1
|
Milligan EG, Calarco J, Davis BC, Keenum IM, Liguori K, Pruden A, Harwood VJ. A Systematic Review of Culture-Based Methods for Monitoring Antibiotic-Resistant Acinetobacter, Aeromonas, and Pseudomonas as Environmentally Relevant Pathogens in Wastewater and Surface Water. Curr Environ Health Rep 2023:10.1007/s40572-023-00393-9. [PMID: 36821031 DOI: 10.1007/s40572-023-00393-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/24/2023]
Abstract
PURPOSE OF REVIEW Mounting evidence indicates that habitats such as wastewater and environmental waters are pathways for the spread of antibiotic-resistant bacteria (ARB) and mobile antibiotic resistance genes (ARGs). We identified antibiotic-resistant members of the genera Acinetobacter, Aeromonas, and Pseudomonas as key opportunistic pathogens that grow or persist in built (e.g., wastewater) or natural aquatic environments. Effective methods for monitoring these ARB in the environment are needed to understand their influence on dissemination of ARB and ARGs, but standard methods have not been developed. This systematic review considers peer-reviewed papers where the ARB above were cultured from wastewater or surface water, focusing on the accuracy of current methodologies. RECENT FINDINGS Recent studies suggest that many clinically important ARGs were originally acquired from environmental microorganisms. Acinetobacter, Aeromonas, and Pseudomonas species are of interest because their ability to persist and grow in the environment provides opportunities to engage in horizontal gene transfer with other environmental bacteria. Pathogenic strains of these organisms resistant to multiple, clinically relevant drug classes have been identified as an urgent threat. However, culture methods for these bacteria were generally developed for clinical samples and are not well-vetted for environmental samples. The search criteria yielded 60 peer-reviewed articles over the past 20 years, which reported a wide variety of methods for isolation, confirmation, and antibiotic resistance assays. Based on a systematic comparison of the reported methods, we suggest a path forward for standardizing methodologies for monitoring antibiotic resistant strains of these bacteria in water environments.
Collapse
Affiliation(s)
- Erin G Milligan
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.,Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Jeanette Calarco
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Benjamin C Davis
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ishi M Keenum
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Krista Liguori
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA. .,Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
2
|
Kosikowska U, Stec J, Andrzejczuk S, Mendrycka M, Pietras-Ożga D, Stępień-Pyśniak D. Plasmid-Mediated Fluoroquinolone Resistance Genes in Quinolone-Susceptible Aeromonas spp. Phenotypes Isolated From Recreational Surface Freshwater Reservoir. Front Cell Infect Microbiol 2022; 12:885360. [PMID: 35646727 PMCID: PMC9132129 DOI: 10.3389/fcimb.2022.885360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Aeromonas spp. are recognized as opportunistic pathogens causing diseases. Infections in humans can result mainly in gastrointestinal and wound diseases with or without progression to septicemia. Although Aeromonas spp. are not known uropathogens and they rarely cause urinary tract infection, we hypothesize that the presence of these bacteria in the water and the contact during, e.g., recreational and bathing activity can create the conditions for the colonization of the human body and may result to diseases in various locations, including the urinary tract. Our study presents the occurrence of aeromonad fluoroquinolone-susceptible phenotypes with the presence of plasmid-mediated fluoroquinolone resistance (PMQR) genes in a natural freshwater reservoir occasionally used for recreational activities. Sixty-nine isolates collected during the bathing period were identified by mass spectrometry and screened for the presence of fluoroquinolone-resistant phenotypes and genotypes. Fluoroquinolone susceptibility was determined as minimal inhibitory concentration values. PMQR qnr genes were detected by PCR. Isolates comprising eight species, namely, mainly Aeromonas veronii (50.7% isolates) and Aeromonas media (24.6% isolates) and rarely Aeromonas eucrenophila, Aeromonas caviae, Aeromonas bestiarum, Aeromonas ichthiosmia, and Aeromonas hydrophila, were selected. All isolates were phenotypically susceptible either to ciprofloxacin or levofloxacin. Unexpectedly, at least one to three of the PMQR genes were detected in 42.0% of the fluoroquinolone-susceptible Aeromonas spp. phenotypes. Mainly the qnrS (34.8% isolates) and qnrA (14.5% isolates) determinants were detected. In conclusion, the freshwater reservoir occasionally used for bathing was tainted with aeromonads, with a high occurrence of opportunistic pathogens such as A. veronii and A. media. MALDI‐TOF MS is a powerful technique for aeromonad identification. Our data reveals the mismatch phenomenon between fluoroquinolone-susceptible aeromonad phenotypes and the presence of plasmid-mediated qnr resistance genes. It suggests that phenotypically susceptible bacteria might be a potential source for the storage and transmission of these genes. The exposure during, e.g., a recreational activity may create the potential risk for causing infections, both diagnostically and therapeutically difficult, after expressing the resistance genes and quinolone-resistant strain selection.
Collapse
Affiliation(s)
- Urszula Kosikowska
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Lublin, Poland
- *Correspondence: Urszula Kosikowska,
| | - Joanna Stec
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Lublin, Poland
| | - Sylwia Andrzejczuk
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Lublin, Poland
| | - Mariola Mendrycka
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Technology and Humanities in Radom, Radom, Poland
| | - Dorota Pietras-Ożga
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Dagmara Stępień-Pyśniak
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
3
|
Cui G, Fu X, Bhat SA, Tian W, Lei X, Wei Y, Li F. Temperature impacts fate of antibiotic resistance genes during vermicomposting of domestic excess activated sludge. ENVIRONMENTAL RESEARCH 2022; 207:112654. [PMID: 34990606 DOI: 10.1016/j.envres.2021.112654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/29/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Effect of temperature on antibiotic resistance genes (ARGs) during vermicomposting of domestic excess sludge remains poorly understood. Vermicomposting experiment with excess sludge was conducted at three different temperatures (15 °C, 20 °C, and 25 °C) to investigate the fate of ARGs, bacterial community and their relationship in the process. The vermicomposting at 25 °C did not significantly attenuate the targeted ARGs relative to that at 15 °C and 20 °C. The dynamics of qnrA, qnrS, and tetM genes during vermicomposting at 15 °C and 20 °C followed the first-order kinetic model. Temperature remarkably impacted bacterial diversity of the final products with the lowest Shannon index at 25 °C. The presence of the genus (Aeromonas and Chitinophagaceae) at 25 °C may contribute to the rebound of the genes (qnrA, qnrS and tetM). The study indicates that 20 °C is a suitable vermicomposting temperature to simultaneously reach the highest removal efficiency of the ARGs and the good biostability of the final product.
Collapse
Affiliation(s)
- Guangyu Cui
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai, 200092, China; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Xiaoyong Fu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Sartaj Ahmad Bhat
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; Waste Reprocessing Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, Maharashtra 440020, India
| | - Weiping Tian
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Xuyang Lei
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Xingtai, 054000, China
| | - Yongfen Wei
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Fusheng Li
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
4
|
Chen JS, Hsu GJ, Hsu BM, Yang PY, Kuo YJ, Wang JL, Hussain B, Huang SW. Prevalence, virulence-gene profiles, antimicrobial resistance, and genetic diversity of human pathogenic Aeromonas spp. from shellfish and aquatic environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117361. [PMID: 34004475 DOI: 10.1016/j.envpol.2021.117361] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Aeromonas are found in various habitats, particularly in aquatic environments. This study examined the presence of the most common human pathogenic Aeromonas species (Aeromonas caviae, A. hydrophila, and A. veronii) in surface water, sea water, and shellfish. The detection rates in fishing harbour seawater, shellfish farming seawater, and a river basin were 33.3%, 26.4%, and 29.4%, respectively, and high prevalence was observed in summer. The detection rates in shellfish procured from a fish market and shellfish farm were 34.9% and 13.3%, respectively. The most abundant species of human pathogenic Aeromonas detected via water sampling was A. caviae, whereas that obtained via shellfish sampling was A. veronii. The prevalence of human pathogenic Aeromonas in river water was lower in fishing harbours and in the estuary shellfish farming area. Here, 25 isolates of human pathogenic Aeromonas species were isolated from 257 samples and divided among 16 virulence profiles. The high virulence gene-carrying isolates (more than six genes) belonged to A. hydrophila. The shellfish-sourced isolates had the highest detection rates of act, aerA, and fla genes than of other virulence genes, and vice versa for seawater-sourced isolates. The Aeromonas isolates showed high levels of resistance to ampicillin-sulbactam; however, none were resistant to cefepime, ciprofloxacin, or gentamicin. The incidence of multiple drug resistance (MDR) in Aeromonas isolates was 20%. In this study, phylogenetic analysis with 16S rRNA sequencing, biochemical tests and enterobacterial repetitive intergenic consensus-polymerase chain reaction fingerprinting facilitated the distinct categorisation of three species of human pathogenic Aeromonas isolates. In addition, A. veronii isolates from the same geographical area were also concentrated in the same cluster. This study provides information on the risk of infection by Aeromonas with MDR and multiple virulence genes isolated from shellfish and aquatic environments.
