production. Moreover, the cells were collected at three different growth times checking their isobutanol production capacity. The best operating conditions have been determined as: 30°C of temperature, a medium containing 1.5 g L-1 YE and 1.4 g L-1 of ammonium as nitrogen sources, adding 0.5 mM IPTG as inducer. The cells collected at early growth times are significantly more active. The use of S. blattae (p424IbPSO) in resting cells is a good strategy for the production of isobutanol from glucose yielding better results than in batch growth cultures, a yield of 60% attainment of theoretical maximum yield is obtained under optimal conditions. In addition, it has been demonstrated that if the cells are cultured at higher temperatures and with high IPTG concentrations, inclusion bodies are formed in the cytoplasm inhibiting the isobutanol production in the resting cell stage.
Collapse
Affiliation(s)
- Miguel G Acedos
- Dept. of Chemical and Materials Engineering, Universidad Complutense, Madrid, 28040, Spain
| | - Victoria E Santos
- Dept. of Chemical and Materials Engineering, Universidad Complutense, Madrid, 28040, Spain
| | - Felix Garcia-Ochoa
- Dept. of Chemical and Materials Engineering, Universidad Complutense, Madrid, 28040, Spain
| |
Collapse
|
20
|
Pacheco CC, Büttel Z, Pinto F, Rodrigo G, Carrera J, Jaramillo A, Tamagnini P. Modulation of Intracellular O 2 Concentration in Escherichia coli Strains Using Oxygen Consuming Devices. ACS Synth Biol 2018; 7:1742-1752. [PMID: 29952558 DOI: 10.1021/acssynbio.7b00428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The use of cell factories for the production of bulk and value-added compounds is nowadays an advantageous alternative to the traditional petrochemical methods. Nevertheless, the efficiency and productivity of several of these processes can improve with the implementation of micro-oxic or anoxic conditions. In the industrial setting, laccases are appealing catalysts that can oxidize a wide range of substrates and reduce O2 to H2O. In this work, several laccase-based devices were designed and constructed to modulate the intracellular oxygen concentration in bacterial chassis. These oxygen consuming devices (OCDs) included Escherichia coli's native laccase (CueO) and three variants of this protein obtained by directed evolution. The OCDs were initially characterized in vitro using E. coli DH5α protein extracts and subsequently using extracts obtained from other E. coli strains and in vivo. Upon induction of the OCDs, no major effect on growth was observed in four of the strains tested, and analysis of the cell extract protein profiles revealed increased levels of laccase. Moreover, oxygen consumption associated with the OCDs occurred under all of the conditions tested, but the performance of the devices was shown to be strain-dependent, highlighting the importance of the genetic background even in closely related strains. One of the laccase variants showed 13- and 5-fold increases in oxidase activity and O2 consumption rate, respectively. Furthermore, it was also possible to demonstrate O2 consumption in vivo using l-DOPA as the substrate, which represents a proof of concept that these OCDs generate an intracellular oxygen sink, thereby manipulating the redox status of the cells. In addition, the modularity and orthogonality principles used for the development of these devices allow easy reassembly and fine-tuning, foreseeing their introduction into other chassis/systems.
Collapse
Affiliation(s)
- Catarina C. Pacheco
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Zsófia Büttel
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Filipe Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Guillermo Rodrigo
- Instituto de Biologia Molecular y Celular de Plantas, CSIC, Universidad Politècnica de València, Camí de Vera s/n, 46022 València, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, 46980 Paterna, Spain
| | - Javier Carrera
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305-4125, United States
| | - Alfonso Jaramillo
- Warwick Integrative Synthetic Biology Centre and School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
- CNRS-UMR8030, Laboratoire iSSB and Université Paris-Saclay and Université d’Évry and CEA, DRF, IG, Genoscope, Évry 91000, France
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, 46980 Paterna, Spain
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| |
Collapse
|
21
|
Shepelin D, Hansen ASL, Lennen R, Luo H, Herrgård MJ. Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes. Genes (Basel) 2018; 9:E249. [PMID: 29751691 PMCID: PMC5977189 DOI: 10.3390/genes9050249] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 01/10/2023] Open
Abstract
Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined with either generation of spontaneous mutations or some form of targeted or random mutagenesis. Evolutionary engineering has been used to successfully engineer easily selectable phenotypes, such as utilization of a suboptimal nutrient source or tolerance to inhibitory substrates or products. In this review, we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical has been successfully achieved through evolutionary engineering by coupling production to cellular growth.
Collapse
Affiliation(s)
- Denis Shepelin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Anne Sofie Lærke Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Rebecca Lennen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Hao Luo
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
22
|
Xu N, Ye C, Liu L. Genome-scale biological models for industrial microbial systems. Appl Microbiol Biotechnol 2018; 102:3439-3451. [PMID: 29497793 DOI: 10.1007/s00253-018-8803-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 01/08/2023]
Abstract
The primary aims and challenges associated with microbial fermentation include achieving faster cell growth, higher productivity, and more robust production processes. Genome-scale biological models, predicting the formation of an interaction among genetic materials, enzymes, and metabolites, constitute a systematic and comprehensive platform to analyze and optimize the microbial growth and production of biological products. Genome-scale biological models can help optimize microbial growth-associated traits by simulating biomass formation, predicting growth rates, and identifying the requirements for cell growth. With regard to microbial product biosynthesis, genome-scale biological models can be used to design product biosynthetic pathways, accelerate production efficiency, and reduce metabolic side effects, leading to improved production performance. The present review discusses the development of microbial genome-scale biological models since their emergence and emphasizes their pertinent application in improving industrial microbial fermentation of biological products.
