1
|
Hu L, Wang Y, Ci M, Long Y. Unravelling microbial drivers of the sulfate-reduction process inside landfill using metagenomics. CHEMOSPHERE 2023; 313:137537. [PMID: 36521740 DOI: 10.1016/j.chemosphere.2022.137537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen sulfide (H2S) is one of the common landfill odor. This research demonstrates that the sulfate transformation behavior is significantly enhanced during the landfill process, accompanied by a shift in microbial structure. The relative abundance of dissimilatory sulfate reduction (DSR) and thiosulfate oxidation by SOX (sulfur-oxidation) complex gradually decreases through the landfill processes while the assimilatory sulfate reduction (ASR) demonstrates the opposite behavior. The major module for landfill sulfate reduction is ASR, accounting for 31.72% ± 2.84% of sulfate metabolism. Based on the functional genes for the sulfate pathway, the drivers for sulfate biotransformation in landfills were determined and further identified their contribution in the sulfate metabolism during landfill processes. Pseudomonas, Methylocaldum, Bacillus, Methylocystis and Hyphomicrobium were the top 5 contributors for ASR pathway, and only one genus Pseudomonas was found for DSR pathway. Among the 26 high-quality metagenome-assembled genomes of sulfate functional species, 24 were considered novel species for sulfuric metabolism. Overall, this study provides unique insight into the sulfate transformation process related to the H2S odor control in landfill management.
Collapse
Affiliation(s)
- Lifang Hu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou, 310018, China
| | - Yuqian Wang
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou, 310018, China
| | - Manting Ci
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Instrumental Analysis Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Instrumental Analysis Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
2
|
Fu B, Fang C, Xia J, Pan S, Zhou L, Peng Y, Yan Y, Yang Y, He Y, Chen S, Yang H, Wang J. Urbanization alters soil bacterial communities in southern China coastal cities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114492. [PMID: 36603487 DOI: 10.1016/j.ecoenv.2022.114492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/18/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Urbanization carries essential influences to ecosystem of soil bacteria in coastal cities. Comprehending the patterns and drivers of bacterial diversity are essential to understanding how soil ecosystems respond to environmental change. This study aimed to explore how soil bacterial community (SBC) response to distinct urbanization of coastal cities on composition, assembly process and potential function in Guangdong province, south China. 72 samples from 24 sample sites within 3 cities were included in the study. Soil chemical properties were analyzed, and the bacterial community were investigated by high-throughout sequencing. Proteobacteria and Acidobacteria were the main phyla. Assembly processes remained in stochastic processes and co-occurrence network of SBC kept stable, while urbanization altered SBC by influencing the dominant phyla. The indicators of communities in coastal city soils were the genera gamma_proteobacterium and beta_proteobacterium. Urbanized extent was the non-negligible factor which affected soil bacterial community, despite the total carbon was still the most vital. The impact of urbanization on bacterial communities might follow a non-linear pattern. Faprotax function prediction showed different urbanized coastal city soils share similar metabolic potential. Our study improved our understanding of the response of soil bacterial communities to urbanization in subtropical coastal cities and offered a useful strategy to monitor the ecology risk toward the soil under urbanization.
Collapse
Affiliation(s)
- Bing Fu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Chang Fang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Jun Xia
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences (Research Center for Veterinary Clinical Medicine, Xinjiang Academy of Animal Sciences), Key Laboratory of Herbivore Disease Prevention and Control, Ministry of Agriculture and Rural Affairs, Urumqi 830000, China
| | - Sentao Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Lei Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yisheng Peng
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yumeng Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yan Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yinglin He
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Shijun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China.
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China.
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Paper JM, Flynn TM, Boyanov MI, Kemner KM, Haller BR, Crank K, Lower A, Jin Q, Kirk MF. Influences of pH and substrate supply on the ratio of iron to sulfate reduction. GEOBIOLOGY 2021; 19:405-420. [PMID: 33934496 DOI: 10.1111/gbi.12444] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Iron reduction and sulfate reduction often occur simultaneously in anoxic systems, and where that is the case, the molar ratio between the reactions (i.e., Fe/SO42- reduced) influences their impact on water quality and carbon storage. Previous research has shown that pH and the supply of electron donors and acceptors affect that ratio, but it is unclear how their influences compare and affect one another. This study examines impacts of pH and the supply of acetate, sulfate, and goethite on the ratio of iron to sulfate reduction in semi-continuous sediment bioreactors. We examined which parameter had the greatest impact on that ratio and whether the parameter influences depended on the state of each other. Results show that pH had a greater influence than acetate supply on the ratio of iron to sulfate reduction, and that the impact of acetate supply on the ratio depended on pH. In acidic reactors (pH 6.0 media), the ratio of iron to sulfate reduction decreased from 3:1 to 2:1 as acetate supply increased (0-1 mM). In alkaline reactors (pH 7.5 media), iron and sulfate were reduced in equal proportions, regardless of acetate supply. Secondly, a comparison of experiments with and without sulfate shows that the extent of iron reduction was greater if sulfate reduction was occurring and that the effect was larger in alkaline reactors than acidic reactors. Thus, the influence of sulfate supply on iron reduction extent also depended on pH and suggests that iron reduction grows more dependent on sulfate reduction as pH increases. Our results compare well to trends in groundwater geochemistry and provide further evidence that pH is a major control on iron and sulfate reduction in systems with crystalline (oxyhydr)oxides. pH not only affects the ratio between the reactions but also the influences of other parameters on that ratio.