Collapse
Affiliation(s)
- Jung-Sheng Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Gwo-Jong Hsu
- Division of Infectious Diseases, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Center for Innovative on Aging Society, National Chung Cheng University, Chiayi County, Taiwan.
| | - Pei-Yu Yang
- Department of Laboratory, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Yi-Jie Kuo
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jiun-Ling Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Shih-Wei Huang
- Center for Environmental Toxin and Emerging Contaminant Research, Cheng Shiu University, Kaohsiung, Taiwan; Super Micro Research and Technology Center, Cheng Shiu University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Borella L, Salogni C, Vitale N, Scali F, Moretti VM, Pasquali P, Alborali GL. Motile aeromonads from farmed and wild freshwater fish in northern Italy: an evaluation of antimicrobial activity and multidrug resistance during 2013 and 2016. Acta Vet Scand 2020; 62:6. [PMID: 31973764 PMCID: PMC6979286 DOI: 10.1186/s13028-020-0504-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/14/2020] [Indexed: 11/13/2022] Open
Abstract
Background Antimicrobial resistant bacteria are emerging biological contaminants of the environment. In aquatic ecosystems, they originate mainly from hospitals, livestock manure and private households sewage water, which could contain antimicrobial agents and resistant microorganisms. Aeromonas spp. occur ubiquitously in aquatic environments and they cause disease in fish. Motile aeromonads are also associated with human gastrointestinal and wound infections and fish can act as a transmission route of antimicrobial resistance (AMR) aeromonads to humans. The environmental ubiquity, the natural susceptibility to antimicrobials and the zoonotic potential of Aeromonas spp. make them optimal candidates for studying the AMR in aquatic ecosystems. Results The AMR patterns of 95 motile aeromonads isolated from freshwater fish during 2013 and 2016 were analyzed. All samples from fish came from farms and natural water bodies located in northern Italy, which is an area characterized by high anthropic impact on the environment. The isolates were biochemically identified as Aeromonas hydrophila, Aeromonas sobria or Aeromonas caviae and AMR was determined by the standard disk diffusion method. All isolates were resistant to cloxacillin, spiramycin and tilmicosin. High AMR frequencies (> 95%) were detected for tylosin, penicillin and sulfadiazine. AMR to danofloxacin, enrofloxacin, flumequine, ceftiofur, aminosidine, colistin, doxycycline, gentamicin, marbocyl and florfenicol was observed at low levels (< 10%). No AMR to cefquinome was found. Logistic regression showed several differences in antimicrobial activity between complexes. According to the source of aeromonads, only few differences in AMR between isolates from farmed and wild fish were observed. Conclusions Our data revealed an increasing trend of AMR to neomycin and apramycin among Aeromonas isolates during the study period, while resistance to erythromycin, tetracycline and thiamphenicol decreased. All isolates were multidrug resistance (MDR), but A. caviae showed the highest number of MDR per isolate. In most isolates, various degrees of MDR were detected to macrolides, quinolones, fluoroquinolones, polymyxins and cephalosporins (third and fourth generations), which are listed, by the World Health Organisation, to be among the highest priority and critically important antimicrobials in human medicine. Our findings underlined that freshwater fish can act as potential source of MDR motile aeromonads. Due to their zoonotic potential, this can pose serious threat to human health.
Collapse
|
6
|
Bhowmick UD, Bhattacharjee S. Bacteriological, Clinical and Virulence Aspects of Aeromonas-associated Diseases in Humans. Pol J Microbiol 2019; 67:137-149. [PMID: 30015452 PMCID: PMC7256846 DOI: 10.21307/pjm-2018-020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2018] [Indexed: 12/04/2022] Open
Abstract
Aeromonads have been isolated from varied environmental sources such as polluted and drinking water, as well as from tissues and body fluids of cold and warm-blooded animals. A phenotypically and genotypically heterogenous bacteria, aeromonads can be successfully identified by ribotyping and/or by analysing gyrB gene sequence, apart from classical biochemical characterization. Aeromonads are known to cause scepticemia in aquatic organisms, gastroenteritis and extraintestinal diseases such as scepticemia, skin, eye, wound and respiratory tract infections in humans. Several virulence and antibiotic resistance genes have been identified and isolated from this group, which if present in their mobile genetic elements, may be horizontally transferred to other naive environmental bacteria posing threat to the society. The extensive and indiscriminate use of antibiotics has given rise to many resistant varieties of bacteria. Multidrug resistance genes, such as NDM1, have been identified in this group of bacteria which is of serious health concern. Therefore, it is important to understand how antibiotic resistance develops and spreads in order to undertake preventive measures. It is also necessary to search and map putative virulence genes of Aeromonas for fighting the diseases caused by them. This review encompasses current knowledge of bacteriological, environmental, clinical and virulence aspects of the Aeromonas group and related diseases in humans and other animals of human concern.
Collapse
Affiliation(s)
- Uttara Dey Bhowmick
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal,Raja Rammohunpur, Siliguri, District Darjeeling, West Bengal,India
| | - Soumen Bhattacharjee
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal,Raja Rammohunpur, Siliguri, District Darjeeling, West Bengal,India
| |
Collapse
|
7
|
Biomarker Effects in Carassius auratus Exposure to Ofloxacin, Sulfamethoxazole and Ibuprofen. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091628. [PMID: 31075982 PMCID: PMC6540135 DOI: 10.3390/ijerph16091628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 11/27/2022]
Abstract
Ofloxacin, sulfamethoxazole and ibuprofen are three commonly used drugs which can be detected in aquatic environments. To assess their ecotoxicity, the effects of these three pharmaceuticals and their mixture on AChE (acetylcholinesterase) activity in the brain, and EROD (7-ethoxyresorufin-O-deethylase) and SOD (superoxide dismutase) activities in the liver of the freshwater crucian carp Carassius auratus were tested after exposure for 1, 2, 4 and 7 days. The results showed that treatments with 0.002–0.01 mg/L ofloxacin and 0.0008–0.004 mg/L sulfamethoxazole did not significantly change AChE, EROD and SOD activities. AChE activity was significantly inhibited in response to treatment with >0.05mg/L ofloxacin and >0.02 mg/L sulfamethoxazole. All three biomarkers were induced significantly in treatments with ibuprofen and the mixture of the three pharmaceuticals at all the tested concentrations. The combined effects of ofloxacin, sulfamethoxazole and ibuprofen were compared with their isolated effects on the three biomarkers, and the results indicated that exposure to ibuprofen and the mixture at environmentally relevant concentrations could trigger adverse impacts on Carassius auratus. The hazard quotient (HQ) index also demonstrated a high risk for ibuprofen. Moreover, the present study showed that the effects of ofloxacin, sulfamethoxazole and ibuprofen might be additive on the physiological indices of Carassius auratus.
Collapse
|
8
|
Harnisz M, Korzeniewska E. The prevalence of multidrug-resistant Aeromonas spp. in the municipal wastewater system and their dissemination in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:377-383. [PMID: 29353783 DOI: 10.1016/j.scitotenv.2018.01.100] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
The objective of this study was to identify the determinants of antibiotic resistance and virulence of Aeromonas spp. isolated from treated wastewater (WW) and from samples of river water collected upstream (URW) and downstream (DRW) from the effluent discharge point. The resistance of Aeromonas spp. to antibiotics that are widely used in human and veterinary medicine, including beta-lactams, tetracyclines, glycylcyclines, fluoroquinolones, aminoglycosides and sulfamethoxazole-trimethoprim, was analyzed by disk diffusion method. The prevalence of hemolysins, aerolysins (virulence factors) and integrase genes was determined. A total of 83 Aeromonas spp. strains were selected from the isolates obtained from river water and wastewater samples. The highest percentage (81.8%) of multidrug-resistant isolates was noted in DRW samples. The analyzed isolates were most frequently resistant to beta-lactams, tetracyclines and aminoglycosides, whereas resistance to glycylcyclines was least common. Isolates resistant to beta-lactams most frequently harbored blaTEM and blaOXA genes. The group of genes encoding resistance to tetracyclines was most frequently represented by tet(E) and tet(O). Genes encoding virulence ahh1 (heat-labile hemolysin) or integrase intI1 occurred more frequently in the strains isolated from DRW than URW. An analysis of genetic relatedness revealed two main clusters - one with closely related WW and DRW isolates and one with less related isolates from all analyzed samples. The results of this study indicate that regardless of the applied treatment, municipal sewage may be a reservoir of antibiotic-resistant bacteria, antibiotic resistance and virulence genes and that treated water can contaminate other environmental domains.