Collapse
Affiliation(s)
- Nan Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,The Laboratory of Food Microbial-Manufacturing Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chao Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,The Laboratory of Food Microbial-Manufacturing Engineering, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. .,The Laboratory of Food Microbial-Manufacturing Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
23
|
Abstract
When aiming to produce a target chemical at high yield, titer, and productivity, various combinations of genetic parts available to build the target pathway can generate a large number of strains for characterization. This engineering approach will become increasingly laborious and expensive when seeking to develop desirable strains for optimal production of a large space of biochemicals due to extensive screening. Our recent theoretical development of modular cell (MODCELL) design principles can offer a promising solution for rapid generation of optimal strains by coupling a modular cell with exchangeable production modules in a plug-and-play fashion. In this study, we experimentally validated some design properties of MODCELL by demonstrating the following: (i) a modular (chassis) cell is required to couple with a production module, a heterologous ethanol pathway, as a testbed, (ii) degree of coupling between the modular cell and production modules can be modulated to enhance growth and product synthesis, (iii) a modular cell can be used as a host to select an optimal pyruvate decarboxylase (PDC) of the ethanol production module and to help identify a hypothetical PDC protein, and (iv) adaptive laboratory evolution based on growth selection of the modular cell can enhance growth and product synthesis rates. We envision that the MODCELL design provides a powerful prototype for modular cell engineering to rapidly create optimal strains for synthesis of a large space of biochemicals.
Collapse
Affiliation(s)
- Brandon Wilbanks
- Department of Chemical and
Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Donovan S. Layton
- Department of Chemical and
Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Sergio Garcia
- Department of Chemical and
Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Cong T. Trinh
- Department of Chemical and
Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
24
|
Miao R, Xie H, Lindblad P. Enhancement of photosynthetic isobutanol production in engineered cells of Synechocystis PCC 6803. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:267. [PMID: 30275907 PMCID: PMC6158846 DOI: 10.1186/s13068-018-1268-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 09/20/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Cyanobacteria, oxygenic photoautotrophic prokaryotes, can be engineered to produce various valuable chemicals from solar energy and CO2 in direct processes. The concept of photosynthetic production of isobutanol, a promising chemical and drop-in biofuel, has so far been demonstrated for Synechocystis PCC 6803 and Synechococcus elongatus PCC 7942. In Synechocystis PCC 6803, a heterologous expression of α-ketoisovalerate decarboxylase (Kivd) from Lactococcus lactis resulted in an isobutanol and 3-methyl-1-butanol producing strain. Kivd was identified as a bottleneck in the metabolic pathway and its activity was further improved by reducing the size of its substrate-binding pocket with a single replacement of serine-286 to threonine (KivdS286T). However, isobutanol production still remained low. RESULTS In the present study, we report on how cultivation conditions significantly affect the isobutanol production in Synechocystis PCC 6803. A HCl-titrated culture grown under medium light (50 μmol photons m-2 s-1) showed the highest isobutanol production with an in-flask titer of 194 mg l-1 after 10 days and 435 mg l-1 at day 40. This corresponds to a cumulative isobutanol production of 911 mg l-1, with a maximal production rate of 43.6 mg l-1 day-1 observed between days 4 and 6. Additional metabolic bottlenecks in the isobutanol biosynthesis pathway were further addressed. The expression level of KivdS286T was significantly affected when co-expressed with another gene downstream in a single operon and in a convergent oriented operon. Moreover, the expression of the ADH encoded by codon-optimized slr1192 and co-expression of IlvC and IlvD were identified as potential approaches to further enhance isobutanol production in Synechocystis PCC 6803. CONCLUSION The present study demonstrates the importance of a suitable cultivation condition to enhance isobutanol production in Synechocystis PCC 6803. Chemostat should be used to further increase both the total titer as well as the rate of production. Furthermore, identified bottleneck, Kivd, should be expressed at the highest level to further enhance isobutanol production.
Collapse
Affiliation(s)
- Rui Miao
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Hao Xie
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| |
Collapse
|
25
|
Miao R, Liu X, Englund E, Lindberg P, Lindblad P. Isobutanol production in Synechocystis PCC 6803 using heterologous and endogenous alcohol dehydrogenases. Metab Eng Commun 2017; 5:45-53. [PMID: 29188183 PMCID: PMC5699533 DOI: 10.1016/j.meteno.2017.07.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/18/2017] [Accepted: 07/27/2017] [Indexed: 12/24/2022] Open
Abstract
Isobutanol is a flammable compound that can be used as a biofuel due to its high energy density and suitable physical and chemical properties. In this study, we examined the capacity of engineered strains of Synechocystis PCC 6803 containing the α-ketoisovalerate decarboxylase from Lactococcus lactis and different heterologous and endogenous alcohol dehydrogenases (ADH) for isobutanol production. A strain expressing an introduced kivd without any additional copy of ADH produced 3 mg L-1 OD750-1 isobutanol in 6 days. After the cultures were supplemented with external addition of isobutyraldehyde, the substrate for ADH, 60.8 mg L-1 isobutanol was produced after 24 h when OD750 was 0.8. The in vivo activities of four different ADHs, two heterologous and two putative endogenous in Synechocystis, were examined and the Synechocystis endogenous ADH encoded by slr1192 showed the highest efficiency for isobutanol production. Furthermore, the strain overexpressing the isobutanol pathway on a self-replicating vector with the strong Ptrc promoter showed significantly higher gene expression and isobutanol production compared to the corresponding strains expressing the same operon introduced on the genome. Hence, this study demonstrates that Synechocystis endogenous AHDs have a high capacity for isobutanol production, and identifies kivd encoded α-ketoisovalerate decarboxylase as one of the likely bottlenecks for further isobutanol production.
Collapse
Affiliation(s)
| | | | | | | | - Peter Lindblad
- Microbial chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| |
Collapse
|
26
|
Wilbanks B, Trinh CT. Comprehensive characterization of toxicity of fermentative metabolites on microbial growth. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:262. [PMID: 29213315 PMCID: PMC5707818 DOI: 10.1186/s13068-017-0952-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/02/2017] [Indexed: 05/08/2023]
Abstract
BACKGROUND Volatile carboxylic acids, alcohols, and esters are natural fermentative products, typically derived from anaerobic digestion. These metabolites have important functional roles to regulate cellular metabolisms and broad use as food supplements, flavors and fragrances, solvents, and fuels. Comprehensive characterization of toxic effects of these metabolites on microbial growth under similar conditions is very limited. RESULTS We characterized a comprehensive list of thirty-two short-chain carboxylic acids, alcohols, and esters on microbial growth of Escherichia coli MG1655 under anaerobic conditions. We analyzed toxic effects of these metabolites on E. coli health, quantified by growth rate and cell mass, as a function of metabolite types, concentrations, and physiochemical properties including carbon number, chemical functional group, chain branching feature, energy density, total surface area, and hydrophobicity. Strain characterization revealed that these metabolites exert distinct toxic effects on E. coli health. We found that higher concentrations and/or carbon numbers of metabolites cause more severe growth inhibition. For the same carbon numbers and metabolite concentrations, we discovered that branched chain metabolites are less toxic than the linear chain ones. Remarkably, shorter alkyl esters (e.g., ethyl butyrate) appear less toxic than longer alkyl esters (e.g., butyl acetate). Regardless of metabolites, hydrophobicity of a metabolite, governed by its physiochemical properties, strongly correlates with the metabolite's toxic effect on E. coli health. CONCLUSIONS Short-chain alcohols, acids, and esters exhibit distinctive toxic effects on E. coli health. Hydrophobicity is a quantitative predictor to evaluate the toxic effect of a metabolite. This study sheds light on degrees of toxicity of fermentative metabolites on microbial health and further helps in the selection of desirable metabolites and hosts for industrial fermentation to overproduce them.