Collapse
Affiliation(s)
- Janet M Paper
- Department of Geology, Kansas State University, Manhattan, KS, USA
| | - Theodore M Flynn
- Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
| | - Maxim I Boyanov
- Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Kenneth M Kemner
- Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
| | - Ben R Haller
- Department of Geology, Kansas State University, Manhattan, KS, USA
| | - Kathleen Crank
- Department of Biology, Benedictine College, Atchison, KS, USA
| | - AnneMarie Lower
- Department of Biology, Benedictine College, Atchison, KS, USA
| | - Qusheng Jin
- Department of Earth Sciences, University of Oregon, Eugene, OR, USA
| | - Matthew F Kirk
- Department of Geology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
4
|
Pang Y, Wang J, Li S, Ji G. Long-term sulfide input enhances chemoautotrophic denitrification rather than DNRA in freshwater lake sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116201. [PMID: 33321438 DOI: 10.1016/j.envpol.2020.116201] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Partitioning between nitrate reduction pathways, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) determines the fate of nitrate removal and thus it is of great ecological importance. Sulfide (S2-) is a potentially important factor that influences the role of denitrification and DNRA. However, information on the impact of microbial mechanisms for S2- on the partitioning of nitrate reduction pathways in freshwater environments is still lacking. This study investigated the effects of long-term (108 d) S2- addition on nitrate reduction pathways and microbial communities in the sediments of two different freshwater lakes. The results show that the increasing S2- addition enhanced the coupling of S2- oxidation with denitrification instead of DNRA. The sulfide-oxidizing denitrifier, Thiobacillus, was significantly enriched in the incubations of both lake samples with S2- addition, which indicates that it may be the key genus driving sulfide-oxidizing denitrification in the lake sediments. During S2- incubation of the Hongze Lake sample, which had lower inherent organic carbon (C) and sulfate (SO42-), Thiobacillus was more enriched and played a dominant role in the microbial community; while during that of the Nansi Lake sample, which had higher inherent organic C and SO42-, Thiobacillus was less enriched, but increasing abundances of sulfate reducing bacteria (Desulfomicrobium, Desulfatitalea and Geothermobacter) were observed. Moreover, sulfide-oxidizing denitrifiers and sulfate reducers were enriched in the Nansi Lake control treatment without external S2- input, which suggests that internal sulfate release may promote the cooperation between sulfide-oxidizing denitrifiers and sulfate reducers. This study highlights the importance of sulfide-driven denitrification and the close coupling between the N and S cycles in freshwater environments, which are factors that have often been overlooked.
Collapse
Affiliation(s)
- Yunmeng Pang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, PR China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, PR China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
5
|
Holmes DE, Orelana R, Giloteaux L, Wang LY, Shrestha P, Williams K, Lovley DR, Rotaru AE. Potential for Methanosarcina to Contribute to Uranium Reduction during Acetate-Promoted Groundwater Bioremediation. MICROBIAL ECOLOGY 2018; 76:660-667. [PMID: 29500492 PMCID: PMC6132540 DOI: 10.1007/s00248-018-1165-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/16/2018] [Indexed: 05/06/2023]
Abstract
Previous studies of acetate-promoted bioremediation of uranium-contaminated aquifers focused on Geobacter because no other microorganisms that can couple the oxidation of acetate with U(VI) reduction had been detected in situ. Monitoring the levels of methyl CoM reductase subunit A (mcrA) transcripts during an acetate-injection field experiment demonstrated that acetoclastic methanogens from the genus Methanosarcina were enriched after 40 days of acetate amendment. The increased abundance of Methanosarcina corresponded with an accumulation of methane in the groundwater. In order to determine whether Methanosarcina species could be participating in U(VI) reduction in the subsurface, cell suspensions of Methanosarcina barkeri were incubated in the presence of U(VI) with acetate provided as the electron donor. U(VI) was reduced by metabolically active M. barkeri cells; however, no U(VI) reduction was observed in inactive controls. These results demonstrate that Methanosarcina species could play an important role in the long-term bioremediation of uranium-contaminated aquifers after depletion of Fe(III) oxides limits the growth of Geobacter species. The results also suggest that Methanosarcina have the potential to influence uranium geochemistry in a diversity of anaerobic sedimentary environments.
Collapse
Affiliation(s)
- Dawn E Holmes
- Department of Physical and Biological Science, Western New England University, Springfield, MA, USA.
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA.
| | - Roberto Orelana
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ludovic Giloteaux
- Department of Molecular Biology and Genetics, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Li-Ying Wang
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Pravin Shrestha
- Energy Biosciences Institute, University of California Berkeley, Berkeley, CA, USA
| | | | - Derek R Lovley
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA
| | | |
Collapse
|
6
|
Zhu M, Zhang L, Zheng L, Zhuo Y, Xu J, He Y. Typical Soil Redox Processes in Pentachlorophenol Polluted Soil Following Biochar Addition. Front Microbiol 2018; 9:579. [PMID: 29636746 PMCID: PMC5880936 DOI: 10.3389/fmicb.2018.00579] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/13/2018] [Indexed: 11/28/2022] Open
Abstract
Reductive dechlorination is the primary pathway for environmental removal of pentachlorophenol (PCP) in soil under anaerobic condition. This process has been verified to be coupled with other soil redox processes of typical biogenic elements such as carbon, iron and sulfur. Meanwhile, biochar has received increasing interest in its potential for remediation of contaminated soil, with the effect seldom investigated under anaerobic environment. In this study, a 120-day anaerobic incubation experiment was conducted to investigate the effects of biochar on soil redox processes and thereby the reductive dechlorination of PCP under anaerobic condition. Biochar addition (1%, w/w) enhanced the dissimilatory iron reduction and sulfate reduction while simultaneously decreased the PCP reduction significantly. Instead, the production of methane was not affected by biochar. Interestingly, however, PCP reduction was promoted by biochar when microbial sulfate reduction was suppressed by addition of typical inhibitor molybdate. Together with Illumina sequencing data regarding analysis of soil bacteria and archaea responses, our results suggest that under anaerobic condition, the main competition mechanisms of these typical soil redox processes on the reductive dechlorination of PCP may be different in the presence of biochar. In particularly, the effect of biochar on sulfate reduction process is mainly through promoting the growth of sulfate reducer (Desulfobulbaceae and Desulfobacteraceae) but not as an electron shuttle. With the supplementary addition of molybdate, biochar application is suggested as an improved strategy for a better remediation results by coordinating the interaction between dechlorination and its coupled soil redox processes, with minimum production of toxic sulfur reducing substances and relatively small emission of greenhouse gas (CH4) while maximum removal of PCP.
