1
|
Wang JW, Ji P, Zeng JY, Liang JL, Cheng Q, Liu MD, Chen WH, Zhang XZ. Engineered bacterium-metal-organic framework biohybrids for boosting radiotherapy with multiple effects. Biomaterials 2025; 314:122901. [PMID: 39447307 DOI: 10.1016/j.biomaterials.2024.122901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
Hypoxia and lactate-overexpressed tumor microenvironment always lead to poor therapeutic effect of radiotherapy. Here, platinum nanoparticles-embellished hafnium metal-organic framework (Hf-MOF-Pt NPs) were elaborately integrated with Shewanella oneidensis MR-1 (SO) to construct an engineered biohybrid platform (SO@Hf-MOF-Pt) for enhancing radiotherapy. Benefiting from the tumor-targeting and metabolic respiration characteristics of SO, SO@Hf-MOF-Pt could enrich in tumor sites and continuously metabolize the overexpressed lactate, which specifically downregulated the expression of hypoxia-inducible factor (HIF-1α), thereby relieving the radiosuppressive tumor microenvironment to some extent. Moreover, SO@Hf-MOF-Pt would react with tumor-overexpressed hydrogen peroxide (H2O2) to generate oxygen (O2) and further inhibit the expression of HIF-1α, resulting in the downregulation of lactate dehydrogenase (LDHA) and subsequently reducing the lactate production. Under these multiple cascaded effects, the radiosuppressive tumor microenvironment was significantly reshaped, thus potentiating the radiosentization of SO@Hf-MOF-Pt and remarkably amplifying the therapeutic outcomes of radiotherapy. The designed biohybrid SO@Hf-MOF-Pt represented promising prospects in sensitizing radiotherapy via bacterium-based metabolic regulation.
Collapse
Affiliation(s)
- Jia-Wei Wang
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, PR China; Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Ping Ji
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Jin-Yue Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Jun-Long Liang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Qian Cheng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Miao-Deng Liu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Wei-Hai Chen
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, PR China; Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China.
| | - Xian-Zheng Zhang
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, PR China; Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
2
|
Zhu X, Zhang X, Gao B, Ji L, Zhao R, Wu P. A critical review of Mnammox coupled with the NDMO for innovative nitrogen removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175453. [PMID: 39137844 DOI: 10.1016/j.scitotenv.2024.175453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
In the context of increasing global nitrogen pollution, traditional biological nitrogen removal technologies like nitrification and denitrification are hindered by high energy consumption. Additionally, the deployment of anaerobic ammonium oxidation (Anammox) technology is constrained due to the slow growth rate of Anammox bacteria and there is a bottleneck in nitrogen removal efficiency. To overcome these technical bottlenecks, researchers have discovered a revolutionary nitrogen removal technology that cleverly combines the redox cycling of manganese with nitrification and denitrification reactions. In this new process, manganese dependent anaerobic ammonium oxidation (Mnammox) bacteria can convert NH4+ to N2 under anaerobic conditions, while nitrate/nitrite dependent manganese oxidation (NDMO) bacteria use NO3-/NO2- as electron acceptors to oxidize Mn2+ to Mn4+. Mn4+ acts as an electron acceptor in Mnammox reaction, thereby realizing the autotrophic nitrogen removal process. This innovative method not only simplifies the steps of biological denitrification, but also significantly reduces the consumption of oxygen and organic carbon, providing a more efficient and environmentally friendly solution to the problem of nitrogen pollution. The article initially provides a concise overview of prevalent nitrogen removal technologies and the application of manganese in these processes, and discusses the role of manganese in biogeochemical cycles, including its discovery, mechanism of action, microbial communities involved, and its impact on these key factors in the process. Subsequently, metabolic principles, benefits, advantages, and environmental considerations of Mnammox coupled with the NDMO process are analyzed in detail. Finally, this article summarizes the shortcomings of current research and looks forward to future research directions. The goal of this article is to provide a valuable reference for researchers to fully understand the application of manganese in nitrogen removal processes.
Collapse
Affiliation(s)
- Xurui Zhu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Bo Gao
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Luomiao Ji
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Rui Zhao
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
3
|
Kim S, Lee K, Kim K, Lee SSS, Fortner JD, An H, Son Y, Hwang H, Han Y, Myung Y, Jung H. Reductive Dissolution of NCM Cathode through Anaerobic Respiration by Shewanella putrefaciens. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18345-18355. [PMID: 39352755 DOI: 10.1021/acs.est.4c05486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The consumption of lithium-ion batteries (LIBs) has considerably increased over the past decade, leading to a rapid increase in the number of spent LIBs. Exposing spent LIBs to the environment can cause serious environmental harm; however, there is a lack of experimentally obtained information regarding the environmental impacts of abandoned cathode materials. Here, we report the interactions between Shewanella putrefaciens, a microorganism commonly found in diverse low-oxygen natural settings, and LiNi0.6Co0.2Mn0.2O2 (NCM622) under anaerobic conditions. We present compelling evidence that the anaerobic respiration of Shewanella putrefaciens triggers ∼59 and ∼78% dissolution of 0.2 g/L pristine and spent NCM622, respectively. We observed that Shewanella putrefaciens interacted with the pristine and the spent NCM622 under anaerobic conditions at a neutral pH and room temperature and induced the reduction of Ni, Co, and Mn, resulting in the subsequent dissolution of Li, Ni, Co, and Mn. Moreover, we found that secondary mineralization occurred on the surface of reacted NCM622. These findings not only shed light on the substantial impact of microbial respiration on the fate of discarded cathode materials in anaerobic environments but also reveal the potential for sustainable bioleaching of cathodes in spent LIBs.
Collapse
Affiliation(s)
- Seongryeong Kim
- Department of Battery and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea
| | - Kyoung Lee
- Department of Bio and Health Sciences, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea
| | - Kihyun Kim
- Department of Chemical Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea
| | - Seung Soo S Lee
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - John D Fortner
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Hyosang An
- Department of Chemical Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea
| | - Yeonguk Son
- Department of Battery and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea
- Department of Chemical Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea
| | - Hoyoung Hwang
- Department of Chemical Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea
| | - Yosep Han
- Resources Utilization Division, Korea Institute of Geoscience & Mineral Resources, Daejeon 34132, Republic of Korea
| | - Yoon Myung
- Advanced Energy Materials and Components R&D Group, Korea Institute of Industrial Technology, Busan 46744, Republic of Korea
| | - Haesung Jung
- Department of Battery and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea
- Department of Chemical Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea
| |
Collapse
|
4
|
Moeini F, Doudi M, Karvani ZE, Fouladgar M. Biosorption of copper, nickel, and manganese as well as the production of metal nanoparticles by Bacillus species isolated from soils contaminated with electronic wastes. Braz J Microbiol 2024; 55:2131-2147. [PMID: 38842788 PMCID: PMC11405609 DOI: 10.1007/s42770-024-01369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Improper electronic waste management in the world especially in developing countries such as Iran has resulted in environmental pollution. Copper, nickel, and manganese are from the most concerned soil contaminating heavy metals which found in many electronic devices that are not properly processed. The aim of this study was to investigate the biological removal of copper, nickel, and manganese by Bacillus species isolated from a landfill of electronic waste (Zainal Pass hills located in Isfahan, Iran) which is the and to produce nanoparticles from the studied metals by the isolated bacteria. The amounts of copper, nickel, and manganese in the soil was measured as 1.9 × 104 mg/kg, 0.011 × 104 mg/kg and 0.013 × 104 mg/kg, respectively based on ICP-OES analysis, which was significantly higher than normal (0.02 mg/kg, 0.05 mg/kg, and 2 mg/kg, respectively. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of metals on the bacterial isolates was determined. The biosorption of metals by the bacteria was evaluated by inductively coupled plasma optical emission spectroscopy (ICP-OES). The metal nanoparticles were synthetized utilizing the isolates in culture media containing the heavy metals with the concentrations to which the isolates had shown resistance. X ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) were used for the evaluation of the fabrication of the produced metal nanoparticles. Based on the findings of this study, a total of 15 bacterial isolates were obtained from the soil samples. The obtained MICs of copper, nickel, and manganese on the isolates were 40-300 mM, 4-10 mM, and 60-120 mM, respectively. The most resistant isolates to copper were FM1 and FM2 which were able to bio-remove 79.81% and 68.69% of the metal, respectively. FM4 and FM5 were respectively the most resistant isolate to nickel and manganese and were able to bio-remove 86.74% and 91.96% of the metals, respectively. FM1, FM2, FM4, and FM5 was molecularly identified as Bacillus cereus, Bacillus thuringiensis, Bacillus paramycoides, and Bacillus wiedmannii, respectively. The results of XRD, SEM and EDS showed conversion of the copper and manganese into spherical and oval nanoparticles with the approximate sizes of 20-40 nm. Due to the fact that the novel strains in this study showed high resistance to copper, nickel, and manganese and high adsorption of the metals, they can be used in the future, as suitable strains for the bio-removal of these metals from electronic and other industrial wastes.
Collapse
Affiliation(s)
- Fateme Moeini
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Monir Doudi
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran.
| | | | - Masoud Fouladgar
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
5
|
Ishfaq A, Shahid M, Nawaz M, Ibrar D, Hussain S, Shahzad T, Mahmood F, Rais A, Gul S, Gaafar ARZ, Hodhod MS, Khan S. Remediation of wastewater by biosynthesized manganese oxide nanoparticles and its effects on development of wheat seedlings. FRONTIERS IN PLANT SCIENCE 2023; 14:1263813. [PMID: 38126015 PMCID: PMC10731374 DOI: 10.3389/fpls.2023.1263813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Introduction Nanoparticles play a vital role in environmental remediation on a global scale. In recent years, there has been an increasing demand to utilize nanoparticles in wastewater treatment due to their remarkable physiochemical properties. Methods In the current study, manganese oxide nanoparticles (MnO-NPs) were synthesized from the Bacillus flexus strain and characterized by UV/Vis spectroscopy, X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. Results The objective of this study was to evaluate the potential of biosynthesized MnO-NPs to treat wastewater. Results showed the photocatalytic degradation and adsorption potential of MnO-NPs for chemical oxygen demand, sulfate, and phosphate were 79%, 64%, and 64.5%, respectively, depicting the potential of MnO-NPs to effectively reduce pollutants in wastewater. The treated wastewater was further utilized for the cultivation of wheat seedlings through a pot experiment. It was observed that the application of treated wastewater showed a significant increase in growth, physiological, and antioxidant attributes. However, the application of treated wastewater led to a significant decrease in oxidative stress by 40%. Discussion It can be concluded that the application of MnO-NPs is a promising choice to treat wastewater as it has the potential to enhance the growth, physiological, and antioxidant activities of wheat seedlings.