Collapse
Affiliation(s)
- Brandon Wilbanks
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 1512 Middle Drive, Knoxville, TN 37996 USA
| | - Cong T. Trinh
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 1512 Middle Drive, Knoxville, TN 37996 USA
- Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, USA
| |
Collapse
|
27
|
Jung HM, Kim YH, Oh MK. Formate and Nitrate Utilization in Enterobacter aerogenes for Semi-Anaerobic Production of Isobutanol. Biotechnol J 2017; 12. [PMID: 28731532 DOI: 10.1002/biot.201700121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/07/2017] [Indexed: 11/07/2022]
Abstract
Anaerobic bioprocessing is preferred because of its economic advantages. However, low productivity and decreased growth of the host strain have limited the use of the anaerobic process. Anaerobic respiration can be applied to anoxic processing using formate and nitrate metabolism to improve the productivity of value-added metabolites. A isobutanol-producing strains is constructed using Enterobacter aerogenes as a host strain by metabolic engineering approaches. The byproduct pathway (ldhA, budA, and pflB) is knocked out, and heterologous keto-acid decarboxylase (kivD) and alcohol dehydrogenase (adhA) are expressed along with the L-valine synthesis pathway (ilvCD and budB). The pyruvate formate-lyase mutant shows decreased growth rates when cultivated in semi-anaerobic conditions, which results in a decline in productivity. When formate and nitrate are supplied in the culture medium, the growth rates and amount of isobutanol production is restored (4.4 g L-1 , 0.23 g g-1 glucose, 0.18 g L-1 h-1 ). To determine the function of the formate and nitrate coupling reaction system, the mutant strains that could not utilize formate or nitrate is contructed. Decreased growth and productivity are observed in the nitrate reductase (narG) mutant strain. This is the first report of engineering isobutanol-producing E. aerogenes to increase strain fitness via augmentation of formate and nitrate metabolism during anaerobic cultivation.
Collapse
Affiliation(s)
- Hwi-Min Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, UNIST, Ulsan, Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| |
Collapse
|
28
|
von Kamp A, Klamt S. Growth-coupled overproduction is feasible for almost all metabolites in five major production organisms. Nat Commun 2017; 8:15956. [PMID: 28639622 PMCID: PMC5489714 DOI: 10.1038/ncomms15956] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 05/16/2017] [Indexed: 12/13/2022] Open
Abstract
Computational modelling of metabolic networks has become an established procedure in the metabolic engineering of production strains. One key principle that is frequently used to guide the rational design of microbial cell factories is the stoichiometric coupling of growth and product synthesis, which makes production of the desired compound obligatory for growth. Here we show that the coupling of growth and production is feasible under appropriate conditions for almost all metabolites in genome-scale metabolic models of five major production organisms. These organisms comprise eukaryotes and prokaryotes as well as heterotrophic and photoautotrophic organisms, which shows that growth coupling as a strain design principle has a wide applicability. The feasibility of coupling is proven by calculating appropriate reaction knockouts, which enforce the coupling behaviour. The study presented here is the most comprehensive computational investigation of growth-coupled production so far and its results are of fundamental importance for rational metabolic engineering.
Collapse
Affiliation(s)
- Axel von Kamp
- ARB Group, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, Magdeburg 39106, Germany
| | - Steffen Klamt
- ARB Group, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, Magdeburg 39106, Germany
| |
Collapse
|
29
|
Kim WJ, Ahn JH, Kim HU, Kim TY, Lee SY. Metabolic engineering of Mannheimia succiniciproducens
for succinic acid production based on elementary mode analysis with clustering. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Won Jun Kim
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Center for Systems and Synthetic Biotechnology; Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Jung Ho Ahn
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Center for Systems and Synthetic Biotechnology; Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Hyun Uk Kim
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Center for Systems and Synthetic Biotechnology; Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
- BioInformatics Research Center; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Tae Yong Kim
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Center for Systems and Synthetic Biotechnology; Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
- BioInformatics Research Center; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Center for Systems and Synthetic Biotechnology; Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
- BioInformatics Research Center; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
- BioProcess Engineering Research Center; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| |
Collapse
|
30
|
Tikh IB, Samuelson JC. Leveraging modern DNA assembly techniques for rapid, markerless genome modification. Biol Methods Protoc 2016; 1:bpw004. [PMID: 32368618 PMCID: PMC7189271 DOI: 10.1093/biomethods/bpw004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/06/2016] [Accepted: 09/26/2016] [Indexed: 11/14/2022] Open
Abstract
The ability to alter the genomic material of a prokaryotic cell is necessary for experiments designed to define the biology of the organism. In addition, the production of biomolecules may be significantly improved by application of engineered prokaryotic host cells. Furthermore, in the age of synthetic biology, speed and efficiency are key factors when choosing a method for genome alteration. To address these needs, we have developed a method for modification of the Escherichia coli genome named FAST-GE for Fast Assembly-mediated Scarless Targeted Genome Editing. Traditional cloning steps such as plasmid transformation, propagation and isolation were eliminated. Instead, we developed a DNA assembly-based approach for generating scarless strain modifications, which may include point mutations, deletions and gene replacements, within 48 h after the receipt of polymerase chain reaction primers. The protocol uses established, but optimized, genome modification components such as I-SceI endonuclease to improve recombination efficiency and SacB as a counter-selection mechanism. All DNA-encoded components are assembled into a single allele-exchange vector named pDEL. We were able to rapidly modify the genomes of both E. coli B and K-12 strains with high efficiency. In principle, the method may be applied to other prokaryotic organisms capable of circular dsDNA uptake and homologous recombination.