Collapse
Affiliation(s)
- Min Zhu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Lujun Zhang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Liwei Zheng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Ying Zhuo
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Yan He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| |
Collapse
|
7
|
Cuellar-Gempeler C, Leibold MA. Multiple colonist pools shape fiddler crab-associated bacterial communities. THE ISME JOURNAL 2018; 12:825-837. [PMID: 29362507 PMCID: PMC5864236 DOI: 10.1038/s41396-017-0014-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/06/2017] [Accepted: 10/24/2017] [Indexed: 01/22/2023]
Abstract
Colonization is a key component of community assembly because it continuously contributes new species that can potentially establish and adds individuals to established populations in local communities. Colonization is determined by the regional species pool, which is typically viewed as stable at ecological time scales. Yet, many natural communities including plants, birds and microbes, are exposed to several distinct and dynamic sources of colonists and how multiple colonist pools interact to shape local communities remains unclear. Using a 16S rRNA amplicon survey, we profiled bacteria within surface, subsurface and burrow sediments and assessed their role as colonist pools for fiddler crab-associated bacteria. We found significant differences in composition among sediment types, driven by halophilic taxa in the surface, and different Desulfobacteraceae taxa in the subsurface and burrow. Bacteria from burrow sediment colonized the crab carapace whereas gut bacterial communities were colonized by burrow and surface sediment bacteria. Despite distinct colonist pools influencing gut bacteria, variation in composition across gut samples did not lead to significant clusters. In contrast, carapace bacterial communities clustered in six distinct groups loosely associated with crab species. Our findings suggest that multiple colonist pools can influence local communities but factors explaining variation in community composition depend on local habitats. Recognizing multiple colonist pools expands our understanding of the interaction between regional and local processes driving community structure and diversity.
Collapse
Affiliation(s)
- Catalina Cuellar-Gempeler
- Department of Biological Sciences, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32304, USA.
| | - Mathew A Leibold
- Section of Integrative Biology, University of Texas at Austin, 1 University Station C0930, Austin, TX, 78712, USA
| |
Collapse
|
8
|
Li YL, Wang J, Yue ZB, Tao W, Yang HB, Zhou YF, Chen TH. Simultaneous chemical oxygen demand removal, methane production and heavy metal precipitation in the biological treatment of landfill leachate using acid mine drainage as sulfate resource. J Biosci Bioeng 2017; 124:71-75. [DOI: 10.1016/j.jbiosc.2017.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/02/2017] [Accepted: 02/11/2017] [Indexed: 10/20/2022]
|
9
|
Zhang P, He Z, Van Nostrand JD, Qin Y, Deng Y, Wu L, Tu Q, Wang J, Schadt CW, W Fields M, Hazen TC, Arkin AP, Stahl DA, Zhou J. Dynamic Succession of Groundwater Sulfate-Reducing Communities during Prolonged Reduction of Uranium in a Contaminated Aquifer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3609-3620. [PMID: 28300407 DOI: 10.1021/acs.est.6b02980] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To further understand the diversity and dynamics of SRB in response to substrate amendment, we sequenced genes coding for the dissimilatory sulfite reductase (dsrA) in groundwater samples collected after an emulsified vegetable oil (EVO) amendment, which sustained U(VI)-reducing conditions for one year in a fast-flowing aquifer. EVO amendment significantly altered the composition of groundwater SRB communities. Sequences having no closely related-described species dominated (80%) the indigenous SRB communities in nonamended wells. After EVO amendment, Desulfococcus, Desulfobacterium, and Desulfovibrio, known for long-chain-fatty-acid, short-chain-fatty-acid and H2 oxidation and U(VI) reduction, became dominant accounting for 7 ± 2%, 21 ± 8%, and 55 ± 8% of the SRB communities, respectively. Succession of these SRB at different bioactivity stages based on redox substrates/products (acetate, SO4-2, U(VI), NO3-, Fe(II), and Mn(II)) was observed. Desulfovibrio and Desulfococcus dominated SRB communities at 4-31 days, whereas Desulfobacterium became dominant at 80-140 days. By the end of the experiment (day 269), the abundance of these SRB decreased but the overall diversity of groundwater SRB was still higher than non-EVO controls. Up to 62% of the SRB community changes could be explained by groundwater geochemical variables, including those redox substrates/products. A significant (P < 0.001) correlation was observed between groundwater U(VI) concentrations and Desulfovibrio abundance. Our results showed that the members of SRB and their dynamics were correlated significantly with slow EVO biodegradation, electron donor production and maintenance of U(VI)-reducing conditions in the aquifer.
Collapse
Affiliation(s)
- Ping Zhang
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Zhili He
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Joy D Van Nostrand
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Yujia Qin
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Ye Deng
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences , Beijing 100085, China
| | - Liyou Wu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Qichao Tu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
- Department of Marine Sciences, Ocean College, Zhejiang University , Zhejiang, China
| | - Jianjun Wang
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences , Nanjing 210008, China
| | - Christopher W Schadt
- Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Matthew W Fields
- Center for Biofilm Engineering, Montana State University , Bozeman, Montana 59717, United States
| | - Terry C Hazen
- Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
- Department of Civil and Environmental Engineering, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Adam P Arkin
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington , Seattle, Washington 98105, United States
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University , Beijing 100084, China
| |
Collapse
|
10
|
Li D, Hu N, Sui Y, Ding D, Li K, Li G, Wang Y. Influence of bicarbonate on the abundance of microbial communities capable of reducing U(vi) in groundwater. RSC Adv 2017. [DOI: 10.1039/c7ra09795f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
7 experiments amended with 0, 5, 10, 15, 20, 25 and 30 mM initial concentrations of bicarbonate were conducted to investigate the influence of different concentrations of bicarbonate on the abundance of microbial communities capable of reducing U(vi) in groundwater.
