1
|
Hu D, Lin W, Zeng J, Zhang H, Wei Y, Yu X. To close or open the tank input water valve: Secondary water-supply systems with double tanks will induce a higher microbial risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162301. [PMID: 36801325 DOI: 10.1016/j.scitotenv.2023.162301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/25/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Secondary water supply systems (SWSSs) are widely used to supply water to high-rise households in urban residential buildings. A special mode of double tanks with one used while another was spared was noted in SWSSs, which would facilitate microbial growth due to longer water stagnation in the spare tank. There are limited studies on the microbial risk of water samples in such SWSSs. In this study, the input water valves of the operational SWSSs consisting of double tanks were artificially closed and opened on time. Propidium monoazide-qPCR and high-throughput sequencing were performed to systematically investigate the microbial risks in water samples. After closing the tank input water valve, it may take several weeks to replace the bulk water in the spare tank. The residual chlorine concentration in the spare tank decreased by up to 85 % within 2-3 days compared with that in the input water. The microbial communities in the spare and used tank water samples clustered separately. High bacterial 16S rRNA gene abundance and pathogens-like sequences were detected in the spare tanks. Most antibiotic-resistant genes (11/15) in the spare tanks showed an increase in their relative abundance. Moreover, when both tanks within one SWSS were in use, the water quality of the used tank water samples deteriorated to varying degrees. Overall, running SWSSs with double tanks will reduce the replacement rate of water in one storage tank, and consumers who use taps served by the presented SWSSs may have a higher microbial risk.
Collapse
Affiliation(s)
- Dong Hu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Wenfang Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jie Zeng
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8540, Japan
| | - Heng Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yating Wei
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Deserti MI, Lorenzo-Morales J, Acuña FH. Hydra-Amoeba system: a double infection with a lethal ending. AN ACAD BRAS CIENC 2023; 95:e20211025. [PMID: 37162082 DOI: 10.1590/0001-3765202320211025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 05/24/2022] [Indexed: 05/11/2023] Open
Abstract
Within each ecosystem, organisms and populations maintain a complex set of relationships. These interactions can determine the distribution area of a species and play an essential role in its evolution. Parasites are ubiquitous components of nature and have a high influence on various aspects of the biology and ecology of organisms, affecting the populations of their hosts and, therefore, their communities and ecosystems. Free-living amoebae are unicellular organisms that can be found in water, soil or air. Some species are of great importance in human health. In Hydra, there are several reports of Hydramoeba hydroxena infections. In this work we present a double parasitosis: two concatenated infectious periods in the host polyp of Hydra vulgaris and Hydra vulgaris pedunculata for three freshwater bodies in the province of Buenos Aires, Argentina. Hydramoeba sp. and Acanthoamoeba sp. unchain a series of anatomical lesions that in all cases cause the death of the polyps due to total disintegration. This finding becomes important at a sanitary level due to the appearance of Acanthoamoeba sp. in waters associated with human recreational activities; For the Hydra genus, the importance lies at an ecological and evolutionary level, considering the possible impact on its natural populations.
Collapse
Affiliation(s)
- Maria I Deserti
- Universidad Nacional de Mar del Plata (UNMdP), Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales (FCEyN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250, 2° Piso, Mar del Plata, 7600 Buenos Aires, Argentina
| | - Jacob Lorenzo-Morales
- Universidad de La Laguna, University Institute of Tropical Diseases and Public Health of the Canary Islands, Av. Astrofísico Francisco Sánchez, s/n, Campus de Anchieta, Apartado 456, San Cristóbal de La Laguna, 38200 Tenerife, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Av. Monforte de Lemos, 3-5, Pabellón 11 Planta 0, 28029 Madrid, Spain
| | - Fabián H Acuña
- Universidad Nacional de Mar del Plata (UNMdP), Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales (FCEyN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250, 2° Piso, Mar del Plata, 7600 Buenos Aires, Argentina
- Estación Científica Coiba (Coiba-AIP), Calle Gustavo Lara, Edificio 145B, 7144 Clayton, Panamá
| |
Collapse
|
3
|
Talapko J, Frauenheim E, Juzbašić M, Tomas M, Matić S, Jukić M, Samardžić M, Škrlec I. Legionella pneumophila-Virulence Factors and the Possibility of Infection in Dental Practice. Microorganisms 2022; 10:microorganisms10020255. [PMID: 35208710 PMCID: PMC8879694 DOI: 10.3390/microorganisms10020255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Legionella pneumophila is defined as a bacterium that can cause severe pneumonia. It is found in the natural environment and in water, and is often found in water tanks. It can be an integral part of biofilms in nature, and the protozoa in which it can live provide it with food and protect it from harmful influences; therefore, it has the ability to move into a sustainable but uncultured state (VBNC). L. pneumophila has been shown to cause infections in dental practices. The most common transmission route is aerosol generated in dental office water systems, which can negatively affect patients and healthcare professionals. The most common way of becoming infected with L. pneumophila in a dental office is through water from dental instruments, and the dental unit. In addition to these bacteria, patients and the dental team may be exposed to other harmful bacteria and viruses. Therefore, it is vital that the dental team regularly maintains and decontaminates the dental unit, and sterilizes all accessories that come with it. In addition, regular water control in dental offices is necessary.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Erwin Frauenheim
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Matej Tomas
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Suzana Matić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, HR-31000 Osijek, Croatia
| | - Melita Jukić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
- General Hospital Vukovar, Županijska 35, HR-32000 Vukovar, Croatia
| | - Marija Samardžić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
- Correspondence:
| |
Collapse
|
4
|
Zhang X, Xia S, Ye Y, Wang H. Opportunistic pathogens exhibit distinct growth dynamics in rainwater and tap water storage systems. WATER RESEARCH 2021; 204:117581. [PMID: 34461496 DOI: 10.1016/j.watres.2021.117581] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/09/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Opportunistic pathogens (OPs) are emerging microbial contaminants in engineered water systems, yet their growth potential in rainwater systems has not been evaluated. The purpose of this study was to compare the growth dynamics of bacterial OPs and related genera (Pseudomonas aeruginosa, Legionella spp., L. pneumophila, Mycobacterium spp., and M. avium), two amoebal hosts (Acanthamoeba spp. and Vermamoeba vermiformis), and the fecal indicator Escherichia coli in simulated rainwater and tap water storage systems (SWSSs). Quantitative polymerase chain reaction (q-PCR) analysis of target microorganisms in SWSS influents and effluents demonstrated that P. aeruginosa and Legionella thrived in rainwater, but not in tap water. V. vermiformis proliferated in both rainwater and tap water polyvinyl chloride (PVC) SWSSs, while mycobacteria were largely absent in rainwater SWSSs. Tank materials exerted stronger influence on target microorganisms in rainwater SWSSs relative to tap water SWSSs, with species-specific responses noted in bulk water and biofilm. For instance, P. aeruginosa and V. vermiformis had the highest gene copy numbers in PVC rainwater SWSS effluents and biofilm, while Legionella peaked in stainless steel rainwater SWSS effluents and PVC rainwater SWSS biofilm. These results highlighted the OP contamination risks in rainwater storage systems and provided insights into rainwater system design and operation in terms of OP control.