Collapse
Affiliation(s)
- Ilya B Tikh
- Protein Expression and Modification Division, New England BioLabs, Inc., Ipswich, MA, 01938-2723, USA
| | - James C Samuelson
- Protein Expression and Modification Division, New England BioLabs, Inc., Ipswich, MA, 01938-2723, USA
| |
Collapse
|
31
|
Literature mining supports a next-generation modeling approach to predict cellular byproduct secretion. Metab Eng 2016; 39:220-227. [PMID: 27986597 DOI: 10.1016/j.ymben.2016.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/19/2016] [Accepted: 12/07/2016] [Indexed: 11/21/2022]
Abstract
The metabolic byproducts secreted by growing cells can be easily measured and provide a window into the state of a cell; they have been essential to the development of microbiology, cancer biology, and biotechnology. Progress in computational modeling of cells has made it possible to predict metabolic byproduct secretion with bottom-up reconstructions of metabolic networks. However, owing to a lack of data, it has not been possible to validate these predictions across a wide range of strains and conditions. Through literature mining, we were able to generate a database of Escherichia coli strains and their experimentally measured byproduct secretions. We simulated these strains in six historical genome-scale models of E. coli, and we report that the predictive power of the models has increased as they have expanded in size and scope. The latest genome-scale model of metabolism correctly predicts byproduct secretion for 35/89 (39%) of designs. The next-generation genome-scale model of metabolism and gene expression (ME-model) correctly predicts byproduct secretion for 40/89 (45%) of designs, and we show that ME-model predictions could be further improved through kinetic parameterization. We analyze the failure modes of these simulations and discuss opportunities to improve prediction of byproduct secretion.
Collapse
|
32
|
den Boer E, Łukaszewska A, Kluczkiewicz W, Lewandowska D, King K, Reijonen T, Kuhmonen T, Suhonen A, Jääskeläinen A, Heitto A, Laatikainen R, Hakalehto E. Volatile fatty acids as an added value from biowaste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 58:62-69. [PMID: 27530082 DOI: 10.1016/j.wasman.2016.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 07/02/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
The aim of the present work was to provide proof of concept of employing a co-culture of K. mobilis and E. coli for producing short and medium chain volatile fatty acids (VFAs) from kitchen biowaste and potato peels. To this aim, experiments were carried out at pilot-scale installation with a bioreactor of 250L. Different feeding strategies were tested under microaerobic conditions, at pH 6.0-6.5 in order to enhance chain elongation. Acetic acid and ethanol were dominating products in the initial stages of the bioprocess, but in a relatively short time of approx. 20-22h from the process start accumulation of propionic acid took place followed by a chain elongation to butyric and valeric acids. The highest final products yield of 325mg/g TS was achieved for the substrate load of 99.1g TS/L (VS of 91.1g/L) and pH 6.5, with the productivity of 448mg/L/h. However, the highest average VFAs chain length (3.77C) was observed in the process run with the loading of 63.2g TS/L and pH 6.0. In this study, we demonstrated that the existing symbiosis of the co-culture of K. mobilis and E. coli favours formation and chain elongation of VFA, induced most likely by the enhanced ethanol formation. Our finding differs from the previous research which focus mostly on anaerobic conditions of VFAs production. The results provide good basis for further optimisation of VFAs production process.
Collapse
Affiliation(s)
- Emilia den Boer
- Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Agnieszka Łukaszewska
- Marshall Office of Lower Silesia, Wybrzeże Słowackiego 12-14, 50-411 Wrocław, Poland
| | - Władysław Kluczkiewicz
- Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Daria Lewandowska
- Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Kevin King
- Finnoflag Oy, P.O. Box 262, 70101 Kuopio, Finland
| | - Tero Reijonen
- Savonia University of Applied Sciences, P.O. Box 6, FI-70201 Kuopio, Finland
| | - Tero Kuhmonen
- Savonia University of Applied Sciences, P.O. Box 6, FI-70201 Kuopio, Finland
| | - Anssi Suhonen
- Savonia University of Applied Sciences, P.O. Box 6, FI-70201 Kuopio, Finland
| | - Ari Jääskeläinen
- Savonia University of Applied Sciences, P.O. Box 6, FI-70201 Kuopio, Finland
| | | | - Reino Laatikainen
- Department of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Elias Hakalehto
- Finnoflag Oy, P.O. Box 262, 70101 Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland; Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Layton DS, Trinh CT. Microbial synthesis of a branched-chain ester platform from organic waste carboxylates. Metab Eng Commun 2016; 3:245-251. [PMID: 29142826 PMCID: PMC5678828 DOI: 10.1016/j.meteno.2016.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/15/2016] [Accepted: 08/05/2016] [Indexed: 11/28/2022] Open
Abstract
Processing of lignocellulosic biomass or organic wastes produces a plethora of chemicals such as short, linear carboxylic acids, known as carboxylates, derived from anaerobic digestion. While these carboxylates have low values and are inhibitory to microbes during fermentation, they can be biologically upgraded to high-value products. In this study, we expanded our general framework for biological upgrading of carboxylates to branched-chain esters by using three highly active alcohol acyltransferases (AATs) for alcohol and acyl CoA condensation and modulating the alcohol moiety from ethanol to isobutanol in the modular chassis cell. With this framework, we demonstrated the production of an ester library comprised of 16 out of all 18 potential esters, including acetate, propionate, butanoate, pentanoate, and hexanoate esters, from the 5 linear, saturated C2-C6 carboxylic acids. Among these esters, 5 new branched-chain esters, including isobutyl acetate, isobutyl propionate, isobutyl butyrate, isobutyl pentanoate, and isobutyl hexanoate were synthesized in vivo. During 24 h in situ fermentation and extraction, one of the engineered strains, EcDL208 harnessing the SAAT of Fragaria ananassa produced ~63 mg/L of a mixture of butyl and isobutyl butyrates from glucose and butyrate co-fermentation and ~127 mg/L of a mixture of isobutyl and pentyl pentanoates from glucose and pentanoate co-fermentation, with high specificity. These butyrate and pentanoate esters are potential drop-in liquid fuels. This study provides better understanding of functional roles of AATs for microbial biosynthesis of branched-chain esters and expands the potential use of these esters as drop-in biofuels beyond their conventional flavor, fragrance, and solvent applications. Expand the general framework for microbial biosynthesis of branched-chain ester platforms. Biologically upgrade 5 carboxylates to 16 out of a total of 18 potential esters. Characterize in vivo three alcohol acyltransferases for branched-chain ester biosynthesis. Discuss targeted esters as potential fuels beyond flavor, fragrant, and solvent applications.