Collapse
Affiliation(s)
- Dianxin Li
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy
- University of South China
- 421001 Hengyang
- China
| | - Nan Hu
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy
- University of South China
- 421001 Hengyang
- China
| | - Yang Sui
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy
- University of South China
- 421001 Hengyang
- China
| | - Dexin Ding
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy
- University of South China
- 421001 Hengyang
- China
| | - Ke Li
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy
- University of South China
- 421001 Hengyang
- China
| | - Guangyue Li
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy
- University of South China
- 421001 Hengyang
- China
| | - Yongdong Wang
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy
- University of South China
- 421001 Hengyang
- China
| |
Collapse
|
11
|
Miletto M, Lindow SE. Relative and contextual contribution of different sources to the composition and abundance of indoor air bacteria in residences. MICROBIOME 2015; 3:61. [PMID: 26653310 PMCID: PMC4674937 DOI: 10.1186/s40168-015-0128-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/29/2015] [Indexed: 05/10/2023]
Abstract
BACKGROUND The study of the microbial communities in the built environment is of critical importance as humans spend the majority of their time indoors. While the microorganisms in living spaces, especially those in the air, can impact health and well-being, little is known of their identity and the processes that determine their assembly. We investigated the source-sink relationships of airborne bacteria in 29 homes in the San Francisco Bay Area. Samples taken in the sites expected to be source habitats for indoor air microbes were analyzed by 16S rRNA-based pyrosequencing and quantitative PCR. The community composition was related to the characteristics of the household collected at the time of sampling, including the number of residents and pets, activity levels, frequency of cooking and vacuum cleaning, extent of natural ventilation, and abundance and type of vegetation surrounding the building. RESULTS Indoor air harbored a diverse bacterial community dominated by Diaphorobacter sp., Propionibacterium sp., Sphingomonas sp., and Alicyclobacillus sp. Source-sink analysis suggested that outdoor air was the primary source of indoor air microbes in most homes. Bacterial phylogenetic diversity and relative abundance in indoor air did not differ statistically from that in outdoor air. Moreover, the abundance of bacteria in outdoor air was positively correlated with that in indoor air, as would be expected if outdoor air was the main contributor to the bacterial community in indoor bioaerosols. The number of residents, presence of pets, and local tap water also influenced the diversity and size of indoor air microbes. The bacterial load in air increased with the number of residents, activity, and frequency of natural ventilation, and the proportion of bacteria putatively derived from skin increased with the number of residents. Vacuum cleaning increased the signature of pet- and floor-derived bacteria in indoor air, while the frequency of natural ventilation decreased the relative abundance of tap water-derived microorganisms in air. CONCLUSIONS Indoor air in residences harbors a diverse bacterial community originating from both outdoor and indoor sources and is strongly influenced by household characteristics.
Collapse
Affiliation(s)
- Marzia Miletto
- Plant & Microbial Biology, University of California Berkeley, 331 Koshland Hall, Berkeley, CA, 94720, USA.
| | - Steven E Lindow
- Plant & Microbial Biology, University of California Berkeley, 331 Koshland Hall, Berkeley, CA, 94720, USA.
| |
Collapse
|
12
|
Zhang P, Van Nostrand JD, He Z, Chakraborty R, Deng Y, Curtis D, Fields MW, Hazen TC, Arkin AP, Zhou J. A Slow-Release Substrate Stimulates Groundwater Microbial Communities for Long-Term in Situ Cr(VI) Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12922-12931. [PMID: 25835088 DOI: 10.1021/acs.est.5b00024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cr(VI) is a widespread environmental contaminant that is highly toxic and soluble. Previous work indicated that a one-time amendment of polylactate hydrogen-release compound (HRC) reduced groundwater Cr(VI) concentrations for >3.5 years at a contaminated aquifer; however, microbial communities responsible for Cr(VI) reduction are poorly understood. In this study, we hypothesized that HRC amendment would significantly change the composition and structure of groundwater microbial communities, and that the abundance of key functional genes involved in HRC degradation and electron acceptor reduction would increase long-term in response to this slowly degrading, complex substrate. To test these hypotheses, groundwater microbial communities were monitored after HRC amendment for >1 year using a comprehensive functional gene microarray. The results showed that the overall functional composition and structure of groundwater microbial communities underwent sequential shifts after HRC amendment. Particularly, the abundance of functional genes involved in acetate oxidation, denitrification, dissimilatory nitrate reduction, metal reduction, and sulfate reduction significantly increased. The overall community dynamics was significantly correlated with changes in groundwater concentrations of microbial biomass, acetate, NO3-, Cr(VI), Fe(II) and SO4(2-). Our results suggest that HRC amendment primarily stimulated key functional processes associated with HRC degradation and reduction of multiple electron acceptors in the aquifer toward long-term Cr(VI) reduction.
Collapse
Affiliation(s)
- Ping Zhang
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Joy D Van Nostrand
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Zhili He
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Romy Chakraborty
- Earth Science Division, Lawrence Berkeley National Laboratory , Berkeley, California 94270, United States
| | - Ye Deng
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Daniel Curtis
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Matthew W Fields
- Center for Biofilm Engineering, Montana State University , Bozeman, Montana 59717, United States
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, The University of Tennessee , Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831-6342, United States
| | - Adam P Arkin
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Jizhong Zhou
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
- Earth Science Division, Lawrence Berkeley National Laboratory , Berkeley, California 94270, United States
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University , Beijing 100084, China
| |
Collapse
|
13
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
14
|
Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction. Appl Environ Microbiol 2015; 81:4164-72. [PMID: 25862231 DOI: 10.1128/aem.00043-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/05/2015] [Indexed: 11/20/2022] Open
Abstract
A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this study, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using a comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO3 (-), Mn(IV), Fe(III), U(VI), and SO4 (2-) significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO3 (-), Mn(II), Fe(II), U(VI), and SO4 (2-). Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. This study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction.