Collapse
Affiliation(s)
- Aneeza Ishfaq
- Department of Environmental Sciences & Engineering, Government College University, Faisalabad, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics & Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Danish Ibrar
- Crop Science Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Sabir Hussain
- Department of Environmental Sciences & Engineering, Government College University, Faisalabad, Pakistan
| | - Tanvir Shahzad
- Department of Environmental Sciences & Engineering, Government College University, Faisalabad, Pakistan
| | - Faisal Mahmood
- Department of Environmental Sciences & Engineering, Government College University, Faisalabad, Pakistan
| | - Afroz Rais
- Department of Botany, Sardar Bahadur Khan Women’s University, Quetta, Pakistan
| | - Safia Gul
- Department of Botany, Sardar Bahadur Khan Women’s University, Quetta, Pakistan
| | - Abdel-Rhman Z. Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed S. Hodhod
- Faculty of Biotechnology, October University for Modern Sciences & Arts, 6th October, Egypt
| | - Shahbaz Khan
- Colorado Water Center, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
6
|
Liu J, Fan L, Yin W, Zhang S, Su X, Lin H, Yu H, Jiang Z, Sun F. Anaerobic biodegradation of azo dye reactive black 5 by a novel strain Shewanella sp. SR1: Pathway and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119073. [PMID: 37776795 DOI: 10.1016/j.jenvman.2023.119073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/13/2023] [Accepted: 08/30/2023] [Indexed: 10/02/2023]
Abstract
The efficiency of microbial populations in degrading refractory pollutants and the impact of adverse environmental factors often presents challenges for the biological treatment of azo dyes. In this study, the genome analysis and azo dye Reactive Black 5 (RB5) degrading capability of a newly isolated strain, Shewanella sp. SR1, were investigated. By analyzing the genome, functional genes involved in dye degradation and mechanisms for adaptation to low-temperature and high-salinity conditions were identified in SR1. The addition of co-substrates, such as glucose and yeast extract, significantly enhanced RB5 decolorization efficiency, reaching up to 87.6%. Notably, SR1 demonstrated remarkable robustness towards a wide range of NaCl concentrations (1-30 g/L) and temperatures (10-30 °C), maintaining efficient decolorization and high biomass concentration. The metabolic pathways of RB5 degradation were deduced based on the metabolites and genes detected in the genome, in which the azo bond was first cleaved by FMN-dependent NADH-azoreductase and NAD(P)H-flavin reductase, followed by deamination, desulfonation, and hydroxylation mediated by various oxidoreductases. Importantly, the degradation metabolites exhibited reduced toxicity, as revealed by toxicity analysis. These findings highlighted the great potential of Shewanella sp. SR1 for bioremediation of wastewaters contaminated with azo dyes.
Collapse
Affiliation(s)
- Jiale Liu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Fan
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Wenjun Yin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Shusheng Zhang
- The Management Center of Wuyanling National Natural Reserve in Zhejiang, Wenzhou 325500, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Haiying Yu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Zhenghai Jiang
- Zhejiang Haihe Environmental Technology Co. Ltd, Jinhua 321017, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
7
|
Wang KL, Min D, Chen GL, Liu DF, Yu HQ. Oxidation of Sb(III) by Shewanella species with the assistance of extracellular organic matter. ENVIRONMENTAL RESEARCH 2023; 236:116834. [PMID: 37544466 DOI: 10.1016/j.envres.2023.116834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Antimony (Sb) is a toxic substance that poses a serious ecological threat when released into the environment. The species and redox state of Sb determine its environmental toxicity and fate. Understanding the redox transformations and biogeochemical cycling of Sb is crucial for analyzing and predicting its environmental behavior. Dissolved organic matter (DOM) in the environment greatly affects the fate of Sb. Microbially produced DOM is a vital component of environmental DOM; however, its specific role in Sb(III) oxidation has not been experimentally confirmed. In this work, the oxidation capacity of several Shewanella strains and their derived DOM to Sb(III) was confirmed. The oxidation rate of Sb(III) shows a positive correlation with DOM concentration, with higher rates observed under neutral and weak alkaline conditions, regardless of the presence of light. Incubation experiments indicated that extracellular enzymes and common reactive oxygen species were not involved in the oxidation of Sb(III). Characteristics of DOM suggests that microbial humic acid-like and fulvic acid-like substances are the potential contributors to Sb(III) oxidation. These findings not only experimentally validate the role of bacterial-derived DOM in Sb(III) oxidation but also reveal the significance of Shewanella and biogenic DOM in the biogeochemical cycling of Sb.
Collapse
Affiliation(s)
- Kai-Li Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Guan-Lin Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
8
|
Alvares JJ, Gaonkar SK, Naik CC, Asogekar P, Furtado IJ. Characterization of Mn 3 O 4 -MnO 2 nanocomposites biosynthesized by cell lysate of Haloferax alexandrinus GUSF-1. J Basic Microbiol 2023; 63:996-1006. [PMID: 37160695 DOI: 10.1002/jobm.202300023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Manganese oxide nanocomposites attract huge attention in various biotechnological fields due to their extensive catalytic properties. This study reports an easy, rapid, and cost-effective method of using the cell lysate of haloarchaeon, Haloferax alexandrinus GUSF-1 for the synthesis of manganese oxide nanoparticles. The reaction between the cell lysate and manganese sulfate resulted in the formation of a dark brown precipitate within 48 h at room temperature. The X-ray diffraction pattern showed the existence of Mn3 O4 and MnO2 phases consistent with the JCPDS card no. (01-075-1560 and 00-050-0866). The dark brown colloidal suspension of MnO3 -MnO2 in methanol showed maximum absorption between 220 and 260 nm. The EDX spectrum confirmed the presence of manganese and oxygen. The Transmission electron microscopy revealed the spherical morphology with an average particle size between 30 and 60 nm. The magnetic moment versus magnetic field (MH) curve, at room temperature (300 K) did not saturate even at a high magnetic field (±3T) indicating the paramagnetic nature of the prepared nanocomposite. The Atomic Emission Spectroscopic analysis showed a negligible amount of soluble manganese (0.03 ppm in 50 ppm) in the Mn3 O4 -MnO2 suspension suggesting the maximum stability of the material in the solvent over time. Interstingly, Mn3 O4 -MnO2 nanocomposites evidenced antimicrobial activity in the order of Pseudomonas aeruginosa > Salmonella typhi > Escherichia coli > Proteus vulgaris > Candida albicans > Staphylococcus aureus. Conclusively, this is the first report on the formation of Mn3 O4 -MnO2 nanocomposites using cell lysate of salt pan haloarcheon Haloferax alexandrinus GUSF-1 with antimicrobial potential.
Collapse
Affiliation(s)
- Jyothi J Alvares
- Microbiology Programme, School of Biological Sciences and Biotechnology, Goa University, Taleigao, Goa, India
| | - Sanket K Gaonkar
- Microbiology Programme, School of Biological Sciences and Biotechnology, Goa University, Taleigao, Goa, India
- Department of Microbiology, P.E.S's R.S.N College of Arts and Science, Farmagudi, Ponda-Goa, India
| | - Chandan C Naik
- Department of Chemistry, Dhempe College of Arts & Science, Panaji, Goa, India
| | - Pratik Asogekar
- School of Chemical Sciences, Goa University, Taleigao, Goa, India
- Department of Chemistry, P.E.S's R.S.N College of Arts and Science, Farmagudi, Ponda-Goa, India
| | - Irene J Furtado
- Microbiology Programme, School of Biological Sciences and Biotechnology, Goa University, Taleigao, Goa, India
| |
Collapse
|
9
|
Zhang X, Sathiyaseelan A, Naveen KV, Lu Y, Wang MH. Research progress in green synthesis of manganese and manganese oxide nanoparticles in biomedical and environmental applications - A review. CHEMOSPHERE 2023:139312. [PMID: 37354955 DOI: 10.1016/j.chemosphere.2023.139312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Nanomaterials and nanotechnology have this unassailable position for environmental remediation and medicine. Currently, global environmental pollution and public health problems are increasing and need to be urgently addressed. Manganese (Mn) is one of the essential metal elements for plants and animals, it is necessary to integrate with nanotechnology. Mn and Mn oxide (MnO) nanoparticles (NPs) have applications in dye degradation, biomedicine, electrochemical sensors, plant and animal growth, and catalysis. However, the current research is limited, especially in terms of optimal synthesis of Mn and MnO NPs, separation, purification conditions, and the development of potential application areas is too basic and do not support by in-depth studies. Hence, this review comprehensively discusses the classification, green synthesis methods, and applications of Mn and MnO NPs in biomedical, environmental, and other fields and gives a perspective for the future.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Kumar Vishven Naveen
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Yuting Lu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
10
|
Das R, Yao P, Yin H, Liang Z, Li G, An T. BPA degradation using biogenic manganese oxides produced by an engineered Escherichia coli with a non-blue laccase from Bacillus sp. GZB. CHEMOSPHERE 2023; 326:138407. [PMID: 36925011 DOI: 10.1016/j.chemosphere.2023.138407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/16/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA), an endocrine disruptor that is often found in a variety of environmental matrixes, poses a serious health risk. One of the most effective methods for completely degrading BPA is biological oxidation. This study used a non-blue laccase to develop an engineer Escherichia coli strain for the synthesis of biogenic manganese oxides (BMO). The recombinant strain LACREC3 was utilized for the efficient production of BMO. The LACREC3 strain developed the erratic clumps of BMO after prolonged growth with Mn2+, as shown by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDS) tests. After 12 days of incubation under liquid culture conditions, a total of 51.97 ± 0.56% Mn-oxides were detected. The Brunauer-Emmett-Teller (BET) surface areas, X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and X-ray photoelectron spectroscopy (XPS) experiments were further used to characterize the purified BMO. Data revealed that Mn(IV)-oxides predominated in the structure of BMO, which was amorphous and weakly crystalline. The BPA oxidation assay confirmed the high oxidation efficiency of BMO particle. BMO degraded 96.16 ± 0.31% of BPA in total over the course of 60 min. The gas chromatography and mass spectroscopy (GC-MS) identified BPA-intermediates showed that BPA might break down into less hazardous substances that were tested by Photobacterium Phosphoreum in an acute toxicity experiment. Thus, employing BMO generated by a non-blue laccase, this study introduces a new biological technique of metal-oxidation and organic-pollutant degradation.