Collapse
Affiliation(s)
- Donovan S Layton
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, The United States of America.,Bioenergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, The United States of America
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, The United States of America.,Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, The United States of America.,Bioenergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, The United States of America
| |
Collapse
|
34
|
Wu G, Yan Q, Jones JA, Tang YJ, Fong SS, Koffas MA. Metabolic Burden: Cornerstones in Synthetic Biology and Metabolic Engineering Applications. Trends Biotechnol 2016; 34:652-664. [DOI: 10.1016/j.tibtech.2016.02.010] [Citation(s) in RCA: 365] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 01/23/2023]
|
35
|
Wierzbicki M, Niraula N, Yarrabothula A, Layton DS, Trinh CT. Engineering an Escherichia coli platform to synthesize designer biodiesels. J Biotechnol 2016; 224:27-34. [DOI: 10.1016/j.jbiotec.2016.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/22/2016] [Accepted: 03/02/2016] [Indexed: 01/14/2023]
|
36
|
Baer ZC, Bormann S, Sreekumar S, Grippo A, Toste FD, Blanch HW, Clark DS. Co-production of acetone and ethanol with molar ratio control enables production of improved gasoline or jet fuel blends. Biotechnol Bioeng 2016; 113:2079-87. [PMID: 26987294 DOI: 10.1002/bit.25978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/07/2016] [Indexed: 11/09/2022]
Abstract
The fermentation of simple sugars to ethanol has been the most successful biofuel process to displace fossil fuel consumption worldwide thus far. However, the physical properties of ethanol and automotive components limit its application in most cases to 10-15 vol% blends with conventional gasoline. Fermentative co-production of ethanol and acetone coupled with a catalytic alkylation reaction could enable the production of gasoline blendstocks enriched in higher-chain oxygenates. Here we demonstrate a synthetic pathway for the production of acetone through the mevalonate precursor hydroxymethylglutaryl-CoA. Expression of this pathway in various strains of Escherichia coli resulted in the co-production of acetone and ethanol. Metabolic engineering and control of the environmental conditions for microbial growth resulted in controllable acetone and ethanol production with ethanol:acetone molar ratios ranging from 0.7:1 to 10.0:1. Specifically, use of gluconic acid as a substrate increased production of acetone and balanced the redox state of the system, predictively reducing the molar ethanol:acetone ratio. Increases in ethanol production and the molar ethanol:acetone ratio were achieved by co-expression of the aldehyde/alcohol dehydrogenase (AdhE) from E. coli MG1655 and by co-expression of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (AdhB) from Z. mobilis. Controlling the fermentation aeration rate and pH in a bioreactor raised the acetone titer to 5.1 g L(-1) , similar to that obtained with wild-type Clostridium acetobutylicum. Optimizing the metabolic pathway, the selection of host strain, and the physiological conditions employed for host growth together improved acetone titers over 35-fold (0.14-5.1 g/L). Finally, chemical catalysis was used to upgrade the co-produced ethanol and acetone at both low and high molar ratios to higher-chain oxygenates for gasoline and jet fuel applications. Biotechnol. Bioeng. 2016;113: 2079-2087. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zachary C Baer
- Energy Biosciences Institute, University of California, Berkeley, California.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720
| | - Sebastian Bormann
- Energy Biosciences Institute, University of California, Berkeley, California
| | - Sanil Sreekumar
- Energy Biosciences Institute, University of California, Berkeley, California.,Department of Chemistry, University of California, Berkeley, California
| | - Adam Grippo
- Energy Biosciences Institute, University of California, Berkeley, California
| | - F Dean Toste
- Energy Biosciences Institute, University of California, Berkeley, California. .,Department of Chemistry, University of California, Berkeley, California. .,Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720.
| | - Harvey W Blanch
- Energy Biosciences Institute, University of California, Berkeley, California. .,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720.
| | - Douglas S Clark
- Energy Biosciences Institute, University of California, Berkeley, California. .,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720.
| |
Collapse
|
37
|
Liu Z, Liu P, Xiao D, Zhang X. Improving isobutanol production in metabolically engineered Escherichia coli by co-producing ethanol and modulation of pentose phosphate pathway. J Ind Microbiol Biotechnol 2016; 43:851-60. [PMID: 26946319 DOI: 10.1007/s10295-016-1751-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/16/2016] [Indexed: 11/29/2022]
Abstract
Redox imbalance has been regarded as the key limitation for anaerobic isobutanol production in metabolically engineered Escherichia coli strains. In this work, the ethanol synthetic pathway was recruited to solve the NADH redundant problem while the pentose phosphate pathway was modulated to solve the NADPH deficient problem for anaerobic isobutanol production. Recruiting the ethanol synthetic pathway in strain AS108 decreased isobutanol yield from 0.66 to 0.29 mol/mol glucose. It was found that there was a negative correlation between aldehyde/alcohol dehydrogenase (AdhE) activity and isobutanol production. Decreasing AdhE activity increased isobutanol yield from 0.29 to 0.6 mol/mol. On the other hand, modulation of the glucose 6-phosphate dehydrogenase gene of the pentose phosphate pathway increased isobutanol yield from 0.29 to 0.41 mol/mol. Combination of these two strategies had a synergistic effect on improving isobutanol production. Isobutanol titer and yield of the best strain ZL021 were 53 mM and 0.74 mol/mol, which were 51 % and 12 % higher than the starting strain AS108, respectively. The total alcohol yield of strain ZL021 was 0.81 mol/mol, which was 23 % higher than strain AS108.