Collapse
Affiliation(s)
- Xiaodong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Chengtou Water Group Corporation, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yinyin Ye
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, New York 14260, USA
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
5
|
Pereira A, Silva AR, Melo LF. Legionella and Biofilms-Integrated Surveillance to Bridge Science and Real-Field Demands. Microorganisms 2021; 9:microorganisms9061212. [PMID: 34205095 PMCID: PMC8228026 DOI: 10.3390/microorganisms9061212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Legionella is responsible for the life-threatening pneumonia commonly known as Legionnaires’ disease or legionellosis. Legionellosis is known to be preventable if proper measures are put into practice. Despite the efforts to improve preventive approaches, Legionella control remains one of the most challenging issues in the water treatment industry. Legionellosis incidence is on the rise and is expected to keep increasing as global challenges become a reality. This puts great emphasis on prevention, which must be grounded in strengthened Legionella management practices. Herein, an overview of field-based studies (the system as a test rig) is provided to unravel the common roots of research and the main contributions to Legionella’s understanding. The perpetuation of a water-focused monitoring approach and the importance of protozoa and biofilms will then be discussed as bottom-line questions for reliable Legionella real-field surveillance. Finally, an integrated monitoring model is proposed to study and control Legionella in water systems by combining discrete and continuous information about water and biofilm. Although the successful implementation of such a model requires a broader discussion across the scientific community and practitioners, this might be a starting point to build more consistent Legionella management strategies that can effectively mitigate legionellosis risks by reinforcing a pro-active Legionella prevention philosophy.
Collapse
|
6
|
Guo L, Wan K, Zhu J, Ye C, Chabi K, Yu X. Detection and distribution of vbnc/viable pathogenic bacteria in full-scale drinking water treatment plants. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124335. [PMID: 33160785 DOI: 10.1016/j.jhazmat.2020.124335] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 05/22/2023]
Abstract
Viable but non-culturable (VBNC) bacteria have attracted widespread attention since they are inherently undetected by traditional culture-dependent methods. Importantly, VBNC bacteria could resuscitate under favorable conditions leading to significant public health concerns. Although the total number of viable bacteria has been theorized to be far greater than those that can be cultured, there have been no reports quantifying VBNC pathogenic bacteria in full-scale drinking water treatment plants (DWTPs). In this work, we used both culture-dependent and quantitative PCR combination with propidium monoazide (PMA) dye approaches to characterize cellular viability. Further, we established a method to quantify viable pathogens by relating specific gene copies to viable cell numbers. Ratios of culturable bacteria to viable 16S rRNA gene copies in water and biological activated carbon (BAC) biofilms were 0-4.75% and 0.04-56.24%, respectively. The VBNC E. coli, E. faecalis, P. aeruginosa, Salmonella sp., and Shigella sp. were detected at levels of 0-103 cells/100 mL in source water, 0-102 cells/100 mL in chlorinated water, and 0-103 cells/g in BAC biofilms. In addition, differences between the total and viable community structures after ozonation and chlorination were investigated. The relative abundance of opportunistic pathogens such as Mycobacterium, Sphingomonas, etc. increased in final water, likely due to their chlorine resistance. In summary, we detected significant quantities of viable/VBNC opportunistic pathogens in full-scale DWTPs, confirming that traditional, culture-dependent methods are inadequate for detecting VBNC bacteria. These findings suggest a need to develop and implement rapid, accurate methods for the detection of VBNC pathogenic bacteria in DWTPs to ensure the safety of drinking water.
Collapse
Affiliation(s)
- Lizheng Guo
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Wan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Chengsong Ye
- College of Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Kassim Chabi
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Yu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
7
|
Stenamoeba dejonckheerei sp. nov., a Free-Living Amoeba Isolated from a Thermal Spring. Pathogens 2020; 9:pathogens9070586. [PMID: 32709092 PMCID: PMC7400236 DOI: 10.3390/pathogens9070586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022] Open
Abstract
Two amoeboid organisms were obtained from water samples taken from a thermal spring, "Agua Caliente", in Northwestern Mexico. The isolates were obtained when samples were cultivated at 37 °C on non-nutrient agar coated with Escherichia coli. The initial identification of the isolates was performed morphologically using light microscopy. The samples were found to have trophozoite morphology consistent with members of the genus Stenamoeba, a genus derived in 2007 from within the abolished polyphyletic genus Platyamoeba. Further analysis was performed by sequencing PCR products obtained using universal eukaryotic primers for the small subunit ribosomal ribonucleic acid (SSU rRNA) gene. Sequencing primers were designed to allow the comparison of the 18S rRNA gene sequences of the new isolates with previous sequences reported for Stenamoeba. Phylogenetic relationships among sequences from Stenamoeba were determined using Maximum Likelihood analysis. The results showed the two "Agua Caliente" sequences to be closely related, while clearly separating them from those of other Stenamoeba taxa. The degrees of sequence differentiation from other taxa were considered sufficient to allow us to propose that the Mexican isolates represent a new species.
Collapse
|
8
|
Nisar MA, Ross KE, Brown MH, Bentham R, Whiley H. Legionella pneumophila and Protozoan Hosts: Implications for the Control of Hospital and Potable Water Systems. Pathogens 2020; 9:pathogens9040286. [PMID: 32326561 PMCID: PMC7238060 DOI: 10.3390/pathogens9040286] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Legionella pneumophila is an opportunistic waterborne pathogen of public health concern. It is the causative agent of Legionnaires’ disease (LD) and Pontiac fever and is ubiquitous in manufactured water systems, where protozoan hosts and complex microbial communities provide protection from disinfection procedures. This review collates the literature describing interactions between L. pneumophila and protozoan hosts in hospital and municipal potable water distribution systems. The effectiveness of currently available water disinfection protocols to control L. pneumophila and its protozoan hosts is explored. The studies identified in this systematic literature review demonstrated the failure of common disinfection procedures to achieve long term elimination of L. pneumophila and protozoan hosts from potable water. It has been demonstrated that protozoan hosts facilitate the intracellular replication and packaging of viable L. pneumophila in infectious vesicles; whereas, cyst-forming protozoans provide protection from prolonged environmental stress. Disinfection procedures and protozoan hosts also facilitate biogenesis of viable but non-culturable (VBNC) L. pneumophila which have been shown to be highly resistant to many water disinfection protocols. In conclusion, a better understanding of L. pneumophila-protozoan interactions and the structure of complex microbial biofilms is required for the improved management of L. pneumophila and the prevention of LD.