Collapse
Affiliation(s)
- Monika Harnisz
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland.
| | - Ewa Korzeniewska
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| |
Collapse
|
9
|
Ahmad M. Mercuric resistant bacteria Aeromonas exhibits neurologic toxic effects on the developmental motor reflexes, and brain oxidative stress in mice offspring. Microb Pathog 2017; 114:169-175. [PMID: 29197524 DOI: 10.1016/j.micpath.2017.11.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022]
Abstract
Mercury and its derivatives even in small concentration may cause a major human health problem. Though not reported in detail, there are various aquatic bacterial species that produce small quantities of methyl mercury (MM) growing under aerobic conditions. Consumption of food derived from sources contaminated with such bacteria within therapeutic doses and exposure to different forms of MM compounds through such sources may induce substantial toxic effects. In the present study, the perinatal oral exposure of pregnant mice to two strains of mercury resistant bacteria (MRB), Aeromonas KSU5 MRB and KSU6 MRB resulted in a significant reduction in postnatal body weight gain, delays in the opening of the eyes and appearance in the body hair fuzz, and deficits in the developing sensory motor reflexes in the mice pups during their weaning period on post-natal day (PD)7, PD14 and PD21. A significant and MM producing concentration-dependent disturbance in the levels of neurotransmitters like dopamine (DA) and serotonin (5-HT); non-enzymatic oxidative stress (OS) indices like thiobarbituric acid-reactive substances (TBARS) and total reduced glutathione (GSH); and enzymatic OS indices like glutathione S-transferase (GST), catalase (CAT), and superoxide dismutase (SOD) were observed in the forebrain region of the offspring at weaning period (PD7, PD14, and PD21), at adolescent age (PD30), and at adult age (PD36). Thus, perinatal exposure to MRB can affect developing fetus, raising the concerns for it's potential neurotoxic hazards. A reduced exposure to mercury during pregnancy is of crucial importance in preventing mercury-induced neurotoxicity in the offspring.
Collapse
Affiliation(s)
- Mohammad Ahmad
- College of Nursing, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
10
|
Global protein expression profile response of planktonic Aeromonas hydrophila exposed to chlortetracycline. World J Microbiol Biotechnol 2017; 33:68. [DOI: 10.1007/s11274-017-2204-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
|
11
|
Characterization of genetic determinants involved in antibiotic resistance in Aeromonas spp. and fecal coliforms isolated from different aquatic environments. Res Microbiol 2017; 168:461-471. [PMID: 28263906 DOI: 10.1016/j.resmic.2017.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 02/07/2017] [Accepted: 02/15/2017] [Indexed: 12/14/2022]
Abstract
Aeromonas spp. and fecal coliforms, two abundant and cultivable bacterial populations that can be found in water ecosystems, might substantially contribute to the spread of antibiotic resistance. We investigated the presence and spread of transposons (elements that can move from one location to another in the genome), integrons (structures able to capture and incorporate gene cassettes) and resistance plasmids in strains isolated from polluted and unpolluted water. We recovered 231 Aeromonas and 250 fecal coliforms from water samplings with different degrees of pollution (hospital sewage, activated sludge of a wastewater treatment plant, river water before and after treatment and water from an alpine lake). Sixteen Aeromonas spp. and 22 fecal coliforms carried intI, coding for the site-specific integrase of class 1 integrons, while 22 Aeromonas spp. and 14 fecal coliforms carried tnpA, the transposase gene of the Tn3-family of replicative transposons. The majority of intI and tnpA-positive strains were phenotypically resistant to at least four antibiotics. Integrons and transposons were mainly located on mobilizable plasmids. Our results did not detect common mobile structures in the two populations and therefore relativize the role played by Aeromonas spp. as vectors of antimicrobial resistance determinants between water and commensal gut bacteria.
Collapse
|
12
|
Topić Popović N, Strunjak-Perović I, Klobučar RS, Barišić J, Babić S, Jadan M, Kepec S, Kazazić SP, Matijatko V, Beer Ljubić B, Car I, Repec S, Stipaničev D, Klobučar GIV, Čož-Rakovac R. Impact of treated wastewater on organismic biosensors at various levels of biological organization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 538:23-37. [PMID: 26298246 DOI: 10.1016/j.scitotenv.2015.08.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 06/04/2023]
Abstract
Relating the treated wastewater quality and its impact on organismic biosensors (Prussian carp, Carassius gibelio and earthworm, Eisenia fetida) was the main objective of the study. The impact on health status of fish living downstream, microbiological contamination and antimicrobial resistance, fish tissue structure, blood biochemistry, oxidative stress, genotoxic effects, as well as multixenobiotic resistance mechanism (MXR) was assessed. Treated wastewater discharged from the WWTP modified the environmental parameters and xenobiotic concentrations of the receiving surface waters. Potential bacterial pathogens from fish and respective waters were found in relatively low numbers, although they comprised aeromonads with a zoonotic potential. High resistance profiles were determined towards the tested antimicrobial compounds, mostly sulfamethoxazole and erythromycin. Histopathology primarily revealed gill lamellar fusion and reduction of interlamellar spaces of effluent fish. A significant increase in plasma values of urea, total proteins, albumins and triglycerides and a significant decrease in the activity of plasma superoxide dismutase were noted in carp from the effluent-receiving canal. Micronucleus test did not reveal significant differences between the examined groups, but a higher frequency of erythrocyte nuclear abnormalities was found in fish sampled from the effluent-receiving canal. Earthworms indicated to the presence of MXR inhibitors in water and sludge samples, thus proving as a sensitive sentinel organism for environmental pollutants. The integrative approach of this study could serve as a guiding principle in conducting evaluations of the aquatic habitat health in complex bio-monitoring studies.
Collapse
Affiliation(s)
- Natalija Topić Popović
- Laboratory for Ichthyopathology-Biological Materials, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.
| | - Ivančica Strunjak-Perović
- Laboratory for Ichthyopathology-Biological Materials, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Roberta Sauerborn Klobučar
- Laboratory for Ichthyopathology-Biological Materials, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Josip Barišić
- Laboratory for Ichthyopathology-Biological Materials, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Sanja Babić
- Laboratory for Ichthyopathology-Biological Materials, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Margita Jadan
- Laboratory for Ichthyopathology-Biological Materials, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Slavko Kepec
- Virkom d.o.o, Public Water Supply and Wastewater Services, Kralja Petra Krešimira IV 30, Virovitica. Croatia
| | - Snježana P Kazazić
- Laboratory for Chemical Kinetics and Atmospheric Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Vesna Matijatko
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb, Croatia
| | - Blanka Beer Ljubić
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb, Croatia
| | - Ivan Car
- Laboratory for Ichthyopathology-Biological Materials, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Siniša Repec
- Croatian Waters, Main Water Management Laboratory, Ul. grada Vukovara 220, Zagreb, Croatia
| | - Draženka Stipaničev
- Croatian Waters, Main Water Management Laboratory, Ul. grada Vukovara 220, Zagreb, Croatia
| | - Goran I V Klobučar
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Ichthyopathology-Biological Materials, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| |
Collapse
|
13
|
Hu R, Du N, Chen N, Lin L, Zhai Y, Gu Z. Molecular analysis of type II topoisomerases of Aeromonas hydrophila isolated from fish and levofloxacin-induced resistant isolates in vitro. Folia Microbiol (Praha) 2015; 61:249-53. [DOI: 10.1007/s12223-015-0432-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
|
14
|
Olaniran AO, Nzimande SBT, Mkize NG. Antimicrobial resistance and virulence signatures of Listeria and Aeromonas species recovered from treated wastewater effluent and receiving surface water in Durban, South Africa. BMC Microbiol 2015; 15:234. [PMID: 26498595 PMCID: PMC4619433 DOI: 10.1186/s12866-015-0570-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Treated wastewater effluent has been found to contain high levels of contaminants, including disease-causing bacteria such as Listeria and Aeromonas species. The aim of this study was to evaluate the antimicrobial resistance and virulence signatures of Listeria and Aeromonas spp. recovered from treated effluents of two wastewater treatment plants and receiving rivers in Durban, South Africa. METHODS A total of 100 Aeromonas spp. and 78 Listeria spp. were positively identified based on biochemical tests and PCR detection of DNA region conserved in these genera. The antimicrobial resistance profiles of the isolates were determined using Kirby Bauer disc diffusion assay. The presence of important virulence genes were detected via PCR, while other virulence determinants; protease, gelatinase and haemolysin were detected using standard assays. RESULTS Highest resistance was observed against penicillin, erythromycin and nalidixic acid, with all 78 (100%) tested Listeria spp displaying resistance, followed by ampicillin (83.33%), trimethoprim (67.95%), nitrofurantoin (64.10%) and cephalosporin (60.26%). Among Aeromonas spp., the highest resistance (100%) was observed against ampicillin, penicillin, vancomycin, clindamycin and fusidic acid, followed by cephalosporin (82%), and erythromycin (58%), with 56% of the isolates found to be resistant to naladixic acid and trimethoprim. Among Listeria spp., 26.92% were found to contain virulence genes, with 14.10, 5.12 and 21% harbouring the actA, plcA and iap genes, respectively. Of the 100 tested Aeromonas spp., 52% harboured the aerolysin (aer) virulence associated gene, while lipase (lip) virulence associated gene was also detected in 68% of the tested Aeromonas spp. CONCLUSIONS The presence of these organisms in effluents samples following conventional wastewater treatment is worrisome as this could lead to major environmental and human health problems. This emphasizes the need for constant evaluation of the wastewater treatment effluents to ensure compliance to set guidelines.
