1
|
Bahgat OT, Rizk DE, Kenawy HI, Barwa R. Characterization of non-O157 enterohemorrhagic Escherichia coli isolated from different sources in Egypt. BMC Microbiol 2024; 24:488. [PMID: 39574016 PMCID: PMC11580514 DOI: 10.1186/s12866-024-03636-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/06/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Enterohemorrhagic Escherichia coli (EHEC) O157 is implicated in serious food and water-borne diseases as hemorrhagic colitis (HC), and the potentially fatal hemolytic uremic syndrome (HUS). However, new players of non-O157 EHEC have been implicated in serious infections worldwide. This work aims at analyzing serotype and genotypic-based virulence profile of EHEC local isolates. METHODS A total of 335 samples were collected from different sources in Egypt. E. coli was isolated and subjected to serotyping. Non-O157 EHEC isolates were tested for virulence genes using PCR, phenotypic examination, phylogenetic typing, and molecular investigation by ERIC typing and MLST to disclose genetic relatedness of isolates. A heat map was used to identify potential associations between the origin of the isolates, their phenotypic and genotypic characteristics. RESULTS A total of 105 out of 335 isolates were identified as E. coli. Surprisingly, 49.5% of these isolates were EHEC, where O111, O91, O26 and O55 were the most prevalent serotypes including 38.46% from stool, 21.15% urine, 23.1% cheese, 9.62% meat products, 3.85% from both yogurt and sewage water. Screening 15 different virulence genes revealed that sheA, stx2 and eae were the most prevalent with abundance rates of 85%, 75% and 36%, respectively. Fifteen profiles of virulence gene association were identified, where the most abundant one was stx2/sheA (19%) followed by stx2/stx2g/sheA/eae (11.5%). Both stx2/sheA/eae and stx2/stx2g/sheA were equally distributed in 9.6% of total isolates. Phylogenetic typing revealed that pathogenic phylogroups B2 and D were detected among clinical isolates only. Forty-six different patterns were detected by ERIC genotyping. MLST resolved three sequence types of ST70, ST120 and ST394. The heat map showed that 21 isolates were of 70% similarity, 9 groups were of 100% clonality. CONCLUSIONS The prevalence of non-O157 EHEC pathotype was marginally higher among the food isolates compared to the clinical ones. The endemic ST120 was detected in cheese, necessitating crucial measures to prevent the spread of this clone. Clinical EHEC isolates exhibited a higher score, and combination of virulence genes compared to food and sewage water isolates, thereby posing a significant public health concern.
Collapse
Affiliation(s)
- Omnia T Bahgat
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Dina E Rizk
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Hany I Kenawy
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Rasha Barwa
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
2
|
Nammuang D, Shen YW, Ke CH, Kuan NL, Lin CN, Yeh KS, Chang YC, Chang CY, Chang HW. Isolation and evaluation of the pathogenicity of a hybrid shiga toxin-producing and Enterotoxigenic Escherichia coli in pigs. BMC Vet Res 2024; 20:480. [PMID: 39434059 PMCID: PMC11492512 DOI: 10.1186/s12917-024-04317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/06/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Porcine pathogenic Escherichia coli (E. coli), the globally recognized important pathogen, causes significant economic loss in the field. Enterotoxigenic E. coli (ETEC) causes porcine neonatal and post-weaning diarrhea (PWD), frequently carrying F4 adhesin, F18 adhesin, Heat-Stable toxin (ST), and Heat-Labile toxin (LT). Shiga Toxin-Producing E. coli (STEC) produces F18 adhesin and Shiga toxin type 2e (stx2e), majorly leading to systemic endothelial cell damage and edema disease. In this study, hemolytic pathogenic hybrid STEC/ETEC strains carrying ST and LT genes of ETEC and the Stx2e gene of STEC isolated from pigs with PWD in Taiwan were identified. The pathogenicity of a Taiwan hybrid STEC/ETEC strain was evaluated by oral inoculation in post-weaning pigs. RESULTS Next generation sequencing and multilocus sequence typing of two hybrid Taiwan porcine STEC/ETEC isolates indicated that these two isolates were closely related to the ST88 porcine hybrid STEC/ETEC isolated from pigs with watery diarrhea. Furthermore, the two hybrid Taiwan porcine STEC/ETEC isolates also displayed combinations of multiple resistance genes encoding mechanisms for target modification and antibiotic inactivation. Animal experiments confirmed that the Taiwan hybrid STEC/ETEC could cause watery diarrhea in post-weaning pigs with no signs of edema disease and minimal histopathological lesions. CONCLUSION To the best of the authors' knowledge, the present study is the first study demonstrating intestinal pathogenicity of the hybrid STEC/ETEC in pigs. The result suggests that the hybrid STEC/ETEC should be considered as a new emerging pathogen and a new target for vaccine development.
Collapse
Affiliation(s)
- Danaya Nammuang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Yi-Wen Shen
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Chiao-Hsu Ke
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Nan-Ling Kuan
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
- Biology Division, Veterinary Research Institute, Ministry of Agriculture, Tamsui, New Taipei City, Taiwan
| | - Chao-Nan Lin
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Kuang-Sheng Yeh
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Taipei, 10617, Taiwan
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-Yu Chang
- College of Veterinary Medicine, Department of Veterinary Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Taipei, 10617, Taiwan.
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
3
|
Li Q, Dai JJ, Chen SY, Sun RY, Wang D, Bai SC, Wang MG, Sun J, Liao XP, Liu YH, Fang LX. Prevalence and molecular characteristics of intestinal pathogenic Escherichia coli isolated from diarrheal pigs in Southern China. Vet Microbiol 2024; 296:110171. [PMID: 38981202 DOI: 10.1016/j.vetmic.2024.110171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
Intestinal pathogenic Escherichia coli (InPEC) is one of the most common causes of bacterial diarrhea in farm animals, including profuse neonatal diarrhea and post weaning diarrhea (PWD) in piglets. In this study, we investigated the prevalence of InPEC and associated primary virulence factors among 543 non-duplicate E. coli isolates from diarrheal pigs from 15 swine farms in southern China. Six major virulence genes associated with InPEC were identified among 69 (12.71 %) E. coli isolates and included est (6.62 %), K88 (4.79 %), elt (3.68 %), eae (1.47 %), stx2 (0.92 %) and F18 (0.55 %). Three pathotypes of InPEC were identified including ETEC (8.10 %), EPEC (1.29 %) and STEC/ETEC (0.92 %). In particular, K88 was only found in ETEC from breeding farms, whereas F18 was only present in STEC/ETEC hybrid from finishing farms. Whole genome sequence analysis of 37 E. coli isolates revealed that InPEC strains frequently co-carried multiple antibiotic resistance gene (ARG). est, elt and F18 were also found to co-locate with ARGs on a single IncFIB/IncFII plasmid. InPEC isolates from different pathotypes also possessed different profiles of virulence genes and antimicrobial resistance genes. Population structure analysis demonstrated that InPEC isolates from different pathotypes were highly heterogeneous whereas those of the same pathotype were extremely similar. Plasmid analysis revealed that K88 and/or est/elt were found on pGX18-2-like/pGX203-2-like and pGX203-1-like IncFII plasmids, while F18 and elt/est, as well as diverse ARGs were found to co-locate on IncFII/IncFIB plasmids with a non-typical backbone. Moreover, these key virulence genes were flanked by or adjacent to IS elements. Our findings indicated that both clonal expansion and horizontal spread of epidemic IncFII plasmids contributed to the prevalence of InPEC and the specific virulence genes (F4, F18, elt and est) in the tested swine farms.
Collapse
Affiliation(s)
- Qian Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jing-Jing Dai
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Shu-Yi Chen
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ruan-Yang Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Dong Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Shuan-Cheng Bai
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Min-Ge Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses Yangzhou University, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses Yangzhou University, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses Yangzhou University, China
| | - Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses Yangzhou University, China.
| |
Collapse
|
4
|
Usein CR, Oprea M, Dinu S, Popa LI, Cristea D, Militaru CM, Ghiță A, Costin M, Popa IL, Croitoru A, Bologa C, Rusu LC. Shiga Toxin-Producing Escherichia coli Strains from Romania: A Whole Genome-Based Description. Microorganisms 2024; 12:1469. [PMID: 39065242 PMCID: PMC11278934 DOI: 10.3390/microorganisms12071469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The zoonotic Shiga toxin-producing Escherichia coli (STEC) group is unanimously regarded as exceptionally hazardous for humans. This study aimed to provide a genomic perspective on the STEC recovered sporadically from humans and have a foundation of internationally comparable data. Fifty clinical STEC isolates, representing the culture-confirmed infections reported by the STEC Reference Laboratory between 2016 and 2023, were subjected to whole-genome sequencing (WGS) analysis and sequences were interpreted using both commercial and public free bioinformatics tools. The WGS analysis revealed a genetically diverse population of STEC dominated by non-O157 serogroups commonly reported in human STEC infections in the European Union. The O26:H11 strains of ST21 lineage played a major role in the clinical disease resulting in hospitalisation and cases of paediatric HUS in Romania surpassing the O157:H7 strains. The latter were all clade 7 and mostly ST1804. Notably, among the Romanian isolates was a stx2a-harbouring cryptic clade I strain associated with a HUS case, stx2f- and stx2e-positive strains, and hybrid strains displaying a mixture of intestinal and extraintestinal virulence genes were found. As a clearer picture emerges of the STEC strains responsible for infections in Romania, further surveillance efforts are needed to uncover their prevalence, sources, and reservoirs.
Collapse
Affiliation(s)
- Codruța-Romanița Usein
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Mihaela Oprea
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Sorin Dinu
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Laura-Ioana Popa
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Daniela Cristea
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Cornelia-Mădălina Militaru
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Andreea Ghiță
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Mariana Costin
- Emergency Clinical Hospital for Children “M.S. Curie”, 041451 Bucharest, Romania; (M.C.); (I.-L.P.); (A.C.); (C.B.)
- Discipline Pediatrics—Emergency Clinical Hospital for Children M.S. Curie, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Ionela-Loredana Popa
- Emergency Clinical Hospital for Children “M.S. Curie”, 041451 Bucharest, Romania; (M.C.); (I.-L.P.); (A.C.); (C.B.)
- Discipline Pediatrics—Emergency Clinical Hospital for Children M.S. Curie, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Anca Croitoru
- Emergency Clinical Hospital for Children “M.S. Curie”, 041451 Bucharest, Romania; (M.C.); (I.-L.P.); (A.C.); (C.B.)
- Discipline Pediatrics—Emergency Clinical Hospital for Children M.S. Curie, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Cristina Bologa
- Emergency Clinical Hospital for Children “M.S. Curie”, 041451 Bucharest, Romania; (M.C.); (I.-L.P.); (A.C.); (C.B.)
| | - Lavinia-Cipriana Rusu
- National Centre for Communicable Diseases Prevention and Control, National Public Health Institute, 050463 Bucharest, Romania;
| |
Collapse
|
5
|
Wang X, Yu D, Chui L, Zhou T, Feng Y, Cao Y, Zhi S. A Comprehensive Review on Shiga Toxin Subtypes and Their Niche-Related Distribution Characteristics in Shiga-Toxin-Producing E. coli and Other Bacterial Hosts. Microorganisms 2024; 12:687. [PMID: 38674631 PMCID: PMC11052178 DOI: 10.3390/microorganisms12040687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Shiga toxin (Stx), the main virulence factor of Shiga-toxin-producing E. coli (STEC), was first discovered in Shigella dysenteriae strains. While several other bacterial species have since been reported to produce Stx, STEC poses the most significant risk to human health due to its widespread prevalence across various animal hosts that have close contact with human populations. Based on its biochemical and molecular characteristics, Shiga toxin can be grouped into two types, Stx1 and Stx2, among which a variety of variants and subtypes have been identified in various bacteria and host species. Interestingly, the different Stx subtypes appear to vary in their host distribution characteristics and in the severity of diseases that they are associated with. As such, this review provides a comprehensive overview on the bacterial species that have been recorded to possess stx genes to date, with a specific focus on the various Stx subtype variants discovered in STEC, their prevalence in certain host species, and their disease-related characteristics. This review provides a better understanding of the Stx subtypes and highlights the need for rapid and accurate approaches to toxin subtyping for the proper evaluation of the health risks associated with Shiga-toxin-related bacterial food contamination and human infections.