Collapse
|
9
|
Zhang X, Xia S, Zhao R, Wang H. Effect of temperature on opportunistic pathogen gene markers and microbial communities in long-term stored roof-harvested rainwater. ENVIRONMENTAL RESEARCH 2020; 181:108917. [PMID: 31759642 DOI: 10.1016/j.envres.2019.108917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Roof-harvested rainwater (RHRW) has received increasing attention in recent years as an alternative water source for domestic use, yet its biological stability during storage is not fully understood. This study investigated the effects of temperature (4 °C, 20 °C and 30 °C) on the microbiological characteristics of RHRW over a storage period of 60 days by targeting different microbial groups including total bacteria and fecal indictor Escherichia coli, bacterial opportunistic pathogen genera and species (Legionella spp, Legionella pneumophila, Mycobacterium spp, Mycobacterium avium, Pseudomonas aeruginosa), and two amoebas (Acanthamoeba and Vermamoeba vermiformis). The rainwater chemistry demonstrated no obvious change during storage. The highest biomass was observed in RHRW stored at 30 °C, as measured by heterotrophic bacterial counts, adenosine triphosphate, and 16S rRNA gene numbers. Gene markers of E. coli, Legionella spp., P. aeruginosa, and V. vermiformis were detected in fresh RHRW and can persist during RHRW storage; whereas P. aeruginosa was the only species demonstrated significant regrowth at higher storage temperatures (P < 0.05). Acanthamoeba spp. was only detected in RHRW after 50 days of storage at three investigated temperatures, highlighting increased health risks in long-term stored RHRW. Bacterial community compositions were significantly different in RHRW stored at different temperatures, with increased variations among triplicate storage bottles noted at higher temperatures along with storage time. The results provide insights into RHRW storage practices in terms of mitigating microbial contamination risks.
Collapse
Affiliation(s)
- Xiaodong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Renzun Zhao
- Civil, Architectural and Environmental Engineering Department, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
10
|
Abstract
The amoeba-resistant bacterium Legionella pneumophila infects humans through aerosols and thereby can cause a life-threatening pneumonia termed Legionnaires' disease. In the environment L. pneumophila forms and colonizes biofilms, which usually comprise complex multispecies communities. In these biofilms L. pneumophila persists and replicates intracellularly in protozoa, such as the amoeba Acanthamoeba castellanii. The interactions between sessile L. pneumophila in biofilms and their natural protozoan hosts are not understood on a molecular level. Here, we describe a method to visualize by confocal microscopy the formation and architecture of mono-species L. pneumophila biofilms. Furthermore, we describe and quantify the migration or "grazing" of A. castellanii in the biofilm. This allows investigating on a molecular and cellular level L. pneumophila biofilm formation and Legionella-amoeba interactions within biofilms.
Collapse
Affiliation(s)
- Ramon Hochstrasser
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
11
|
Caicedo C, Rosenwinkel KH, Exner M, Verstraete W, Suchenwirth R, Hartemann P, Nogueira R. Legionella occurrence in municipal and industrial wastewater treatment plants and risks of reclaimed wastewater reuse: Review. WATER RESEARCH 2019; 149:21-34. [PMID: 30445393 DOI: 10.1016/j.watres.2018.10.080] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 05/22/2023]
Abstract
Wastewater treatment plants (WWTPs) have been identified as confirmed but until today underestimated sources of Legionella, playing an important role in local and community cases and outbreaks of Legionnaires' disease. In general, aerobic biological systems provide an optimum environment for the growth of Legionella due to high organic nitrogen and oxygen concentrations, ideal temperatures and the presence of protozoa. However, few studies have investigated the occurrence of Legionella in WWTPs, and many questions in regards to the interacting factors that promote the proliferation and persistence of Legionella in these treatment systems are still unanswered. This critical review summarizes the current knowledge about Legionella in municipal and industrial WWTPs, the conditions that might support their growth, as well as control strategies that have been applied. Furthermore, an overview of current quantification methods, guidelines and health risks associated with Legionella in reclaimed wastewater is also discussed in depth. A better understanding of the conditions promoting the occurrence of Legionella in WWTPs will contribute to the development of improved wastewater treatment technologies and/or innovative mitigation approaches to minimize future Legionella outbreaks.
Collapse
Affiliation(s)
- C Caicedo
- Leibniz University Hannover, Institute for Sanitary Engineering and Waste Management, Hannover, 30167, Germany.
| | - K-H Rosenwinkel
- Leibniz University Hannover, Institute for Sanitary Engineering and Waste Management, Hannover, 30167, Germany
| | - M Exner
- University of Bonn, Institute for Hygiene and Public Health, Bonn, Germany
| | - W Verstraete
- Ghent University, CMET, Ghent, and Avecom, Wondelgem, Belgium
| | - R Suchenwirth
- Public Health Office of Lower Saxony, Hannover, Germany
| | - P Hartemann
- Faculty of Medicine, Department of Environment and Public Health, Nancy University-CHU Nancy, Vandoeuvre Les Nancy, France
| | - R Nogueira
- Leibniz University Hannover, Institute for Sanitary Engineering and Waste Management, Hannover, 30167, Germany.
| |
Collapse
|
12
|
Wang H, Xu J, Tang W, Li H, Xia S, Zhao J, Zhang W, Yang Y. Removal Efficacy of Opportunistic Pathogens and Bacterial Community Dynamics in Two Drinking Water Treatment Trains. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804436. [PMID: 30536542 DOI: 10.1002/smll.201804436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Drinking water treatment processes (DWTPs) impact pathogen colonization and microbial communities in finished water; however, their efficacies against opportunistic pathogens are not fully understood. In this study, the effects of treatment steps on the removal of Legionella spp., Legionella pneumophila, nontuberculous mycobacteria, Mycobacterium avium, and two amoeba hosts (Vermamoeba vermiformis, Acanthamoeba) are evaluated in two parallel trains of DWTPs equipped with different pretreatment units. Quantitative polymerase chain reaction analysis demonstrates significantly reduced numbers of total bacteria, Legionella, and mycobacteria during ozonation, followed by a rebound in granular activated carbon (GAC) filtration, whereas sand filtration exerts an overarching effect in removing microorganisms in both treatment trains. V. vermiformis is more prevalent in biofilm (34%) than water samples (7.7%), while Acanthamoeba is not found in the two trains of DWTPs. Illumina sequencing of bacterial 16S rRNA genes reveals significant community shifts at different treatment steps, as well as distinct bacterial community structures in water and biofilm samples in parallel units (e.g., ozonation, GAC, sand filtration) between the two trains (analysis of similarities (ANOSIM), p < 0.05), implying the potential influence of different pretreatment steps in shaping the downstream microbiome. Overall, the results provide insights to mitigation of opportunistic pathogens and engineer approaches for managing bacterial communities in DWTPs.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jiajiong Xu
- Shanghai Municipal Engineering Design Institute (Group) CO., LTD, Shanghai, 200092, China
| | - Wei Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Huan Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Weixian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433, China
- Institute for Advanced Study, Tongji University, 1239 Siping Road, Shanghai, 200430, China
| |
Collapse
|
13
|
Primary Colonizing Betaproteobacteriales Play a Key Role in the Growth of Legionella pneumophila in Biofilms on Surfaces Exposed to Drinking Water Treated by Slow Sand Filtration. Appl Environ Microbiol 2018; 84:AEM.01732-18. [PMID: 30291115 DOI: 10.1128/aem.01732-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/28/2018] [Indexed: 02/05/2023] Open
Abstract
Slow sand filtration with extensive pretreatment reduces the microbial growth potential of drinking water to a minimum level at four surface water supplies in The Netherlands. The potential of these slow sand filtrates (SSFs) to promote microbial growth in warm tap water installations was assessed by measuring biofilm formation and growth of Legionella bacteria on glass and chlorinated polyvinylchloride (CPVC) surfaces exposed to SSFs at 37 ± 2°C in a model system for up to six months. The steady-state biofilm concentration ranged from 230 to 3,980 pg ATP cm-2 on glass and 1.4 (±0.3)-times-higher levels on CPVC. These concentrations correlated significantly with the assimilable organic carbon (AOC) concentrations of the warm water (8 to 24 µg acetate-C equivalents [ac-C eq] liter-1), which were raised about 2 times by mixing cold and heated (70°C) SSFs. All biofilms supported growth of Legionella pneumophila with maximum concentrations ranging from 6 × 102 to 1.5 × 105 CFU cm-2 Biofilms after ≤50 days of exposure were predominated by Betaproteobacteriales, mainly Piscinibacter, Caldimonas, Methyloversatilis, and an uncultured Rhodocyclaceae bacterium. These rapidly growing primary colonizers most likely served as prey for the host amoebae of L. pneumophila Alphaproteobacteria, mostly Xanthobacteraceae, e.g., Bradyrhizobium, Pseudorhodoplanes, and other amoeba-resistant bacteria, accounted for 37.5% of the clones retrieved. A conceptual model based on a quadratic relationship between the L. pneumophila colony count and the biofilm concentration under steady-state conditions is used to explain the variations in the Legionella CFU pg-1 ATP ratios in the biofilms.IMPORTANCE Proliferation of L. pneumophila in premise plumbing poses a public health threat. Extended water treatment using physicochemical and biofiltration processes, including slow sand filtration, at four surface water supplies in The Netherlands reduces the microbial growth potential of the treated water to a minimum level, and the distributed drinking water complies with high quality standards. However, heating of the water in warm tap water installations increases the concentration of easily assimilable organic compounds, thereby promoting biofilm formation and growth of L. pneumophila Prevention of biofilm formation in plumbing systems by maintenance of a disinfectant residual during distribution and/or further natural organic matter (NOM) removal is not feasible in the supplies studied. Temperature management in combination with optimized hydraulics and material selection are therefore essential to prevent growth of L. pneumophila in premise plumbing systems. Still, reducing the concentration of biodegradable compounds in drinking water by appropriate water treatment is important for limiting the Legionella growth potential.