Collapse
Affiliation(s)
- Ranjit Das
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; College of Environmental Sciences and Engineering, Nankai University, Tianjin, 300350, China
| | - Pengzhao Yao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hongliang Yin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhishu Liang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
11
|
Sun Y, Wang C, May AL, Chen G, Yin Y, Xie Y, Lato AM, Im J, Löffler FE. Mn(III)-mediated bisphenol a degradation: Mechanisms and products. WATER RESEARCH 2023; 235:119787. [PMID: 36917870 DOI: 10.1016/j.watres.2023.119787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA) is a high production volume chemical with potential estrogenic effects susceptible to abiotic degradation by MnO2. BPA transformation products and reaction mechanisms with MnO2 have been investigated, but detailed process understanding of Mn(III)-mediated degradation has not been attained. Rapid consumption of BPA occurred in batch reaction vessels with 1 mM Mn(III) and 63.9 ± 0.7% of 1.76 ± 0.02 μmol BPA was degraded in 1 hour at circumneutral pH. BPA was consumed at 1.86 ± 0.09-fold higher rates in vessels with synthetic MnO2 comprising approximately 13 mol% surface-associated Mn(III) versus surface-Mn(III)-free MnO2, and 10-35% of BPA transformation could be attributed to Mn(III) during the initial 10-min reaction phase. High-resolution tandem mass spectrometry (HRMS/MS) analysis detected eight transformation intermediates in reactions with Mn(III), and quantum calculations proposed 14 BPA degradation products, nine of which had not been observed during MnO2-mediated BPA degradation, suggesting mechanistic differences between Mn(III)- versus MnO2-mediated BPA degradation. The findings demonstrate that both Mn(III) and Mn(IV) can effectively degrade BPA and indicate that surface-associated Mn(III) increases the reactivity of synthetic MnO2, offering opportunities for engineering more reactive oxidized Mn species for BPA removal.
Collapse
Affiliation(s)
- Yanchen Sun
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States; Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Chao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Amanda L May
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Gao Chen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States; Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Yongchao Yin
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States; Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Yongchao Xie
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States; Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ashley M Lato
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jeongdae Im
- Department of Civil Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Frank E Löffler
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States; Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States; Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States; Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
| |
Collapse
|
12
|
Liu X, Cai X, Wang P, Yin N, Fan C, Chang X, Huang X, Du X, Wang S, Cui Y. Effect of manganese oxides on arsenic speciation and mobilization in different arsenic-adsorbed iron-minerals under microbially-reducing conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130602. [PMID: 37055999 DOI: 10.1016/j.jhazmat.2022.130602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 06/19/2023]
Abstract
The oxidation and immobilization of arsenic (As) by manganese oxides have been shown to reduce As toxicity and bioavailability under abiotic conditions. In this study, we investigate the impact of manganese oxide (δ-MnO2) on the fate of different Fe-minerals-adsorbed As in the presence of As(V)-reducing bacteria Bacillus sp. JQ. Results showed that in the absence of δ-MnO2, As release in goethite was much higher than in ferrihydrite and hematite during microbial reduction. Adding 3.1 mM Mn reduced As release by 0.3%, 46.3%, and 6.7% in the ferrihydrite, goethite, and hematite groups, respectively. However, aqueous As was dominated by As(III) in the end, because the oxidation effect of δ-MnO2 was limited and short-lived. Additionally, the fraction of solid-phase As(V) increased by 9.8% in ferrihydrite, 39.4% in goethite, and 7.4% in hematite in the high-Mn treatments, indicating that δ-MnO2 had the most significant oxidation and immobilization effect on goethite-adsorbed As. This was achieved because goethite particles were evenly distributed on δ-MnO2 surface, which supported As(III) oxidation by δ-MnO2; while ferrihydrite strongly aggregated, which hindered the oxidation of As(III). Our study shows that As-oxidation and immobilization by manganese oxides cannot easily be assessed without considering the mineral composition and microbial conditions of soils.
Collapse
Affiliation(s)
- Xiaotong Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Pengfei Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Chuanfang Fan
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xuhui Chang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xuhan Huang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xin Du
- CHINALCO Environmental protection and Energy Conservation Group Co. Ltd., Beijing 102209, PR China
| | - Shuping Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| |
Collapse
|
13
|
Pizarro L, Magalhães C, Almeida CMR, Carvalho MDF, Semedo M. Cadmium effects on net N2O production by the deep-sea isolate Shewanella loihica PV-4. FEMS Microbiol Lett 2023; 370:fnad047. [PMID: 37279908 PMCID: PMC10337742 DOI: 10.1093/femsle/fnad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023] Open
Abstract
Deep-sea mining may lead to the release of high concentrations of metals into the surrounding seabed, which can disturb important ecosystem functions provided by microbial communities. Among these, the production of N2O and its reduction to N2 is of great relevance since N2O is an important greenhouse gas. Metal impacts on net N2O production by deep-sea bacteria are, however, currently unexplored. Here, we evaluated the effects of cadmium (Cd) on net N2O production by a deep-sea isolate, Shewanella loihica PV-4. We performed a series of Cd exposure incubations in oxic conditions and determined N2O fluxes during induced anoxic conditions, as well as the relative expression of the nitrite reductase gene (nirK), preceding N2O production, and N2O reductase gene (nosZ), responsible for N2O reduction. Net N2O production by S. loihica PV-4 exposed to Cd was strongly inhibited when compared to the control treatment (no metal). Both nirK and nosZ gene expression were inhibited in reactors with Cd, but nirK inhibition was stronger, supporting the lower net N2O production observed with Cd. The Cd inhibition of net N2O production observed in this study poses the question whether other deep-sea bacteria would undergo the same effects. Future studies should address this question as well as its applicability to complex communities and other physicochemical conditions, which remain to be evaluated.
Collapse
Affiliation(s)
- Leonor Pizarro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos 4450-208, Portugal
- Faculty of Biotechnology, Catholic University of Portugal, Porto 4169-005, Portugal
| | - Catarina Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos 4450-208, Portugal
- Department of Biology, Faculty of Sciences (FCUP), University of Porto, Porto 4169-007, Portugal
| | - C Marisa R Almeida
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos 4450-208, Portugal
- Department of Chemistry and Biochemistry, Faculty of Sciences (FCUP), University of Porto, Porto 4169-007, Portugal
| | - Maria de Fátima Carvalho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos 4450-208, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto 4050-313, Portugal
| | - Miguel Semedo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos 4450-208, Portugal
| |
Collapse
|
14
|
A Novel Ag@AgCl Nanoparticle Synthesized by Arctic Marine Bacterium: Characterization, Activity and Mechanism. Int J Mol Sci 2022; 23:ijms232415558. [PMID: 36555211 PMCID: PMC9779459 DOI: 10.3390/ijms232415558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
An additive- and pollution-free method for the preparation of biogenic silver and silver chloride nanoparticles (Ag@AgCl NPs) was developed from the bacteria Shewanella sp. Arc9-LZ, which was isolated from the deep sea of the Arctic Ocean. The optimal synthesizing conditions were explored, including light, pH, Ag+ concentration and time. The nanoparticles were studied by means of ultraviolet-visible (UV-Vis) spectrophotometry, energy dispersive spectrometry (EDS), X-ray diffraction (XRD) and inductively coupled plasma optical emission spectrometers (ICP-OES). The transmission electron microscope (TEM) showed that the nanoparticles were spherical and well dispersed, with particle sizes less than 20.00 nm. With Ag@AgCl nanoparticles, the kinetic rate constants for congo red (CR) and rhodamine B (RhB) dye degradation were 2.74 × 10-1 min-1 and 7.78 × 10-1 min-1, respectively. The maximum decolourization efficiencies of CR and RhB were 93.36% and 99.52%, respectively. Ag@AgCl nanoparticles also showed high antibacterial activities against the Gram-positive and Gram-negative bacteria. The Fourier transform infrared spectroscopy (FTIR) spectrum indicated that the O-H, N-H and -COO- groups in the supernatant of Arc9-LZ might participate in the reduction, stabilization and capping of nanoparticles. We mapped the schematic diagram on possible mechanisms for synthesizing Ag@AgCl NPs.
Collapse
|
15
|
Long X, Zhang H, Cao X, Wang H, Shimokawa K, Chi H, Zhang C, Okamoto A, Li X. Biogenic Mn2O3 via the redox of Shewanella oneidensis MR-1 for peroxymonosulfate advanced oxidation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Echavarri-Bravo V, Amari H, Hartley J, Maddalena G, Kirk C, Tuijtel MW, Browning ND, Horsfall LE. Selective bacterial separation of critical metals: towards a sustainable method for recycling lithium ion batteries. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2022; 24:8512-8522. [PMID: 36353209 PMCID: PMC9621301 DOI: 10.1039/d2gc02450k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The large scale recycling of lithium ion batteries (LIBs) is essential to satisfy global demands for the raw materials required to implement this technology as part of a clean energy strategy. However, despite what is rapidly becoming a critical need, an efficient and sustainable recycling process for LIBs has yet to be developed. Biological reactions occur with great selectivity under mild conditions, offering new avenues for the implementation of more environmentally sustainable processes. Here, we demonstrate a sequential process employing two bacterial species to recover Mn, Co and Ni, from vehicular LIBs through the biosynthesis of metallic nanoparticles, whilst Li remains within the leachate. Moreover the feasibility of Mn recovery from polymetallic solutions was demonstrated at semi-pilot scale in a 30 L bioreactor. Additionally, to provide insight into the biological process occurring, we investigated selectivity between Co and Ni using proteomics to identify the biological response and confirm the potential of a bio-based method to separate these two essential metals. Our approach determines the principles and first steps of a practical bio-separation and recovery system, underlining the relevance of harnessing biological specificity for recycling and up-cycling critical materials.
Collapse
Affiliation(s)
- Virginia Echavarri-Bravo
- School of Biological Sciences, University of Edinburgh Edinburgh EH9 3FF UK
- Faraday Institution (ReLiB project) Quad One Harwell Science and Innovation Campus Didcot UK
| | - Houari Amari
- Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool Liverpool L69 3GQ UK
- Faraday Institution (ReLiB project) Quad One Harwell Science and Innovation Campus Didcot UK
| | - Jennifer Hartley
- School of Chemistry, University of Leicester Leicester LE1 7RH UK
- Faraday Institution (ReLiB project) Quad One Harwell Science and Innovation Campus Didcot UK
| | - Giovanni Maddalena
- School of Biological Sciences, University of Edinburgh Edinburgh EH9 3FF UK
- Faraday Institution (ReLiB project) Quad One Harwell Science and Innovation Campus Didcot UK
| | - Caroline Kirk
- School of Chemistry, University of Edinburgh Edinburgh EH9 3FJ UK
| | - Maarten W Tuijtel
- School of Biological Sciences, University of Edinburgh Edinburgh EH9 3FF UK
| | - Nigel D Browning
- Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool Liverpool L69 3GQ UK
- Faraday Institution (ReLiB project) Quad One Harwell Science and Innovation Campus Didcot UK
- Sivananthan Laboratories 590 Territorial Drive Bolingbrook IL 60440 USA
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Louise E Horsfall
- School of Biological Sciences, University of Edinburgh Edinburgh EH9 3FF UK
- Faraday Institution (ReLiB project) Quad One Harwell Science and Innovation Campus Didcot UK
| |
Collapse
|
17
|
Aoki M, Miyashita Y, Miwa T, Watari T, Yamaguchi T, Syutsubo K, Hayashi K. Manganese oxidation and prokaryotic community analysis in a polycaprolactone-packed aerated biofilm reactor operated under seawater conditions. 3 Biotech 2022; 12:187. [PMID: 35875177 PMCID: PMC9304527 DOI: 10.1007/s13205-022-03250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
Abstract
Biogenic manganese oxides (BioMnOx) have been receiving increasing attention for the removal of environmental contaminants and recovery of minor metals from water environments. However, the enrichment of heterotrophic Mn(II)-oxidizing microorganisms for BioMnOx production in the presence of fast-growing coexisting heterotrophs is challenging. In our previous work, we revealed that polycaprolactone (PCL), a biodegradable aliphatic polyester, can serve as an effective solid organic substrate to enrich Mn-oxidizing microbial communities under seawater conditions. However, marine BioMnOx-producing bioreactor systems utilizing PCL have not yet been established. Therefore, a laboratory-scale continuous-flow PCL-packed aerated biofilm (PAB) reactor was operated for 238 days to evaluate its feasibility for BioMnOx production under seawater conditions. After the start-up of the reactor, the average dissolved Mn removal rates of 0.4-2.3 mg/L/day, likely caused by Mn(II) oxidation, were confirmed under different influent dissolved Mn concentrations (2.5-14.0 mg/L on average) and theoretical hydraulic retention time (0.19-0.77 day) conditions. The 16S rRNA gene amplicon sequencing analysis suggested the presence of putative Mn(II)-oxidizing and PCL-degrading bacterial lineages in the reactor. Two highly dominant operational units (OTUs) in the packed PCL-associated biofilm were assigned to the genera Marinobacter and Pseudohoeflea, whereas the genus Lewinella and unclassified Alphaproteobacteria OTUs were highly dominant in the MnOx-containing black/dark brown precipitate-associated biofilm formed in the reactor. Excitation-emission matrix fluorescence spectroscopy analysis revealed the production of tyrosine- and tryptophane-like components, which may serve as soluble heterotrophic organic substrates in the reactor. Our findings indicate that PAB reactors are potentially applicable to BioMnOx production under seawater conditions.