Collapse
|
15
|
Holmes DE, Giloteaux L, Orellana R, Williams KH, Robbins MJ, Lovley DR. Methane production from protozoan endosymbionts following stimulation of microbial metabolism within subsurface sediments. Front Microbiol 2014; 5:366. [PMID: 25147543 PMCID: PMC4123621 DOI: 10.3389/fmicb.2014.00366] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/01/2014] [Indexed: 11/13/2022] Open
Abstract
Previous studies have suggested that protozoa prey on Fe(III)- and sulfate-reducing bacteria that are enriched when acetate is added to uranium contaminated subsurface sediments to stimulate U(VI) reduction. In order to determine whether protozoa continue to impact subsurface biogeochemistry after these acetate amendments have stopped, 18S rRNA and ß-tubulin sequences from this phase of an in situ uranium bioremediation field experiment were analyzed. Sequences most similar to Metopus species predominated, with the majority of sequences most closely related to M. palaeformis, a cilitated protozoan known to harbor methanogenic symbionts. Quantification of mcrA mRNA transcripts in the groundwater suggested that methanogens closely related to Metopus endosymbionts were metabolically active at this time. There was a strong correlation between the number of mcrA transcripts from the putative endosymbiotic methanogen and Metopus ß-tubulin mRNA transcripts during the course of the field experiment, suggesting that the activity of the methanogens was dependent upon the activity of the Metopus species. Addition of the eukaryotic inhibitors cyclohexamide and colchicine to laboratory incubations of acetate-amended subsurface sediments significantly inhibited methane production and there was a direct correlation between methane concentration and Metopus ß-tubulin and putative symbiont mcrA gene copies. These results suggest that, following the stimulation of subsurface microbial growth with acetate, protozoa harboring methanogenic endosymbionts become important members of the microbial community, feeding on moribund biomass and producing methane.
Collapse
Affiliation(s)
- Dawn E Holmes
- Department of Microbiology, University of Massachusetts Amherst, MA, USA ; Physical and Biological Sciences, Western New England University Springfield, MA, USA
| | - Ludovic Giloteaux
- Department of Microbiology, University of Massachusetts Amherst, MA, USA
| | - Roberto Orellana
- Department of Microbiology, University of Massachusetts Amherst, MA, USA
| | | | | | - Derek R Lovley
- Department of Microbiology, University of Massachusetts Amherst, MA, USA
| |
Collapse
|
16
|
Wrighton KC, Castelle CJ, Wilkins MJ, Hug LA, Sharon I, Thomas BC, Handley KM, Mullin SW, Nicora CD, Singh A, Lipton MS, Long PE, Williams KH, Banfield JF. Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer. ISME JOURNAL 2014; 8:1452-63. [PMID: 24621521 DOI: 10.1038/ismej.2013.249] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/07/2013] [Accepted: 12/01/2013] [Indexed: 11/09/2022]
Abstract
Fermentation-based metabolism is an important ecosystem function often associated with environments rich in organic carbon, such as wetlands, sewage sludge and the mammalian gut. The diversity of microorganisms and pathways involved in carbon and hydrogen cycling in sediments and aquifers and the impacts of these processes on other biogeochemical cycles remain poorly understood. Here we used metagenomics and proteomics to characterize microbial communities sampled from an aquifer adjacent to the Colorado River at Rifle, CO, USA, and document interlinked microbial roles in geochemical cycling. The organic carbon content in the aquifer was elevated via acetate amendment of the groundwater occurring over 2 successive years. Samples were collected at three time points, with the objective of extensive genome recovery to enable metabolic reconstruction of the community. Fermentative community members include organisms from a new phylum, Melainabacteria, most closely related to Cyanobacteria, phylogenetically novel members of the Chloroflexi and Bacteroidales, as well as candidate phyla genomes (OD1, BD1-5, SR1, WWE3, ACD58, TM6, PER and OP11). These organisms have the capacity to produce hydrogen, acetate, formate, ethanol, butyrate and lactate, activities supported by proteomic data. The diversity and expression of hydrogenases suggests the importance of hydrogen metabolism in the subsurface. Our proteogenomic data further indicate the consumption of fermentation intermediates by Proteobacteria can be coupled to nitrate, sulfate and iron reduction. Thus, fermentation carried out by previously unknown members of sediment microbial communities may be an important driver of nitrogen, hydrogen, sulfur, carbon and iron cycling.