Collapse
|
14
|
Abstract
Within the human host, Legionella pneumophila replicates within alveolar macrophages, leading to pneumonia. However, L. pneumophila is an aquatic generalist pathogen that replicates within a wide variety of protist hosts, including amoebozoa, percolozoa, and ciliophora. The intracellular lifestyles of L. pneumophila within the two evolutionarily distant hosts macrophages and protists are remarkably similar. Coevolution with numerous protist hosts has shaped plasticity of the genome of L. pneumophila, which harbors numerous proteins encoded by genes acquired from primitive eukaryotic hosts through interkingdom horizontal gene transfer. The Dot/Icm type IVb translocation system translocates ∼6,000 effectors among Legionella species and >320 effector proteins in L. pneumophila into host cells to modulate a plethora of cellular processes to create proliferative niches. Since many of the effectors have likely evolved to modulate cellular processes of primitive eukaryotic hosts, it is not surprising that most of the effectors do not contribute to intracellular growth within human macrophages. Some of the effectors may modulate highly conserved eukaryotic processes, while others may target protist-specific processes that are absent in mammals. The lack of studies to determine the role of the effectors in adaptation of L. pneumophila to various protists has hampered the progress to determine the function of most of these effectors, which are routinely studied in mouse or human macrophages. Since many protists restrict L. pneumophila, utilization of such hosts can also be instrumental in deciphering the mechanisms of failure of L. pneumophila to overcome restriction of certain protist hosts. Here, we review the interaction of L. pneumophila with its permissive and restrictive protist environmental hosts and outline the accomplishments as well as gaps in our knowledge of L. pneumophila-protist host interaction and L. pneumophila's evolution to become a human pathogen.
Collapse
Affiliation(s)
- Ashley Best
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
15
|
Arroyo AS, López-Escardó D, Kim E, Ruiz-Trillo I, Najle SR. Novel Diversity of Deeply Branching Holomycota and Unicellular Holozoans Revealed by Metabarcoding in Middle Paraná River, Argentina. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00099] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
16
|
Li H, Li S, Tang W, Yang Y, Zhao J, Xia S, Zhang W, Wang H. Influence of secondary water supply systems on microbial community structure and opportunistic pathogen gene markers. WATER RESEARCH 2018; 136:160-168. [PMID: 29501760 DOI: 10.1016/j.watres.2018.02.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Secondary water supply systems (SWSSs) refer to the in-building infrastructures (e.g., water storage tanks) used to supply water pressure beyond the main distribution systems. The purpose of this study was to investigate the influence of SWSSs on microbial community structure and the occurrence of opportunistic pathogens, the latter of which are an emerging public health concern. Higher numbers of bacterial 16S rRNA genes, Legionella and mycobacterial gene markers were found in public building taps served by SWSSs relative to the mains, regardless of the flushing practice (P < 0.05). In residential buildings, genes of L. pneumomhila, Acanthamoeba and Vermamoeba vermiformis were primarily detected in tanks and taps compared to the mains. Long water retention time, warm temperature and loss of disinfectant residuals promoted microbial growth and colonization of potential pathogens in SWSSs. Varied levels of microbial community shifts were found in different types of SWSSs during water transportation from the distribution main to taps, highlighting the critical role of SWSSs in shaping the drinking water microbiota. Overall, the results provided insight to factors that might aid in controlling pathogen proliferation in real-world water systems using SWSSs.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shang Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wei Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yang Yang
- Department of Thoracic Surgery, Tongji University Shanghai Pulmonary Hospital, Shanghai 200433, China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Weixian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
17
|
Abu Khweek A, Amer AO. Factors Mediating Environmental Biofilm Formation by Legionella pneumophila. Front Cell Infect Microbiol 2018. [PMID: 29535972 PMCID: PMC5835138 DOI: 10.3389/fcimb.2018.00038] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Legionella pneumophila (L. pneumophila) is an opportunistic waterborne pathogen and the causative agent for Legionnaires' disease, which is transmitted to humans via inhalation of contaminated water droplets. The bacterium is able to colonize a variety of man-made water systems such as cooling towers, spas, and dental lines and is widely distributed in multiple niches, including several species of protozoa In addition to survival in planktonic phase, L. pneumophila is able to survive and persist within multi-species biofilms that cover surfaces within water systems. Biofilm formation by L. pneumophila is advantageous for the pathogen as it leads to persistence, spread, resistance to treatments and an increase in virulence of this bacterium. Furthermore, Legionellosis outbreaks have been associated with the presence of L. pneumophila in biofilms, even after the extensive chemical and physical treatments. In the microbial consortium-containing L. pneumophila among other organisms, several factors either positively or negatively regulate the presence and persistence of L. pneumophila in this bacterial community. Biofilm-forming L. pneumophila is of a major importance to public health and have impact on the medical and industrial sectors. Indeed, prevention and removal protocols of L. pneumophila as well as diagnosis and hospitalization of patients infected with this bacteria cost governments billions of dollars. Therefore, understanding the biological and environmental factors that contribute to persistence and physiological adaptation in biofilms can be detrimental to eradicate and prevent the transmission of L. pneumophila. In this review, we focus on various factors that contribute to persistence of L. pneumophila within the biofilm consortium, the advantages that the bacteria gain from surviving in biofilms, genes and gene regulation during biofilm formation and finally challenges related to biofilm resistance to biocides and anti-Legionella treatments.