Collapse
Affiliation(s)
- Masataka Aoki
- Regional Environment Conservation Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
- Department of Civil Engineering, National Institute of Technology, Wakayama College, Gobo, Wakayama Japan
| | - Yukina Miyashita
- Department of Civil Engineering, National Institute of Technology, Wakayama College, Gobo, Wakayama Japan
| | - Toru Miwa
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Niigata Japan
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata Japan
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Niigata Japan
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata Japan
| | - Kazuaki Syutsubo
- Regional Environment Conservation Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Hayashi
- Department of Civil Engineering, National Institute of Technology, Wakayama College, Gobo, Wakayama Japan
| |
Collapse
|
18
|
Mineralogical and Genomic Constraints on the Origin of Microbial Mn Oxide Formation in Complexed Microbial Community at the Terrestrial Hot Spring. Life (Basel) 2022; 12:life12060816. [PMID: 35743847 PMCID: PMC9224936 DOI: 10.3390/life12060816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
Manganese (Mn) oxides are widespread on the surface environments of the modern Earth. The role of microbial activities in the formation of Mn oxides has been discussed for several decades. However, the mechanisms of microbial Mn oxidation, and its role in complex microbial communities in natural environments, remain uncertain. Here, we report the geochemical, mineralogical, and metagenomic evidence for biogenic Mn oxides, found in Japanese hot spring sinters. The low crystallinity of Mn oxides, and their spatial associations with organic matter, support the biogenic origin of Mn oxides. Specific multicopper oxidases (MCOs), which are considered Mn-oxidizing enzymes, were identified using metagenomic analyses. Nanoscale nuggets of copper sulfides were, also, discovered in the organic matter in Mn-rich sinters. A part of these copper sulfides most likely represents traces of MCOs, and this is the first report of traces of Mn-oxidizing enzyme in geological samples. Metagenomic analyses, surprisingly, indicated a close association of Mn oxides, not only in aerobic but also in anaerobic microbial communities. These new findings offer the unique and unified positions of Mn oxides, with roles that have not been ignored, to sustain anaerobic microbial communities in hot spring environments.
Collapse
|
19
|
Gu T, Tong Z, Zhang X, Wang Z, Zhang Z, Hwang TS, Li L. Carbon Metabolism of a Soilborne Mn(II)-Oxidizing Escherichia coli Isolate Implicated as a Pronounced Modulator of Bacterial Mn Oxidation. Int J Mol Sci 2022; 23:ijms23115951. [PMID: 35682628 PMCID: PMC9180420 DOI: 10.3390/ijms23115951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/18/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Mn(II)-oxidizing microorganisms are generally considered the primary driving forces in the biological formation of Mn oxides. However, the mechanistic elucidation of the actuation and regulation of Mn oxidation in soilborne bacteria remains elusive. Here, we performed joint multiple gene-knockout analyses and comparative morphological and physiological determinations to characterize the influence of carbon metabolism on the Mn oxide deposit amount (MnODA) and the Mn oxide formation of a soilborne bacterium, Escherichia coli MB266. Different carbon source substances exhibited significantly varied effects on the MnODA of MB266. A total of 16 carbon metabolism-related genes with significant variant expression levels under Mn supplementation conditions were knocked out in the MB266 genome accordingly, but only little effect on the MnODA of each mutant strain was accounted for. However, a simultaneous four-gene-knockout mutant (namely, MB801) showed an overall remarkable MnODA reduction and an initially delayed Mn oxide formation compared with the wild-type MB266. The assays using scanning/transmission electron microscopy verified that MB801 exhibited not only a delayed Mn-oxide aggregate processing, but also relatively smaller microspherical agglomerations, and presented flocculent deposit Mn oxides compared with normal fibrous and crystalline Mn oxides formed by MB266. Moreover, the Mn oxide aggregate formation was highly related to the intracellular ROS level. Thus, this study demonstrates that carbon metabolism acts as a pronounced modulator of MnODA in MB266, which will provide new insights into the occurrence of Mn oxidation and Mn oxide formation by soilborne bacteria in habitats where Mn(II) naturally occurs.
Collapse
Affiliation(s)
- Tong Gu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
| | - Zhenghu Tong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
| | - Xue Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
| | - Zhiyong Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei Minzu University, Enshi 445000, China
| | - Zhen Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
- College of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Tzann-Shun Hwang
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei 11114, Taiwan
- Correspondence: (T.-S.H.); (L.L.)
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
- Correspondence: (T.-S.H.); (L.L.)
| |
Collapse
|
20
|
Oliver N, Avramov AP, Nürnberg DJ, Dau H, Burnap RL. From manganese oxidation to water oxidation: assembly and evolution of the water-splitting complex in photosystem II. PHOTOSYNTHESIS RESEARCH 2022; 152:107-133. [PMID: 35397059 DOI: 10.1007/s11120-022-00912-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The manganese cluster of photosystem II has been the focus of intense research aiming to understand the mechanism of H2O-oxidation. Great effort has also been applied to investigating its oxidative photoassembly process, termed photoactivation that involves the light-driven incorporation of metal ions into the active Mn4CaO5 cluster. The knowledge gained on these topics has fundamental scientific significance, but may also provide the blueprints for the development of biomimetic devices capable of splitting water for solar energy applications. Accordingly, synthetic chemical approaches inspired by the native Mn cluster are actively being explored, for which the native catalyst is a useful benchmark. For both the natural and artificial catalysts, the assembly process of incorporating Mn ions into catalytically active Mn oxide complexes is an oxidative process. In both cases this process appears to share certain chemical features, such as producing an optimal fraction of open coordination sites on the metals to facilitate the binding of substrate water, as well as the involvement of alkali metals (e.g., Ca2+) to facilitate assembly and activate water-splitting catalysis. This review discusses the structure and formation of the metal cluster of the PSII H2O-oxidizing complex in the context of what is known about the formation and chemical properties of different Mn oxides. Additionally, the evolutionary origin of the Mn4CaO5 is considered in light of hypotheses that soluble Mn2+ was an ancient source of reductant for some early photosynthetic reaction centers ('photomanganotrophy'), and recent evidence that PSII can form Mn oxides with structural resemblance to the geologically abundant birnessite class of minerals. A new functional role for Ca2+ to facilitate sustained Mn2+ oxidation during photomanganotrophy is proposed, which may explain proposed physiological intermediates during the likely evolutionary transition from anoxygenic to oxygenic photosynthesis.
Collapse
Affiliation(s)
- Nicholas Oliver
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Anton P Avramov
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Dennis J Nürnberg
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Holger Dau
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Robert L Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
21
|
Tian X, Wu R, Li X, Wu X, Jiang Y, Zhao F. Feedback current production by a ferrous mediator revealing the redox properties of Shewanella oneidensis MR-1. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Jeyaraj A, Subramanian S. Synthesis, optimization, and characterization of biogenic manganese oxide (BioMnOx) by bacterial isolates from mangrove soils with sorbents property towards different toxic metals. Biometals 2022; 35:429-449. [PMID: 35357611 DOI: 10.1007/s10534-022-00378-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 11/17/2021] [Indexed: 11/02/2022]
Abstract
Manganese oxidizing bacteria, Bacillus mycoides and Bacillus subtilis were isolated from mangrove soils and optimized for the removal of Mn(II) with simultaneous production of biogenic manganese oxide (BioMnOx). The removal rate of Mn(II) was 90% in 48 h for B. mycoides and 72 h for B. subtilis under the optimized conditions at pH 7, temperature 37 °C, 120 rpm, with 1% inoculum containing 10 mM MnCl2. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Energy dispersive X-Ray analysis (EDAX), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were used to characterize the synthesized biogenic manganese oxide. BioMnOx by Bacillus mycoides and Bacillus subtilis were identified as Bixbyite (Mn2O3) and Hausmannite (Mn3O4), respectively, with nano-sized monocrystalline nature. BioMnOx of Bacillus subtilis strain was more efficient in the removal of metals Zn and Co than BioMnOx of Bacillus mycoides except for mercury. The removal property of synthesized BioMnOx could be applied to treat multi-metal containing wastewater.
Collapse
Affiliation(s)
- Anitha Jeyaraj
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Sangeetha Subramanian
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| |
Collapse
|
23
|
Min D, Cheng L, Liu JQ, Liu DF, Li WW, Yu HQ. Ligand-Assisted Formation of Soluble Mn(III) and Bixbyite-like Mn 2O 3 by Shewanella putrefaciens CN32. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3812-3820. [PMID: 35226466 DOI: 10.1021/acs.est.2c00342] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Functional material synthesis through biomineralization is effective and environmentally friendly. Biomineralized manganese (Mn) oxides are important for remediation and energy storage. Manganese(II) biomineralization is achieved by a diverse group of bacteria. We show that in the presence of oxygen the dissimilatory manganese-reducing bacterium Shewanella putrefaciens CN32 can oxidize Mn(II). The Mn(II) oxidation was accelerated with the increase in the initial Mn(II) concentration from 0.5 to 3 mM. The reaction was mainly associated with a cell-free filtrate, rather than the direct enzymatic oxidation or indirect oxidation by reactive oxygen species or macrocyclic siderophores. Instead, indirect oxidization of Mn(II) into soluble Mn(III) and bixbyite-like Mn2O3 via microbially produced extracellular ligands (molecular weights of 1-3 kDa) was identified. This work broadens our view about microbial Mn(II) oxidation and unveils the important roles of Shewanella species in the geochemical cycling of manganese.