Collapse
Affiliation(s)
- Kelly C Wrighton
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Cindy J Castelle
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA
| | - Michael J Wilkins
- 1] Department of Microbiology, The Ohio State University, Columbus, OH, USA [2] School of Earth Sciences, The Ohio State University, Columbus, OH, USA
| | - Laura A Hug
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA
| | - Itai Sharon
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA
| | - Brian C Thomas
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA
| | - Kim M Handley
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Sean W Mullin
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA
| | - Carrie D Nicora
- Pacific Northwest National Laboratory, Department of Energy, Biological Sciences Department, Richland, WA, USA
| | - Andrea Singh
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA
| | - Mary S Lipton
- Pacific Northwest National Laboratory, Department of Energy, Biological Sciences Department, Richland, WA, USA
| | - Philip E Long
- Lawrence Berkeley National Laboratory, Department of Energy, Berkeley, CA, USA
| | - Kenneth H Williams
- Lawrence Berkeley National Laboratory, Department of Energy, Berkeley, CA, USA
| | - Jillian F Banfield
- 1] Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA [2] Pacific Northwest National Laboratory, Department of Energy, Biological Sciences Department, Richland, WA, USA
| |
Collapse
|
17
|
Holmes DE, Giloteaux L, Williams KH, Wrighton KC, Wilkins MJ, Thompson CA, Roper TJ, Long PE, Lovley DR. Enrichment of specific protozoan populations during in situ bioremediation of uranium-contaminated groundwater. THE ISME JOURNAL 2013; 7:1286-98. [PMID: 23446832 PMCID: PMC3695288 DOI: 10.1038/ismej.2013.20] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/07/2013] [Accepted: 01/10/2013] [Indexed: 11/09/2022]
Abstract
The importance of bacteria in the anaerobic bioremediation of groundwater polluted with organic and/or metal contaminants is well recognized and in some instances so well understood that modeling of the in situ metabolic activity of the relevant subsurface microorganisms in response to changes in subsurface geochemistry is feasible. However, a potentially significant factor influencing bacterial growth and activity in the subsurface that has not been adequately addressed is protozoan predation of the microorganisms responsible for bioremediation. In field experiments at a uranium-contaminated aquifer located in Rifle, CO, USA, acetate amendments initially promoted the growth of metal-reducing Geobacter species, followed by the growth of sulfate reducers, as observed previously. Analysis of 18S rRNA gene sequences revealed a broad diversity of sequences closely related to known bacteriovorous protozoa in the groundwater before the addition of acetate. The bloom of Geobacter species was accompanied by a specific enrichment of sequences most closely related to the ameboid flagellate, Breviata anathema, which at their peak accounted for over 80% of the sequences recovered. The abundance of Geobacter species declined following the rapid emergence of B. anathema. The subsequent growth of sulfate-reducing Peptococcaceae was accompanied by another specific enrichment of protozoa, but with sequences most similar to diplomonadid flagellates from the family Hexamitidae, which accounted for up to 100% of the sequences recovered during this phase of the bioremediation. These results suggest a prey-predator response with specific protozoa responding to increased availability of preferred prey bacteria. Thus, quantifying the influence of protozoan predation on the growth, activity and composition of the subsurface bacterial community is essential for predictive modeling of in situ uranium bioremediation strategies.
Collapse
Affiliation(s)
- Dawn E Holmes
- Department of Microbiology, Morrill Science Center IVN, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bioremediation of uranium-contaminated groundwater: a systems approach to subsurface biogeochemistry. Curr Opin Biotechnol 2013; 24:489-97. [DOI: 10.1016/j.copbio.2012.10.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 10/09/2012] [Indexed: 11/18/2022]
|
19
|
Zachara JM, Long PE, Bargar J, Davis JA, Fox P, Fredrickson JK, Freshley MD, Konopka AE, Liu C, McKinley JP, Rockhold ML, Williams KH, Yabusaki SB. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone. JOURNAL OF CONTAMINANT HYDROLOGY 2013; 147:45-72. [PMID: 23500840 DOI: 10.1016/j.jconhyd.2013.02.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 01/10/2013] [Accepted: 02/06/2013] [Indexed: 05/22/2023]
Abstract
We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 μg/L or 0.126 μmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (<one pore volume). At the Rifle site, slow oxidation of naturally reduced, contaminant U(IV) in the saturated zone and a continuous influx of U(VI) from natural, up-gradient sources influence plume persistence. Rate-limited mass transfer and surface complexation also control U(VI) migration velocity in the sub-oxic Rifle groundwater. Flux of U(VI) from the vadose zone at the Rifle site may be locally important, but it is not the dominant process that sustains the plume. A wide range in microbiologic functional diversity exists at both sites. Strains of Geobacter and other metal reducing bacteria are present at low natural abundance that are capable of enzymatic U(VI) reduction in localized zones of accumulated detrital organic carbon or after organic carbon amendment. Major differences between the sites include the geochemical nature of residual, contaminant U; the rates of current kinetic processes (both biotic and abiotic) influencing U(VI) solid-liquid distribution; the presence of detrital organic matter and the resulting spatial heterogeneity in microbially-driven redox properties; and the magnitude of groundwater hydrologic dynamics controlled by river-stage fluctuations, geologic structures, and aquifer hydraulic properties. The comparative analysis of these sites provides important guidance to the characterization, understanding, modeling, and remediation of groundwater contaminant plumes influenced by surface water interaction that are common world-wide.
Collapse
Affiliation(s)
- John M Zachara
- Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Giloteaux L, Holmes DE, Williams KH, Wrighton KC, Wilkins MJ, Montgomery AP, Smith JA, Orellana R, Thompson CA, Roper TJ, Long PE, Lovley DR. Characterization and transcription of arsenic respiration and resistance genes during in situ uranium bioremediation. THE ISME JOURNAL 2013; 7:370-83. [PMID: 23038171 PMCID: PMC3554400 DOI: 10.1038/ismej.2012.109] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/01/2012] [Accepted: 08/01/2012] [Indexed: 11/09/2022]
Abstract
The possibility of arsenic release and the potential role of Geobacter in arsenic biogeochemistry during in situ uranium bioremediation was investigated because increased availability of organic matter has been associated with substantial releases of arsenic in other subsurface environments. In a field experiment conducted at the Rifle, CO study site, groundwater arsenic concentrations increased when acetate was added. The number of transcripts from arrA, which codes for the α-subunit of dissimilatory As(V) reductase, and acr3, which codes for the arsenic pump protein Acr3, were determined with quantitative reverse transcription-PCR. Most of the arrA (>60%) and acr3-1 (>90%) sequences that were recovered were most similar to Geobacter species, while the majority of acr3-2 (>50%) sequences were most closely related to Rhodoferax ferrireducens. Analysis of transcript abundance demonstrated that transcription of acr3-1 by the subsurface Geobacter community was correlated with arsenic concentrations in the groundwater. In contrast, Geobacter arrA transcript numbers lagged behind the major arsenic release and remained high even after arsenic concentrations declined. This suggested that factors other than As(V) availability regulated the transcription of arrA in situ, even though the presence of As(V) increased the transcription of arrA in cultures of Geobacter lovleyi, which was capable of As(V) reduction. These results demonstrate that subsurface Geobacter species can tightly regulate their physiological response to changes in groundwater arsenic concentrations. The transcriptomic approach developed here should be useful for the study of a diversity of other environments in which Geobacter species are considered to have an important influence on arsenic biogeochemistry.