Collapse
Affiliation(s)
- Xuan Wang
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| | - Daniel Yu
- School of Public Health, Univeristy of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Linda Chui
- Alberta Precision Laboratories-ProvLab, Edmonton, AB T6G 2J2, Canada;
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Tiantian Zhou
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| | - Yu Feng
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| | - Yuhao Cao
- School of Basic Medical Sciences, Ningbo University, Ningbo 315000, China;
| | - Shuai Zhi
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| |
Collapse
|
6
|
Wang L, Bai X, Ylinen E, Zhang J, Saxén H, Matussek A. Genetic Characterization of Intimin Gene ( eae) in Clinical Shiga Toxin-Producing Escherichia coli Strains from Pediatric Patients in Finland. Toxins (Basel) 2023; 15:669. [PMID: 38133173 PMCID: PMC10748226 DOI: 10.3390/toxins15120669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) infections cause outbreaks of severe disease in children ranging from bloody diarrhea to hemolytic uremic syndrome (HUS). The adherent factor intimin, encoded by eae, can facilitate the colonization process of strains and is frequently associated with severe disease. The purpose of this study was to examine and analyze the prevalence and polymorphisms of eae in clinical STEC strains from pediatric patients under 17 years old with and without HUS, and to assess the pathogenic risk of different eae subtypes. We studied 240 STEC strains isolated from pediatric patients in Finland with whole genome sequencing. The gene eae was present in 209 (87.1%) strains, among which 49 (23.4%) were from patients with HUS, and 160 (76.6%) were from patients without HUS. O157:H7 (126, 60.3%) was the most predominant serotype among eae-positive STEC strains. Twenty-three different eae genotypes were identified, which were categorized into five eae subtypes, i.e., γ1, β3, ε1, θ and ζ3. The subtype eae-γ1 was significantly overrepresented in strains from patients aged 5-17 years, while β3 and ε1 were more commonly found in strains from patients under 5 years. All O157:H7 strains carried eae-γ1; among non-O157 strains, strains of each serotype harbored one eae subtype. No association was observed between the presence of eae/its subtypes and HUS. However, the combination of eae-γ1+stx2a was significantly associated with HUS. In conclusion, this study demonstrated a high occurrence and genetic variety of eae in clinical STEC from pediatric patients under 17 years old in Finland, and that eae is not essential for STEC-associated HUS. However, the combination of certain eae subtypes with stx subtypes, i.e., eae-γ1+stx2a, may be used as risk predictors for the development of severe disease in children.
Collapse
Affiliation(s)
- Lei Wang
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital and University of Oslo, 0372 Oslo, Norway; (L.W.); (X.B.)
- Jinan Center for Disease Control and Prevention, Jinan 250021, China
| | - Xiangning Bai
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital and University of Oslo, 0372 Oslo, Norway; (L.W.); (X.B.)
- Department of Clinical Microbiology, Division of Laboratory Medicine, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Elisa Ylinen
- Department of Pediatric Nephrology and Transplantation, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland; (E.Y.); (H.S.)
| | - Ji Zhang
- Fonterra Research and Development Centre, Dairy Farm Road, Palmerston North 4442, New Zealand;
| | - Harri Saxén
- Department of Pediatric Nephrology and Transplantation, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland; (E.Y.); (H.S.)
| | - Andreas Matussek
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital and University of Oslo, 0372 Oslo, Norway; (L.W.); (X.B.)
- Department of Clinical Microbiology, Division of Laboratory Medicine, Karolinska Institutet, 141 52 Stockholm, Sweden
| |
Collapse
|
7
|
Lin CS, Huang CH, Adi VSK, Huang CW, Cheng YI, Chen JH, Liu YC. A statistical approach to identify prevalent virulence factors responsible for post-weaning diarrhoeic piglets. VET MED-CZECH 2022; 67:430-439. [PMID: 38846158 PMCID: PMC11154881 DOI: 10.17221/84/2021-vetmed] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 04/12/2022] [Indexed: 06/09/2024] Open
Abstract
A statistical approach was carried out to identify the prevalent virulence factors responsible for post-weaning diarrhoea (PWD). Healthy piglets' faecal samples and diarrhoeic piglets' rectal swab specimens were secured. Twenty-six (26) and 100 independent enterotoxigenic Escherichia coli (ETEC) strains were subsequently isolated. These strains were assessed utilising polymerase chain reaction to identify the encoding genes of six virulence factors: heat-labile enterotoxin (LT; encoded by eltAB), heat-stable enterotoxin A (STa; encoded by estA), heat-stable enterotoxin B (STb; encoded by estB), enteroaggregative E. coli heat-stable enterotoxin 1 (EAST1; encoded by astA), Shiga toxin 2e (Stx2e; encoded by stx2e), and F18 fimbriae (encoded by fedA). The LT and ST secretions were investigated using enzyme-linked immunosorbent assays. From direct observation, no stx2e was evident in the 126 strains. Among the 26 strains retrieved from the healthy piglets, none harboured fedA or secreted LT; 23% (6/26) secreted ST, and 50% (13/26) carried astA. A statistical regression was applied on the 100 E. coli strains retrieved from the diarrhoeic piglets, where fedA was set as the dependent variable and the enterotoxin secretions were set as the independent variables. The results exhibit that the LT secretion was the only significant factor (P < 0.000 1) correlated to fedA in the diarrhoeic piglets; thus, it is concluded that the prevalent virulence factors for PWD were the ECET strain with F18 fimbriae adhesion and LT secretion, but not astA or stx2e.
Collapse
Affiliation(s)
- Chuan-Shun Lin
- Animal Technology Research Center, Agricultural Technology Research Institute, Taiwan, R.O.C
| | - Chiao-Hsia Huang
- Institute of Molecular Biology, National Chung Hsing University, Taiwan, R.O.C
| | | | - Chien-Wen Huang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taiwan, R.O.C
| | - Yen-I Cheng
- Institute of Molecular Biology, National Chung Hsing University, Taiwan, R.O.C
| | - Jiann-Hwa Chen
- Institute of Molecular Biology, National Chung Hsing University, Taiwan, R.O.C
| | - Yung-Chuan Liu
- Department of Chemical Engineering, National Chung Hsing University, Taiwan, R.O.C
| |
Collapse
|
8
|
Perrat A, Branchu P, Decors A, Turci S, Bayon-Auboyer MH, Petit G, Grosbois V, Brugère H, Auvray F, Oswald E. Wild Boars as Reservoir of Highly Virulent Clone of Hybrid Shiga Toxigenic and Enterotoxigenic Escherichia coli Responsible for Edema Disease, France. Emerg Infect Dis 2022; 28:382-393. [PMID: 35075992 PMCID: PMC8798679 DOI: 10.3201/eid2802.211491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Edema disease is an often fatal enterotoxemia caused by specific strains of Shiga toxin–producing Escherichia coli (STEC) that affect primarily healthy, rapidly growing nursery pigs. Recently, outbreaks of edema disease have also emerged in France in wild boars. Analysis of STEC strains isolated from wild boars during 2013–2019 showed that they belonged to the serotype O139:H1 and were positive for both Stx2e and F18 fimbriae. However, in contrast to classical STEC O139:H1 strains circulating in pigs, they also possessed enterotoxin genes sta1 and stb, typical of enterotoxigenic E. coli. In addition, the strains contained a unique accessory genome composition and did not harbor antimicrobial-resistance genes, in contrast to domestic pig isolates. These data thus reveal that the emergence of edema disease in wild boars was caused by atypical hybrid of STEC and enterotoxigenic E. coli O139:H1, which so far has been restricted to the wildlife environment.
Collapse
|
9
|
Yang X, Wu Y, Liu Q, Sun H, Luo M, Xiong Y, Matussek A, Hu B, Bai X. Genomic Characteristics of Stx2e-Producing Escherichia coli Strains Derived from Humans, Animals, and Meats. Pathogens 2021; 10:pathogens10121551. [PMID: 34959506 PMCID: PMC8705337 DOI: 10.3390/pathogens10121551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/14/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Shiga toxin (Stx) can be classified into two types, Stx1 and Stx2, and different subtypes. Stx2e is a subtype commonly causing porcine edema disease and rarely reported in humans. The purpose of this study was to analyze the prevalence and genetic characteristics of Stx2e-producing Escherichia coli (Stx2e-STEC) strains from humans compared to strains from animals and meats in China. Stx2e-STEC strains were screened from our STEC collection, and whole-genome sequencing was performed to characterize their genetic features. Our study showed a wide distribution of Stx2e-STEC among diverse hosts and a higher proportion of Stx2e-STEC among human STEC strains in China. Three human Stx2e-STEC isolates belonged to O100:H30, Onovel26:H30, and O8:H9 serotypes and varied in genetic features. Human Stx2e-STECs phylogenetically clustered with animal- and food-derived strains. Stx2e-STEC strains from animals and meat showed multidrug resistance, while human strains were only resistant to azithromycin and tetracycline. Of note, a high proportion (55.9%) of Stx2e-STEC strains, including one human strain, carried the heat-stable and heat-labile enterotoxin-encoding genes st and lt, exhibiting a STEC/enterotoxigenic E. coli (ETEC) hybrid pathotype. Given that no distinct genetic feature was found in Stx2e-STEC strains from different sources, animal- and food-derived strains may pose the risk of causing human disease.
Collapse
Affiliation(s)
- Xi Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.Y.); (Q.L.); (H.S.); (Y.X.)
| | - Yannong Wu
- Yulin Center for Disease Control and Prevention, Yulin 537000, China; (Y.W.); (M.L.)
| | - Qian Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.Y.); (Q.L.); (H.S.); (Y.X.)
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.Y.); (Q.L.); (H.S.); (Y.X.)
| | - Ming Luo
- Yulin Center for Disease Control and Prevention, Yulin 537000, China; (Y.W.); (M.L.)
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.Y.); (Q.L.); (H.S.); (Y.X.)
| | - Andreas Matussek
- Division of Laboratory, Medicine Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway;
- Division of Laboratory Medicine, Oslo University Hospital, 0372 Oslo, Norway
| | - Bin Hu
- Shandong Center for Disease Control and Prevention, Jinan 250014, China
- Correspondence: (B.H.); (X.B.)
| | - Xiangning Bai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.Y.); (Q.L.); (H.S.); (Y.X.)
- Division of Laboratory Medicine, Oslo University Hospital, 0372 Oslo, Norway
- Correspondence: (B.H.); (X.B.)