Collapse
Affiliation(s)
- Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Lei Cheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jia-Qi Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
24
|
Jeevanandam J, Kiew SF, Boakye-Ansah S, Lau SY, Barhoum A, Danquah MK, Rodrigues J. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. NANOSCALE 2022; 14:2534-2571. [PMID: 35133391 DOI: 10.1039/d1nr08144f] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Green synthesis approaches are gaining significance as promising routes for the sustainable preparation of nanoparticles, offering reduced toxicity towards living organisms and the environment. Nanomaterials produced by green synthesis approaches can offer additional benefits, including reduced energy inputs and lower production costs than traditional synthesis, which bodes well for commercial-scale production. The biomolecules and phytochemicals extracted from microbes and plants, respectively, are active compounds that function as reducing and stabilizing agents for the green synthesis of nanoparticles. Microorganisms, such as bacteria, yeasts, fungi, and algae, have been used in nanomaterials' biological synthesis for some time. Furthermore, the use of plants or plant extracts for metal and metal-based hybrid nanoparticle synthesis represents a novel green synthesis approach that has attracted significant research interest. This review discusses various biosynthesis approaches via microbes and plants for the green preparation of metal and metal oxide nanoparticles and provides insights into the molecular aspects of the synthesis mechanisms and biomedical applications. The use of agriculture waste as a potential bioresource for nanoparticle synthesis and biomedical applications of biosynthesized nanoparticles is also discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Siaw Fui Kiew
- Curtin Malaysia Research Institute, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia
- Sarawak Biovalley Pilot Plant, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia
| | - Stephen Boakye-Ansah
- Rowan University, Henry M. Rowan College of Engineering, Department of Chemical Engineering, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Sie Yon Lau
- Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia
| | - Ahmed Barhoum
- Nanostruc, Research Group, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
- School of Chemical Sciences, Dublin City University, Dublin 9, D09 Y074 Dublin, Ireland
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
- School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
25
|
Hoang L, Tran NH, Urynowicz M, Dong VG, To KA, Huang Z, Nguyen LH, Pham TMP, Nguyen DD, Do CD, Le QH. The characteristics of coalbed water and coal in a coal seam situated in the Red River Basin, Vietnam. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151056. [PMID: 34673062 DOI: 10.1016/j.scitotenv.2021.151056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
An in-depth understanding of the hydrogeochemical characteristics of coal mines is helpful in establishing an effective and successful exploration program of coalbed methane (CBM). This study provides a comprehensive analysis of hydrogeological characteristics, characteristics of coalbed water, and characteristics of the coal sample from a coal seam located in the Red River Basin (RRB). These physicochemical characteristics along with the microbial composition of coalbed water were critically analyzed. A high concentration of chloride and sodium was found in the coalbed water, presumably due to the coal mine's stratigraphic association with marine or marine-transitional beds. A correlation between the occurrence of microbes and the chemical components in the coalbed water was established. The characteristics of the coal were systematically analyzed, including proximate, ultimate, and petrographic analyses. Based on the coal macerals, coal rank is classified as low-rank (sub-bituminous) with a vitrinite reflectance (Ro, max) of 0.36%, suggesting that this type of low-rank coal is favorable for biogenic methane generation. Pore structures and pore types were characterized using different methods, including low-temperature nitrogen adsorption/desorption (LTNA), mercury intrusion porosimetry (MIP), and scanning electron microscopy (SEM). Coal from the study area has microporous and macroporous features. Pore types of the coal were also characterized using SEM. The primary genetic pore types of the Red River coal include plant tissue holes and blowholes.
Collapse
Affiliation(s)
- Lan Hoang
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hanoi, Viet Nam; Faculty of Materials Science and Engineering, Phenikaa University, Yen Nghia, Ha Dong, Hanoi, Viet Nam
| | - Ngoc Han Tran
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower, #15-02, Singapore 138602, Singapore.
| | - Michael Urynowicz
- Civil & Architectural Engineering Department, University of Wyoming, Laramie, WY 82071, USA
| | - Van Giap Dong
- General Department of Geology and Minerals of Viet Nam, No. 6 Pham Ngu Lao, Hoan Kiem, Hanoi, Viet Nam
| | - Kim Anh To
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hanoi, Viet Nam
| | - Zaixing Huang
- Civil & Architectural Engineering Department, University of Wyoming, Laramie, WY 82071, USA; Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Lan Huong Nguyen
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hanoi, Viet Nam
| | - Thi Mai Phuong Pham
- Advanced Institute of Science and Technology, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hanoi, Viet Nam
| | - Duc Dung Nguyen
- Advanced Institute of Science and Technology, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hanoi, Viet Nam
| | - Canh Duong Do
- General Department of Geology and Minerals of Viet Nam, No. 6 Pham Ngu Lao, Hoan Kiem, Hanoi, Viet Nam
| | - Quoc Hung Le
- General Department of Geology and Minerals of Viet Nam, No. 6 Pham Ngu Lao, Hoan Kiem, Hanoi, Viet Nam.
| |
Collapse
|
26
|
Du Z, Zhang Y, Xu A, Pan S, Zhang Y. Biogenic metal nanoparticles with microbes and their applications in water treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3213-3229. [PMID: 34734337 DOI: 10.1007/s11356-021-17042-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Due to their unique characteristics, nanomaterials are widely used in many applications including water treatment. They are usually synthesized via physiochemical methods mostly involving toxic chemicals and extreme conditions. Recently, the biogenic metal nanoparticles (Bio-Me-NPs) with microbes have triggered extensive exploration. Besides their environmental-friendly raw materials and ambient biosynthesis conditions, Bio-Me-NPs also exhibit the unique surface properties and crystalline structures, which could eliminate various contaminants from water. Recent findings in the synthesis, morphology, composition, and structure of Bio-Me-NPs have been reviewed here, with an emphasis on the metal elements of Fe, Mn, Pd, Au, and Ag and their composites which are synthesized by bacteria, fungi, and algae. Furthermore, the mechanisms of eliminating organic and inorganic contaminants with Bio-Me-NPs are elucidated in detail, including adsorption, oxidation, reduction, and catalysis. The scale-up applicability of Bio-Me-NPs is also discussed.
Collapse
Affiliation(s)
- Zhiling Du
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
- School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yunhai Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Anlin Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Shunlong Pan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| |
Collapse
|
27
|
Jeevanandam J, Kiew SF, Boakye-Ansah S, Lau SY, Barhoum A, Danquah MK, Rodrigues J. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. NANOSCALE 2022. [DOI: https://doi.org/10.1039/d1nr08144f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Green synthesis approaches are gaining significance as promising routes for the sustainable preparation of nanoparticles, offering reduced toxicity towards living organisms and the environment.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Siaw Fui Kiew
- Curtin Malaysia Research Institute, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia
- Sarawak Biovalley Pilot Plant, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia
| | - Stephen Boakye-Ansah
- Rowan University, Henry M. Rowan College of Engineering, Department of Chemical Engineering, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Sie Yon Lau
- Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia
| | - Ahmed Barhoum
- Nanostruc, Research Group, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
- School of Chemical Sciences, Dublin City University, Dublin 9, D09 Y074 Dublin, Ireland
| | - Michael K. Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - João Rodrigues
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
28
|
Ahmad KS, Yaqoob S, Gul MM. Dynamic green synthesis of iron oxide and manganese oxide nanoparticles and their cogent antimicrobial, environmental and electrical applications. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
The scientific community is inclined towards addressing environmental and energy concerns through sustainable means. Conventional processes such as chemical synthesis, involve the usage of environmentally harmful ligands and high tech facilities, which are time-consuming, expensive, energy-intensive, and require extreme conditions for synthesis. Plant-based synthesis is valuable and sustainable for the ecosystem. The use of plant-based precursors for nanoparticle synthesis eliminates the menace of toxic waste contamination. The present review elucidates that the plant based synthesized iron oxide and manganese oxide nanoparticles have tremendous and exceptional applications in various fields such as antimicrobial and antioxidative domains, environmental, electrical and sensing properties. Hence, the literature reviewed explains that plant based synthesis of nanoparticles is an adept and preferred technique. These important transition oxide metal nanoparticles have great applicability in ecological, environmental science as well as electrochemistry and sensing technology. Both these metal oxides display a stable and adaptable nature, which can be functionalized for a specific application, thus exhibiting great potential for efficiency. The current review epitomizes all the latest reported work on the synthesis of iron and manganese oxide nanoparticles through a greener approach along with explaining various significant applications keeping in view the concept of sustainability.
Collapse
Affiliation(s)
- Khuram Shahzad Ahmad
- Department of Environmental Sciences , Fatima Jinnah Women University , The Mall, 46000 , Rawalpindi , Pakistan
| | - Sidra Yaqoob
- Department of Environmental Sciences , Fatima Jinnah Women University , The Mall, 46000 , Rawalpindi , Pakistan
| | - Mahwash Mahar Gul
- Department of Environmental Sciences , Fatima Jinnah Women University , The Mall, 46000 , Rawalpindi , Pakistan
| |
Collapse
|
29
|
Effects of three probiotic strains (Bacillus coagulans, B. licheniformis and Paenibacillus polymyxa) on growth, immune response, gut morphology and microbiota, and resistance against Vibrio harveyi of northern whitings, Sillago sihama Forsskál (1775). Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114958] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
An Q, Jin L, Deng S, Li Z, Zhang C. Removal of Mn(II) by a nitrifying bacterium Acinetobacter sp. AL-6: efficiency and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31218-31229. [PMID: 33599926 DOI: 10.1007/s11356-021-12764-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
A nitrifying bacterium Acinetobacter sp. AL-6 showed a high efficiency of 99.05% for Mn(II) removal within 144 h when the Mn(II) concentration was 200 mg L-1; meanwhile, 64.23% of NH4+-N was removed. With the Mn(II) concentration increased from 25 to 300 mg L-1, bacterial growth and Mn(II) removal were stimulated. However, due to the electron acceptor competition between Mn(II) oxidation and nitrification reactions, the increase in NH4+-N concentration would inhibit Mn(II) removal. By measuring Mn metabolic form and locating oxidative active factors, it was proved that extracellular oxidation effect played a dominant role in the removal process of Mn(II). The self-regulation of pH during strain metabolism further promoted the occurrence of biological Mn oxidation. Characterization results showed that the Mn oxidation products were tightly attached to the surface of the bacteria in the form of flakes. The product crystal composition (mainly MnO2 and Mn2O3), Mn-O functional group, and element level fluctuations confirmed the biological oxidation information. The changes of -OH, N-H, and -CH2 groups and the appearance of new functional groups (such as C-H and C-O) provided more possibilities for Mn ion adsorption and bonding.
Collapse
Affiliation(s)
- Qiang An
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China.
- The Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Chongqing University, Chongqing, 400045, People's Republic of China.