Collapse
Affiliation(s)
- Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000, Republic of South Africa.
| | - Sphephile B T Nzimande
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000, Republic of South Africa.
| | - Ndumiso G Mkize
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000, Republic of South Africa.
| |
Collapse
|
15
|
Topic Popovic N, Kazazic SP, Strunjak-Perovic I, Barisic J, Sauerborn Klobucar R, Kepec S, Coz-Rakovac R. Detection and diversity of aeromonads from treated wastewater and fish inhabiting effluent and downstream waters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:235-242. [PMID: 26092555 DOI: 10.1016/j.ecoenv.2015.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/27/2015] [Accepted: 06/08/2015] [Indexed: 06/04/2023]
Abstract
A two-season investigation of the wastewater treatment plant (WWTP) effluent, of related waters, sludge and fish across a wide area and 11 stations, with emphasis on Aeromonas spp. was conducted. Aeromonas veronii was the prevailing aeromonad isolated by MALDI TOF MS in the summer period. A rise of Aeromonas hydrophila was observed in summer in raw sewage, treated wastewater and effluent-carrying canal. The ratio of aeromonad species retrieved from fish tissues did not correspond with the water and sludge findings, as in spring in the effluent-carrying canal fish carried Aeromonas salmonicida ssp. salmonicida and Aeromonas bestiarum, while in summer mainly A. veronii and Acinetobacter johnsonii were isolated from fish tissues in the same location. No correlation was established between fecal coliforms/enterococci and aeromonad occurrence. All retrieved Aeromonas species demonstrated a distinct spectral pattern, with peaks showing unique mass distribution ranging from 4000 to 10,000Da. Hierarchical clustering separated aeromonads of all isolated species and clustered closely related strains together. Resistance was determined towards amoxicillin, and frequently towards sulfamethoxazole and erythromycin. In summer, a high proportion of water and sludge Aeromonas species demonstrated multiple resistance patterns towards five or more antimicrobials. The quinolone resistance of water aeromonads was mostly related to A. veronii. There are potential health concerns regarding aeromonad exposure amongst recreational fishermen who come into contact with fish inhabiting waters downstream from the WWTP, and WWTP workers who are occupationally exposed to wastewaters and their aerosols.
Collapse
Affiliation(s)
- Natalija Topic Popovic
- Laboratory for Ichthyopathology-Biological Materials, Rudjer Boskovic Institute, Zagreb, Croatia.
| | - Snjezana P Kazazic
- Laboratory for Chemical Kinetics and Atmospheric Chemistry, Rudjer Boskovic Institute, Zagreb, Croatia
| | | | - Josip Barisic
- Laboratory for Ichthyopathology-Biological Materials, Rudjer Boskovic Institute, Zagreb, Croatia
| | | | - Slavko Kepec
- Virkom d.o.o., Public Water Supply and Wastewater Services, Virovitica, Croatia
| | - Rozelinda Coz-Rakovac
- Laboratory for Ichthyopathology-Biological Materials, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
16
|
Odeyemi OA, Ahmad A. Antibiotic resistance profiling and phenotyping of Aeromonas species isolated from aquatic sources. Saudi J Biol Sci 2015; 24:65-70. [PMID: 28053573 PMCID: PMC5198916 DOI: 10.1016/j.sjbs.2015.09.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 11/19/2022] Open
Abstract
This study aimed to investigate antibiotics resistance pattern and phenotyping of Aeromonas species isolated from different aquatic sources in Melaka, Malaysia. A total of 53 Aeromonas species were isolated from the following sources: sediment (n = 13), bivalve (n = 10), sea cucumber (n = 16) and sea water (n = 14) and resistance to 12 antibiotics – Tetracycline (30 μg), Kanamycin (30 μg), Oxytetracycline (30 μg), Ampicillin (10 μg), Streptomycin (10 μg), Gentamicin (10 μg), Sulphamethoxazole (25 μg), Nalixidic acid (30 μg), Trimethoprim (1.25 μg), Novobiocin (5 μg), Penicilin (10 μg) and Chloramphenicol (10 μg) was tested. The results obtained from this study reveal multi drug resistance pattern among the isolates. All the isolates were completely resistant to Ampicillin, Novobiocin, Sulphamethoxazole and Trimethoprim, respectively but susceptible to Tetracycline (100%), Kanamycin (5.7%), Gentamicin (5.7%) and Oxytetracycline (24.5%). Antibiotics phenotyping of the bacteria revealed 21 different phenotypes among the isolates.
Collapse
Affiliation(s)
- Olumide A. Odeyemi
- Ecology and Biodiversity, Institute of Marine and Antarctic Studies (IMAS), University of Tasmania, Launceston, Australia
- School of Biosciences and Biotechnology, National University of Malaysia, Malaysia
- Corresponding author at: Ecology and Biodiversity, Institute of Marine and Antarctic Studies (IMAS), University of Tasmania, Launceston, Australia.Ecology and BiodiversityInstitute of Marine and Antarctic Studies (IMAS)University of TasmaniaLaunceston, Australia
| | - Asmat Ahmad
- School of Biosciences and Biotechnology, National University of Malaysia, Malaysia
| |
Collapse
|
17
|
Living in an Extremely Polluted Environment: Clues from the Genome of Melanin-Producing Aeromonas salmonicida subsp. pectinolytica 34melT. Appl Environ Microbiol 2015; 81:5235-48. [PMID: 26025898 DOI: 10.1128/aem.00903-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/20/2015] [Indexed: 11/20/2022] Open
Abstract
Aeromonas salmonicida subsp. pectinolytica 34mel(T) can be considered an extremophile due to the characteristics of the heavily polluted river from which it was isolated. While four subspecies of A. salmonicida are known fish pathogens, 34mel(T) belongs to the only subspecies isolated solely from the environment. Genome analysis revealed a high metabolic versatility, the capability to cope with diverse stress agents, and the lack of several virulence factors found in pathogenic Aeromonas. The most relevant phenotypic characteristics of 34mel(T) are pectin degradation, a distinctive trait of A. salmonicida subsp. pectinolytica, and melanin production. Genes coding for three pectate lyases were detected in a cluster, unique to this microorganism, that contains all genes needed for pectin degradation. Melanin synthesis in 34mel(T) is hypothesized to occur through the homogentisate pathway, as no tyrosinases or laccases were detected and the homogentisate 1,2-dioxygenase gene is inactivated by a transposon insertion, leading to the accumulation of the melanin precursor homogentisate. Comparative genome analysis of other melanogenic Aeromonas strains revealed that this gene was inactivated by transposon insertions or point mutations, indicating that melanin biosynthesis in Aeromonas occurs through the homogentisate pathway. Horizontal gene transfer could have contributed to the adaptation of 34mel(T) to a highly polluted environment, as 13 genomic islands were identified in its genome, some of them containing genes coding for fitness-related traits. Heavy metal resistance genes were also found, along with others associated with oxidative and nitrosative stresses. These characteristics, together with melanin production and the ability to use different substrates, may explain the ability of this microorganism to live in an extremely polluted environment.
Collapse
|
18
|
Cisar CR, Henderson SK, Askew ML, Risenhoover HG, McAndrews CR, Kennedy SD, Paine CS. Antibiotic resistance in Aeromonas upstream and downstream of a water resource recovery facility. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2014; 86:835-843. [PMID: 25327024 PMCID: PMC4251474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Aeromonas strains isolated from sediments upstream and downstream of a water resource recovery facility (WRRF) over a two-year time period were tested for susceptibility to 13 antibiotics. Incidence of resistance to antibiotics, antibiotic resistance phenotypes, and diversity (based on resistance phenotypes) were compared in the two populations. At the beginning of the study, the upstream and downstream Aeromonas populations were different for incidence of antibiotic resistance (p < 0.01), resistance phenotypes (p < 0.005), and diversity. However, these differences declined over time and were not significant at the end of the study. These results (1) indicate that antibiotic resistance in Aeromonas in stream sediments fluctuates considerably over time and (2) suggest that WRRF effluent does not, when examined over the long- term, affect antibiotic resistance in Aeromonas in downstream sediment.