| |
Collapse
|
10
|
Zhang H, Yamamoto E, Murphy J, Carrillo C, Locas A. Shiga Toxin-Producing Escherichia coli (STEC) and STEC-Associated Virulence Genes in Raw Ground Pork in Canada. J Food Prot 2021; 84:1956-1964. [PMID: 34197587 DOI: 10.4315/jfp-21-147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/01/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Shiga toxin-producing Escherichia coli (STEC) O157:H7/nonmotile and some non-O157 STEC strains are foodborne pathogens. In response to pork-associated O157 STEC outbreaks in Canada, we investigated the occurrence of STEC in Canadian retail raw ground pork during the period of 1 November 2014 to 31 March 2016. Isolated STEC strains were characterized to determine the Shiga toxin gene (stx) subtype and the presence of virulence genes encoding intimin (eae) and enterohemorrhagic E. coli hemolysin (hlyA). O157 STEC and non-O157 STEC strains were isolated from 1 (0.11%) of 879 and 13 (2.24%) of 580 pork samples, respectively. STEC virulence gene profiles containing both eae and hlyA were found only in the O157 STEC (stx2a, eae, hlyA) isolate. The eae gene was absent from all non-O157 STEC isolates. Of the 13 non-O157 STEC isolates, two virulence genes of stx1a and hlyA were found in four (30.8%) O91:H14 STEC isolates, whereas one virulence gene of stx2e, stx1a, and stx2a was identified in five (38.5%), two (15.4%), and one (7.7%) STEC isolates, respectively, of various serotypes. The remaining non-O157 STEC isolate carried stx2, but the subtype is unknown because this isolate could not be recovered for sequencing. O91:H14 STEC (stx1a, hlyA) was previously reported in association with diarrheal illnesses, whereas the other non-O157 STEC isolates identified in this study are not known to be associated with severe human illnesses. Virulence gene profiles identified in this study indicate that the occurrence of non-O157 STEC capable of causing severe human illness is rare in Canadian retail pork. However, O157 STEC in ground pork can occasionally occur; therefore, education regarding the potential risks associated with STEC contamination of pork would be beneficial for the public and those in the food industry to help reduce foodborne illnesses. HIGHLIGHTS
Collapse
Affiliation(s)
- Helen Zhang
- Food Safety Science Directorate, Science Branch, Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| | - Etsuko Yamamoto
- Food Safety Science Directorate, Science Branch, Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| | - Johanna Murphy
- Food Safety Science Directorate, Science Branch, Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| | - Catherine Carrillo
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Building 22, CEF 960 Carling Avenue, Ottawa, Ontario, Canada K1A 0Y9
| | - Annie Locas
- Food Safety Science Directorate, Science Branch, Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| |
Collapse
|
11
|
Translational Approach to Induce and Evaluate Verocytotoxic E. coli O138 Based Disease in Piglets. Animals (Basel) 2021; 11:ani11082415. [PMID: 34438872 PMCID: PMC8388622 DOI: 10.3390/ani11082415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 01/21/2023] Open
Abstract
Simple Summary The aim of the study was to set up experimental conditions to simulate the simultaneous outbreak of post-weaning diarrhea and enterotoxaemia in weaned piglets, through verocytotoxic O138 Escherichia coli challenge. Zootechnical, clinical, microbiological, histological and immunological parameters were evaluated along the follow-up of control and infected groups. Results showed that experimental infection significantly affected the clinical status. Infected animals showed significant higher total median scores of epiphora, vitality, hair irregularity, oedema and depression; in addition, they displayed evident inflammatory infiltrate of lymphocytes, and follicular hyperplasia, increase of IgG in the intestinal crypts and CD3-positive T cells in intestinal epithelium. The infection model, carried out on receptor-mediated susceptible piglets, allowed to identify a discriminative panel of clinical symptoms related to Escherichia coli O138 infection and could be used to assess the protective effect of antibiotic alternatives. Abstract Pig livestock was influenced by several global concerns that imposed a re-thinking of the farming system, which included the reduction in chemical dependency and the development of antimicrobial alternatives. Post-weaning diarrhea and enterotoxaemia caused by Escherichia coli, are serious threats that are responsible for the economic losses related to mortality, morbidity and stunted growth in weaning piglets. The aim of the study was to set up experimental conditions to simulate the simultaneous outbreak of post-weaning diarrhea and enterotoxaemia in weaned piglets, through verocytotoxic O138 Escherichia coli challenge, with a multidisciplinary approach. Eighteen piglets susceptible to F18 VTEC infection were selected by polymerase chain reaction for polymorphism on the fucosyltransferase 1 gene and randomly divided in two experimental groups, non-infected controls (C; n = 6) and infected ones (I; n = 12) and housed into individual pens at the same environmental conditions for 29 days. At day 20, I pigs were orally inoculated with Escherichia coli O138 and fed a high protein ration for 3 days. Zootechnical, clinical, microbiological, histological and immunological parameters were evaluated along the follow up (3 and 9 days). Experimental infection, confirmed by bacteria faecal shedding of the I group, significantly affected the clinical status. The I group showed significantly higher total scores, corresponding to medians of the sum of daily scores from days 1 to 3 (Σ3) and 1 to 9 (Σ9) post infection, epiphora, vitality, hair irregularity, oedema and depression. Histological examination showed evident inflammatory infiltrate of lymphocytes, and follicular hyperplasia in I pigs; in the same group, the immunohistochemical and immunological assays revealed an increase in IgG in the intestinal crypts and CD3-positive T cells in intestinal epithelium. The experimental Escherichia coli infection in controlled conditions is crucial for both the evaluation of innovative compounds and the elucidation of the mechanisms associated with the persistence of antibacterial resistant strains. In conclusion, the adopted infection model, carried out on receptor-mediated susceptible piglets, allowed us to identify a discriminative panel of clinical symptoms related to Escherichia coli O138 infection, and could be used to assess the protective effect of antibiotic alternatives.
Collapse
|
12
|
He WY, Zhang XX, Gao GL, Gao MY, Zhong FG, Lv LC, Cai ZP, Si XF, Yang J, Liu JH. Clonal spread of Escherichia coli O101: H9-ST10 and O101: H9-ST167 strains carrying fosA3 and bla CTX-M-14 among diarrheal calves in a Chinese farm, with Australian Chroicocephalus as the possible origin of E. coli O101: H9-ST10. Zool Res 2021; 42:461-468. [PMID: 34156173 PMCID: PMC8317193 DOI: 10.24272/j.issn.2095-8137.2021.153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
During a 2018 antimicrobial resistance surveillance of Escherichia coli isolates from diarrheal calves in Xinjiang Province, China, an unexpectedly high prevalence (48.5%) of fosfomycin resistance was observed. This study aimed to reveal the determinants of fosfomycin resistance and the underlying transmission mechanism. Polymerase chain reaction (PCR) screening showed that all fosfomycin-resistant E. coli carried the fosA3 gene. Pulsed-field gel electrophoresis (PFGE) and southern blot hybridization revealed that the 16 fosA3-positive isolates belonged to four different PFGE patterns (i.e., A, B, C, D). The fosA3 genes of 11 clonally related strains (pattern D) were located on the chromosome, while others were carried by plasmids. Whole-genome and long-read sequencing indicated that the pattern D strains were E. coli O101:H9-ST10, and the pattern C, B, and A strains were O101:H9-ST167, O8:H30-ST1431, and O101:H9 with unknown ST, respectively. Among the pattern C strains, the blaCTX-M-14 gene was co-localized with the fosA3 gene on the F18:A-:B1 plasmids. Interestingly, phylogenetic analysis based on core genome single nucleotide polymorphisms (cgSNPs) showed that the O101:H9-ST10 strains were closely related to a Australian-isolated Chroicocephalus-origin E. coli O101:H9-ST10 strain producing CTX-M-14 and FosA3, with a difference of only 11 SNPs. These results indicate possible international dissemination of the high-risk E. coli clone O101:H9-ST10 by migratory birds.
Collapse
Affiliation(s)
- Wan-Yun He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Xing-Xing Zhang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, 832000, China
| | - Guo-Long Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Ming-Yi Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Fa-Gang Zhong
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, 832000, China
| | - Lu-Chao Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Zhong-Peng Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Xing-Feng Si
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jun Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China. E-mail:
| | - Jian-Hua Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China. E-mail:
| |
Collapse
|
13
|
Locus of Heat Resistance (LHR) in Meat-Borne Escherichia coli: Screening and Genetic Characterization. Appl Environ Microbiol 2021; 87:AEM.02343-20. [PMID: 33483306 DOI: 10.1128/aem.02343-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/12/2021] [Indexed: 11/20/2022] Open
Abstract
Microbial resistance to processing treatments poses a food safety concern, as treatment tolerant pathogens can emerge. Occasional foodborne outbreaks caused by pathogenic Escherichia coli have led to human and economic losses. Therefore, this study screened for the extreme heat resistance (XHR) phenotype as well as one known genetic marker, the locus of heat resistance (LHR), in 4,123 E. coli isolates from diverse meat animals at different processing stages. The prevalences of XHR and LHR among the meat-borne E. coli were found to be 10.3% and 11.4%, respectively, with 19% agreement between the two. Finished meat products showed the highest LHR prevalence (24.3%) compared to other processing stages (0 to 0.6%). None of the LHR+ E. coli in this study would be considered pathogens based on screening for virulence genes. Four high-quality genomes were generated by whole-genome sequencing of representative LHR+ isolates. Nine horizontally acquired LHRs were identified and characterized, four plasmid-borne and five chromosomal. Nine newly identified LHRs belong to ClpK1 LHR or ClpK2 LHR variants sharing 61 to 68% nucleotide sequence identity, while one LHR appears to be a hybrid. Our observations suggest positive correlation between the number of LHR regions present in isolates and the extent of heat resistance. The isolate exhibiting the highest degree of heat resistance possessed four LHRs belonging to three different variant groups. Maintenance of as many as four LHRs in a single genome emphasizes the benefits of the LHR in bacterial physiology and stress response.IMPORTANCE Currently, a "multiple-hurdle" approach based on a combination of different antimicrobial interventions, including heat, is being utilized during meat processing to control the burden of spoilage and pathogenic bacteria. Our recent study (M. Guragain, G. E. Smith, D. A. King, and J. M. Bosilevac, J Food Prot 83:1438-1443, 2020, https://doi.org/10.4315/JFP-20-103) suggests that U.S. beef cattle harbor Escherichia coli that possess the locus of heat resistance (LHR). LHR seemingly contributes to the global stress tolerance in bacteria and hence poses a food safety concern. Therefore, it is important to understand the distribution of the LHRs among meat-borne bacteria identified at different stages of different meat processing systems. Complete genome sequencing and comparative analysis of selected heat-resistant bacteria provide a clearer understanding of stress and heat resistance mechanisms. Further, sequencing data may offer a platform to gain further insights into the genetic background that provides optimal bacterial tolerance against heat and other processing treatments.
Collapse
|
14
|
García A, Fox JG. A One Health Perspective for Defining and Deciphering Escherichia coli Pathogenic Potential in Multiple Hosts. Comp Med 2021; 71:3-45. [PMID: 33419487 PMCID: PMC7898170 DOI: 10.30802/aalas-cm-20-000054] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 09/19/2020] [Indexed: 11/05/2022]
Abstract
E. coli is one of the most common species of bacteria colonizing humans and animals. The singularity of E. coli 's genus and species underestimates its multifaceted nature, which is represented by different strains, each with different combinations of distinct virulence factors. In fact, several E. coli pathotypes, or hybrid strains, may be associated with both subclinical infection and a range of clinical conditions, including enteric, urinary, and systemic infections. E. coli may also express DNA-damaging toxins that could impact cancer development. This review summarizes the different E. coli pathotypes in the context of their history, hosts, clinical signs, epidemiology, and control. The pathotypic characterization of E. coli in the context of disease in different animals, including humans, provides comparative and One Health perspectives that will guide future clinical and research investigations of E. coli infections.
Collapse
Key Words
- aa, aggregative adherence
- a/e, attaching and effacing
- aepec, atypical epec
- afa, afimbrial adhesin
- aida-i, adhesin involved in diffuse adherence
- aiec, adherent invasive e. coli
- apec, avian pathogenic e. coli
- atcc, american type culture collection
- bfp, bundle-forming pilus
- cd, crohn disease
- cdt, cytolethal distending toxin gene
- clb, colibactin
- cnf, cytotoxic necrotizing factor
- cs, coli surface (antigens)
- daec, diffusely adhering e. coli
- db, dutch belted
- eae, e. coli attaching and effacing gene
- eaec, enteroaggregative e. coli
- eaf, epec adherence factor (plasmid)
- eahec, entero-aggregative-hemorrhagic e. coli
- east-1, enteroaggregative e. coli heat-stable enterotoxin
- e. coli, escherichia coli
- ed, edema disease
- ehec, enterohemorrhagic e. coli
- eiec, enteroinvasive e. coli
- epec, enteropathogenic e. coli
- esbl, extended-spectrum β-lactamase
- esp, e. coli secreted protein
- etec, enterotoxigenic e. coli
- expec, extraintestinal pathogenic e. coli
- fyua, yersiniabactin receptor gene
- gi, gastrointestinal
- hly, hemolysin
- hus, hemolytic uremic syndrome
- ibd, inflammatory bowel disease
- la, localized adherence
- lee, locus of enterocyte effacement
- lpf, long polar fimbriae
- lt, heat-labile (enterotoxin)
- mlst, multilocus sequence typing
- ndm, new delhi metallo-β-lactamase
- nzw, new zealand white
- pap, pyelonephritis-associated pilus
- pks, polyketide synthase
- sfa, s fimbrial adhesin
- slt, shiga-like toxin
- st, heat-stable (enterotoxin)
- stec, stx-producing e. coli
- stx, shiga toxin
- tepec, typical epec
- upec, uropathogenic e. coli
- uti, urinary tract infection
Collapse
Affiliation(s)
- Alexis García
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts;,
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
15
|
Barth SA, Bauerfeind R, Berens C, Menge C. Shiga Toxin-Producing E. coli in Animals: Detection, Characterization, and Virulence Assessment. Methods Mol Biol 2021; 2291:19-86. [PMID: 33704748 DOI: 10.1007/978-1-0716-1339-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cattle and other ruminants are primary reservoirs for Shiga toxin-producing Escherichia coli (STEC) strains which have a highly variable, but unpredictable, pathogenic potential for humans. Domestic swine can carry and shed STEC, but only STEC strains producing the Shiga toxin (Stx) 2e variant and causing edema disease in piglets are considered pathogens of veterinary medical interest. In this chapter, we present general diagnostic workflows for sampling livestock animals to assess STEC prevalence, magnitude, and duration of host colonization. This is followed by detailed method protocols for STEC detection and typing at genetic and phenotypic levels to assess the relative virulence exerted by the strains.