Collapse
Affiliation(s)
- Zichun Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Pingping Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Dongguang Xiao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
38
|
Abstract
A central challenge in the field of metabolic engineering is the efficient identification of a metabolic pathway genotype that maximizes specific productivity over a robust range of process conditions. Here we review current methods for optimizing specific productivity of metabolic pathways in living cells. New tools for library generation, computational analysis of pathway sequence-flux space, and high-throughput screening and selection techniques are discussed.
Collapse
Affiliation(s)
- Justin R Klesmith
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Timothy A Whitehead
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA; Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
39
|
Yamamoto K, Tsuchisaka A, Yukawa H. Branched-Chain Amino Acids. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 159:103-128. [PMID: 27872960 DOI: 10.1007/10_2016_28] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Branched-chain amino acids (BCAAs), viz., L-isoleucine, L-leucine, and L-valine, are essential amino acids that cannot be synthesized in higher organisms and are important nutrition for humans as well as livestock. They are also valued as synthetic intermediates for pharmaceuticals. Therefore, the demand for BCAAs in the feed and pharmaceutical industries is increasing continuously. Traditional industrial fermentative production of BCAAs was performed using microorganisms isolated by random mutagenesis. A collection of these classical strains was also scientifically useful to clarify the details of the BCAA biosynthetic pathways, which are tightly regulated by feedback inhibition and transcriptional attenuation. Based on this understanding of the metabolism of BCAAs, it is now possible for us to pursue strains with higher BCAA productivity using rational design and advanced molecular biology techniques. Additionally, systems biology approaches using augmented omics information help us to optimize carbon flux toward BCAA production. Here, we describe the biosynthetic pathways of BCAAs and their regulation and then overview the microorganisms developed for BCAA production. Other chemicals, including isobutanol, i.e., a second-generation biofuel, can be synthesized by branching the BCAA biosynthetic pathways, which are also outlined.
Collapse
Affiliation(s)
- Keisuke Yamamoto
- Green Earth Institute Co., Ltd, Hongo, Tokyo, Japan
- Green Earth Research Center, Kisarazu, Chiba, Japan
| | - Atsunari Tsuchisaka
- Green Earth Institute Co., Ltd, Hongo, Tokyo, Japan
- Green Earth Research Center, Kisarazu, Chiba, Japan
| | - Hideaki Yukawa
- Green Earth Institute Co., Ltd, Hongo, Tokyo, Japan.
- Green Earth Research Center, Kisarazu, Chiba, Japan.
| |
Collapse
|
40
|
Trinh CT, Liu Y, Conner DJ. Rational design of efficient modular cells. Metab Eng 2015; 32:220-231. [PMID: 26497627 DOI: 10.1016/j.ymben.2015.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/07/2015] [Accepted: 10/14/2015] [Indexed: 01/27/2023]
Abstract
The modular cell design principle is formulated to devise modular (chassis) cells. These cells can be assembled with exchangeable production modules in a plug-and-play fashion to build microbial cell factories for efficient combinatorial biosynthesis of novel molecules, requiring minimal iterative strain optimization steps. A modular cell is designed to be auxotrophic, containing core metabolic pathways that are necessary but insufficient to support cell growth and maintenance. To be functional, it must tightly couple with an exchangeable production module containing auxiliary metabolic pathways that not only complement cell growth but also enhance production of targeted molecules. We developed a MODCELL (modular cell) framework based on metabolic pathway analysis to implement the modular cell design principle. MODCELL identifies genetic modifications and requirements to construct modular cell candidates and their associated exchangeable production modules. By defining the degree of similarity and coupling metrics, MODCELL can evaluate which exchangeable production module(s) can be tightly coupled with a modular cell candidate. We first demonstrated how MODCELL works in a step-by-step manner for example metabolic networks, and then applied it to design modular Escherichia coli cells for efficient combinatorial biosynthesis of five alcohols (ethanol, propanol, isopropanol, butanol and isobutanol) and five butyrate esters (ethyl butyrate, propyl butyrate, isopropyl butyrate, butyl butyrate and isobutyl butyrate) from pentose sugars (arabinose and xylose) and hexose sugars (glucose, mannose, and galactose) under anaerobic conditions. We identified three modular cells, MODCELL1, MODCELL2 and MODCELL3, that can couple well with Group 1 of modules (ethanol, isobutanol, butanol, ethyl butyrate, isobutyl butyrate, butyl butyrate), Group 2 (isopropanol, isopropyl butyrate), and Group 3 (propanol, isopropanol), respectively. We validated the design of MODCELL1 for anaerobic production of ethanol, butanol, and ethyl butyrate using experimental data available in literature.
Collapse
Affiliation(s)
- Cong T Trinh
- Department of Chemical and Biomolecular Engineering, United States; UTK-ORNL Joint Institute of Biological Science, United States; Bredesen Center for Interdisciplinary Research and Graduate Education, United States; Institute of Biomedical Engineering, The University of Tennessee, Knoxville, TN, United States; BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Yan Liu
- Department of Chemical and Biomolecular Engineering, United States
| | - David J Conner
- Department of Chemical and Biomolecular Engineering, United States
| |
Collapse
|
41
|
Biochemical characterization of a bifunctional acetaldehyde-alcohol dehydrogenase purified from a facultative anaerobic bacterium Citrobacter sp. S-77. J Biosci Bioeng 2015. [PMID: 26216639 DOI: 10.1016/j.jbiosc.2015.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Acetaldehyde-alcohol dehydrogenase (ADHE) is a bifunctional enzyme consisting of two domains of an N-terminal acetaldehyde dehydrogenase (ALDH) and a C-terminal alcohol dehydrogenase (ADH). The enzyme is known to be important in the cellular alcohol metabolism. However, the role of coenzyme A-acylating ADHE responsible for ethanol production from acetyl-CoA remains uncertain. Here, we present the purification and biochemical characterization of an ADHE from Citrobacter sp. S-77 (ADHE(S77)). Interestingly, the ADHE(S77) was unable to be solubilized from membrane with detergents either 1% Triton X-100 or 1% Sulfobetaine 3-12. However, the enzyme was easily dissociated from membrane by high-salt buffers containing either 1.0 M NaCl or (NH(4))(2)SO(4) without detergents. The molecular weight of a native protein was estimated as approximately 400 kDa, consisting of four identical subunits of 96.3 kDa. Based on the specific activity and kinetic analysis, the ADHES77 tended to have catalytic reaction towards acetaldehyde elimination rather than acetaldehyde formation. Our experimental observation suggests that the ADHES77 may play a pivotal role in modulating intracellular acetaldehyde concentration.