Collapse
Affiliation(s)
- Cindy R. Cisar
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK, 74464
| | | | | | | | | | - S. Dawn Kennedy
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK, 74464
| | - C. Sue Paine
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK, 74464
| |
Collapse
|
19
|
Effect of temperature and arsenic on Aeromonas hydrophila growth, a modelling approach. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0392-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Esteve C, Alcaide E, Giménez MJ. Multidrug-resistant (MDR) Aeromonas recovered from the metropolitan area of Valencia (Spain): diseases spectrum and prevalence in the environment. Eur J Clin Microbiol Infect Dis 2014; 34:137-145. [PMID: 25082185 DOI: 10.1007/s10096-014-2210-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/14/2014] [Indexed: 12/19/2022]
Abstract
Aeromonas infections are rare in Europe and often related to traveller's diarrhoea. A total of 185 Aeromonas isolates from river water, fish and clinical sources, recovered during a 1-year period, were used to investigate the disease spectrum and impact of multidrug-resistant (MDR) strains. They were all identified by biochemical tests and 25% of them were also identified by sequencing of the 16S rRNA gene. The minimum inhibitory concentrations (MICs) of 21 antimicrobials were determined for all isolates by broth microdilution/E-strips methods, and susceptibility was assessed according to the Clinical and Laboratory Standards Institute (CLSI). Strains pathogenicity was determined by using Swiss Webster mice as the animal model. Aeromonas diseases had an incidence of around 20 cases/million inhabitants in the metropolitan area of Valencia (Spain). Acute gastroenteritis in children with no history of travel abroad was the main pathology. These cases were related to A. caviae, A. veronii biovar sobria, A. hydrophila and A. dhakensis. A significant incidence of A. caviae in humans was found, while the other species were equally present in clinical and environmental origins. A. jandaei, A. bestiarum and A. media had mainly an environmental distribution. The prevalence of MDR Aeromonas was maximal in clinical samples, and resistance phenotypes were significantly related to this source. 7.2% of environmental Aeromonas was resistant to at least five drugs; most of them were moderately virulent for mice and, in addition, belonged to clinically significant species. The present study demonstrates a diseases spectrum similar to that reported in tropical countries, and also that pathogenic and heavily MDR Aeromonas are present in environmental reservoirs. MDR Aeromonas from any source analysed were susceptible to aztreonam, netilmicin, cefotaxime, ceftazidime, cefepime and fluoroquinolones.
Collapse
Affiliation(s)
- C Esteve
- Departamento de Microbiología y Ecología, Universitat de València, 46100, Burjassot, Valencia, India.
| | - E Alcaide
- Departamento de Microbiología y Ecología, Universitat de València, 46100, Burjassot, Valencia, India
| | - M J Giménez
- Servicio de Microbiología, Hospital Universitario la Fe, 46009, Valencia, India
| |
Collapse
|
21
|
Pérez-Valdespino A, Celestino-Mancera M, Villegas-Rodríguez VL, Curiel-Quesada E. Characterization of mercury-resistant clinical Aeromonas species. Braz J Microbiol 2014; 44:1279-83. [PMID: 24688523 PMCID: PMC3958199 DOI: 10.1590/s1517-83822013000400036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 04/04/2013] [Indexed: 01/14/2023] Open
Abstract
Mercury-resistant Aeromonas strains isolated from diarrhea were studied. Resistance occurs via mercuric ion reduction but merA and merR genes were only detected in some strains using PCR and dot hybridization. Results indicate a high variability in mer operons in Aeromonas. To our knowledge, this is the first report of mercury-resistant clinical Aeromonas strains.
Collapse
Affiliation(s)
- Abigail Pérez-Valdespino
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Martin Celestino-Mancera
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Everardo Curiel-Quesada
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
22
|
Antibiogram, adhesive characteristics, and incidence of class 1 integron in Aeromonas species isolated from two South African rivers. BIOMED RESEARCH INTERNATIONAL 2013; 2013:127570. [PMID: 24187658 PMCID: PMC3804296 DOI: 10.1155/2013/127570] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/25/2013] [Accepted: 08/27/2013] [Indexed: 11/18/2022]
Abstract
Aeromonas species are well distributed in freshwater environments, and their natural susceptibility to antimicrobials renders them interesting candidates for the survey of antimicrobial resistance in freshwater milieu. Water samples were collected from Kat and Tyume rivers in the Eastern Cape province of South Africa, and a total of 45 isolates identified as Aeromonas species were recovered from the two rivers. All Aeromonas isolates were resistant to oxacillin, penicillin, clindamycin, cephalothin, vancomycin, and rifamycin, while appreciable susceptibilities (89.3 : 94.1%, 82.1 : 94.1%, 85.7 : 88.2%, and 92.9 : 88.2%) were observed against ciprofloxacin, chloramphenicol, nitrofurantoin, and gentamicin from Kat and Tyume rivers, respectively. Multiple antibiotic resistance (MAR) indices ranged from 0.016 to 0.044 for the two rivers. Class 1 integron was detected in about 20% of the isolates, and all the isolates except one showed ability to produce biofilm in vitro as weak producers (53.33%), moderate producers (15.56%), and strong producers (28.9%). This investigation provides a baseline data on antibiotic resistance as well as the adhesive characteristics of Aeromonas isolates from Tyume and Kat rivers in the Eastern Cape province of South Africa.
Collapse
|
23
|
Maravić A, Skočibušić M, Šamanić I, Fredotović Ž, Cvjetan S, Jutronić M, Puizina J. Aeromonas spp. simultaneously harbouring blaCTX-M-15, blaSHV-12, blaPER-1 and blaFOX-2, in wild-growing Mediterranean mussel (Mytilus galloprovincialis) from Adriatic Sea, Croatia. Int J Food Microbiol 2013; 166:301-8. [DOI: 10.1016/j.ijfoodmicro.2013.07.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/26/2013] [Accepted: 07/11/2013] [Indexed: 11/16/2022]
|
24
|
Huddleston JR, Brokaw JM, Zak JC, Jeter RM. Natural transformation as a mechanism of horizontal gene transfer among environmental Aeromonas species. Syst Appl Microbiol 2013; 36:224-34. [PMID: 23541366 DOI: 10.1016/j.syapm.2013.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 01/15/2013] [Accepted: 01/20/2013] [Indexed: 10/27/2022]
Abstract
Aeromonas species are common inhabitants of aquatic environments and relevant as human pathogens. Their potential as pathogens may be related in part to lateral transfer of genes associated with toxin production, biofilm formation, antibiotic resistance, and other virulence determinants. Natural transformation has not been characterized in aeromonads. DNA from wild-type, prototrophic strains that had been isolated from environmental sources was used as donor DNA in transformation assays with auxotrophs as the recipients. Competence was induced in 20% nutrient broth during the stationary phase of growth. Optimal transformation assay conditions for one chosen isolate were in Tris buffer with magnesium or calcium, pH 5-8, and a saturating concentration of 0.5 μg of DNA per assay (3.3 ng of DNA μl⁻¹) at 30°C. Sodium was also required and could not be replaced with ammonium, potassium, or lithium. The maximal transformation frequency observed was 1.95 × 10⁻³ transformants (recipient cell)⁻¹. A survey of environmental Aeromonas auxotrophic recipients (n=37), assayed with donor DNA from other wild-type environmental aeromonads under optimal assay conditions, demonstrated that 73% were able to act as recipients, and 100% were able to act as donors to at least some other aeromonads. Three different transformation groups were identified based on each isolates' ability to transform other strains with its DNA. The transformation groups roughly corresponded to phylogenetic groups. These results demonstrate that natural transformation is a general property of Aeromonas environmental isolates with implications for the genetic structures of coincident Aeromonas populations.
Collapse
Affiliation(s)
- Jennifer R Huddleston
- Biology Department, ACU Box 27868, Abilene Christian University, Abilene, Texas 79699, USA.
| | | | | | | |
Collapse
|
25
|
Evidence for niche partitioning revealed by the distribution of sulfur oxidation genes collected from areas of a terrestrial sulfidic spring with differing geochemical conditions. Appl Environ Microbiol 2012; 79:1171-82. [PMID: 23220955 DOI: 10.1128/aem.02812-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The diversity and phylogenetic significance of bacterial genes in the environment has been well studied, but comparatively little attention has been devoted to understanding the functional significance of different variations of the same metabolic gene that occur in the same environment. We analyzed the geographic distribution of 16S rRNA pyrosequences and soxB genes along a geochemical gradient in a terrestrial sulfidic spring to identify how different taxonomic variations of the soxB gene were naturally distributed within the spring outflow channel and to identify possible evidence for altered SoxB enzyme function in nature. Distinct compositional differences between bacteria that utilize their SoxB enzyme in the Paracoccus sulfide oxidation pathway (e.g., Bradyrhizobium, Paracoccus, and Rhodovulum) and bacteria that utilize their SoxB enzyme in the branched pathway (e.g., Chlorobium, Thiothrix, Thiobacillus, Halothiobacillus, and Thiomonas) were identified. Different variations of the soxB genes were present at different locations within the spring outflow channel in a manner that significantly corresponded to geochemical conditions. The distribution of the different soxB gene sequence variations suggests that the enzymes encoded by these genes are functionally different and could be optimized to specific geochemical conditions that define niche space for bacteria capable of oxidizing reduced sulfur compounds.