Collapse
Affiliation(s)
- Stefanie A Barth
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Rolf Bauerfeind
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University Gießen, Gießen, Germany
| | - Christian Berens
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany.
| |
Collapse
|
16
|
Sabala RF, Usui M, Tamura Y, Abd-Elghany SM, Sallam KI, Elgazzar MM. Prevalence of colistin-resistant Escherichia coli harbouring mcr-1 in raw beef and ready-to-eat beef products in Egypt. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Goldstein J, Nuñez-Goluboay K, Pinto A. Therapeutic Strategies to Protect the Central Nervous System against Shiga Toxin from Enterohemorrhagic Escherichia coli. Curr Neuropharmacol 2021; 19:24-44. [PMID: 32077828 PMCID: PMC7903495 DOI: 10.2174/1570159x18666200220143001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/20/2020] [Accepted: 02/19/2020] [Indexed: 11/23/2022] Open
Abstract
Infection with Shiga toxin-producing Escherichia coli (STEC) may cause hemorrhagic colitis, hemolytic uremic syndrome (HUS) and encephalopathy. The mortality rate derived from HUS adds up to 5% of the cases, and up to 40% when the central nervous system (CNS) is involved. In addition to the well-known deleterious effect of Stx, the gram-negative STEC releases lipopolysaccharides (LPS) and may induce a variety of inflammatory responses when released in the gut. Common clinical signs of severe CNS injury include sensorimotor, cognitive, emotional and/or autonomic alterations. In the last few years, a number of drugs have been experimentally employed to establish the pathogenesis of, prevent or treat CNS injury by STEC. The strategies in these approaches focus on: 1) inhibition of Stx production and release by STEC, 2) inhibition of Stx bloodstream transport, 3) inhibition of Stx entry into the CNS parenchyma, 4) blockade of deleterious Stx action in neural cells, and 5) inhibition of immune system activation and CNS inflammation. Fast diagnosis of STEC infection, as well as the establishment of early CNS biomarkers of damage, may be determinants of adequate neuropharmacological treatment in time.
Collapse
Affiliation(s)
- Jorge Goldstein
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica “Houssay” (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Argentina
| | - Krista Nuñez-Goluboay
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica “Houssay” (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Argentina
| | - Alipio Pinto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica “Houssay” (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Argentina
| |
Collapse
|
18
|
Nastasijevic I, Schmidt JW, Boskovic M, Glisic M, Kalchayanand N, Shackelford SD, Wheeler TL, Koohmaraie M, Bosilevac JM. Seasonal Prevalence of Shiga Toxin-Producing Escherichia coli on Pork Carcasses for Three Steps of the Harvest Process at Two Commercial Processing Plants in the United States. Appl Environ Microbiol 2020; 87:e01711-20. [PMID: 33067201 PMCID: PMC7755256 DOI: 10.1128/aem.01711-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/08/2020] [Indexed: 12/30/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen that has a significant impact on public health, with strains possessing the attachment factor intimin referred to as enterohemorrhagic E. coli (EHEC) and associated with life-threatening illnesses. Cattle and beef are considered typical sources of STEC, but their presence in pork products is a growing concern. Therefore, carcasses (n = 1,536) at two U.S. pork processors were sampled once per season at three stages of harvest (poststunning skins, postscald carcasses, and chilled carcasses) and then examined using PCR for Shiga toxin genes (stx), intimin genes (eae), aerobic plate count (APC), and Enterobacteriaceae counts (EBC). The prevalence of stx on skins, postscald, and chilled carcasses was 85.3, 17.5, and 5.4%, respectively, with 82.3, 7.8, and 1.7% of swabs, respectively, having stx and eae present. All stx-positive samples were subjected to culture isolation that resulted in 368 STEC and 46 EHEC isolates. The most frequently identified STEC were serogroups O121, O8, and O91 (63, 6.7, and 6.0% of total STEC, respectively). The most frequently isolated EHEC was serotype O157:H7 (63% of total EHEC). Results showed that scalding significantly reduced (P < 0.05) carcass APC and EBC by 3.00- and 2.50-log10 CFU/100 cm2, respectively. A seasonal effect was observed, with STEC prevalence lower (P < 0.05) in winter. The data from this study show significant (P < 0.05) reduction in the incidence of STEC (stx) from 85.3% to 5.4% and of EHEC (stx plus eae) from 82.3% to 1.7% within the slaughter-to-chilling continuum, respectively, and that potential EHEC can be confirmed present throughout using culture isolation.IMPORTANCE Seven serogroups of STEC are responsible for most (>75%) cases of severe illnesses caused by STEC and are considered adulterants of beef. However, some STEC outbreaks have been attributed to pork products, although the same E. coli are not considered adulterants in pork because little is known of their prevalence along the pork chain. The significance of the work presented here is that it identifies disease-causing STEC, EHEC, demonstrating that these same organisms are a food safety hazard in pork as well as beef. The results show that most STEC isolated from pork are not likely to cause severe disease in humans and that processes used in pork harvest, such as scalding, offer a significant control point to reduce contamination. The results will assist the pork processing industry and regulatory agencies to optimize interventions to improve the safety of pork products.
Collapse
Affiliation(s)
| | - John W Schmidt
- USDA ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Marija Boskovic
- Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Glisic
- Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | | | | | - Tommy L Wheeler
- USDA ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | | | | |
Collapse
|
19
|
Johanns VC, Epping L, Semmler T, Ghazisaeedi F, Lübke-Becker A, Pfeifer Y, Eichhorn I, Merle R, Bethe A, Walther B, Wieler LH. High-Zinc Supplementation of Weaned Piglets Affects Frequencies of Virulence and Bacteriocin Associated Genes Among Intestinal Escherichia coli Populations. Front Vet Sci 2020; 7:614513. [PMID: 33392299 PMCID: PMC7772137 DOI: 10.3389/fvets.2020.614513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022] Open
Abstract
To prevent economic losses due to post-weaning diarrhea (PWD) in industrial pig production, zinc (Zn) feed additives have been widely used, especially since awareness has risen that the regular application of antibiotics promotes buildup of antimicrobial resistance in both commensal and pathogenic bacteria. In a previous study on 179 Escherichia coli collected from piglets sacrificed at the end of a Zn feeding trial, including isolates obtained from animals of a high-zinc fed group (HZG) and a corresponding control group (CG), we found that the isolate collection exhibited three different levels of tolerance toward zinc, i.e., the minimal inhibitory concentration (MIC) detected was 128, followed by 256 and 512 μg/ml ZnCl2. We further provided evidence that enhanced zinc tolerance in porcine intestinal E. coli populations is clearly linked to excessive zinc feeding. Here we provide insights about the genomic make-up and phylogenetic background of these 179 E. coli genomes. Bayesian analysis of the population structure (BAPS) revealed a lack of association between the actual zinc tolerance level and a particular phylogenetic E. coli cluster or even branch for both, isolates belonging to the HZG and CG. In addition, detection rates for genes and operons associated with virulence (VAG) and bacteriocins (BAG) were lower in isolates originating from the HZG (41 vs. 65% and 22 vs. 35%, p < 0.001 and p = 0.002, resp.). Strikingly, E. coli harboring genes defining distinct pathotypes associated with intestinal disease, i.e., enterotoxigenic, enteropathogenic, and Shiga toxin-producing E. coli (ETEC, EPEC, and STEC) constituted 1% of the isolates belonging to the HZG but 14% of those from the CG. Notably, these pathotypes were positively associated with enhanced zinc tolerance (512 μg/ml ZnCl2 MIC, p < 0.001). Taken together, zinc excess seems to influence carriage rates of VAGs and BAGs in porcine intestinal E. coli populations, and high-zinc feeding is negatively correlated with enteral pathotype occurrences, which might explain earlier observations concerning the relative increase of Enterobacterales considering the overall intestinal microbiota of piglets during zinc feeding trials while PWD rates have decreased.
Collapse
Affiliation(s)
- Vanessa C. Johanns
- Advanced Light and Electron Microscopy (ZBS-4), Robert Koch Institute, Berlin, Germany
| | - Lennard Epping
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | - Fereshteh Ghazisaeedi
- Center for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Antina Lübke-Becker
- Center for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Yvonne Pfeifer
- Nosocomial Pathogens and Antibiotic Resistance (FG13), Robert Koch Institute, Wernigerode, Germany
| | - Inga Eichhorn
- Center for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Roswitha Merle
- Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany
| | - Astrid Bethe
- Center for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Birgit Walther
- Advanced Light and Electron Microscopy (ZBS-4), Robert Koch Institute, Berlin, Germany
| | | |
Collapse
|
20
|
Remfry SE, Amachawadi RG, Shi X, Bai J, Woodworth JC, Tokach MD, Dritz SS, Goodband RD, DeRouchey JM, Nagaraja TG. Polymerase Chain Reaction-Based Prevalence of Serogroups of Escherichia coli Known to Carry Shiga Toxin Genes in Feces of Finisher Pigs. Foodborne Pathog Dis 2020; 17:782-791. [PMID: 32833570 DOI: 10.1089/fpd.2020.2814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are major foodborne pathogens and seven serogroups, O26, O45, O103, O111, O121, O145, and O157, that account for the majority of the STEC-associated illness in humans. Similar to cattle, swine also harbor STEC and shed them in the feces and can be a source of human STEC infections. Information on the prevalence of STEC in swine feces is limited. Therefore, our objective was to utilize polymerase chain reaction (PCR) assays to determine prevalence of major virulence genes and serogroups of STEC. Fecal samples (n = 598), collected from finisher pigs within 3 weeks before marketing in 10 pig flows located in 8 states, were included in the study. Samples enriched in E. coli broth were subjected to a real-time PCR assay targeting three virulence genes, Shiga toxin 1 (stx1), Shiga toxin 2 (stx2), and intimin (eae), which encode for Shiga toxins 1 and 2, and intimin, respectively. A novel PCR assay was designed and validated to detect serogroups, O8, O20, O59, O86, O91, O100, O120, and O174, previously reported to be commonly present in swine feces. In addition, enriched fecal samples positive for Shiga toxin genes were subjected to a multiplex PCR assay targeting O26, O45, O103, O104, O111, O121, O145, and O157 serogroups implicated in human clinical infections. Of the 598 fecal samples tested by real-time PCR, 25.9%, 65.1%, and 67% were positive for stx1, stx2, and eae, respectively. The novel eight-plex PCR assay indicated the predominant prevalence of O8 (88.6%), O86 (35.5%), O174 (24.1%), O100 (20.2%), and O91 (15.6%) serogroups. Among the seven serogroups relevant to human infections, three serogroups, O121 (17.6%), O157 (14%), and O26 (11%) were predominant. PCR-based detection indicated high prevalence of Shiga toxin genes and serogroups that are known to carry Shiga toxin genes, including serogroups commonly prevalent in cattle feces and implicated in human infections and in edema disease in swine.