Collapse
Affiliation(s)
- Arwa Abu Khweek
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| | - Amal O Amer
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, College of Medicine, Ohio State University, Columbus, OH, United States
| |
Collapse
|
18
|
Boamah DK, Zhou G, Ensminger AW, O'Connor TJ. From Many Hosts, One Accidental Pathogen: The Diverse Protozoan Hosts of Legionella. Front Cell Infect Microbiol 2017; 7:477. [PMID: 29250488 PMCID: PMC5714891 DOI: 10.3389/fcimb.2017.00477] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/31/2017] [Indexed: 01/03/2023] Open
Abstract
The 1976 outbreak of Legionnaires' disease led to the discovery of the intracellular bacterial pathogen Legionella pneumophila. Given their impact on human health, Legionella species and the mechanisms responsible for their replication within host cells are often studied in alveolar macrophages, the primary human cell type associated with disease. Despite the potential severity of individual cases of disease, Legionella are not spread from person-to-person. Thus, from the pathogen's perspective, interactions with human cells are accidents of time and space—evolutionary dead ends with no impact on Legionella's long-term survival or pathogenic trajectory. To understand Legionella as a pathogen is to understand its interaction with its natural hosts: the polyphyletic protozoa, a group of unicellular eukaryotes with a staggering amount of evolutionary diversity. While much remains to be understood about these enigmatic hosts, we summarize the current state of knowledge concerning Legionella's natural host range, the diversity of Legionella-protozoa interactions, the factors influencing these interactions, the importance of avoiding the generalization of protozoan-bacterial interactions based on a limited number of model hosts and the central role of protozoa to the biology, evolution, and persistence of Legionella in the environment.
Collapse
Affiliation(s)
- David K Boamah
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Guangqi Zhou
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Alexander W Ensminger
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Public Health Ontario, Toronto, ON, Canada
| | - Tamara J O'Connor
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
19
|
Veenendaal HR, Brouwer-Hanzens AJ, van der Kooij D. Incubation of premise plumbing water samples on Buffered Charcoal Yeast Extract agar at elevated temperature and pH selects for Legionella pneumophila. WATER RESEARCH 2017; 123:439-447. [PMID: 28689128 DOI: 10.1016/j.watres.2017.06.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 05/30/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
Worldwide, over 90% of the notified cases of Legionnaires' disease are caused by Legionella pneumophila. However, the standard culture medium for the detection of Legionella in environmental water samples, Buffered Charcoal Yeast Extract (BCYE) agar of pH 6.9 ± 0.4 with or without antimicrobial agents incubated at 36 ± 1 °C, supports the growth of a large diversity of Legionella species. BCYE agar of elevated pH or/and incubation at elevated temperature gave strongly reduced recoveries of most of 26 L. non-pneumophila spp. tested, but not of L. pneumophila. BCYE agar of pH 7.3 ± 0.1, incubated at 40 ± 0.5 °C (BCYE pH 7.3/40 °C) was tested for selective enumeration of L. pneumophila. Of the L. non-pneumophila spp. tested, only L. adelaidensis and L. londiniensis multiplied under these conditions. The colony counts on BCYE pH 7.3/40 °C of a L. pneumophila serogroup 1 strain cultured in tap water did not differ significantly from those on BCYE pH 6.9/36 °C when directly plated and after membrane filtration and showed repeatability's of 13-14%. By using membrane filtration L. pneumophila was detected in 58 (54%) of 107 Legionella-positive water samples from premise plumbing systems under one or both of these culture conditions. The L. pneumophila colony counts (log-transformed) on BCYE pH 7.3/40 °C were strongly related (r2 = 0.87) to those on BCYE pH 6.9/36 °C, but differed significantly (p < 0.05) by a mean of - 0.12 ± 0.30 logs. L. non-pneumophila spp. were detected only on BCYE pH 6.9/36 °C in 49 (46%) of the samples. Hence, BCYE pH 7.3/40 °C can facilitate the enumeration of L. pneumophila and their isolation from premise plumbing systems with culturable L. non-pneumophila spp., some of which, e.g. L. anisa, can be present in high numbers.
Collapse
Affiliation(s)
- Harm R Veenendaal
- KWR Watercycle Research Institute, PO Box 1072, 3430 BB, Nieuwegein, The Netherlands
| | | | - Dick van der Kooij
- KWR Watercycle Research Institute, PO Box 1072, 3430 BB, Nieuwegein, The Netherlands.
| |
Collapse
|
20
|
Prussin AJ, Schwake DO, Marr LC. Ten Questions Concerning the Aerosolization and Transmission of Legionella in the Built Environment. BUILDING AND ENVIRONMENT 2017; 123:684-695. [PMID: 29104349 PMCID: PMC5665586 DOI: 10.1016/j.buildenv.2017.06.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Legionella is a genus of pathogenic Gram-negative bacteria responsible for a serious disease known as legionellosis, which is transmitted via inhalation of this pathogen in aerosol form. There are two forms of legionellosis: Legionnaires' disease, which causes pneumonia-like symptoms, and Pontiac fever, which causes influenza-like symptoms. Legionella can be aerosolized from various water sources in the built environment including showers, faucets, hot tubs/swimming pools, cooling towers, and fountains. Incidence of the disease is higher in the summertime, possibly because of increased use of cooling towers for air conditioning systems and differences in water chemistry when outdoor temperatures are higher. Although there have been decades of research related to Legionella transmission, many knowledge gaps remain. While conventional wisdom suggests that showering is an important source of exposure in buildings, existing measurements do not provide strong support for this idea. There has been limited research on the potential for Legionella transmission through heating, ventilation, and air conditioning (HVAC) systems. Epidemiological data suggest a large proportion of legionellosis cases go unreported, as most people who are infected do not seek medical attention. Additionally, controlled laboratory studies examining water-to-air transfer and source tracking are still needed. Herein, we discuss ten questions that spotlight current knowledge about Legionella transmission in the built environment, engineering controls that might prevent future disease outbreaks, and future research that is needed to advance understanding of transmission and control of legionellosis.
Collapse
Affiliation(s)
- Aaron J. Prussin
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
- Corresponding Author:
| | - David Otto Schwake
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Linsey C. Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
21
|
Buse HY, Ji P, Gomez-Alvarez V, Pruden A, Edwards MA, Ashbolt NJ. Effect of temperature and colonization of Legionella pneumophila and Vermamoeba vermiformis on bacterial community composition of copper drinking water biofilms. Microb Biotechnol 2017; 10:773-788. [PMID: 28097816 PMCID: PMC5481522 DOI: 10.1111/1751-7915.12457] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/04/2016] [Accepted: 10/22/2016] [Indexed: 11/28/2022] Open
Abstract
It is unclear how the water-based pathogen, Legionella pneumophila (Lp), and associated free-living amoeba (FLA) hosts change or are changed by the microbial composition of drinking water (DW) biofilm communities. Thus, this study characterized the bacterial community structure over a 7-month period within mature (> 600-day-old) copper DW biofilms in reactors simulating premise plumbing and assessed the impact of temperature and introduction of Lp and its FLA host, Vermamoeba vermiformis (Vv), co-cultures (LpVv). Sequence and quantitative PCR (qPCR) analyses indicated a correlation between LpVv introduction and increases in Legionella spp. levels at room temperature (RT), while at 37°C, Lp became the dominant Legionella spp. qPCR analysis suggested Vv presence may not be directly associated with Lp biofilm growth at RT and 37°C, but may contribute to or be associated with non-Lp legionellae persistence at RT. Two-way PERMANOVA and PCoA revealed that temperature was a major driver of microbiome diversity. Biofilm community composition also changed over the seven-month period and could be associated with significant shifts in dissolved oxygen, alkalinity and various metals in the influent DW. Hence, temperature, biofilm age, DW quality and transient intrusions/amplification of pathogens and FLA hosts may significantly impact biofilm microbiomes and modulate pathogen levels over extended periods.