Collapse
|
26
|
Zinc hyperaccumulation in squirrelfish (Holocentrus adscenscionis) and its role in embryo viability. PLoS One 2012; 7:e46127. [PMID: 23056248 PMCID: PMC3464275 DOI: 10.1371/journal.pone.0046127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/28/2012] [Indexed: 11/25/2022] Open
Abstract
Female squirrelfish (Fam. Holocentridae) can accumulate and temporarily sequester copious amounts of zinc (Zn) in their livers. There, it is initially compartmentalized before a subsequent, estrogen-triggered redistribution to the ovaries. Here we show that cellular uptake of Zn is also influenced by estrogen signaling, and that estrogen increases concentrations of the plasma Zn-binding protein vitellogenin (VTG). However, estrogen-mediated increases in VTG are not sufficient to accommodate the magnitude of hepato-ovarian Zn transfer in female squirrelfish (Holocentrus adscensionis). These findings suggest that holocentrids have acquired the ability to use hormonal cues to drive hepatic uptake and storage of Zn, signal for its physiological redistribution, and influence the capacity for systemic transport of Zn beyond the mediation of increased plasma VTG concentrations. Such specific adaptations suggest an advantage for the oocyte, which is corroborated in further studies where we determined that oocyte Zn concentrations are positively correlated with egg viability in captive-spawned squirrelfish. The novel nature of these findings underlies the importance of Zn in squirrelfish reproductive biology.
Collapse
|
27
|
Voolaid V, Jõers A, Kisand V, Tenson T. Co-occurrence of resistance to different antibiotics among aquatic bacteria. BMC Microbiol 2012; 12:225. [PMID: 23031674 PMCID: PMC3519559 DOI: 10.1186/1471-2180-12-225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 09/24/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antibiotic resistance is not confined to pathogens, but is also widespread in various natural environments. In nature the microbes producing antibiotic compounds have been around for millions of years. Heavy use of antibiotics in medicine and veterinary practice may lead to the accumulation of resistance genes in microbial populations, followed by a rise in multiresistant bacteria. RESULTS To test the extent of resistance among aquatic bacteria, we have collected 760 isolates resistant to at least one antibiotic. The phylogeny of the isolates covers a wide range of Proteobacteria, Actinobacteria and Bacteroidetes. In order to determine the extent of multiresistance, the isolates were tested on six antibiotics. As the growth rate of the different bacteria was highly variable, the classical medical resistance tests could not be used, and an alternative method considering the full growth curve was developed. In general, the overall resistances to different antibiotics could be explained by random, independent distribution. An exception to this was the resistances against tetracycline and chloramphenicol, which tended to occur in pairs. CONCLUSIONS We conclude that there is no massive spread of multiresistance determinants in the studied environment, although some specific cases can be found, awaiting for molecular characterization of the resistance mechanisms.
Collapse
Affiliation(s)
- Veiko Voolaid
- University of Tartu Institute of Technology, Nooruse St 1, Tartu, 50411, Estonia
| | - Arvi Jõers
- University of Tartu Institute of Technology, Nooruse St 1, Tartu, 50411, Estonia
| | - Veljo Kisand
- University of Tartu Institute of Technology, Nooruse St 1, Tartu, 50411, Estonia
| | - Tanel Tenson
- University of Tartu Institute of Technology, Nooruse St 1, Tartu, 50411, Estonia
| |
Collapse
|
28
|
Igbinosa IH, Nwodo UU, Sosa A, Tom M, Okoh AI. Commensal Pseudomonas species isolated from wastewater and freshwater milieus in the Eastern Cape Province, South Africa, as reservoir of antibiotic resistant determinants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:2537-49. [PMID: 22851958 PMCID: PMC3407919 DOI: 10.3390/ijerph9072537] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 11/16/2022]
Abstract
Pseudomonas species are opportunistic pathogens with implications in a wide range of diseases including cystic fibrosis and sickle cell anaemia. Because of their status as multidrug resistant (MDR) and extremely drug resistant (XDR) bacteria Pseudomonas species represent a threat to public health. Prevalence, antibiogram and associated antibiotic resistant genes of Pseudomonas species isolated from freshwater and mixed liquor environments in the Eastern Cape Province of South Africa were assessed. Polymerase chain reaction (PCR) based technique was used to identify the isolates and screen for antibiotic resistant genes. The result shows occurrence of Pseudomonas spp. in freshwater and mixed liquor as follows: 71.42% and 37.5% (P. putida), 14.28% and 31.25% (P. flourescens), 7.14% and 6.25% (P. aeruginosa) and 7.14% and 25% for other Pseudomonas species respectively. Disk diffusion antibiogram of the Pseudomonas isolates from the two locations showed 100% resistance to penicillin, oxacillin, clindamycin, rifampicin and 100% susceptibility to ciprofloxacin and gentamicin with varied percentage resistances to cephalothin, nalidixic acid, tetracycline, and ampicillin. The blaTEM antibiotic resistant gene was detected in 12.5% of P. putida, 57.14% of P. fluorescens, 100% P. aeruginosa and 40% in other Pseudomonas species. Similarly, Integrons conserved segment were detected in 12.5% of P. putida, 57.14% of P. fluorescens, 100% of P. aeruginosa and 40% of other Pseudomonas species. The presence of blaTEM gene and integrons conserved segment in some of the isolates is worrisome and suggest Pseudomonas species as important reservoirs of multidrug resistance genes in the Eastern Cape Province environment.
Collapse
Affiliation(s)
- Isoken H. Igbinosa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa; (I.H.I.); (U.U.N.); (M.T.)
| | - Uchechukwu U. Nwodo
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa; (I.H.I.); (U.U.N.); (M.T.)
| | - Anibal Sosa
- Former Director, International Program & Clinical Advisor, Alliance for the Prudent Use of Antibiotics (APUA), 75 Kneeland Street, Boston, MA 02111, USA;
| | - Mvuyo Tom
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa; (I.H.I.); (U.U.N.); (M.T.)
| | - Anthony I. Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa; (I.H.I.); (U.U.N.); (M.T.)
- Author to whom correspondence should be addressed; ; Tel.: +27-0-40-602-2365; Fax: +27-0-86-628-6824
| |
Collapse
|
29
|
Unc A, Zurek L, Peterson G, Narayanan S, Springthorpe SV, Sattar SA. Microarray assessment of virulence, antibiotic, and heavy metal resistance in an agricultural watershed creek. JOURNAL OF ENVIRONMENTAL QUALITY 2012; 41:534-543. [PMID: 22370416 DOI: 10.2134/jeq2011.0172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Potential risks associated with impaired surface water quality have commonly been evaluated by indirect description of potential sources using various fecal microbial indicators and derived source-tracking methods. These approaches are valuable for assessing and monitoring the impacts of land-use changes and changes in management practices at the source of contamination. A more detailed evaluation of putative etiologically significant genetic determinants can add value to these assessments. We evaluated the utility of using a microarray that integrates virulence genes with antibiotic and heavy metal resistance genes to describe and discriminate among spatially and seasonally distinct water samples from an agricultural watershed creek in Eastern Ontario. Because microarray signals may be analyzed as binomial distributions, the significance of ambiguous signals can be easily evaluated by using available off-the-shelf software. The FAMD software was used to evaluate uncertainties in the signal data. Analysis of multilocus fingerprinting data sets containing missing data has shown that, for the tested system, any variability in microarray signals had a marginal effect on data interpretation. For the tested watershed, results suggest that in general the wet fall season increased the downstream detection of virulence and resistance genes. Thus, the tested microarray technique has the potential to rapidly describe the quality of surface waters and thus to provide a qualitative tool to augment quantitative microbial risk assessments.
Collapse
Affiliation(s)
- Adrian Unc
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Aravena-Román M, Inglis TJJ, Henderson B, Riley TV, Chang BJ. Antimicrobial susceptibilities of Aeromonas strains isolated from clinical and environmental sources to 26 antimicrobial agents. Antimicrob Agents Chemother 2012; 56:1110-2. [PMID: 22123695 PMCID: PMC3264277 DOI: 10.1128/aac.05387-11] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 11/06/2011] [Indexed: 11/20/2022] Open
Abstract
We determined the susceptibilities of 144 clinical and 49 environmental Aeromonas strains representing 10 different species to 26 antimicrobial agents by the agar dilution method. No single species had a predominantly nonsusceptible phenotype. A multidrug nonsusceptible pattern was observed in three (2.1%) clinical strains and two (4.0%) strains recovered from diseased fish. Common clinical strains were more resistant than the corresponding environmental isolates, suggesting that resistance mechanisms may be acquired by environmental strains from clinical strains.