Collapse
Affiliation(s)
- Sarah E Remfry
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Raghavendra G Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Xiaorong Shi
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Jianfa Bai
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, Kansas, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Steve S Dritz
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Robert D Goodband
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Tiruvoor G Nagaraja
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
21
|
Santos ACDM, Santos FF, Silva RM, Gomes TAT. Diversity of Hybrid- and Hetero-Pathogenic Escherichia coli and Their Potential Implication in More Severe Diseases. Front Cell Infect Microbiol 2020; 10:339. [PMID: 32766163 PMCID: PMC7381148 DOI: 10.3389/fcimb.2020.00339] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
Although extraintestinal pathogenic Escherichia coli (ExPEC) are designated by their isolation site and grouped based on the type of host and the disease they cause, most diarrheagenic E. coli (DEC) are subdivided into several pathotypes based on the presence of specific virulence traits directly related to disease development. This scenario of a well-categorized E. coli collapsed after the German outbreak of 2011, caused by one strain bearing the virulence factors of two different DEC pathotypes (enteroaggregative E. coli and Shiga toxin-producing E. coli). Since the outbreak, many studies have shown that this phenomenon is more frequent than previously realized. Therefore, the terms hybrid- and hetero-pathogenic E. coli have been coined to describe new combinations of virulence factors among the classic E. coli pathotypes. In this review, we provide an overview of these classifications and highlight the E. coli genomic plasticity that results in some mixed E. coli pathotypes displaying novel pathogenic strategies, which lead to a new symptomatology related to E. coli diseases. In addition, as the capacity for genome interrogation has grown in the last few years, it is clear that genes encoding some virulence factors, such as Shiga toxin, are found among different E. coli pathotypes to which they have not traditionally been associated, perhaps foreshowing their emergence in new and severe outbreaks caused by such hybrid strains. Therefore, further studies regarding hetero-pathogenic and hybrid-pathogenic E. coli isolates are necessary to better understand and control the spread of these pathogens.
Collapse
Affiliation(s)
- Ana Carolina de Mello Santos
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda Fernandes Santos
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rosa Maria Silva
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tânia Aparecida Tardelli Gomes
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Wieczorek K, Osek J. Identification and molecular characteristics of verotoxin-producing Escherichia coli (VTEC) from bovine and pig carcasses isolated in Poland during 2014-2018. Food Microbiol 2020; 92:103587. [PMID: 32950170 DOI: 10.1016/j.fm.2020.103587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/04/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022]
Abstract
The presence of verotoxin-producing Escherichia coli (VTEC) on bovine (n = 330) and pig (n = 120) carcasses in Poland was investigated using the ISO/TS 13136 standard. A total of 115 (34.8%) and 37 (30.8%) cattle and pig samples were positive in real-time PCR, respectively. Isolation of the bacteria revealed that from bovine carcasses 37 (32.2%) VTEC were obtained whereas only 5 (13.5%) pig carcasses were positive for the stx gene. The VTEC were characterized using whole genome sequencing (WGS) and bovine isolates were classified into 25 serotypes with the most prevalent O113:H21 (5 strains) whereas pig strains belonged to 5 different serotypes which were not identified among cattle strains. The majority of bovine VTEC (35; 94.6% isolates) were positive for the stx2 gene, either alone or together with the stx1 gene. All strains isolated from pig carcasses resulted positive for the stx2 gene only. Only two isolates of bovine origin contained the eaeA intimin gene, together with the ehxA and lpfA markers. VTEC were highly molecularly diverse as shown by classification into 29 different MLST STs. The obtained results suggest that further studies related to cattle and pig carcasses are needed to assess the role of these sources for human VTEC infections.
Collapse
Affiliation(s)
- Kinga Wieczorek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland
| | - Jacek Osek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland.
| |
Collapse
|
23
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Jenkins C, Monteiro Pires S, Morabito S, Niskanen T, Scheutz F, da Silva Felício MT, Messens W, Bolton D. Pathogenicity assessment of Shiga toxin‐producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. EFSA J 2020. [DOI: 10.2903/j.efsa.2020.5967] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
24
|
Dubreuil JD. EAST1 toxin: An enigmatic molecule associated with sporadic episodes of diarrhea in humans and animals. J Microbiol 2019; 57:541-549. [PMID: 31016564 DOI: 10.1007/s12275-019-8651-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/10/2019] [Accepted: 02/07/2019] [Indexed: 11/27/2022]
Abstract
EAST1 is produced by a subset of enteroaggregative Escherichia coli strains. This toxin is a 38-amino acid peptide of 4100 Da. It shares 50% homology with the enterotoxic domain of STa and interacts with the same receptor. The mechanism of action of EAST1is proposed to be identical to that of STa eliciting a cGMP increase. EAST1 is associated with diarrheal disease in Man and various animal species including cattle and swine. Nevertheless, as EAST1-positive strains as well as culture supernatants did not provoke unequivocally diarrhea either in animal models or in human volunteers, the role of this toxin in disease is today still debated. This review intent is to examine the role of EAST1 toxin in diarrheal illnesses.
Collapse
Affiliation(s)
- J Daniel Dubreuil
- Faculté de médecine vétérinaire, Université de Montréal, Montréal, Québec, J2S 2M2, Canada.
| |
Collapse
|
25
|
Urbanization Impacts the Physicochemical Characteristics and Abundance of Fecal Markers and Bacterial Pathogens in Surface Water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16101739. [PMID: 31100947 PMCID: PMC6572354 DOI: 10.3390/ijerph16101739] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/29/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022]
Abstract
Urbanization is increasing worldwide and is happening at a rapid rate in China in line with economic development. Urbanization can lead to major changes in freshwater environments through multiple chemical and microbial contaminants. We assessed the impact of urbanization on physicochemical characteristics and microbial loading in canals in Suzhou, a city that has experienced rapid urbanization in recent decades. Nine sampling locations covering three urban intensity classes (high, medium and low) in Suzhou were selected for field studies and three locations in Huangshan (natural reserve) were included as pristine control locations. Water samples were collected for physicochemical, microbiological and molecular analyses. Compared to medium and low urbanization sites, there were statistically significant higher levels of nutrients and total and thermotolerant coliforms (or fecal coliforms) in highly urbanized locations. The effect of urbanization was also apparent in the abundances of human-associated fecal markers and bacterial pathogens in water samples from highly urbanized locations. These results correlated well with land use types and anthropogenic activities at the sampling sites. The overall results indicate that urbanization negatively impacts water quality, providing high levels of nutrients and a microbial load that includes fecal markers and pathogens.
Collapse
|
26
|
Vadde KK, McCarthy AJ, Rong R, Sekar R. Quantification of Microbial Source Tracking and Pathogenic Bacterial Markers in Water and Sediments of Tiaoxi River (Taihu Watershed). Front Microbiol 2019; 10:699. [PMID: 31105648 PMCID: PMC6492492 DOI: 10.3389/fmicb.2019.00699] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Abstract
Taihu Lake is one of the largest freshwater lakes in China, serving as an important source of drinking water; >60% of source water to this lake is provided by the Tiaoxi River. This river faces serious fecal contamination issues, and therefore, a comprehensive investigation to identify the sources of fecal contamination was carried out and is presented here. The performance of existing universal (BacUni and GenBac), human (HF183-Taqman, HF183-SYBR, BacHum, and Hum2), swine (Pig-2-Bac), ruminant (BacCow), and avian (AV4143 and GFD) associated microbial source tracking (MST) markers was evaluated prior to their application in this region. The specificity and sensitivity results indicated that BacUni, HF183-TaqMan, Pig-2-Bac, and GFD assays are the most suitable in identifying human and animal fecal contamination. Therefore, these markers along with marker genes specific to selected bacterial pathogens were quantified in water and sediment samples of the Tiaoxi River, collected from 15 locations over three seasons during 2014 and 2015. Total/universal Bacteroidales markers were detected in all water and sediment samples (mean concentration 6.22 log10 gene copies/100 ml and 6.11 log10 gene copies/gram, respectively), however, the detection of host-associated MST markers varied. Human and avian markers were the most frequently detected in water samples (97 and 89%, respectively), whereas in sediment samples, only human-associated markers were detected more often (86%) than swine (64%) and avian (8.8%) markers. The results indicate that several locations in the Tiaoxi River are heavily polluted by fecal contamination and this correlated well with land use patterns. Among the five bacterial pathogens tested, Shigella spp. and Campylobacter jejuni were the most frequently detected pathogens in water (60% and 62%, respectively) and sediment samples (91% and 53%, respectively). Shiga toxin-producing Escherichia coli (STEC) and pathogenic Leptospira spp. were less frequently detected in water samples (55% and 33%, respectively) and sediment samples (51% and 13%, respectively), whereas E. coli O157:H7 was only detected in sediment samples (11%). Overall, the higher prevalence and concentrations of Campylobacter jejuni, Shigella spp., and STEC, along with the MST marker detection at a number of locations in the Tiaoxi River, indicates poor water quality and a significant human health risk associated with this watercourse. GRAPHICAL ABSTRACTTracking fecal contamination and pathogens in watersheds using molecular methods.
Collapse
Affiliation(s)
- Kiran Kumar Vadde
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Alan J. McCarthy
- Microbiology Research Group, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Rong Rong
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Raju Sekar
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
27
|
Bai X, Zhang J, Ambikan A, Jernberg C, Ehricht R, Scheutz F, Xiong Y, Matussek A. Molecular Characterization and Comparative Genomics of Clinical Hybrid Shiga Toxin-Producing and Enterotoxigenic Escherichia coli (STEC/ETEC) Strains in Sweden. Sci Rep 2019; 9:5619. [PMID: 30948755 PMCID: PMC6449507 DOI: 10.1038/s41598-019-42122-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
Hybrid E. coli pathotypes are representing emerging public health threats with enhanced virulence from different pathotypes. Hybrids of Shiga toxin-producing and enterotoxigenic E. coli (STEC/ETEC) have been reported to be associated with diarrheal disease and hemolytic uremic syndrome (HUS) in humans. Here, we identified and characterized four clinical STEC/ETEC hybrids from diarrheal patients with or without fever or abdominal pain and healthy contact in Sweden. Rare stx2 subtypes were present in STEC/ETEC hybrids. Stx2 production was detectable in stx2a and stx2e containing strains. Different copies of ETEC virulence marker, sta gene, were found in two hybrids. Three sta subtypes, namely, sta1, sta4 and sta5 were designated, with sta4 being predominant. The hybrids represented diverse and rare serotypes (O15:H16, O187:H28, O100:H30, and O136:H12). Genome-wide phylogeny revealed that these hybrids exhibited close relatedness with certain ETEC, STEC/ETEC hybrid and commensal E. coli strains, implying the potential acquisition of Stx-phages or/and ETEC virulence genes in the emergence of STEC/ETEC hybrids. Given the emergence and public health significance of hybrid pathotypes, a broader range of virulence markers should be considered in the E. coli pathotypes diagnostics, and targeted follow up of cases is suggested to better understand the hybrid infection.
Collapse
Affiliation(s)
- Xiangning Bai
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ji Zhang
- mEpiLab, New Zealand Food Safety Science & Research Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Massey, New Zealand
| | - Anoop Ambikan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | | | - Ralf Ehricht
- InfectoGnostics Research Campus e.V., Philosophenweg 7, Jena, Germany.,Leibniz Institute of Photonic Technology e.V. Jena (Leibniz-IPHT), Jena, Germany
| | - Flemming Scheutz
- The International Centre for Reference and Research on Escherichia and Klebsiella, Unit of Foodborne Bacteria and Typing, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Andreas Matussek
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden. .,Karolinska University Laboratory, Stockholm, Sweden. .,Department of Laboratory Medicine, Region Jönköping County, Jönköping, Sweden.