Collapse
|
42
|
On the feasibility of growth-coupled product synthesis in microbial strains. Metab Eng 2015; 30:166-178. [PMID: 26112955 DOI: 10.1016/j.ymben.2015.05.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/11/2015] [Accepted: 05/08/2015] [Indexed: 11/22/2022]
Abstract
Enforcing obligate coupling of growth with synthesis of a desired product has become a key principle for metabolic engineering of microbial production strains. Various methods from stoichiometric and constraint-based modeling have been developed to calculate intervention strategies by which a given microorganism can only grow if it synthesizes a desired compound as a mandatory by-product. However, growth-coupled synthesis is not necessarily feasible for every compound of a metabolic network and no rigorous criterion is currently known to test feasibility of coupled product and biomass formation (before searching for suitable intervention strategies). In this work, we show which properties a network must fulfill such that strain designs guaranteeing coupled biomass and product synthesis can exist at all. In networks without flux bounds, coupling is feasible if and only if an elementary mode exists that leads to formation of both biomass and product. Setting flux boundaries leads to more complicated inhomogeneous problems. Making use of the concept of elementary (flux) vectors, a generalization of elementary modes, a criterion for feasibility can also be derived for this situation. We applied our criteria to a metabolic model of Escherichia coli and determined for each metabolite, whether its net production can be coupled with biomass synthesis and calculated the maximal (guaranteed) coupling yield. The somewhat surprising result is that, under aerobic conditions, coupling is indeed possible for each carbon metabolite of the central metabolism. This also holds true for most metabolites under anaerobic conditions but consideration of ATP maintenance requirements implies infeasibility of coupling for certain compounds. On the other hand, ATP maintenance may also increase the maximal coupling yield for some metabolites. Overall, our work provides important insights and novel tools for a central problem of computational strain design.
Collapse
|
43
|
Co-evolution of strain design methods based on flux balance and elementary mode analysis. Metab Eng Commun 2015; 2:85-92. [PMID: 34150512 PMCID: PMC8193246 DOI: 10.1016/j.meteno.2015.04.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/17/2015] [Accepted: 04/29/2015] [Indexed: 01/16/2023] Open
Abstract
More than a decade ago, the first genome-scale metabolic models for two of the most relevant microbes for biotechnology applications, Escherichia coli and Saccaromyces cerevisiae, were published. Shortly after followed the publication of OptKnock, the first strain design method using bilevel optimization to couple cellular growth with the production of a target product. This initiated the development of a family of strain design methods based on the concept of flux balance analysis. Another family of strain design methods, based on the concept of elementary mode analysis, has also been growing. Although the computation of elementary modes is hindered by computational complexity, recent breakthroughs have allowed applying elementary mode analysis at the genome scale. Here we review and compare strain design methods and look back at the last 10 years of in silico strain design with constraint-based models. We highlight some features of the different approaches and discuss the utilization of these methods in successful in vivo metabolic engineering applications. Computational strain design methods are divided into two main families. We trace the evolutionary history of these two families. Surveyed successful cases of model-guided strain design for industrial applications. Most proposed methods have not yet been tested in real applications. Agreement between in silico and in vivo results shows potential of tested methods.
Collapse
|
44
|
Mahadevan R, von Kamp A, Klamt S. Genome-scale strain designs based on regulatory minimal cut sets. Bioinformatics 2015; 31:2844-51. [PMID: 25913205 DOI: 10.1093/bioinformatics/btv217] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/16/2015] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Stoichiometric and constraint-based methods of computational strain design have become an important tool for rational metabolic engineering. One of those relies on the concept of constrained minimal cut sets (cMCSs). However, as most other techniques, cMCSs may consider only reaction (or gene) knockouts to achieve a desired phenotype. RESULTS We generalize the cMCSs approach to constrained regulatory MCSs (cRegMCSs), where up/downregulation of reaction rates can be combined along with reaction deletions. We show that flux up/downregulations can virtually be treated as cuts allowing their direct integration into the algorithmic framework of cMCSs. Because of vastly enlarged search spaces in genome-scale networks, we developed strategies to (optionally) preselect suitable candidates for flux regulation and novel algorithmic techniques to further enhance efficiency and speed of cMCSs calculation. We illustrate the cRegMCSs approach by a simple example network and apply it then by identifying strain designs for ethanol production in a genome-scale metabolic model of Escherichia coli. The results clearly show that cRegMCSs combining reaction deletions and flux regulations provide a much larger number of suitable strain designs, many of which are significantly smaller relative to cMCSs involving only knockouts. Furthermore, with cRegMCSs, one may also enable the fine tuning of desired behaviours in a narrower range. The new cRegMCSs approach may thus accelerate the implementation of model-based strain designs for the bio-based production of fuels and chemicals. AVAILABILITY AND IMPLEMENTATION MATLAB code and the examples can be downloaded at http://www.mpi-magdeburg.mpg.de/projects/cna/etcdownloads.html. CONTACT krishna.mahadevan@utoronto.ca or klamt@mpi-magdeburg.mpg.de SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S3E5, Canada, Institute of Biomaterials and Biomedical Engineering, Toronto, ON, M5S 3G9, Canada and
| | - Axel von Kamp
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, D-39106, Germany
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, D-39106, Germany
| |
Collapse
|
45
|
Ruckerbauer DE, Jungreuthmayer C, Zanghellini J. Predicting genetic engineering targets with Elementary Flux Mode Analysis: a review of four current methods. N Biotechnol 2015; 32:534-46. [PMID: 25917465 DOI: 10.1016/j.nbt.2015.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/21/2015] [Accepted: 03/30/2015] [Indexed: 01/14/2023]
Abstract
Elementary flux modes (EFMs) are a well-established tool in metabolic modeling. EFMs are minimal, feasible, steady state pathways through a metabolic network. They are used in various approaches to predict targets for genetic interventions in order to increase production of a molecule of interest via a host cell. Here we give an introduction to the concept of EFMs, present an overview of four methods which use EFMs in order to predict engineering targets and lastly use a toy model and a small-scale metabolic model to demonstrate and compare the capabilities of these methods.