Collapse
Affiliation(s)
- Max Aravena-Román
- Microbiology and Immunology, School of Biomedical, Biomolecular and Chemical Sciences, the University of Western Australia, Crawley, Western Australia.
| | | | | | | | | |
Collapse
|
31
|
Li D, Qi R, Yang M, Zhang Y, Yu T. Bacterial community characteristics under long-term antibiotic selection pressures. WATER RESEARCH 2011; 45:6063-73. [PMID: 21937072 DOI: 10.1016/j.watres.2011.09.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 08/30/2011] [Accepted: 09/01/2011] [Indexed: 05/23/2023]
Abstract
To investigate bacterial community characteristics under long-term antibiotic selection pressures, water samples from the upstream and the downstream sections of two rivers individually receiving the treated penicillin G and oxytetracycline production wastewater, as well as the anaerobic and the aerobic effluent of the penicillin G production wastewater treatment plant, were taken and analyzed. Antibiotic resistance ratios of bacterial communities in water samples were estimated by culture-based analysis. The majority of bacterial colonies (approximately 55%-70%) in both downstream rivers and the aerobic effluent showed resistance to 80 μg/ml of antibiotics tested, while the resistance ratios were less than 10% and 5% respectively for both upstream rivers. Six 16S rRNA gene clone libraries were constructed with 355 sequences and 215 OTUs totally obtained representing 465 clones. The antibiotic stresses seemed not reduce the diversities of bacterial communities in antibiotic containing water samples compared to those in the two reference upstream rivers. Bacterial groups present in the two reference upstream rivers were common residents in freshwater ecosystems, with the dominant groups as the phyla Proteobacteria including Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria, as well as Actinobacteria and Bacteroidetes. The phyla Proteobacteria and Firmicutes were dominant in all antibiotic containing water samples, with the clones belonged to Deltaproteobacteria and Epsilonproteobacteria significantly abundant, as well as Gram-positive low GC bacteria in the classes Clostridia and Bacilli. It thus seemed that Deltaproteobacteria, Epsilonproteobacteria, Clostridia and Bacilli might be specifically associated with antibiotic containing environments.
Collapse
Affiliation(s)
- Dong Li
- State Key Lab of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | | | | | | |
Collapse
|
32
|
Figueira V, Vaz-Moreira I, Silva M, Manaia CM. Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants. WATER RESEARCH 2011; 45:5599-611. [PMID: 21907383 DOI: 10.1016/j.watres.2011.08.021] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/13/2011] [Accepted: 08/13/2011] [Indexed: 05/22/2023]
Abstract
The taxonomic diversity and antibiotic resistance phenotypes of aeromonads were examined in samples from drinking and waste water treatment plants (surface, ground and disinfected water in a drinking water treatment plant, and raw and treated waste water) and tap water. Bacteria identification and intra-species variation were determined based on the analysis of the 16S rRNA, gyrB and cpn60 gene sequences. Resistance phenotypes were determined using the disc diffusion method. Aeromonas veronii prevailed in raw surface water, Aeromonas hydrophyla in ozonated water, and Aeromonas media and Aeromonas puntacta in waste water. No aeromonads were detected in ground water, after the chlorination tank or in tap water. Resistance to ceftazidime or meropenem was detected in isolates from the drinking water treatment plant and waste water isolates were intrinsically resistant to nalidixic acid. Most of the times, quinolone resistance was associated with the gyrA mutation in serine 83. The gene qnrS, but not the genes qnrA, B, C, D or qepA, was detected in both surface and waste water isolates. The gene aac(6')-ib-cr was detected in different waste water strains isolated in the presence of ciprofloxacin. Both quinolone resistance genes were detected only in the species A. media. This is the first study tracking antimicrobial resistance in aeromonads in drinking, tap and waste water and the importance of these bacteria as vectors of resistance in aquatic environments is discussed.
Collapse
Affiliation(s)
- Vânia Figueira
- CBQF/Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | | | | | | |
Collapse
|
33
|
Diversity of clavulanic acid-inhibited extended-spectrum β-lactamases in Aeromonas spp. from the Seine River, Paris, France. Antimicrob Agents Chemother 2010; 55:1256-61. [PMID: 21149627 DOI: 10.1128/aac.00921-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Environmental Aeromonas sp. isolates resistant to ceftazidime were recovered during an environmental survey performed with water samples from the Seine River, in Paris, France, in November 2009. Selected isolates were identified by sequencing of the 16S rRNA and rpoB genes. PCR and cloning experiments were used to identify broad-spectrum-β-lactamase-encoding genes and their genetic context. Clavulanic acid-inhibited extended-spectrum-β-lactamase (ESBL) genes were identified in 71% of the Aeromonas sp. isolates. A variety of ESBL genes were detected, including bla(VEB-1a), bla(SHV-12), bla(PER-1), bla(PER-6), bla(TLA-2), and bla(GES-7), suggesting an aquatic reservoir of those ESBL genes. Moreover, the repeated elements and different insertion sequences were identified in association with the bla(PER-6) and the bla(VEB-1a) genes, respectively, indicating a wide diversity of mobilization events, making Aeromonas spp. a vehicle for ESBL dissemination.
Collapse
|
34
|
Goswami R, Ghosh D, Saha DR, Padhy PK, Mazumder S. Effect of acute and chronic arsenic exposure on growth, structure and virulence of Aeromonas hydrophila isolated from fish. Microb Pathog 2010; 50:63-9. [PMID: 21074603 DOI: 10.1016/j.micpath.2010.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 10/20/2010] [Accepted: 10/22/2010] [Indexed: 11/18/2022]
Abstract
Aeromonas hydrophila being a ubiquitous bacterium is prone to arsenic exposure. The present study was designed to determine the role of arsenic on growth and virulence of A. hydrophila. Exposure to arsenic (1 mg L(-1) and 2 mg L(-1)) had no effect on growth but significantly inhibited the hemolytic and cytotoxic potential of exposed bacteria. Transmission electron microscopy revealed loss of membrane integrity and presence of condensed cytoplasm suggestive of acute stress in bacteria exposed to arsenic. Arsenic-adapted bacteria were developed by repeated sub-culturing in presence of arsenic. Arsenic-adaptation led to significant recovery in hemolytic and cytotoxic potential. The arsenic-adapted bacteria exhibited normal membrane integrity, decreased cytoplasmic condensation and possessed scattered polysome like structures in the cytoplasm. A positive correlation was observed between arsenic tolerance and resistance to several antimicrobials. Arsenic-adaptation failed to confer cross-protection to mercury and cadmium stress. SDS-PAGE analysis revealed the expression of two new proteins of approximately 85 kDa and 79 kDa respectively in arsenic-adapted A. hydrophila. Plasmid-curing and transformation studies clearly indicate plasmid has no role on arsenic resistance trait of the bacteria. Our study, for the first time, reports a structure and function relationship of xenobiotics on bacteria.
Collapse
Affiliation(s)
- Ramansu Goswami
- Immunobiology Laboratory, School of Life Sciences, Visva-Bharati University, Santiniketan, West Bengal, India
| | | | | | | | | |
Collapse
|
35
|
Abel MT, Cobb GP, Presley SM, Ray GL, Rainwater TR, Austin GP, Cox SB, Anderson TA, Leftwich BD, Kendall RJ, Suedel BC. Lead distributions and risks in New Orleans following Hurricanes Katrina and Rita. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:1429-1437. [PMID: 20821590 DOI: 10.1002/etc.205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
During the last four years, significant effort has been devoted to understanding the effects that Hurricanes Katrina and Rita had on contaminant distribution and redistribution in New Orleans, Louisiana, USA, and the surrounding Gulf Coast area. Elevated concentrations were found for inorganic contaminants (including As, Fe, Pb, and V), several organic pollutants (polycyclic aromatic hydrocarbons, pesticides, and volatiles) and high concentration of bioaerosols, particularly Aeromonas and Vibrio. Data from different research groups confirm that some contaminant concentrations are elevated, that existing concentrations are similar to historical data, and that contaminants such as Pb and As may pose human health risks. Two data sets have been compiled in this article to serve as the foundation for preliminary risk assessments within greater New Orleans. Research from the present study suggests that children in highly contaminated areas of New Orleans may experience Pb exposure from soil ranging from 1.37 microg/d to 102 microg/d. These data are critical in the evaluation of children's health.
Collapse
Affiliation(s)
- Michael T Abel
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Box 41163, Lubbock, Texas 79409-1163, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Miñana-Galbis D, Farfàn M, Lorén JG, Fusté MC. The reference strain Aeromonas hydrophicla CIP 57.50 should be reclassified as Aeromonas salmonicida CIP 57.50. Int J Syst Evol Microbiol 2010; 60:715-717. [DOI: 10.1099/ijs.0.017939-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The use of reference strains is a critical element for the quality control of different assays, from the development of molecular methods to the evaluation of antimicrobial activities. Most of the strains used in these assays are not type strains and some of them are cited erroneously because of subsequent reclassifications and descriptions of novel species. In this study, we propose that the reference strain Aeromonas hydrophila CIP 57.50 be reclassified as Aeromonas salmonicida CIP 57.50 based on phenotypic characterization and sequence analyses of the cpn60, dnaJ, gyrB and rpoD genes.