Collapse
Affiliation(s)
- Helen Y Buse
- Pegasus Technical Services, Inc c/o US EPA, 26 W Martin Luther King Drive NG-16, Cincinnati, OH, 45268, USA
| | - Pan Ji
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Vicente Gomez-Alvarez
- Pegasus Technical Services, Inc c/o US EPA, 26 W Martin Luther King Drive NG-16, Cincinnati, OH, 45268, USA
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Marc A Edwards
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Nicholas J Ashbolt
- School of Public Health, University of Alberta, Edmonton, AB T6G 2G7, Canada
| |
Collapse
|
22
|
van der Kooij D, Bakker GL, Italiaander R, Veenendaal HR, Wullings BA. Biofilm Composition and Threshold Concentration for Growth of Legionella pneumophila on Surfaces Exposed to Flowing Warm Tap Water without Disinfectant. Appl Environ Microbiol 2017; 83:e02737-16. [PMID: 28062459 PMCID: PMC5311405 DOI: 10.1128/aem.02737-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023] Open
Abstract
Legionella pneumophila in potable water installations poses a potential health risk, but quantitative information about its replication in biofilms in relation to water quality is scarce. Therefore, biofilm formation on the surfaces of glass and chlorinated polyvinyl chloride (CPVC) in contact with tap water at 34 to 39°C was investigated under controlled hydraulic conditions in a model system inoculated with biofilm-grown L. pneumophila The biofilm on glass (average steady-state concentration, 23 ± 9 pg ATP cm-2) exposed to treated aerobic groundwater (0.3 mg C liter-1; 1 μg assimilable organic carbon [AOC] liter-1) did not support growth of the organism, which also disappeared from the biofilm on CPVC (49 ± 9 pg ATP cm-2) after initial growth. L. pneumophila attained a level of 4.3 log CFU cm-2 in the biofilms on glass (1,055 ± 225 pg ATP cm-2) and CPVC (2,755 ± 460 pg ATP cm-2) exposed to treated anaerobic groundwater (7.9 mg C liter-1; 10 μg AOC liter-1). An elevated biofilm concentration and growth of L. pneumophila were also observed with tap water from the laboratory. The Betaproteobacteria Piscinibacter and Methyloversatilis and amoeba-resisting Alphaproteobacteria predominated in the clones and isolates retrieved from the biofilms. In the biofilms, the Legionella colony count correlated significantly with the total cell count (TCC), heterotrophic plate count, ATP concentration, and presence of Vermamoeba vermiformis This amoeba was rarely detected at biofilm concentrations of <100 pg ATP cm-2 A threshold concentration of approximately 50 pg ATP cm-2 (TCC = 1 × 106 to 2 × 106 cells cm-2) was derived for growth of L. pneumophila in biofilms.IMPORTANCELegionella pneumophila is the etiologic agent in more than 10,000 cases of Legionnaires' disease that are reported annually worldwide and in most of the drinking water-associated disease outbreaks reported in the United States. The organism proliferates in biofilms on surfaces exposed to warm water in engineered freshwater installations. An investigation with a test system supplied with different types of warm drinking water without disinfectant under controlled hydraulic conditions showed that treated aerobic groundwater (0.3 mg liter-1 of organic carbon) induced a low biofilm concentration that supported no or very limited growth of L. pneumophila Elevated biofilm concentrations and L. pneumophila colony counts were observed on surfaces exposed to two types of extensively treated groundwater, containing 1.8 and 7.9 mg C liter-1 and complying with the microbial water quality criteria during distribution. Control measures in warm tap water installations are therefore essential for preventing growth of L. pneumophila.
Collapse
Affiliation(s)
| | | | | | | | - Bart A Wullings
- KWR Watercycle Research Institute, Nieuwegein, the Netherlands
| |
Collapse
|
23
|
A six-gene phylogeny provides new insights into choanoflagellate evolution. Mol Phylogenet Evol 2017; 107:166-178. [DOI: 10.1016/j.ympev.2016.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022]
|
24
|
Multiplication of Legionella pneumophila Sequence Types 1, 47, and 62 in Buffered Yeast Extract Broth and Biofilms Exposed to Flowing Tap Water at Temperatures of 38°C to 42°C. Appl Environ Microbiol 2016; 82:6691-6700. [PMID: 27613680 DOI: 10.1128/aem.01107-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022] Open
Abstract
Legionella pneumophila proliferates in freshwater environments at temperatures ranging from 25 to 45°C. To investigate the preference of different sequence types (ST) for a specific temperature range, growth of L. pneumophila serogroup 1 (SG1) ST1 (environmental strains), ST47, and ST62 (disease-associated strains) was measured in buffered yeast extract broth (BYEB) and biofilms grown on plasticized polyvinyl chloride in flowing heated drinking water originating from a groundwater supply. The optimum growth temperatures in BYEB were approximately 37°C (ST1), 39°C (ST47), and 41°C (ST62), with maximum growth temperatures of 42°C (ST1) and 43°C (ST47 and ST62). In the biofilm at 38°C, the ST47 and ST62 strains multiplied equally well compared to growth of the environmental ST1 strain and an indigenous L. pneumophila non-SG1 strain, all attaining a concentration of approximately 107 CFU/cm-2 Raising the temperature to 41°C did not impact these levels within 4 weeks, but the colony counts of all strains tested declined (at a specific decline rate of 0.14 to 0.41 day-1) when the temperature was raised to 42°C. At this temperature, the concentration of Vermamoeba vermiformis in the biofilm, determined with quantitative PCR (qPCR), was about 2 log units lower than the concentration at 38°C. In columns operated at a constant temperature, ranging from 38 to 41°C, none of the tested strains multiplied in the biofilm at 41°C, in which also V. vermiformis was not detected. These observations suggest that strains of ST47 and ST62 did not multiply in the biofilm at a temperature of ≥41°C because of the absence of a thermotolerant host. IMPORTANCE Growth of Legionella pneumophila in tap water installations is a serious public health concern. The organism includes more than 2,100 varieties (sequence types). More than 50% of the reported cases of Legionnaires' disease are caused by a few sequence types which are very rarely detected in the environment. Strains of selected virulent sequence types proliferated in biofilms on surfaces exposed to warm (38°C) tap water to the same level as environmental varieties and multiplied well as pure culture in a nutrient-rich medium at temperatures of 42 and 43°C. However, these organisms did not grow in the biofilms at temperatures of ≥41°C. Typical host amoebae also did not multiply at these temperatures. Apparently, proliferation of thermotolerant host amoebae is needed to enable multiplication of the virulent L. pneumophila strains in the environment at elevated temperatures. The detection of these amoebae in water installations therefore is a scientific challenge with practical implications.