Collapse
Affiliation(s)
- Ludovic Giloteaux
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9298, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rowe AR, Heavner GL, Mansfeldt CB, Werner JJ, Richardson RE. Relating chloroethene respiration rates in Dehalococcoides to protein and mRNA biomarkers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:9388-9397. [PMID: 22812668 DOI: 10.1021/es300996c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Molecular biomarkers could provide critical insight into myriad in situ microbial activities. In this study we explore correlations of both mRNA and protein biomarkers with chloroethene respiration rate in Dehalococcoides. In a series of continuously fed dechlorinating mixed-culture microcosm experiments (n = 26), we varied respiratory substrates, substrate ratios and feeding rates. Transcript levels for most biomarkers were responsive down to 0.01× the culture's maximum respiration rate. The dehalogenase TceA and the Ni-Fe hydrogenase HupL transcripts were positively correlated (Pearson's r of 0.89 and 0.88, respectively) with respiration rates on log-log plots between 1.5 and 280 μeeq/L-hr for mRNA abundances of 10(7) to 10(10) transcripts/mL (0.07-230 transcripts/genome). These trends were independent of the types of chloroethene or electron donors fed. Other mRNA target levels plateaued or declined at respiration rates above 5 μeeq/L-hr. Using both relative and absolute protein quantification methods, we found that per-genome protein abundances of most targeted biomarkers did not statistically change over the experimental time frames. However, quantified enzyme levels allowed us to calculate in vivo enzyme-specific rate constants (k(cat)) for the dehalogenases PceA and TceA: 400 and 22 substrate molecules/enzyme-sec, respectively. Overall, these data support the promise of both mRNA and protein biomarkers for estimating process rates through either empirical (mRNA-based) or kinetic (protein-based) models, but they require follow-up studies in other cultures and at active remediation sites.
Collapse
Affiliation(s)
- Annette R Rowe
- Field of Microbiology, Cornell University, Ithaca New York 14853, United States
| | | | | | | | | |
Collapse
|
22
|
Akob DM, Lee SH, Sheth M, Küsel K, Watson DB, Palumbo AV, Kostka JE, Chin KJ. Gene Expression Correlates with Process Rates Quantified for Sulfate- and Fe(III)-Reducing Bacteria in U(VI)-Contaminated Sediments. Front Microbiol 2012; 3:280. [PMID: 22908009 PMCID: PMC3415069 DOI: 10.3389/fmicb.2012.00280] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/18/2012] [Indexed: 11/25/2022] Open
Abstract
Though iron- and sulfate-reducing bacteria are well known for mediating uranium(VI) reduction in contaminated subsurface environments, quantifying the in situ activity of the microbial groups responsible remains a challenge. The objective of this study was to demonstrate the use of quantitative molecular tools that target mRNA transcripts of key genes related to Fe(III) and sulfate reduction pathways in order to monitor these processes during in situ U(VI) remediation in the subsurface. Expression of the Geobacteraceae-specific citrate synthase gene (gltA) and the dissimilatory (bi)sulfite reductase gene (dsrA), were correlated with the activity of iron- or sulfate-reducing microorganisms, respectively, under stimulated bioremediation conditions in microcosms of sediments sampled from the U.S. Department of Energy’s Oak Ridge Integrated Field Research Challenge (OR-IFRC) site at Oak Ridge, TN, USA. In addition, Geobacteraceae-specific gltA and dsrA transcript levels were determined in parallel with the predominant electron acceptors present in moderately and highly contaminated subsurface sediments from the OR-IFRC. Phylogenetic analysis of the cDNA generated from dsrA mRNA, sulfate-reducing bacteria-specific 16S rRNA, and gltA mRNA identified activity of specific microbial groups. Active sulfate reducers were members of the Desulfovibrio, Desulfobacterium, and Desulfotomaculum genera. Members of the subsurface Geobacter clade, closely related to uranium-reducing Geobacter uraniireducens and Geobacter daltonii, were the metabolically active iron-reducers in biostimulated microcosms and in situ core samples. Direct correlation of transcripts and process rates demonstrated evidence of competition between the functional guilds in subsurface sediments. We further showed that active populations of Fe(III)-reducing bacteria and sulfate-reducing bacteria are present in OR-IFRC sediments and are good potential targets for in situ bioremediation.
Collapse
|
23
|
Zhuang K, Ma E, Lovley DR, Mahadevan R. The design of long-term effective uranium bioremediation strategy using a community metabolic model. Biotechnol Bioeng 2012; 109:2475-83. [PMID: 22510989 DOI: 10.1002/bit.24528] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/30/2012] [Accepted: 04/06/2012] [Indexed: 11/10/2022]
Abstract
Acetate amendment at uranium contaminated sites in Rifle, CO. leads to an initial bloom of Geobacter accompanied by the removal of U(VI) from the groundwater, followed by an increase of sulfate-reducing bacteria (SRBs) which are poor reducers of U(VI). One of the challenges associated with bioremediation is the decay in Geobacter abundance, which has been attributed to the depletion of bio-accessible Fe(III), motivating the investigation of simultaneous amendments of acetate and Fe(III) as an alternative bioremediation strategy. In order to understand the community metabolism of Geobacter and SRBs during artificial substrate amendment, we have created a genome-scale dynamic community model of Geobacter and SRBs using the previously described Dynamic Multi-species Metabolic Modeling framework. Optimization techniques are used to determine the optimal acetate and Fe(III) addition profile. Field-scale simulation of acetate addition accurately predicted the in situ data. The simulations suggest that batch amendment of Fe(III) along with continuous acetate addition is insufficient to promote long-term bioremediation, while continuous amendment of Fe(III) along with continuous acetate addition is sufficient to promote long-term bioremediation. By computationally minimizing the acetate and Fe(III) addition rates as well as the difference between the predicted and target uranium concentration, we showed that it is possible to maintain the uranium concentration below the environmental safety standard while minimizing the cost of chemical additions. These simulations show that simultaneous addition of acetate and Fe(III) has the potential to be an effective uranium bioremediation strategy. They also show that computational modeling of microbial community is an important tool to design effective strategies for practical applications in environmental biotechnology.