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Lin Jin
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Shuman Deng
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Zheng Li
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Chenyi Zhang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China
| |
Collapse
|
31
|
Zou L, Zhu F, Long ZE, Huang Y. Bacterial extracellular electron transfer: a powerful route to the green biosynthesis of inorganic nanomaterials for multifunctional applications. J Nanobiotechnology 2021; 19:120. [PMID: 33906693 PMCID: PMC8077780 DOI: 10.1186/s12951-021-00868-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/20/2021] [Indexed: 02/08/2023] Open
Abstract
Synthesis of inorganic nanomaterials such as metal nanoparticles (MNPs) using various biological entities as smart nanofactories has emerged as one of the foremost scientific endeavors in recent years. The biosynthesis process is environmentally friendly, cost-effective and easy to be scaled up, and can also bring neat features to products such as high dispersity and biocompatibility. However, the biomanufacturing of inorganic nanomaterials is still at the trial-and-error stage due to the lack of understanding for underlying mechanism. Dissimilatory metal reduction bacteria, especially Shewanella and Geobacter species, possess peculiar extracellular electron transfer (EET) features, through which the bacteria can pump electrons out of their cells to drive extracellular reduction reactions, and have thus exhibited distinct advantages in controllable and tailorable fabrication of inorganic nanomaterials including MNPs and graphene. Our aim is to present a critical review of recent state-of-the-art advances in inorganic biosynthesis methodologies based on bacterial EET using Shewanella and Geobacter species as typical strains. We begin with a brief introduction about bacterial EET mechanism, followed by reviewing key examples from literatures that exemplify the powerful activities of EET-enabled biosynthesis routes towards the production of a series of inorganic nanomaterials and place a special emphasis on rationally tailoring the structures and properties of products through the fine control of EET pathways. The application prospects of biogenic nanomaterials are then highlighted in multiple fields of (bio-) energy conversion, remediation of organic pollutants and toxic metals, and biomedicine. A summary and outlook are given with discussion on challenges of bio-manufacturing with well-defined controllability. ![]()
Collapse
Affiliation(s)
- Long Zou
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization From Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Fei Zhu
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization From Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhong-Er Long
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization From Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Yunhong Huang
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization From Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
32
|
Draft Genome Sequence of Halomonas sp. Strain KAO, a Halophilic Mn(II)-Oxidizing Bacterium. Microbiol Resour Announc 2021; 10:10/8/e00032-21. [PMID: 33632853 PMCID: PMC7909078 DOI: 10.1128/mra.00032-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Halomonas sp. strain KAO is an aerobic, Mn(II)-oxidizing, halophilic bacterium. The draft genome of the isolate contains 47 contigs encompassing 3.7 Mb and a G+C content of 64.22%. This sequence will provide essential information for future studies of Mn(II) oxidation, particularly under halophilic conditions. Halomonas sp. strain KAO is an aerobic, Mn(II)-oxidizing, halophilic bacterium. The draft genome of the isolate contains 47 contigs encompassing 3.7 Mb and a GC content of 64.22%. This sequence will provide essential information for future studies of Mn(II) oxidation, particularly under halophilic conditions.
Collapse
|
33
|
Chen X, Feng Q, Cai Q, Huang S, Yu Y, Zeng RJ, Chen M, Zhou S. Mn 3O 4 Nanozyme Coating Accelerates Nitrate Reduction and Decreases N 2O Emission during Photoelectrotrophic Denitrification by Thiobacillus denitrificans-CdS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10820-10830. [PMID: 32687335 DOI: 10.1021/acs.est.0c02709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biosemiconductors are highly efficient systems for converting solar energy into chemical energy. However, the inevitable presence of reactive oxygen species (ROS) seriously deteriorates the biosemiconductor performance. This work successfully constructed a Mn3O4 nanozyme-coated biosemiconductor, Thiobacillus denitrificans-cadmium sulfide (T. denitrificans-CdS@Mn3O4), via a simple, fast, and economic method. After Mn3O4 coating, the ROS were greatly eliminated; the concentrations of hydroxyl radicals, superoxide radicals, and hydrogen peroxide were reduced by 90%, 77.6%, and 26%, respectively, during photoelectrotrophic denitrification (PEDeN). T. denitrificans-CdS@Mn3O4 showed a 28% higher rate of nitrate reduction and 78% lower emission of nitrous oxide (at 68 h) than that of T. denitrificans-CdS. Moreover, the Mn3O4 coating effectively maintained the microbial viability and photochemical activity of CdS in the biosemiconductor. Importantly, no lag period was observed during PEDeN, suggesting that the Mn3O4 coating does not affect the metabolism of T. denitrificans-CdS. Immediate decomposition and physical separation are the two possible ways to protect a biosemiconductor from ROS damage by Mn3O4. This study provides a simple method for protecting biosemiconductors from the toxicity of inevitably generated ROS and will help develop more stable and efficient biosemiconductors in the future.
Collapse
Affiliation(s)
- Xiangyu Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qinyuan Feng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Quanhua Cai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shaofu Huang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuqing Yu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Man Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
34
|
Capeness MJ, Horsfall LE. Synthetic biology approaches towards the recycling of metals from the environment. Biochem Soc Trans 2020; 48:1367-1378. [PMID: 32627824 PMCID: PMC7458392 DOI: 10.1042/bst20190837] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 01/05/2023]
Abstract
Metals are a finite resource and their demand for use within existing and new technologies means metal scarcity is increasingly a global challenge. Conversely, there are areas containing such high levels of metal pollution that they are hazardous to life, and there is loss of material at every stage of the lifecycle of metals and their products. While traditional resource extraction methods are becoming less cost effective, due to a lowering quality of ore, industrial practices have begun turning to newer technologies to tap into metal resources currently locked up in contaminated land or lost in the extraction and manufacturing processes. One such technology uses biology for the remediation of metals, simultaneously extracting resources, decontaminating land, and reducing waste. Using biology for the identification and recovery of metals is considered a much 'greener' alternative to that of chemical methods, and this approach is about to undergo a renaissance thanks to synthetic biology. Synthetic biology couples molecular genetics with traditional engineering principles, incorporating a modular and standardised practice into the assembly of genetic parts. This has allowed the use of non-model organisms in place of the normal laboratory strains, as well as the adaption of environmentally sourced genetic material to standardised parts and practices. While synthetic biology is revolutionising the genetic capability of standard model organisms, there has been limited incursion into current practices for the biological recovery of metals from environmental sources. This mini-review will focus on some of the areas that have potential roles to play in these processes.
Collapse
Affiliation(s)
- Michael J. Capeness
- Centre for Systems and Synthetic Biology, and the Centre for Science at Extreme Conditions, School of Biological Sciences, University of Edinburgh, Roger Land Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, U.K
| | - Louise E. Horsfall
- Centre for Systems and Synthetic Biology, and the Centre for Science at Extreme Conditions, School of Biological Sciences, University of Edinburgh, Roger Land Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, U.K
| |
Collapse
|
35
|
Li S, Niu Y, Chen H, He P. Complete genome sequence of an Arctic Ocean bacterium Shewanella sp. Arc9-LZ with capacity of synthesizing silver nanoparticles in darkness. Mar Genomics 2020; 56:100808. [PMID: 32778401 DOI: 10.1016/j.margen.2020.100808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 11/15/2022]
Abstract
Shewanella sp. Arc9-LZ is a bacterium capable of synthesizing silver nanoparticles in darkness. It was isolated from the marine sediment from the Arctic Ocean (158°01'12"W; 84°28'38"N) collected during the 9th Chinese National Arctic Expedition in 2018. Here, we describe the complete genome of Shewanella sp. Arc9-LZ. The complete genome of Shewanella sp. Arc9-LZ is composed of a circular chromosome of 4,911,031 bp with G + C content of 41.61 mol%. The genome encodes 4040 protein-coding genes (CDSs), 104 tRNAs, and 35 rRNAs. The rRNAs contain 14 copies of 5S rRNA gene, 11 copies of 16S rRNA gene, and 10 copies of 23S rRNA gene. Based on the KEGG, COG, NR, Swiss-Prot, TCDB, and CAZy analysis, a total of 64 genes belonging to 9 kinds are related to the AgNPs synthesis. These genes are involeved in the synthesis of riboflavin, b-type cytochrome, c-type cytochrome, coenzyme Q, NADPH dehydrogenase, cytochrome c reductase, cytochrome c oxidase, nitroreductase, and nitrate reductase.
Collapse
Affiliation(s)
- Shuang Li
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; Key Laboratory of Natural Products of Qingdao, Qingdao 266061, China
| | - Yuanyuan Niu
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; Key Laboratory of Natural Products of Qingdao, Qingdao 266061, China
| | - Hao Chen
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; Key Laboratory of Natural Products of Qingdao, Qingdao 266061, China
| | - Peiqing He
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China; Key Laboratory of Natural Products of Qingdao, Qingdao 266061, China.
| |
Collapse
|
36
|
Wan W, Xing Y, Qin X, Li X, Liu S, Luo X, Huang Q, Chen W. A manganese-oxidizing bacterial consortium and its biogenic Mn oxides for dye decolorization and heavy metal adsorption. CHEMOSPHERE 2020; 253:126627. [PMID: 32278907 DOI: 10.1016/j.chemosphere.2020.126627] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 03/09/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Manganese (Mn) contamination is a common environmental problem in the world and manganese oxidizing bacteria (MOB) play important roles in bioremediation of heavy metal and organic pollution. In this study, a novel MOB consortium AS containing core microbes of Sphingobacterium and Bacillus was acclimated from Mn-contaminated rivulet sediments. The MOB consortium AS presented good Mn(II) removal performance under 500-10,000 mg/L Mn(II), with Mn(II) removal capacities ranging from 481 to 3478 mg/L. In coexistence systems of Mn(II) and Fe(II), Ni(II), Cu(II), and Zn(II), the MOB consortium AS removed 98%, 91%, 99%, and 76% of Mn(II), respectively. Additionally, the MOB consortium AS could utilize multiple carbon sources (e.g., Chitosan, β-Cyclodextrin, and Phenanthrene) to remove Mn(II), with Mn(II) removal efficiencies ranging from 11% to 97%. Meanwhile, XRD, XPS, FTIR, SEM, and EDS analyses reflected that biogenic Mn oxides (bio-MnOx-C) contained C, O, Mn (Mn(II) and Mn(IV)) and embodied in rhodochrosite and birnessite. The bio-MnOx-C exhibited second-order kinetic reaction for removal of dye, with corresponding decolorization capacities of 22.0 mg/g for methylene blue and 23.8 mg/g for crystal violet. In addition, bio-MnOx-C showed adsorption capacities of 159.0 mg/g for Cu(II), 130.7 mg/g for Zn(II), and 123.3 mg/g for Pb(II). Overall, this study illustrates consortium AS and bio-MnOx-C have great potentials in remediation of pollution caused by heavy metals and organic pollutants.