| |
Collapse
|
28
|
Tang F, Wang J, Li D, Gao S, Ren J, Ma L, Liu F, Zhuge X, Yan G, Lu Y, Dai J. Comparative genomic analysis of 127 Escherichia coli strains isolated from domestic animals with diarrhea in China. BMC Genomics 2019; 20:212. [PMID: 30866824 PMCID: PMC6416869 DOI: 10.1186/s12864-019-5588-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 03/06/2019] [Indexed: 11/16/2022] Open
Abstract
Background Escherichia coli is an important pathogen that causes diarrhea in both humans and animals. To determine the relationships between putative virulence factors and pathotypes or host taxa, many molecular studies on diarrhea-associated E. coli have been reported. However, little is known regarding genome-wide variation of E. coli from animal hosts. In this study, we performed whole genome sequencing of 127 E. coli isolates from sheep and swine with diarrhea in China. We compared isolates to explore the phylogenomic relatedness based on host origin. We explored the relationships of putative virulence factors across host taxa and pathotypes. Antimicrobial resistance was also tested. Results The E. coli genomes in this study were diverse with clear differences in the SNP, MLST, and O serotypes. Seven putative virulence factors (VFs) were prevalent (> 95%) across the isolates, including Hcp, csgC, dsdA, feoB, fepA, guaA, and malX. Sixteen putative VFs showed significantly different distributions (P < 0.05) in strains from sheep and swine and were primarily adhesion- and toxin-related genes. Some putative VFs were co-occurrent in some specific pathotypes and O serotypes. The distribution of 4525 accessory genes of the 127 strains significantly differed (P < 0.05) between isolates obtained from the two animal species. The 127 animal isolates sequenced in this study were each classified into one of five pathotypes: EAEC, ETEC, STEC, DAEC, and EPEC, with 66.9% of isolates belonging to EAEC. Analysis of stx subtypes and a minimum spanning tree based on MLST revealed that STEC isolates from sheep and EAEC isolates from sheep and swine have low potential to infect humans. Antibiotic resistance analysis showed that the E. coli isolates were highly resistant to ampicillin and doxycycline. Isolates from southeast China were more resistant to antibiotics than isolates from northwest China. Additionally, the plasmid-mediated colist in resistance gene mcr-1 was detected in 15 isolates, including 4 from sheep in Qinghai and 11 from swine in Jiangsu. Conclusions Our study provides insight into the genomes of E. coli isolated from animal sources. Distinguishable differences between swine and sheep isolates at the genomic level provides a baseline for future investigations of animal E. coli pathogens. Electronic supplementary material The online version of this article (10.1186/s12864-019-5588-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fang Tang
- Key Lab Animal Bacteriology, Ministry of Agriculture; Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Juanfang Wang
- Key Lab Animal Bacteriology, Ministry of Agriculture; Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Dezhi Li
- Key Lab Animal Bacteriology, Ministry of Agriculture; Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Song Gao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Jianluan Ren
- Key Lab Animal Bacteriology, Ministry of Agriculture; Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Liqing Ma
- Qinghai Academy of veterinary Medicine and Animal Science, Qinghai University, Xining, Qinghai Province, People's Republic of China
| | - Fei Liu
- CAS key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Xiangkai Zhuge
- Key Lab Animal Bacteriology, Ministry of Agriculture; Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Genqiang Yan
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, People's Republic of China
| | - Yan Lu
- Qinghai Academy of veterinary Medicine and Animal Science, Qinghai University, Xining, Qinghai Province, People's Republic of China
| | - Jianjun Dai
- Key Lab Animal Bacteriology, Ministry of Agriculture; Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province, 210095, People's Republic of China.
| |
Collapse
|
29
|
Hazard Identification and Characterization: Criteria for Categorizing Shiga Toxin-Producing Escherichia coli on a Risk Basis †. J Food Prot 2019; 82:7-21. [PMID: 30586326 DOI: 10.4315/0362-028x.jfp-18-291] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) comprise a large, highly diverse group of strains. Since the emergence of STEC serotype O157:H7 as an important foodborne pathogen, serotype data have been used for identifying STEC strains, and this use continued as other serotypes were implicated in human infections. An estimated 470 STEC serotypes have been identified, which can produce one or more of the 12 known Shiga toxin (Stx) subtypes. The number of STEC serotypes that cause human illness varies but is probably higher than 100. However, many STEC virulence genes are mobile and can be lost or transferred to other bacteria; therefore, STEC strains that have the same serotype may not carry the same virulence genes or pose the same risk. Although serotype information is useful in outbreak investigations and surveillance studies, it is not a reliable means of assessing the human health risk posed by a particular STEC serotype. To contribute to the development of a set of criteria that would more reliably support hazard identification, this review considered each of the factors contributing to a negative human health outcome: mild diarrhea, bloody diarrhea, and hemolytic uremic syndrome (HUS). STEC pathogenesis involves entry into the human gut (often via ingestion), attachment to the intestinal epithelial cells, and elaboration of Stx. Production of Stx, which disrupts normal cellular functions and causes cell damage, alone without adherence of bacterial cells to gut epithelial cells is insufficient to cause severe illness. The principal adherence factor in STEC is the intimin protein coded by the eae gene. The aggregative adherence fimbriae adhesins regulated by the aggR gene of enteroaggregative E. coli strains are also effective adherence factors. The stx2a gene is most often present in locus of enterocyte effacement ( eae)-positive STEC strains and has consistently been associated with HUS. The stx2a gene has also been found in eae-negative, aggR-positive STEC that have caused HUS. HUS cases where other stx gene subtypes were identified indicate that other factors such as host susceptibility and the genetic cocktail of virulence genes in individual isolates may affect their association with severe diseases.
Collapse
Affiliation(s)
-
- The Joint FAO/WHO Expert Meetings on Microbiological Risk Assessment (JEMRA) Secretariat, * Food Safety and Quality Unit, Agriculture and Consumer Protection Department, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy
| |
Collapse
|
30
|
Newell DG, La Ragione RM. Enterohaemorrhagic and other Shiga toxin-producing Escherichia coli (STEC): Where are we now regarding diagnostics and control strategies? Transbound Emerg Dis 2018; 65 Suppl 1:49-71. [PMID: 29369531 DOI: 10.1111/tbed.12789] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Indexed: 12/24/2022]
Abstract
Escherichia coli comprises a highly diverse group of Gram-negative bacteria and is a common member of the intestinal microflora of humans and animals. Generally, such colonization is asymptomatic; however, some E. coli strains have evolved to become pathogenic and thus cause clinical disease in susceptible hosts. One pathotype, the Shiga toxigenic E. coli (STEC) comprising strains expressing a Shiga-like toxin is an important foodborne pathogen. A subset of STEC are the enterohaemorrhagic E. coli (EHEC), which can cause serious human disease, including haemolytic uraemic syndrome (HUS). The diagnosis of EHEC infections and the surveillance of STEC in the food chain and the environment require accurate, cost-effective and timely tests. In this review, we describe and evaluate tests now in routine use, as well as upcoming test technologies for pathogen detection, including loop-mediated isothermal amplification (LAMP) and whole-genome sequencing (WGS). We have considered the need for improved diagnostic tools in current strategies for the control and prevention of these pathogens in humans, the food chain and the environment. We conclude that although significant progress has been made, STEC still remains an important zoonotic issue worldwide. Substantial reductions in the public health burden due to this infection will require a multipronged approach, including ongoing surveillance with high-resolution diagnostic techniques currently being developed and integrated into the routine investigations of public health laboratories. However, additional research requirements may be needed before such high-resolution diagnostic tools can be used to enable the development of appropriate interventions, such as vaccines and decontamination strategies.
Collapse
Affiliation(s)
- D G Newell
- Department of Pathology and Infectious Diseases, Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - R M La Ragione
- Department of Pathology and Infectious Diseases, Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
31
|
Shridhar PB, Siepker C, Noll LW, Shi X, Nagaraja TG, Bai J. Shiga Toxin Subtypes of Non-O157 Escherichia coli Serogroups Isolated from Cattle Feces. Front Cell Infect Microbiol 2017; 7:121. [PMID: 28443248 PMCID: PMC5386980 DOI: 10.3389/fcimb.2017.00121] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/24/2017] [Indexed: 11/13/2022] Open
Abstract
Shiga toxin producing Escherichia coli (STEC) are important foodborne pathogens responsible for human illnesses. Cattle are a major reservoir that harbor the organism in the hindgut and shed in the feces. Shiga toxins (Stx) are the primary virulence factors associated with STEC illnesses. The two antigenically distinct Stx types, Stx1 and Stx2, encoded by stx1 and stx2 genes, share approximately 56% amino acid sequence identity. Genetic variants exist within Stx1 and Stx2 based on differences in amino acid composition and in cytotoxicity. The objective of our study was to identify the stx subtypes in strains of STEC serogroups, other than O157, isolated from cattle feces. Shiga toxin gene carrying E. coli strains (n = 192), spanning 27 serogroups originating from cattle (n = 170) and human (n = 22) sources, were utilized in the study. Shiga toxin genes were amplified by PCR, sequenced, and nucleotide sequences were translated into amino acid sequences using CLC main workbench software. Shiga toxin subtypes were identified based on the amino acid motifs that define each subtype. Shiga toxin genotypes were also identified at the nucleotide level by in silico restriction fragment length polymorphism (RFLP). Of the total 192 STEC strains, 93 (48.4%) were positive for stx1 only, 43 (22.4%) for stx2 only, and 56 (29.2%) for both stx1 and stx2. Among the 149 strains positive for stx1, 132 (88.6%) were stx1a and 17 (11.4%) were stx1c. Shiga toxin 1a was the most common subtype of stx1 among cattle (87.9%; 123/140) and human strains (100%; 9/9) of non-O157 serogroups. Of the total 99 strains positive for stx2, 79 were stx2a (79.8%), 11 (11.1%) were stx2c, 12 (12.1%) were stx2d. Of the 170 strains originating from cattle feces, 58 (34.1%) were stx2a subtype, 11 (6.5%) were stx2c subtype, and 11 were of subtype stx2d (6.5%). All but one of the human strains were positive for stx2a. Three strains of cattle origin were positive for both stx2a and stx2d. In conclusion, a number of non-O157 STEC serogroups harbored by cattle possess a wide variety of Shiga toxin subtypes, with stx1a and stx2a being the most predominant stx subtypes occurring individually or in combination. Cattle are a reservoir of a number of non-O157 STEC serogroups and information on the Shiga toxin subtypes is useful in assessing the potential risk as human pathogens.
Collapse
Affiliation(s)
- Pragathi B Shridhar
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattan, KS, USA
| | - Chris Siepker
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattan, KS, USA
| | - Lance W Noll
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattan, KS, USA
| | - Xiaorong Shi
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattan, KS, USA
| | - T G Nagaraja
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattan, KS, USA
| | - Jianfa Bai
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattan, KS, USA.,Veterinary Diagnostic Laboratory, Kansas State UniversityManhattan, KS, USA
| |
Collapse
|
32
|
Arimitsu H, Sasaki K, Tsuji T. Development of a simple and rapid diagnosis method for swine edema disease to specifically detect Stx2e protein by immunochromatographic test. Microbiol Immunol 2017; 60:334-42. [PMID: 26996467 DOI: 10.1111/1348-0421.12379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 12/23/2022]
Abstract
Edema disease in piglets is caused by Shiga toxin 2e (Stx2e)-producing Escherichia coli. However, there is currently no available Stx2e-specific immunochromatographic test strip to differentiate Stx2e from other types of Shiga toxin 2. In the present study, to develop an Stx2e-specific immunochromatographic test strip, we isolated nine different monoclonal antibody-producing hybridoma clones from Stx2e toxoid-immunized mice and confirmed that six antibodies were A subunit-specific whereas three antibodies were B subunit-specific. Only one A subunit-specific monoclonal antibody (45B2) was cross-reactive with prototype Stx2 (Stx2a) at the same sensitivity, but the remaining eight monoclonal antibodies were not. In immunochromatographic tests using the highly sensitive antibodies, test strips using some combinations of gold colloid-conjugated monoclonal antibody with the B subunit-specific monoclonal antibody on the membrane detected Stx2e, but not other types of Shiga toxin 2. These test strips had the ability to detect Stx2e in the culture supernatant of clinically isolated Stx2e gene-positive strains, but not in those of Stx2e gene-negative strains. These results indicate that our test strip is practical for the specific detection of Stx2e to diagnose swine edema disease.
Collapse
Affiliation(s)
- Hideyuki Arimitsu
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Keiko Sasaki
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Takao Tsuji
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
33
|
Amoako KK, Thomas MC, Janzen TW, Goji N. Rapid SNP Detection and Genotyping of Bacterial Pathogens by Pyrosequencing. Methods Mol Biol 2017; 1492:203-220. [PMID: 27822867 DOI: 10.1007/978-1-4939-6442-0_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bacterial identification and typing are fixtures of microbiology laboratories and are vital aspects of our response mechanisms in the event of foodborne outbreaks and bioterrorist events. Whole genome sequencing (WGS) is leading the way in terms of expanding our ability to identify and characterize bacteria through the identification of subtle differences between genomes (e.g. single nucleotide polymorphisms (SNPs) and insertions/deletions). Modern high-throughput technologies such as pyrosequencing can facilitate the typing of bacteria by generating short-read sequence data of informative regions identified by WGS analyses, at a fraction of the cost of WGS. Thus, pyrosequencing systems remain a valuable asset in the laboratory today. Presented in this chapter are two methods developed in the Amoako laboratory that detail the identification and genotyping of bacterial pathogens. The first targets canonical single nucleotide polymorphisms (canSNPs) of evolutionary importance in Bacillus anthracis, the causative agent of Anthrax. The second assay detects Shiga-toxin (stx) genes, which are associated with virulence in Escherichia coli and Shigella spp., and differentiates the subtypes of stx-1 and stx-2 based on SNP loci. These rapid methods provide end users with important information regarding virulence traits as well as the evolutionary and biogeographic origin of isolates.