Collapse
Affiliation(s)
- David Miñana-Galbis
- Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Maribel Farfàn
- Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - J. Gaspar Lorén
- Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - M. Carmen Fusté
- Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| |
Collapse
|
37
|
Homology modelling of a sensor histidine kinase from Aeromonas hydrophila. J Mol Model 2009; 16:1003-9. [DOI: 10.1007/s00894-009-0602-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 09/30/2009] [Indexed: 11/26/2022]
|
38
|
Li D, Yang M, Hu J, Zhang J, Liu R, Gu X, Zhang Y, Wang Z. Antibiotic-resistance profile in environmental bacteria isolated from penicillin production wastewater treatment plant and the receiving river. Environ Microbiol 2009; 11:1506-17. [PMID: 19226301 DOI: 10.1111/j.1462-2920.2009.01878.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The antibiotic-resistance characteristics of bacterial strains in antibiotic production wastewater treatment plants (WWTP) that contain high concentrations of antibiotics are unknown, as are the environmental effects of the discharge of wastewater from such facilities. In this study, 417 strains were individually isolated from the effluent of a WWTP that treated penicillin G production wastewater, as well as from downstream and upstream areas of the receiving river. The minimum inhibition concentrations (MICs) of 18 antibiotics representing seven classes were then determined for each of these strains. Relatively high similarity in the bacterial composition existed between the wastewater and downstream river samples when compared with the upstream sample. High resistance ratios and MIC values were observed for almost all antibiotics in wastewater isolates, followed by strains from downstream river, of which the resistance ratios and levels were still significantly higher than those of upstream strains. The resistance ratios and levels also significantly differed among strains belonged to different species in the penicillin production wastewater effluent and downstream river. In both samples, the resistances to beta-lactam antibiotics were more frequent, with much higher levels, than the other class antibiotics. Then five clinically important resistant genes mainly coding for extended-spectrum beta-lactamases (ESBLs) were determined for all strains, only bla(TEM-1) which did not belong to ESBL was detected in 17.3% and 11.0% of strains isolated from wastewater and downstream river respectively. Class I integrons were detected in 14% of wastewater isolates and 9.1% of downstream isolates, and primarily contained gene cassettes conferring resistance to aminoglycoside antibiotics. The unexpectedly high levels of multiple antibiotic resistance in strains from wastewater and downstream river were speculated to be mainly due to multidrug efflux systems.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Beijing 100085, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Gordon L, Cloeckaert A, Doublet B, Schwarz S, Bouju-Albert A, Ganière JP, Le Bris H, Le Flèche-Matéos A, Giraud E. Complete sequence of the floR-carrying multiresistance plasmid pAB5S9 from freshwater Aeromonas bestiarum. J Antimicrob Chemother 2008; 62:65-71. [PMID: 18413319 DOI: 10.1093/jac/dkn166] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES A multiresistant Aeromonas bestiarum strain, shown to be persistent and spreading in a freshwater stream, was investigated for the presence, location and organization of antimicrobial resistance genes. METHODS The plasmid pAB5S9 was transferred by electroporation into Escherichia coli TG1. The resistance phenotype mediated by pAB5S9 was determined. Moreover, the plasmid was sequenced completely and analysed for its structure and organization of reading frames. RESULTS Plasmid pAB5S9 mediated resistances to phenicols, sulphonamides, streptomycin and tetracycline. The analysis of the 24.7 kb sequence revealed the presence of 20 predicted coding sequences (CDSs), which included the floR, sul2 and strA-strB resistance genes and a tetR-tet(Y) determinant. Approximately 7.5 kb of pAB5S9 showed 100% nucleotide sequence identity to three non-contiguous segments of the SXT element of Vibrio cholerae. Regions identical to SXT comprised the floR gene, flanked upstream by a complete and downstream by a truncated ISCR2 element, and the region of the sul2 and strA-strB genes. Other CDSs of pAB5S9 related to plasmid replication and partitioning, metabolic and gene regulation functions as well as conjugative transfer showed homology to sequences from diverse bacterial species, indicating a mosaic structure. CONCLUSIONS This study provides the first report of a floR-carrying plasmid in the genus Aeromonas and the first description of a tetR-tet(Y) determinant. The analysis of the multiresistant A. bestiarum strain indicates that strains of this species, some of which are opportunistic pathogens for fish, might also act as a resistance gene reservoir in the freshwater environment.
Collapse
Affiliation(s)
- Laurence Gordon
- INRA, ENVN, UMR1035 Chimiothérapie Aquacole et Environnement, F-44307 Nantes, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pepi M, Volterrani M, Renzi M, Marvasi M, Gasperini S, Franchi E, Focardi SE. Arsenic-resistant bacteria isolated from contaminated sediments of the Orbetello Lagoon, Italy, and their characterization. J Appl Microbiol 2008; 103:2299-308. [PMID: 18045414 DOI: 10.1111/j.1365-2672.2007.03471.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The aim of this study was to isolate arsenic-resistant bacteria from contaminated sediment of the Orbetello Lagoon, Italy, to characterize isolates for As(III), As(V), heavy metals resistance, and from the phylogenetic point of view. METHODS AND RESULTS Enrichment cultures were carried out in the presence of 6.75 mmol l(-1) of As(III), allowing isolation of ten bacterial strains. Four isolates, ORAs1, ORAs2, ORAs5 and ORAs6, showed minimum inhibitory concentration values equal or superior to 16.68 mmol l(-1) and 133.47 mmol l(-1) in the presence of As(III) and As(V), respectively. Isolate ORAs2 showed values of 1.8 mmol l(-1) in the presence of Cd(II) and 7.7 mmol l(-1) of Zn(II), and isolate ORAs1 pointed out a value of 8.0 mmol l(-1) in the presence of Cu(II). Analysis of 16S rRNA gene sequences revealed that they can be grouped in the three genera Aeromonas, Bacillus and Pseudomonas. Phylogenetic analysis of the four more arsenic-resistant strains was also performed. CONCLUSION Isolates are highly resistant to both As(III) and As(V) and they could represent good candidates for bioremediation processes of native polluted sediments. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides original results on levels of resistance to arsenic and to assigning genera of bacterial strains isolated from arsenic-polluted sediments.
Collapse
Affiliation(s)
- M Pepi
- Department of Environmental Sciences, University of Siena, Siena, Italy.
| | | | | | | | | | | | | |
Collapse
|
41
|
Blasco MD, Esteve C, Alcaide E. Multiresistant waterborne pathogens isolated from water reservoirs and cooling systems. J Appl Microbiol 2008; 105:469-75. [PMID: 18298535 DOI: 10.1111/j.1365-2672.2008.03765.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To determine the incidence of multiple antibiotic-resistant strains of the emergent human pathogens Legionella pneumophila, Pseudomonas aeruginosa and mesophilic Aeromonas species among those isolated from water reservoirs and industrial cooling systems. METHODS AND RESULTS Water from four natural water reservoirs and four industrial cooling towers was sampled for 1 year period. The total heterotrophs, mesophilic Aeromonas, Pseudomonas spp. and Legionella spp. counts were performed as recommended by standard procedures, and the sensitivity of the isolates to 27 antibiotics was tested. A total of 117 Aeromonas, 60 P. aeruginosa and 15 L. pneumophila strains were isolated and identified by means of biochemical tests and DNA probes. 46.4% of Aeromonas, and 100% of P. aeruginosa isolates presented multiple resistance. Legionella pneumophila strains were generally sensitive to the drugs used. CONCLUSIONS Antibiotic-resistant pathogenic bacteria belonging to P. aeruginosa and mesophilic Aeromonas species are common in natural aquatic environments. Thus, the risk of waterborne diseases owing to domestic and industrial uses of freshwater should be re-examined from the increase of bacterial resistance point of view. SIGNIFICANCE AND IMPACT OF THE STUDY These data confirm the emergence of bacteria resistant to antibiotics in aquatic environments.
Collapse
Affiliation(s)
- M D Blasco
- Departamento de Microbiología y Ecología, Universitat de València, Burjassot, Valencia, Spain
| | | | | |
Collapse
|
42
|
Huddleston JR, Zak JC, Jeter RM. Sampling bias created by ampicillin in isolation media forAeromonas. Can J Microbiol 2007; 53:39-44. [PMID: 17496948 DOI: 10.1139/w06-103] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Members of the bacterial genus Aeromonas are widely isolated from aquatic environments and studied in part for their ability to act as opportunistic pathogens in a variety of animals. All aeromonads, with the exception of Aeromonas trota, are generally thought to be resistant to ampicillin, so the antibiotic is frequently added to isolation medium as a selective agent. In this study, 282 aeromonads from environmental sources were isolated on a medium without ampicillin and their resistance to ampicillin determined. Of the 104 of these isolates that were judged to be independent (nonredundant), 18 (17.3%) were susceptible to ampicillin. A chi-square analysis was performed to determine the impact of ampicillin use on enumerating Aeromonas species from environmental samples. Our results indicate that, when ampicillin is used as a selective agent, a significant portion of the aeromonad population in at least some environ ments can be omitted from isolation.Key words: Aeromonas, ampicillin, selective media.
Collapse
|