Collapse
Affiliation(s)
- K Zhuang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Rm 326, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
24
|
Handley KM, Wrighton KC, Piceno YM, Andersen GL, DeSantis TZ, Williams KH, Wilkins MJ, N'Guessan AL, Peacock A, Bargar J, Long PE, Banfield JF. High-density PhyloChip profiling of stimulated aquifer microbial communities reveals a complex response to acetate amendment. FEMS Microbiol Ecol 2012; 81:188-204. [PMID: 22432531 DOI: 10.1111/j.1574-6941.2012.01363.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 02/27/2012] [Accepted: 03/09/2012] [Indexed: 11/29/2022] Open
Abstract
There is increasing interest in harnessing the functional capacities of indigenous microbial communities to transform and remediate a wide range of environmental contaminants. Information about which community members respond to stimulation can guide the interpretation and development of remediation approaches. To comprehensively determine community membership and abundance patterns among a suite of samples associated with uranium bioremediation experiments, we employed a high-density microarray (PhyloChip). Samples were unstimulated, naturally reducing, or collected during Fe(III) (early) and sulfate reduction (late biostimulation) from an acetate re-amended/amended aquifer in Rifle, Colorado, and from laboratory experiments using field-collected materials. Deep community sampling with PhyloChip identified hundreds-to-thousands of operational taxonomic units (OTUs) present during amendment, and revealed close similarity among highly enriched taxa from drill core and groundwater well-deployed column sediment. Overall, phylogenetic data suggested that stimulated community membership was most affected by a carryover effect between annual stimulation events. Nevertheless, OTUs within the Fe(III)- and sulfate-reducing lineages, Desulfuromonadales and Desulfobacterales, were repeatedly stimulated. Less consistent, co-enriched taxa represented additional lineages associated with Fe(III) and sulfate reduction (e.g. Desulfovibrionales; Syntrophobacterales; Peptococcaceae) and autotrophic sulfur oxidation (Sulfurovum; Campylobacterales). Data implies complex membership among highly stimulated taxa and, by inference, biogeochemical responses to acetate, a nonfermentable substrate.
Collapse
Affiliation(s)
- Kim M Handley
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar M, Butler JE, Giloteaux L, Rotaru AE, Holmes DE, Franks AE, Orellana R, Risso C, Nevin KP. Geobacter: the microbe electric's physiology, ecology, and practical applications. Adv Microb Physiol 2011; 59:1-100. [PMID: 22114840 DOI: 10.1016/b978-0-12-387661-4.00004-5] [Citation(s) in RCA: 395] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Geobacter species specialize in making electrical contacts with extracellular electron acceptors and other organisms. This permits Geobacter species to fill important niches in a diversity of anaerobic environments. Geobacter species appear to be the primary agents for coupling the oxidation of organic compounds to the reduction of insoluble Fe(III) and Mn(IV) oxides in many soils and sediments, a process of global biogeochemical significance. Some Geobacter species can anaerobically oxidize aromatic hydrocarbons and play an important role in aromatic hydrocarbon removal from contaminated aquifers. The ability of Geobacter species to reductively precipitate uranium and related contaminants has led to the development of bioremediation strategies for contaminated environments. Geobacter species produce higher current densities than any other known organism in microbial fuel cells and are common colonizers of electrodes harvesting electricity from organic wastes and aquatic sediments. Direct interspecies electron exchange between Geobacter species and syntrophic partners appears to be an important process in anaerobic wastewater digesters. Functional and comparative genomic studies have begun to reveal important aspects of Geobacter physiology and regulation, but much remains unexplored. Quantifying key gene transcripts and proteins of subsurface Geobacter communities has proven to be a powerful approach to diagnose the in situ physiological status of Geobacter species during groundwater bioremediation. The growth and activity of Geobacter species in the subsurface and their biogeochemical impact under different environmental conditions can be predicted with a systems biology approach in which genome-scale metabolic models are coupled with appropriate physical/chemical models. The proficiency of Geobacter species in transferring electrons to insoluble minerals, electrodes, and possibly other microorganisms can be attributed to their unique "microbial nanowires," pili that conduct electrons along their length with metallic-like conductivity. Surprisingly, the abundant c-type cytochromes of Geobacter species do not contribute to this long-range electron transport, but cytochromes are important for making the terminal electrical connections with Fe(III) oxides and electrodes and also function as capacitors, storing charge to permit continued respiration when extracellular electron acceptors are temporarily unavailable. The high conductivity of Geobacter pili and biofilms and the ability of biofilms to function as supercapacitors are novel properties that might contribute to the field of bioelectronics. The study of Geobacter species has revealed a remarkable number of microbial physiological properties that had not previously been described in any microorganism. Further investigation of these environmentally relevant and physiologically unique organisms is warranted.
Collapse
Affiliation(s)
- Derek R Lovley
- Department of Microbiology and Environmental Biotechnology Center, University of Massachusetts, Amherst, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|