Collapse
Affiliation(s)
- Kingsley K Amoako
- Canadian Food Inspection Agency, National Centers for Animal Disease, Lethbridge Laboratory, 640, Township Road 9-1, Lethbridge, AB, Canada, T1J 3Z4.
| | - Matthew C Thomas
- Canadian Food Inspection Agency, National Centers for Animal Disease, Lethbridge Laboratory, 640, Township Road 9-1, Lethbridge, AB, Canada, T1J 3Z4
| | - Timothy W Janzen
- Canadian Food Inspection Agency, National Centers for Animal Disease, Lethbridge Laboratory, 640, Township Road 9-1, Lethbridge, AB, Canada, T1J 3Z4
| | - Noriko Goji
- Canadian Food Inspection Agency, National Centers for Animal Disease, Lethbridge Laboratory, 640, Township Road 9-1, Lethbridge, AB, Canada, T1J 3Z4
| |
Collapse
|
34
|
Ercoli L, Farneti S, Zicavo A, Mencaroni G, Blasi G, Striano G, Scuota S. Prevalence and characteristics of verotoxigenic Escherichia coli strains isolated from pigs and pork products in Umbria and Marche regions of Italy. Int J Food Microbiol 2016; 232:7-14. [DOI: 10.1016/j.ijfoodmicro.2016.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022]
|
35
|
Haack SK, Duris JW, Kolpin DW, Focazio MJ, Meyer MT, Johnson HE, Oster RJ, Foreman WT. Contamination with bacterial zoonotic pathogen genes in U.S. streams influenced by varying types of animal agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 563-564:340-350. [PMID: 27139306 DOI: 10.1016/j.scitotenv.2016.04.087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Animal waste, stream water, and streambed sediment from 19 small (<32km(2)) watersheds in 12U.S. states having either no major animal agriculture (control, n=4), or predominantly beef (n=4), dairy (n=3), swine (n=5), or poultry (n=3) were tested for: 1) cholesterol, coprostanol, estrone, and fecal indicator bacteria (FIB) concentrations, and 2) shiga-toxin producing and enterotoxigenic Escherichia coli, Salmonella, Campylobacter, and pathogenic and vancomycin-resistant enterococci by polymerase chain reaction (PCR) on enrichments, and/or direct quantitative PCR. Pathogen genes were most frequently detected in dairy wastes, followed by beef, swine and poultry wastes in that order; there was only one detection of an animal-source-specific pathogen gene (stx1) in any water or sediment sample in any control watershed. Post-rainfall pathogen gene numbers in stream water were significantly correlated with FIB, cholesterol and coprostanol concentrations, and were most highly correlated in dairy watershed samples collected from 3 different states. Although collected across multiple states and ecoregions, animal-waste gene profiles were distinctive via discriminant analysis. Stream water gene profiles could also be discriminated by the watershed animal type. Although pathogen genes were not abundant in stream water or streambed samples, PCR on enrichments indicated that many genes were from viable organisms, including several (shiga-toxin producing or enterotoxigenic E. coli, Salmonella, vancomycin-resistant enterococci) that could potentially affect either human or animal health. Pathogen gene numbers and types in stream water samples were influenced most by animal type, by local factors such as whether animals had stream access, and by the amount of local rainfall, and not by studied watershed soil or physical characteristics. Our results indicated that stream water in small agricultural U.S. watersheds was susceptible to pathogen gene inputs under typical agricultural practices and environmental conditions. Pathogen gene profiles may offer the potential to address both source of, and risks associated with, fecal pollution.
Collapse
Affiliation(s)
- Sheridan K Haack
- U.S. Geological Survey, 6520 Mercantile Way, Suite 5, Lansing, MI 48911, United States.
| | - Joseph W Duris
- U.S. Geological Survey, 6520 Mercantile Way, Suite 5, Lansing, MI 48911, United States
| | - Dana W Kolpin
- U.S. Geological Survey, 400 South Clinton Street, Iowa City, IA 52240, United States
| | - Michael J Focazio
- U.S. Geological Survey, 12201 Sunrise Valley Drive, Reston, VA 20192, United States
| | - Michael T Meyer
- U.S. Geological Survey, 4821 Quail Crest Place, Lawrence, KS 66049, United States
| | - Heather E Johnson
- U.S. Geological Survey, 6520 Mercantile Way, Suite 5, Lansing, MI 48911, United States
| | - Ryan J Oster
- U.S. Geological Survey, 6520 Mercantile Way, Suite 5, Lansing, MI 48911, United States
| | - William T Foreman
- U.S. Geological Survey, P.O. Box 25585, Denver, CO 80225, United States
| |
Collapse
|
36
|
Hybrid Shiga Toxin-Producing and Enterotoxigenic Escherichia sp. Cryptic Lineage 1 Strain 7v Harbors a Hybrid Plasmid. Appl Environ Microbiol 2016; 82:4309-4319. [PMID: 27208138 DOI: 10.1128/aem.01129-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/03/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Hybrid isolates of Shiga toxin-producing Escherichia coli (STEC) and enterotoxigenic E. coli (ETEC) encoding heat-stable enterotoxin (ST) are being reported with increasing frequency from a variety of sources. However, information regarding the plasmids that these strains harbor is scarce. In this study, we sequence and characterize a plasmid, p7v, from the STEC/ETEC hybrid strain 7v. Whole-genome phylogenetic analyses of STEC/ETEC hybrid strains and prototype E. coli isolates of other pathotypes placed 7v in the Escherichia sp. cryptic lineage 1 (CL1) clade. The complete plasmid, p7v, was determined to be 229,275 bp and encodes putative virulence factors that are typically carried on STEC plasmids as well as those often carried on ETEC plasmids, indicating that the hybrid nature of the strain extends beyond merely encoding the two toxins. Plasmid p7v carries two copies of sta with identical sequences, which were discovered to be divergent from the sta sequences found in the prototype human ETEC strains. Using a nomenclature scheme based on a phylogeny constructed from sta and stb sequences, the sta encoded on p7v is designated STa4. In silico analysis determined that p7v also encodes the K88 fimbria, a colonization factor usually associated with porcine ETEC plasmids. The p7v sequence and the presence of plasmid-encoded virulence factors are compared to those of other STEC/ETEC CL1 hybrid genomes and reveal gene acquisition/loss at the strain level. In addition, the interrogation of 24 STEC/ETEC hybrid genomes for identification of plasmid replicons, colonization factors, Stx and ST subtypes, and other plasmid-encoded virulence genes highlights the diversity of these hybrid strains. IMPORTANCE Hybrid Shiga toxin-producing Escherichia coli/enterotoxigenic Escherichia coli (STEC/ETEC) strains, which have been isolated from environmental, animal, and human clinical samples, may represent an emerging threat as food-borne pathogens. Characterization of these strains is important for assessing virulence potential, aiding in the development of pathogen detection methods, and understanding how the hybrid strains evolve to potentially have a greater impact on public health. This study represents, to our knowledge, both the first characterization of a closed plasmid sequence from a STEC/ETEC hybrid strain and the most comprehensive phylogenetic analysis of available STEC/ETEC hybrid genomes to date. The results demonstrate how the mobility of plasmid-associated virulence genes has resulted in the creation of a diverse plasmid repertoire within the STEC/ETEC hybrid strains.
Collapse
|
37
|
Beutin L, Delannoy S, Fach P. Genetic Analysis and Detection of fliC H1 and fliC H12 Genes Coding for Serologically Closely Related Flagellar Antigens in Human and Animal Pathogenic Escherichia coli. Front Microbiol 2016; 7:135. [PMID: 26913025 PMCID: PMC4753304 DOI: 10.3389/fmicb.2016.00135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/25/2016] [Indexed: 01/29/2023] Open
Abstract
The E. coli flagellar types H1 and H12 show a high serological cross-reactivity and molecular serotyping appears an advantageous method to establish a clear discrimination between these flagellar types. Analysis of fliCH1 and fliCH12 gene sequences showed that they were 97.5% identical at the nucleotide level. Because of this high degree of homology we developed a two-step real-time PCR detection procedure for reliable discrimination of H1 and H12 flagellar types in E. coli. In the first step, a real-time PCR assay for common detection of both fliCH1 and fliCH12 genes is used, followed in a second step by real-time PCR assays for specific detection of fliCH1 and fliCH12, respectively. The real-time PCR for common detection of fliCH1 and fliCH12 demonstrated 100% sensitivity and specificity as it reacted with all tested E. coli H1 and H12 strains and not with any of the reference strains encoding all the other 51 flagellar antigens. The fliCH1 and fliCH12 gene specific assays detected all E. coli H1 and all E. coli H12 strains, respectively (100% sensitivity). However, both assays showed cross-reactions with some flagellar type reference strains different from H1 and H12. The real-time PCR assays developed in this study can be used in combination for the detection and identification of E. coli H1 and H12 strains isolated from different sources.
Collapse
Affiliation(s)
- Lothar Beutin
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | - Sabine Delannoy
- Université Paris-Est, Anses, Food Safety Laboratory, IdentyPath Maisons-Alfort, France
| | - Patrick Fach
- Université Paris-Est, Anses, Food Safety Laboratory, IdentyPath Maisons-Alfort, France
| |
Collapse
|
38
|
Emergence of a Multidrug-Resistant Shiga Toxin-Producing Enterotoxigenic Escherichia coli Lineage in Diseased Swine in Japan. J Clin Microbiol 2016; 54:1074-81. [PMID: 26865687 DOI: 10.1128/jcm.03141-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 01/30/2016] [Indexed: 01/30/2023] Open
Abstract
EnterotoxigenicEscherichia coli(ETEC) and Shiga toxin-producingE. coli(STEC) are important causes of diarrhea and edema disease in swine. The majority of swine-pathogenicE. colistrains belong to a limited range of O serogroups, including O8, O138, O139, O141, O147, O149, and O157, which are the most frequently reported strains worldwide. However, the circumstances of ETEC and STEC infections in Japan remain unknown; there have been few reports on the prevalence or characterization of swine-pathogenicE. coli In the present study, we determined the O serogroups of 967E. coliisolates collected between 1991 and 2014 from diseased swine in Japan, and we found that O139, O149, O116, and OSB9 (O serogroup ofShigella boydiitype 9) were the predominant serogroups. We further analyzed these four O serogroups using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing, and virulence factor profiling. Most of the O139 and O149 strains formed serogroup-specific PFGE clusters (clusters I and II, respectively), whereas the O116 and OSB9 strains were grouped together in the same cluster (cluster III). All of the cluster III strains belonged to a single sequence type (ST88) and carried genes encoding both enterotoxin and Shiga toxin. This PFGE cluster III/ST88 lineage exhibited a high level of multidrug resistance (to a median of 10 antimicrobials). Notably, these bacteria were resistant to fluoroquinolones. Thus, this lineage should be considered a significant risk to animal production due to the toxigenicity and antimicrobial resistance of these bacteria.
Collapse
|
39
|
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains are commonly found in the intestine of ruminant species of wild and domestic animals. Excretion of STEC with animal feces results in a broad contamination of food and the environment. Humans get infected with STEC through ingestion of contaminated food, by contact with the environment, and from STEC-excreting animals and humans. STEC strains can behave as human pathogens, and some of them, called enterohemorrhagic E. coli (EHEC), may cause hemorrhagic colitis (HC) and hemolytic-uremic syndrome (HUS). Because of the diversity of STEC types, detection strategies for STEC and EHEC are based on the identification of Shiga toxins or the underlying genes. Cultural enrichment of STEC from test samples is needed for identification, and different protocols were developed for this purpose. Multiplex real-time PCR protocols (ISO/CEN TS13136 and USDA/FSIS MLG5B.01) have been developed to specifically identify EHEC by targeting the LEE (locus of enterocyte effacement)-encoded eae gene and genes for EHEC-associated O groups. The employment of more genetic markers (nle and CRISPR) is a future challenge for better identification of EHEC from any kinds of samples. The isolation of STEC or EHEC from a sample is required for confirmation, and different cultivation protocols and media for this purpose have been developed. Most STEC strains present in food, animals, and the environment are eae negative, but some of these strains can cause HC and HUS in humans as well. Phenotypic assays and molecular tools for typing EHEC and STEC strains are used to detect and characterize human pathogenic strains among members of the STEC group.