Collapse
Affiliation(s)
- David E Ruckerbauer
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, A1190 Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christian Jungreuthmayer
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, A1190 Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Jürgen Zanghellini
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, A1190 Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
46
|
Klein‐Marcuschamer D, Blanch HW. Renewable fuels from biomass: Technical hurdles and economic assessment of biological routes. AIChE J 2015. [DOI: 10.1002/aic.14755] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Daniel Klein‐Marcuschamer
- Dow Centre for Sustainable Engineering InnovationUniversity of QueenslandBrisbane QLD Australia
- Joint BioEnergy Institute (JBEI)Lawrence Berkeley National LaboratoryBerkeley CA94720
| | - Harvey W. Blanch
- Joint BioEnergy Institute (JBEI)Lawrence Berkeley National LaboratoryBerkeley CA94720
- Dept. of Chemical and Biomolecular EngineeringUniversity of California BerkeleyBerkeley CA 94720
| |
Collapse
|
47
|
Becker J, Wittmann C. Advanced Biotechnology: Metabolically Engineered Cells for the Bio-Based Production of Chemicals and Fuels, Materials, and Health-Care Products. Angew Chem Int Ed Engl 2015; 54:3328-50. [DOI: 10.1002/anie.201409033] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Indexed: 12/16/2022]
|
48
|
Biotechnologie von Morgen: metabolisch optimierte Zellen für die bio-basierte Produktion von Chemikalien und Treibstoffen, Materialien und Gesundheitsprodukten. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is necessary for ethanol production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. J Bacteriol 2015; 197:1386-93. [PMID: 25666131 DOI: 10.1128/jb.02450-14] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Thermoanaerobacterium saccharolyticum and Clostridium thermocellum are anaerobic thermophilic bacteria being investigated for their ability to produce biofuels from plant biomass. The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is present in these bacteria and has been known to be important for ethanol formation in other anaerobic alcohol producers. This study explores the inactivation of the adhE gene in C. thermocellum and T. saccharolyticum. Deletion of adhE reduced ethanol production by >95% in both T. saccharolyticum and C. thermocellum, confirming that adhE is necessary for ethanol formation in both organisms. In both adhE deletion strains, fermentation products shifted from ethanol to lactate production and resulted in lower cell density and longer time to reach maximal cell density. In T. saccharolyticum, the adhE deletion strain lost >85% of alcohol dehydrogenase (ADH) activity. Aldehyde dehydrogenase (ALDH) activity did not appear to be affected, although ALDH activity was low in cell extracts. Adding ubiquinone-0 to the ALDH assay increased activity in the T. saccharolyticum parent strain but did not increase activity in the adhE deletion strain, suggesting that ALDH activity was inhibited. In C. thermocellum, the adhE deletion strain lost >90% of ALDH and ADH activity in cell extracts. The C. thermocellum adhE deletion strain contained a point mutation in the lactate dehydrogenase gene, which appears to deregulate its activation by fructose 1,6-bisphosphate, leading to constitutive activation of lactate dehydrogenase. IMPORTANCE Thermoanaerobacterium saccharolyticum and Clostridium thermocellum are bacteria that have been investigated for their ability to produce biofuels from plant biomass. They have been engineered to produce higher yields of ethanol, yet questions remain about the enzymes responsible for ethanol formation in these bacteria. The genomes of these bacteria encode multiple predicted aldehyde and alcohol dehydrogenases which could be responsible for alcohol formation. This study explores the inactivation of adhE, a gene encoding a bifunctional alcohol and aldehyde dehydrogenase. Deletion of adhE reduced ethanol production by >95% in both T. saccharolyticum and C. thermocellum, confirming that adhE is necessary for ethanol formation in both organisms. In strains without adhE, we note changes in biochemical activity, product formation, and growth.
Collapse
|
50
|
Liu J, Qi H, Wang C, Wen J. Model-driven intracellular redox status modulation for increasing isobutanol production in Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:108. [PMID: 26236397 PMCID: PMC4522091 DOI: 10.1186/s13068-015-0291-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/22/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND Few strains have been found to produce isobutanol naturally. For building a high performance isobutanol-producing strain, rebalancing redox status of the cell was very crucial through systematic investigation of redox cofactors metabolism. Then, the metabolic model provided a powerful tool for the rational modulation of the redox status. RESULTS Firstly, a starting isobutanol-producing E. coli strain LA02 was engineered with only 2.7 g/L isobutanol produced. Then, the genome-scale metabolic modeling was specially carried out for the redox cofactor metabolism of the strain LA02 by combining flux balance analysis and minimization of metabolic adjustment, and the GAPD reaction catalyzed by the glyceraldehyde-3-phosphate dehydrogenase was predicted as the key target for redox status improvement. Under guidance of the metabolic model prediction, a gapN-encoding NADP(+) dependent glyceraldehyde-3-phosphate dehydrogenase pathway was constructed and then fine-tuned using five constitutive promoters. The best strain LA09 was obtained with the strongest promoter BBa_J23100. The NADPH/NADP + ratios of strain LA09 reached 0.67 at exponential phase and 0.64 at stationary phase. The redox modulations resulted in the decrease production of ethanol and lactate by 17.5 and 51.7% to 1.32 and 6.08 g/L, respectively. Therefore, the isobutanol titer was increased by 221% to 8.68 g/L. CONCLUSIONS This research has achieved rational redox status improvement of isobutanol-producing strain under guidance of the prediction and modeling of the genome-scale metabolic model of isobutanol-producing E. coli strain with the aid of synthetic promoters. Therefore, the production of isobutanol was dramatically increased by 2.21-fold from 2.7 to 8.68 g/L. Moreover, the developed model-driven method special for redox cofactor metabolism was of very helpful to the redox status modulation of other bio-products.
Collapse
Affiliation(s)
- Jiao Liu
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Haishan Qi
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Cheng Wang
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Jianping Wen
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| |
Collapse
|