Collapse
Affiliation(s)
- Wenjie Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yonghui Xing
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xiuxiu Qin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xiang Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Song Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xuesong Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
37
|
Mansor M, Xu J. Benefits at the nanoscale: a review of nanoparticle-enabled processes favouring microbial growth and functionality. Environ Microbiol 2020; 22:3633-3649. [PMID: 32705763 DOI: 10.1111/1462-2920.15174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 11/29/2022]
Abstract
Nanoparticles are ubiquitous and co-occur with microbial life in every environment on Earth. Interactions between microbes and nanoparticles impact the biogeochemical cycles via accelerating various reaction rates and enabling biological processes at the smallest scales. Distinct from microbe-mineral interactions at large, microbe-nanoparticle interactions may involve higher levels of active recognition and utilization of the reactive, changeable, and thereby 'moldable' nano-sized inorganic phases by microbes, which has been given minimal attention in previous reviews. Here we have compiled the various cases of microbe-nanoparticle interactions with clear and potential benefits to the microbial cells and communities. Specifically, we discussed (i) the high bioavailabilities of nanoparticles due to increased specific surface areas and size-dependent solubility, with a focus on environmentally-relevant iron(III) (oxyhydr)oxides and pyrite, (ii) microbial utilization of nanoparticles as 'nano-tools' for electron transfer, chemotaxis, and storage units, and (iii) speculated benefits of precipitating 'moldable' nanoparticles in extracellular biomineralization. We further discussed emergent questions concerning cellular level responses to nanoparticle-associated cues, and the factors that affect nanoparticles' bioavailabilities beyond size-dependent effects. We end the review by proposing a framework towards more quantitative approaches and by highlighting promising techniques to guide future research in this exciting field.
Collapse
Affiliation(s)
- Muammar Mansor
- Geomicrobiology, Center for Applied Geoscience, University of Tuebingen, Tuebingen, 72076, Germany
| | - Jie Xu
- Department of Geological Sciences, the University of Texas at El Paso, El Paso, Texas, 79968, USA
| |
Collapse
|
38
|
Electrons selective uptake of a metal-reducing bacterium Shewanella oneidensis MR-1 from ferrocyanide. Biosens Bioelectron 2019; 142:111571. [DOI: 10.1016/j.bios.2019.111571] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 12/24/2022]
|
39
|
Yi Y, Liang L, Wang Z, Ai P, You X, Bian C, Shi Q, Dong B. A Comparative Metagenomics Study on Gastrointestinal Microbiota in Amphibious Mudskippers and Other Vertebrate Animals. Animals (Basel) 2019; 9:ani9090660. [PMID: 31489883 PMCID: PMC6769816 DOI: 10.3390/ani9090660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Mudskippers are important ecological components of intertidal ecosystems. It was proposed that their guts may play significant roles for terrestrial adaptations of these amphibious fishes. However, their gastrointestinal components and differences in microbiota with other vertebrates were never reported. Here, we performed a comparative metagenome analysis among various vertebrate groups, classified by living habitats and feeding habits, and also acquired microbial gene catalogs of five common fish species. Our findings confirmed the dominant microbial genera in each vertebrate group, as well as bacteriocin-related genes in the five common fish species, for discussion of their relationships with fish pathogenic diseases. Our big data will support in-depth investigations into potential roles of gastrointestinal microbiota to hosts and related applications in aquaculture practices. Abstract Gut microbiomes in various fish species were widely investigated with the rapid development of next-generation sequencing technologies. However, little is known about gastrointestinal (GI) microbial communities in mudskippers, a representative group of marine amphibious fishes, and their comparisons with other vertebrate animals from different habitats. Here, we performed a comprehensive analysis on microbial composition in five representative vertebrate groups (including amphibious mudskippers, marine and freshwater aquatic fishes, amphibians, and terrestrial animals) via operational taxonomic unit (OTU) survey and obtained a microbial gene catalog of five common fish species by metagenome sequencing. We observed that Cyanobacteria, Proteobacteria, Firmicutes, Bacteroidetes, and Fusobacteria were the most substantial bacteria in mudskippers. Differential variances in composition patterns of GI microbiota among the vertebrate groups were determined, although Proteobacteria and Firmicutes were the shared phyla with high abundance. In addition, Cetobacterium and Photobacterium were the most abundant genera in core OTUs of these examined omnivores, carnivores, and herbivores. Our metagenomic analysis also showed significant differences between the representative blue-spotted mudskipper and grass carp (both are herbivorous fishes) in microbes at the phylum and class levels and functional gene terms. Moreover, several bacteriocin-related genes were identified in the five common fishes, suggesting their potential contributions to pathogen resistance. In summary, our present work not only sheds new light on the correlation of GI microbiota composition with living habitats and feeding habits of the hosts, but also provides valuable bacterial genetic resources for healthy growth of aquaculture fishes.
Collapse
Affiliation(s)
- Yunhai Yi
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510006, China.
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| | - Lifeng Liang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Zhilin Wang
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510006, China.
| | - Peng Ai
- Research & Development Department, Guangzhou Genedenovo Biotechnology Co. Ltd., Guangzhou 510320, China.
| | - Xinxin You
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Qiong Shi
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Bo Dong
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510006, China.
| |
Collapse
|
40
|
Gautam PK, Singh A, Misra K, Sahoo AK, Samanta SK. Synthesis and applications of biogenic nanomaterials in drinking and wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 231:734-748. [PMID: 30408767 DOI: 10.1016/j.jenvman.2018.10.104] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/02/2018] [Accepted: 10/28/2018] [Indexed: 05/02/2023]
Abstract
The continuous increase in water pollution by various organic & inorganic contaminants has become a major issue of concern worldwide. Furthermore, the anthropogenic activities for the manufacturing of various products have boosted this problem manifold. To overcome this serious issue, nanotechnology has initiated to explore various proficient strategies to treat waste water in a more precise and accurate way with the support of various nanomaterials. In recent times, nanosized materials have proved their applicability to provide clean and affordable water treatment technologies. The exclusive features such as high surface area and mechanical properties, greater chemical reactivity, lower cost and energy, efficient regeneration for reuse allow the nanomaterials perfect for water remediation. But the conventional routes of synthesis of nanomaterials encompass the involvement of hazardous and volatile chemicals; therefore the use of nanomaterials further creates the secondary pollution. This issue has intrigued the scientists to develop biogenic pathways and procedures which are environmentally safer and inexpensive. It has led to the new trends that involve developing bio-inspired nano-scale adsorbents and catalysts for the removal and degradation of a wide range of water pollutants. Carbohydrates, proteins, polymers, flavonoids, alkaloids and several antioxidants obtained from plants, bacteria, fungi, and algae have proven their effectiveness as capping and stabilizing agents during manufacture of nanomaterials. Application of biogenic nanomaterials for waste water treatment is relatively newer but rapidly escalating area of research. In the present review, promises and challenges for the synthesis of various biogenic nanomaterials and their potential applications in waste water treatment and/or water purification have been discussed.
Collapse
Affiliation(s)
- Pavan Kumar Gautam
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, India
| | - Anirudh Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, India
| | - Krishna Misra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, India.
| |
Collapse
|
41
|
Kim TY, Kim MG, Lee JH, Hur HG. Biosynthesis of Nanomaterials by Shewanella Species for Application in Lithium Ion Batteries. Front Microbiol 2018; 9:2817. [PMID: 30524408 PMCID: PMC6258770 DOI: 10.3389/fmicb.2018.02817] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/02/2018] [Indexed: 11/13/2022] Open
Abstract
Nanomaterials exhibit extraordinary properties based on their size, shape, chemical composition, and crystal structure. Owing to their unique properties nanomaterials are preferred over their bulk counterparts for a number of applications. Although conventional physical and chemical routes were established for the massive production of nanomaterials, there are some drawbacks such as environmental burden and high cost that cannot be disregarded. Recently, there has been great interest toward the green synthesis of inorganic nanomaterials. It has been reported that dissimilatory metal reduction by microorganisms is a cost-effective process to remediate toxic organic and inorganic compounds under anaerobic conditions. Particularly, members of the Shewanella genus have been utilized to produce various biogenic nanomaterials with unique micro/nanostructured morphologies through redox transformations as well as to remove harmful metals and metalloids in eco-efficient and environment-friendly methods under ambient conditions. In the present mini-review, we specifically address the active utilization of microbial respiration processes for the synthesis of novel functional biogenic nanomaterials by the members of the Shewanella genus. This biosynthetic method may provide alternative approaches to produce electrode materials for sustainable energy storage applications.
Collapse
Affiliation(s)
- Tae-Yang Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Min Gyu Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, South Korea
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry, Chonbuk National University, Jeonju, South Korea
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| |
Collapse
|
42
|
Zhou NQ, Liu DF, Min D, Cheng L, Huang XN, Tian LJ, Li DB, Yu HQ. Continuous degradation of ciprofloxacin in a manganese redox cycling system driven by Pseudomonas putida MnB-1. CHEMOSPHERE 2018; 211:345-351. [PMID: 30077930 DOI: 10.1016/j.chemosphere.2018.07.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/16/2018] [Accepted: 07/21/2018] [Indexed: 05/22/2023]
Abstract
Ciprofloxacin (CIP), as an extensively used antibiotic, has been widely detected at a high level in the environment and has raised environmental pollution concerns. Thus, efficient and cost-effective methods for CIP degradation are highly desired. Biologically produced manganese oxides (BioMnOx) offer a promising perspective for CIP degradation because of their catalytic reactivity and cost-effectiveness. However, the release of Mn(II) from BioMnOx prevents the further oxidation of pollutants. As a consequence, continuous CIP degradation by BioMnOx is not feasible. In this work, a manganese redox cycling system driven by Pseudomonas putida MnB-1 was constructed for continuous degradation of CIP. In such a system CIP was oxidized continuously and rapidly by re-oxidizing the formed Mn(II) to regenerate reactive BioMnOx, which also protected the strain from CIP toxicity. CIP was degraded through N-dealkylation passway. No significant loss of BioMnOx reactivity was observed in three-cycle CIP degradation process, suggesting the stability of this system. An overlooked intracellular BioMnOx, which was involved in CIP degradation, was discovered in P. putida MnB-1. Moreover, the important role of Mn(III) in facilitating CIP removal in this system was also identified. This work provides useful information to better understand the degradation of antibiotic compounds mediated by microbes in environments.