Collapse
|
40
|
He X, Kong Q, Patfield S, Skinner C, Rasooly R. A New Immunoassay for Detecting All Subtypes of Shiga Toxins Produced by Shiga Toxin-Producing E. coli in Ground Beef. PLoS One 2016; 11:e0148092. [PMID: 26824247 PMCID: PMC4732753 DOI: 10.1371/journal.pone.0148092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/12/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Shiga toxin (Stx) is a common virulence factor of all Shiga toxin producing E. coli (STEC) that cause a wide spectrum of disease, including hemorrhagic colitis and hemolytic uremic syndrome (HUS). Although several commercial kits are available for detection of Stx produced by STEC, none of them are capable of recognizing all subtypes of Stxs, which include three subtypes of Stx1 and seven subtypes of Stx2. METHODS AND FINDINGS New monoclonal and polyclonal antibodies against Stx1 and Stx2 were developed. A universal sandwich ELISA capable of detecting all known subtypes of Stx1 and Stx2 was established using a pool of newly developed antibodies. To precisely monitor the sensitivity of the assay for each subtype of Stxs, recombinant toxoids were created and used as standards in ELISAs. Because of the high affinity of the antibodies incorporated, the ELISA assay is highly sensitive with a limit of detection for the different subtypes of Stx1a and Stx2a between 10 and 50 pg/mL in phosphate buffered saline (PBS). The assay was also able to identify STEC based on the production of Stxs using the supernatants of culture fluids or even single colonies on agar plates without lengthy enrichment in liquid medium. When applied to ground beef samples, this newly developed ELISA was capable of distinguishing beef samples spiked with a single bacterial cell. CONCLUSIONS A highly sensitive and universal assay for all subtypes of Stx1 and Stx2 was developed. It has significantly improved upon the current technologies by avoiding false negative results due to the narrow detection range of the assay. The assay developed in this study can be useful for prompt detection of new and emerging serotypes and screening ground beef samples for contamination of STEC at an early stage in the food supply chain, thus avoiding the need for possible recall.
Collapse
Affiliation(s)
- Xiaohua He
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, Albany, California, United States of America
| | - Qiulian Kong
- Shanghai Shuneng Irradiation Technology Co., Ltd, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Stephanie Patfield
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, Albany, California, United States of America
| | - Craig Skinner
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, Albany, California, United States of America
| | - Reuven Rasooly
- Western Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, Albany, California, United States of America
| |
Collapse
|
41
|
Shen J, Rump L, Ju W, Shao J, Zhao S, Brown E, Meng J. Virulence characterization of non-O157 Shiga toxin-producing Escherichia coli isolates from food, humans and animals. Food Microbiol 2015; 50:20-7. [DOI: 10.1016/j.fm.2015.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 10/24/2022]
|
42
|
New Stx2e Monoclonal Antibodies for Immunological Detection and Distinction of Stx2 Subtypes. PLoS One 2015; 10:e0132419. [PMID: 26192407 PMCID: PMC4507848 DOI: 10.1371/journal.pone.0132419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/12/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Stx2e is a primary virulence factor in STEC strains that cause edema disease in neonatal piglets. Though Stx2a and Stx2e are similar, many antibody-based Stx detection kits are designed to detect Stx2a and do not recognize the Stx2e subtype. METHODS AND FINDINGS Four monoclonal antibodies against Stx2e were developed and characterized. Two of these mAbs recognize the B subunit of Stx2e, Stx2f, and to a lesser extent, Stx2b, Stx2c, and Stx2d. The other two mAbs recognize the A subunit of Stx2e, and cross-react with all Stx2 subtypes except Stx2f. The most sensitive sandwich ELISA using these mAbs has a limit of detection for Stx2e of 11.8 pg/mL. The ability of the neutralizing antibody Stx2e-2 to block Stx2e-receptor binding in Vero cells was visualized using immunofluorescence. Combinations of these and previously developed mAbs permit ELISA-based differentiation between closely related Stx2a, Stx2c, and Stx2d (using mAbs Stx2-5/2-1, Stx2-5/2e-2, and Stx2e-3/2e-2, respectively). CONCLUSIONS The sensitive immunoassays developed in this study should augment our capacity to detect Stx2e in porcine environments and biological samples. Moreover, immunoassays that can distinguish between the closely related Stx2a, Stx2c, and Stx2d subtypes can be useful in quickly analyzing Stx subtypes in samples containing more than one strain of STEC.
Collapse
|
43
|
Ercoli L, Farneti S, Ranucci D, Scuota S, Branciari R. Role of Verocytotoxigenic Escherichia Coli in the Swine Production Chain. Ital J Food Saf 2015; 4:5156. [PMID: 27800398 PMCID: PMC5076656 DOI: 10.4081/ijfs.2015.5156] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 12/02/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) can cause severe clinical diseases in humans, such as haemorrhagic colitis (HC) and haemolytic-uremic syndrome (HUS). Although ruminants, primarily cattle, have been suggested as typical reservoirs of STEC, many food products of other origins, including pork products, have been confirmed as vehicles for STEC transmission. Only in rare cases, pork consumption is associated with severe clinical symptoms caused by high pathogenic STEC strains. However, in these outbreaks, it is unknown whether the contamination of food products occurs during swine processing or via cross-contamination from foodstuffs of different sources. In swine, STEC plays an important role in the pathogenesis of oedema disease. In particular a Shiga toxin subtype, named stx2e, it is considered as a key factor involved in the damage of swine endothelial cells. On the contrary, stx2e-producing Escherichia coli has rarely been isolated in humans, and usually only from asymptomatic carriers or from patients with mild symptoms, such as uncomplicated diarrhoea. In fact, the presence of gene stx2e, encoding for stx2e, has rarely been reported in STEC strains that cause HUS. Moreover, stx2e-producing STEC isolated from humans and pigs were found to differ in serogroup, their virulence profile and interaction with intestinal epithelial cells. Because of the limited epidemiologic data of STEC in swine and the increasing role of non-O157 STEC in human illnesses, the relationship between swine STEC and human disease needs to be further investigated.
Collapse
Affiliation(s)
- Laura Ercoli
- Institute for Experimental Veterinary Medicine of Umbria and Marche, Perugia
| | - Silvana Farneti
- Institute for Experimental Veterinary Medicine of Umbria and Marche, Perugia
| | - David Ranucci
- Department of Veterinary Medicine, University of Perugia, Italy
| | - Stefania Scuota
- Institute for Experimental Veterinary Medicine of Umbria and Marche, Perugia
| | | |
Collapse
|
44
|
Bai X, Wang H, Xin Y, Wei R, Tang X, Zhao A, Sun H, Zhang W, Wang Y, Xu Y, Zhang Z, Li Q, Xu J, Xiong Y. Prevalence and characteristics of Shiga toxin-producing Escherichia coli isolated from retail raw meats in China. Int J Food Microbiol 2015; 200:31-8. [DOI: 10.1016/j.ijfoodmicro.2015.01.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/31/2014] [Accepted: 01/24/2015] [Indexed: 12/19/2022]
|
45
|
A new pyrosequencing assay for rapid detection and genotyping of Shiga toxin, intimin and O157-specific rfbE genes of Escherichia coli. J Microbiol Methods 2015; 109:167-79. [DOI: 10.1016/j.mimet.2014.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 01/02/2023]
|
46
|
Characteristic and antimicrobial resistance in Escherichia coli from retail meats purchased in the Czech Republic. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.07.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Oster RJ, Wijesinghe RU, Haack SK, Fogarty LR, Tucker TR, Riley SC. Bacterial pathogen gene abundance and relation to recreational water quality at seven Great Lakes beaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:14148-14157. [PMID: 25423586 DOI: 10.1021/es5038657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Quantitative assessment of bacterial pathogens, their geographic variability, and distribution in various matrices at Great Lakes beaches are limited. Quantitative PCR (qPCR) was used to test for genes from E. coli O157:H7 (eaeO157), shiga-toxin producing E. coli (stx2), Campylobacter jejuni (mapA), Shigella spp. (ipaH), and a Salmonella enterica-specific (SE) DNA sequence at seven Great Lakes beaches, in algae, water, and sediment. Overall, detection frequencies were mapA>stx2>ipaH>SE>eaeO157. Results were highly variable among beaches and matrices; some correlations with environmental conditions were observed for mapA, stx2, and ipaH detections. Beach seasonal mean mapA abundance in water was correlated with beach seasonal mean log10 E. coli concentration. At one beach, stx2 gene abundance was positively correlated with concurrent daily E. coli concentrations. Concentration distributions for stx2, ipaH, and mapA within algae, sediment, and water were statistically different (Non-Detect and Data Analysis in R). Assuming 10, 50, or 100% of gene copies represented viable and presumably infective cells, a quantitative microbial risk assessment tool developed by Michigan State University indicated a moderate probability of illness for Campylobacter jejuni at the study beaches, especially where recreational water quality criteria were exceeded. Pathogen gene quantification may be useful for beach water quality management.
Collapse
Affiliation(s)
- Ryan J Oster
- U.S. Geological Survey, Michigan Water Science Center , Lansing, Michigan 48911, United States
| | | | | | | | | | | |
Collapse
|
48
|
Assessment of microbiological quality and safety of marinated pork products from German retail during shelf life. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Lo AWH, Moonens K, De Kerpel M, Brys L, Pardon E, Remaut H, De Greve H. The molecular mechanism of Shiga toxin Stx2e neutralization by a single-domain antibody targeting the cell receptor-binding domain. J Biol Chem 2014; 289:25374-81. [PMID: 25053417 DOI: 10.1074/jbc.m114.566257] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Shiga toxin Stx2e is the major known agent that causes edema disease in newly weaned pigs. This severe disease is characterized by neurological disorders, hemorrhagic lesions, and frequent fatal outcomes. Stx2e consists of an enzymatically active A subunit and five B subunits that bind to a specific glycolipid receptor on host cells. It is evident that antibodies binding to the A subunit or the B subunits of Shiga toxin variants may have the capability to inhibit their cytotoxicity. Here, we report the discovery and characterization of a VHH single domain antibody (nanobody) isolated from a llama phage display library that confers potent neutralizing capacity against Stx2e toxin. We further present the crystal structure of the complex formed between the nanobody (NbStx2e1) and the Stx2e toxoid, determined at 2.8 Å resolution. Structural analysis revealed that for each B subunit of Stx2e, one NbStx2e1 is interacting in a head-to-head orientation and directly competing with the glycolipid receptor binding site on the surface of the B subunit. The neutralizing NbStx2e1 can in the future be used to prevent or treat edema disease.
Collapse
Affiliation(s)
- Alvin W H Lo
- From Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Structural Biology Brussels, and
| | - Kristof Moonens
- From Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Structural Biology Brussels, and
| | - Maia De Kerpel
- From Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Structural Biology Brussels, and
| | - Lea Brys
- the Laboratory of Myeloid Cell Immunology, VIB, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Els Pardon
- From Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Structural Biology Brussels, and
| | - Han Remaut
- From Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Structural Biology Brussels, and
| | - Henri De Greve
- From Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Structural Biology Brussels, and
| |
Collapse
|
50
|
Feng PCH, Reddy SP. Prevalence and diversity of enterotoxigenic Escherichia coli strains in fresh produce. J Food Prot 2014; 77:820-3. [PMID: 24780338 DOI: 10.4315/0362-028x.jfp-13-412] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Analysis of fresh produce showed that enterotoxigenic Escherichia coli (ETEC) strains are most often found in cilantro and parsley, with prevalence rates of approximately 0.3%. Some ETEC strains also carried Shiga toxigenic E. coli (STEC) genes but had no STEC adherence factors, which are essential to cause severe human illness. Most ETEC strains in produce carried stable toxin and/or labile toxin genes but belonged to unremarkable serotypes that have not been reported to have caused human illnesses.
Collapse
Affiliation(s)
- Peter C H Feng
- Division of Microbiology, U.S. Food and Drug Administration, College Park, Maryland, 20740, USA.
| | - Shanker P Reddy
- Agricultural Marketing Service, U.S. Department of Agriculture, Washington, D.C. 20250, USA
| |
Collapse
|