Collapse
|
25
|
Influence of Chlorination and Choice of Materials on Fouling in Cooling Water System under Brackish Seawater Conditions. MATERIALS 2016; 9:ma9060475. [PMID: 28773597 PMCID: PMC5456818 DOI: 10.3390/ma9060475] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/25/2016] [Accepted: 05/31/2016] [Indexed: 02/01/2023]
Abstract
Cooling systems remove heat from components and industrial equipment. Water cooling, employing natural waters, is typically used for cooling large industrial facilities, such as power plants, factories or refineries. Due to moderate temperatures, cooling water cycles are susceptible to biofouling, inorganic fouling and scaling, which may reduce heat transfer and enhance corrosion. Hypochlorite treatment or antifouling coatings are used to prevent biological fouling in these systems. In this research, we examine biofouling and materials’ degradation in a brackish seawater environment using a range of test materials, both uncoated and coated. The fouling and corrosion resistance of titanium alloy (Ti-6Al-4V), super austenitic stainless steel (254SMO) and epoxy-coated carbon steel (Intershield Inerta160) were studied in the absence and presence of hypochlorite. Our results demonstrate that biological fouling is intensive in cooling systems using brackish seawater in sub-arctic areas. The microfouling comprised a vast diversity of bacteria, archaea, fungi, algae and protozoa. Chlorination was effective against biological fouling: up to a 10–1000-fold decrease in bacterial and archaeal numbers was detected. Chlorination also changed the diversity of the biofilm-forming community. Nevertheless, our results also suggest that chlorination enhances cracking of the epoxy coating.
Collapse
|
26
|
Geisen S, Bonkowski M, Zhang J, De Jonckheere JF. Heterogeneity in the genus Allovahlkampfia and the description of the new genus Parafumarolamoeba (Vahlkampfiidae; Heterolobosea). Eur J Protistol 2015; 51:335-49. [DOI: 10.1016/j.ejop.2015.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/27/2015] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
|
27
|
Impact of environmental factors on legionella populations in drinking water. Pathogens 2015; 4:269-82. [PMID: 25996405 PMCID: PMC4493474 DOI: 10.3390/pathogens4020269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 11/16/2022] Open
Abstract
To examine the impact of environmental factors on Legionella in drinking water distribution systems, the growth and survival of Legionella under various conditions was studied. When incubated in tap water at 4 °C, 25 °C, and 32 °C, L. pneumophila survival trends varied amongst the temperatures, with the stable populations maintained for months at 25 °C and 32 °C demonstrating that survival is possible at these temperatures for extended periods in oligotrophic conditions. After inoculating coupons of PVC, copper, brass, and cast iron, L. pneumophila colonized biofilms formed on each within days to a similar extent, with the exception of cast iron, which contained 1-log less Legionella after 90 days. L. pneumophila spiked in a model drinking water distribution system colonized the system within days. Chlorination of the system had a greater effect on biofilm-associated Legionella concentrations, with populations returning to pre-chlorination levels within six weeks. Biofilms sampled from drinking water meters collected from two areas within central Arizona were analyzed via PCR for the presence of Legionella. Occurrence in only one area indicates that environmental differences in water distribution systems may have an impact on the survival of Legionella. These results document the impact of different environmental conditions on the survival of Legionella in water.
Collapse
|
28
|
Sánchez-Busó L, Olmos MP, Camaró ML, Adrián F, Calafat JM, González-Candelas F. Phylogenetic analysis of environmental Legionella pneumophila isolates from an endemic area (Alcoy, Spain). INFECTION GENETICS AND EVOLUTION 2015; 30:45-54. [DOI: 10.1016/j.meegid.2014.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 12/02/2014] [Accepted: 12/06/2014] [Indexed: 12/20/2022]
|
29
|
Diverse protist grazers select for virulence-related traits in Legionella. ISME JOURNAL 2015; 9:1607-18. [PMID: 25575308 DOI: 10.1038/ismej.2014.248] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 11/12/2014] [Accepted: 11/19/2014] [Indexed: 12/19/2022]
Abstract
It is generally accepted that selection for resistance to grazing by protists has contributed to the evolution of Legionella pneumophila as a pathogen. Grazing resistance is becoming more generally recognized as having an important role in the ecology and evolution of bacterial pathogenesis. However, selection for grazing resistance presupposes the existence of protist grazers that provide the selective pressure. To determine whether there are protists that graze on pathogenic Legionella species, we investigated the existence of such organisms in a variety of environmental samples. We isolated and characterized diverse protists that graze on L. pneumophila and determined the effects of adding L. pneumophila on the protist community structures in microcosms made from these environmental samples. Several unrelated organisms were able to graze efficiently on L. pneumophila. The community structures of all samples were markedly altered by the addition of L. pneumophila. Surprisingly, some of the Legionella grazers were closely related to species that are known hosts for L. pneumophila, indicating the presence of unknown specificity determinants for this interaction. These results provide the first direct support for the hypothesis that protist grazers exert selective pressure on Legionella to acquire and retain adaptations that contribute to survival, and that these properties are relevant to the ability of the bacteria to cause disease in people. We also report a novel mechanism of killing of amoebae by one Legionella species that requires an intact Type IV secretion system but does not involve intracellular replication. We refer to this phenomenon as 'food poisoning'.
Collapse
|
30
|
Tyson JY, Vargas P, Cianciotto NP. The novel Legionella pneumophila type II secretion substrate NttC contributes to infection of amoebae Hartmannella vermiformis and Willaertia magna. MICROBIOLOGY-SGM 2014; 160:2732-2744. [PMID: 25253612 DOI: 10.1099/mic.0.082750-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The type II protein secretion (T2S) system of Legionella pneumophila secretes over 25 proteins, including novel proteins that have no similarity to proteins of known function. T2S is also critical for the ability of L. pneumophila to grow within its natural amoebal hosts, including Acanthamoeba castellanii, Hartmannella vermiformis and Naegleria lovaniensis. Thus, T2S has an important role in the natural history of legionnaires' disease. Our previous work demonstrated that the novel T2S substrate NttA promotes intracellular infection of A. castellanii, whereas the secreted RNase SrnA, acyltransferase PlaC, and metalloprotease ProA all promote infection of H. vermiformis and N. lovaniensis. In this study, we determined that another novel T2S substrate that is specific to Legionella, designated NttC, is unique in being required for intracellular infection of H. vermiformis but not for infection of N. lovaniensis or A. castellanii. Expanding our repertoire of amoebal hosts, we determined that Willaertia magna is susceptible to infection by L. pneumophila strains 130b, Philadelphia-1 and Paris. Furthermore, T2S and, more specifically, NttA, NttC and PlaC were required for infection of W. magna. Taken together, these data demonstrate that the T2S system of L. pneumophila is critical for infection of at least four types of aquatic amoebae and that the importance of the individual T2S substrates varies in a host cell-specific fashion. Finally, it is now clear that novel T2S-dependent proteins that are specific to the genus Legionella are particularly important for L. pneumophila infection of key, environmental hosts.