Collapse
Affiliation(s)
- Nan-Qing Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Cheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xue-Na Huang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Li-Jiao Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Dao-Bo Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
43
|
|
44
|
Uniform and Pitting Corrosion of Carbon Steel by Shewanella oneidensis MR-1 under Nitrate-Reducing Conditions. Appl Environ Microbiol 2018; 84:AEM.00790-18. [PMID: 29654179 DOI: 10.1128/aem.00790-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 11/20/2022] Open
Abstract
Despite observations of steel corrosion in nitrate-reducing environments, processes of nitrate-dependent microbially influenced corrosion (MIC) remain poorly understood and difficult to identify. We evaluated carbon steel corrosion by Shewanella oneidensis MR-1 under nitrate-reducing conditions using a split-chamber/zero-resistance ammetry (ZRA) technique. This approach entails the deployment of two metal (carbon steel 1018 in this case) electrodes into separate chambers of an electrochemical split-chamber unit, where the microbiology or chemistry of the chambers can be manipulated. This approach mimics the conditions of heterogeneous metal coverage that can lead to uniform and pitting corrosion. The current between working electrode 1 (WE1) and WE2 can be used to determine rates, mechanisms, and, we now show, extents of corrosion. When S. oneidensis was incubated in the WE1 chamber with lactate under nitrate-reducing conditions, nitrite transiently accumulated, and electron transfer from WE2 to WE1 occurred as long as nitrite was present. Nitrite in the WE1 chamber (without S. oneidensis) induced electron transfer in the same direction, indicating that nitrite cathodically protected WE1 and accelerated the corrosion of WE2. When S. oneidensis was incubated in the WE1 chamber without an electron donor, nitrate reduction proceeded, and electron transfer from WE2 to WE1 also occurred, indicating that the microorganism could use the carbon steel electrode as an electron donor for nitrate reduction. Our results indicate that under nitrate-reducing conditions, uniform and pitting carbon steel corrosion can occur due to nitrite accumulation and the use of steel-Fe(0) as an electron donor, but conditions of sustained nitrite accumulation can lead to more-aggressive corrosive conditions.IMPORTANCE Microbially influenced corrosion (MIC) causes damage to metals and metal alloys that is estimated to cost over $100 million/year in the United States for prevention, mitigation, and repair. While MIC occurs in a variety of settings and by a variety of organisms, the mechanisms by which microorganisms cause this damage remain unclear. Steel pipe and equipment may be exposed to nitrate, especially in oil and gas production, where this compound is used for corrosion and "souring" control. In this paper, we show uniform and pitting MIC under nitrate-reducing conditions and that a major mechanism by which it occurs is via the heterogeneous cathodic protection of metal surfaces by nitrite as well as by the microbial oxidation of steel-Fe(0).
Collapse
|
45
|
Wright MH, Geszvain K, Oldham VE, Luther GW, Tebo BM. Oxidative Formation and Removal of Complexed Mn(III) by Pseudomonas Species. Front Microbiol 2018; 9:560. [PMID: 29706936 PMCID: PMC5906577 DOI: 10.3389/fmicb.2018.00560] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/12/2018] [Indexed: 11/20/2022] Open
Abstract
The observation of significant concentrations of soluble Mn(III) complexes in oxic, suboxic, and some anoxic waters has triggered a re-evaluation of the previous Mn paradigm which focused on the cycling between soluble Mn(II) and insoluble Mn(III,IV) species as operationally defined by filtration. Though Mn(II) oxidation in aquatic environments is primarily bacterially-mediated, little is known about the effect of Mn(III)-binding ligands on Mn(II) oxidation nor on the formation and removal of Mn(III). Pseudomonas putida GB-1 is one of the most extensively investigated of all Mn(II) oxidizing bacteria, encoding genes for three Mn oxidases (McoA, MnxG, and MopA). P. putida GB-1 and associated Mn oxidase mutants were tested alongside environmental isolates Pseudomonas hunanensis GSL-007 and Pseudomonas sp. GSL-010 for their ability to both directly oxidize weakly and strongly bound Mn(III), and to form these complexes through the oxidation of Mn(II). Using Mn(III)-citrate (weak complex) and Mn(III)-DFOB (strong complex), it was observed that P. putida GB-1, P. hunanensis GSL-007 and Pseudomonas sp. GSL-010 and mutants expressing only MnxG and McoA were able to directly oxidize both species at varying levels; however, no oxidation was detected in cultures of a P. putida mutant expressing only MopA. During cultivation in the presence of Mn(II) and citrate or DFOB, P. putida GB-1, P. hunanensis GSL-007 and Pseudomonas sp. GSL-010 formed Mn(III) complexes transiently as an intermediate before forming Mn(III/IV) oxides with the overall rates and extents of Mn(III,IV) oxide formation being greater for Mn(III)-citrate than for Mn(III)-DFOB. These data highlight the role of bacteria in the oxidative portion of the Mn cycle and suggest that the oxidation of strong Mn(III) complexes can occur through enzymatic mechanisms involving multicopper oxidases. The results support the observations from field studies and further emphasize the complexity of the geochemical cycling of manganese.
Collapse
Affiliation(s)
- Mitchell H. Wright
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, Portland, OR, United States
| | - Kati Geszvain
- Department of Biology, Lynchburg College, Lynchburg, VA, United States
| | - Véronique E. Oldham
- School of Marine Science and Policy, University of Delaware, Lewes, DE, United States
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - George W. Luther
- School of Marine Science and Policy, University of Delaware, Lewes, DE, United States
| | - Bradley M. Tebo
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
46
|
Griffin S, Masood MI, Nasim MJ, Sarfraz M, Ebokaiwe AP, Schäfer KH, Keck CM, Jacob C. Natural Nanoparticles: A Particular Matter Inspired by Nature. Antioxidants (Basel) 2017; 7:antiox7010003. [PMID: 29286304 PMCID: PMC5789313 DOI: 10.3390/antiox7010003] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023] Open
Abstract
During the last couple of decades, the rapidly advancing field of nanotechnology has produced a wide palette of nanomaterials, most of which are considered as “synthetic” and, among the wider public, are often met with a certain suspicion. Despite the technological sophistication behind many of these materials, “nano” does not always equate with “artificial”. Indeed, nature itself is an excellent nanotechnologist. It provides us with a range of fine particles, from inorganic ash, soot, sulfur and mineral particles found in the air or in wells, to sulfur and selenium nanoparticles produced by many bacteria and yeasts. These nanomaterials are entirely natural, and, not surprisingly, there is a growing interest in the development of natural nanoproducts, for instance in the emerging fields of phyto- and phyco-nanotechnology. This review will highlight some of the most recent—and sometimes unexpected—advances in this exciting and diverse field of research and development. Naturally occurring nanomaterials, artificially produced nanomaterials of natural products as well as naturally occurring or produced nanomaterials of natural products all show their own, particular chemical and physical properties, biological activities and promise for applications, especially in the fields of medicine, nutrition, cosmetics and agriculture. In the future, such natural nanoparticles will not only stimulate research and add a greener outlook to a traditionally high-tech field, they will also provide solutions—pardon—suspensions for a range of problems. Here, we may anticipate specific biogenic factories, valuable new materials based on waste, the effective removal of contaminants as part of nano-bioremediation, and the conversion of poorly soluble substances and materials to biologically available forms for practical uses.
Collapse
Affiliation(s)
- Sharoon Griffin
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
- Institute of Pharmaceutics and Biopharmaceutics, Philipps University of Marburg, 35037 Marburg, Germany.
| | - Muhammad Irfan Masood
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, 66482 Zweibruecken, Germany.
| | - Muhammad Jawad Nasim
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Muhammad Sarfraz
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Azubuike Peter Ebokaiwe
- Department of Chemistry/Biochemistry and Molecular Biology, Federal University, Ndufu-Alike Ikwo, 482131 Ndufu-Alike, Nigeria.
| | - Karl-Herbert Schäfer
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, 66482 Zweibruecken, Germany.
| | - Cornelia M Keck
- Institute of Pharmaceutics and Biopharmaceutics, Philipps University of Marburg, 35037 Marburg, Germany.
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| |
Collapse
|
47
|
Lindh MV, Maillot BM, Shulse CN, Gooday AJ, Amon DJ, Smith CR, Church MJ. From the Surface to the Deep-Sea: Bacterial Distributions across Polymetallic Nodule Fields in the Clarion-Clipperton Zone of the Pacific Ocean. Front Microbiol 2017; 8:1696. [PMID: 28943866 PMCID: PMC5596108 DOI: 10.3389/fmicb.2017.01696] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/23/2017] [Indexed: 11/13/2022] Open
Abstract
Marine bacteria regulate fluxes of matter and energy essential for pelagic and benthic organisms and may also be involved in the formation and maintenance of commercially valuable abyssal polymetallic nodules. Future mining of these nodule fields is predicted to have substantial effects on biodiversity and physicochemical conditions in mined areas. Yet, the identity and distributions of bacterial populations in deep-sea sediments and associated polymetallic nodules has received relatively little attention. We examined bacterial communities using high-throughput sequencing of bacterial 16S rRNA gene fragments from samples collected in the water column, sediment, and polymetallic nodules in the Pacific Ocean (bottom depth ≥4,000 m) in the eastern Clarion-Clipperton Zone. Operational taxonomic units (OTUs; defined at 99% 16S rRNA gene identity) affiliated with JTB255 (Gammaproteobacteria) and Rhodospirillaceae (Alphaproteobacteria) had higher relative abundances in the nodule and sediment habitats compared to the water column. Rhodobiaceae family and Vibrio OTUs had higher relative abundance in nodule samples, but were less abundant in sediment and water column samples. Bacterial communities in sediments and associated with nodules were generally similar; however, 5,861 and 6,827 OTUs found in the water column were retrieved from sediment and nodule habitats, respectively. Cyanobacterial OTUs clustering among Prochlorococcus and Synechococcus were detected in both sediments and nodules, with greater representation among nodule samples. Such results suggest that vertical export of typically abundant photic-zone microbes may be an important process in delivery of water column microorganisms to abyssal habitats, potentially influencing the structure and function of communities in polymetallic nodule fields.
Collapse
Affiliation(s)
- Markus V Lindh
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at MānoaHonolulu, HI, United States
| | - Brianne M Maillot
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at MānoaHonolulu, HI, United States
| | - Christine N Shulse
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at MānoaHonolulu, HI, United States
| | - Andrew J Gooday
- National Oceanography Centre, University of Southampton Waterfront CampusSouthampton, United Kingdom
| | - Diva J Amon
- Department of Oceanography, University of Hawai'i at MānoaHonolulu, HI, United States
| | - Craig R Smith
- Department of Oceanography, University of Hawai'i at MānoaHonolulu, HI, United States
| | - Matthew J Church
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at MānoaHonolulu, HI, United States.,Department of Oceanography, University of Hawai'i at MānoaHonolulu, HI, United States
| |
Collapse
|
48
|
Wright MH, Adelskov J, Greene AC. Bacterial DNA Extraction Using Individual Enzymes and Phenol/Chloroform Separation. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2017; 18:jmbe-18-48. [PMID: 28861145 PMCID: PMC5577976 DOI: 10.1128/jmbe.v18i2.1348] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/03/2017] [Indexed: 05/14/2023]
Abstract
Marmur (4) developed one of the first detailed comprehensive methods for purifying bacterial DNA. This procedure is now outdated, and can be difficult to follow for those with limited experience in molecular biology. Here, we provide a modernized, simplified protocol for extracting bacterial DNA and discuss how this can be incorporated into microbiology laboratory courses for biology majors.
Collapse
Affiliation(s)
- Mitchell Henry Wright
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, OR 97239-3098
- Corresponding author. Mailing address: Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Rd., Portland, OR, 97239-3098. Phone: 503-346-3434. E-mail:
| | - Joseph Adelskov
- School of Natural Sciences, Griffith University, Nathan Campus, Queensland, Australia
| | | |
Collapse
|