Collapse
Affiliation(s)
- Jessica Y Tyson
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Paloma Vargas
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| |
Collapse
|
31
|
Lu J, Buse HY, Gomez-Alvarez V, Struewing I, Santo Domingo J, Ashbolt NJ. Impact of drinking water conditions and copper materials on downstream biofilm microbial communities and Legionella pneumophila colonization. J Appl Microbiol 2014; 117:905-18. [PMID: 24935752 DOI: 10.1111/jam.12578] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/27/2014] [Accepted: 06/12/2014] [Indexed: 01/08/2023]
Abstract
AIMS This study examined the impact of pipe materials and introduced Legionella pneumophila on downstream Leg. pneumophila colonization and microbial community structures under conditions of low flow and low chlorine residual. METHODS AND RESULTS CDC biofilm(™) reactors containing either unplasticized polyvinylchloride (uPVC) or copper (Cu) coupons were used to develop mature biofilms on Norprene(™) tubing effluent lines to simulate possible in-premise biofilm conditions. The microbial communities were characterized through 16S and 18S rRNA gene clone libraries and Leg. pneumophila colonization was determined via specific qPCR assays. The Cu significantly decreased downstream microbial diversity, approximately halved bacterial and eukaryotic abundance, with some groups only detected in uPVC-reactor tubing biofilms. However, some probable amoeba-resisting bacteria (ARB) like Mycobacterium spp. and Rhodobacteraceae were significantly more abundant in the Cu than uPVC-reactor tubing biofilms. In particular, Leg. pneumophila only persisted (postinoculation) within the Cu-reactor tubing biofilms, and the controlled low chlorine residue and water flow conditions led to a general high abundance of possible free-living protozoa in all tubing biofilms. The higher relative abundance of ARB-like sequences from Cu-coupons vs uPVC may have been promoted by amoebal selection and subsequent ARB protection from Cu inhibitory effects. CONCLUSIONS Copper pipe and low flow conditions had significant impact on downstream biofilm microbial structures (on plastic pipe) and the ability for Leg. pneumophila colonization post an introduction event. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report that compares the effects of copper and uPVC materials on downstream biofilm communities grown on a third (Norprene(™)) surface material. The downstream biofilms contained a high abundance of free-living amoebae and ARB, which may have been driven by a lack of residual disinfectant and periodic stagnant conditions. Given the prevalence of Cu-piping in buildings, there may be increased risk from drinking water exposures to ARB following growth on pipe/fixture biofilms within premise drinking water systems.
Collapse
Affiliation(s)
- J Lu
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | | | | | | | | | | |
Collapse
|
32
|
Delafont V, Brouke A, Bouchon D, Moulin L, Héchard Y. Microbiome of free-living amoebae isolated from drinking water. WATER RESEARCH 2013; 47:6958-6965. [PMID: 24200009 DOI: 10.1016/j.watres.2013.07.047] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/11/2013] [Accepted: 07/22/2013] [Indexed: 06/02/2023]
Abstract
Free-living amoebae (FLA) are protozoa that can be found in water networks where they prey on bacteria within biofilms. Most bacteria are digested rapidly by phagocytosis, however some are able to survive within amoebae and some are even able to multiply, as it is the case for Legionella pneumophila. These resisting bacteria are a potential health problem as they could also resist to macrophage phagocytosis. Several publications already reported intra-amoebal bacteria but the methods of identification did not allow metagenomic analysis and are partly based on co-culture with one selected amoebal strain. The aim of our study was to conduct a rRNA-targeted metagenomic analysis on amoebae and intra-amoebal bacteria found in drinking water network, to provide the first FLA microbiome in environmental strains. Three sites of a water network were sampled during four months. Culturable FLA were isolated and total DNA was prepared, allowing purification of both amoebal and bacterial DNA. Metagenomic studies were then conducted through 18S or 16S amplicons sequencing. Hartmannella was by far the most represented genus of FLA. Regarding intra-amoebal bacteria, 54 genera were identified, among which 21 were newly described intra-amoebal bacteria, underlying the power of our approach. There were high differences in bacterial diversity between the three sites. Several genera were highly represented and/or found at least in two sites, underlying that these bacteria could be able to multiply within FLA. Our method is therefore useful to identify FLA microbiome and could be applied to other networks to have a more comprehensive view of intra-amoebal diversity.
Collapse
Affiliation(s)
- Vincent Delafont
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions (EBI), Poitiers, France; EAU DE PARIS, Direction de la Recherche & Développement et de la Qualité des eaux (DRDQE), Paris, France
| | | | | | | | | |
Collapse
|
33
|
Abdel-Nour M, Duncan C, Low DE, Guyard C. Biofilms: the stronghold of Legionella pneumophila. Int J Mol Sci 2013; 14:21660-75. [PMID: 24185913 PMCID: PMC3856027 DOI: 10.3390/ijms141121660] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/07/2013] [Accepted: 10/14/2013] [Indexed: 11/28/2022] Open
Abstract
Legionellosis is mostly caused by Legionella pneumophila and is defined as a severe respiratory illness with a case fatality rate ranging from 5% to 80%. L. pneumophila is ubiquitous in natural and anthropogenic water systems. L. pneumophila is transmitted by inhalation of contaminated aerosols produced by a variety of devices. While L. pneumophila replicates within environmental protozoa, colonization and persistence in its natural environment are also mediated by biofilm formation and colonization within multispecies microbial communities. There is now evidence that some legionellosis outbreaks are correlated with the presence of biofilms. Thus, preventing biofilm formation appears as one of the strategies to reduce water system contamination. However, we lack information about the chemical and biophysical conditions, as well as the molecular mechanisms that allow the production of biofilms by L. pneumophila. Here, we discuss the molecular basis of biofilm formation by L. pneumophila and the roles of other microbial species in L. pneumophila biofilm colonization. In addition, we discuss the protective roles of biofilms against current L. pneumophila sanitation strategies along with the initial data available on the regulation of L. pneumophila biofilm formation.
Collapse
Affiliation(s)
- Mena Abdel-Nour
- Ontario Agency for Health Protection and Promotion (OAHPP), Toronto, ON M9P 3T1, Canada; E-Mails: (M.A.-N.); (C.D.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Carla Duncan
- Ontario Agency for Health Protection and Promotion (OAHPP), Toronto, ON M9P 3T1, Canada; E-Mails: (M.A.-N.); (C.D.)
| | - Donald E. Low
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Cyril Guyard
- Ontario Agency for Health Protection and Promotion (OAHPP), Toronto, ON M9P 3T1, Canada; E-Mails: (M.A.-N.); (C.D.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-416-880-1339; Fax: +1-416-235-6281
| |
Collapse
|
34
|
Preferential colonization and release of Legionella pneumophila from mature drinking water biofilms grown on copper versus unplasticized polyvinylchloride coupons. Int J Hyg Environ Health 2013; 217:219-25. [PMID: 23706882 DOI: 10.1016/j.ijheh.2013.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/08/2013] [Accepted: 04/22/2013] [Indexed: 11/23/2022]
Abstract
Legionella occurrence in premise drinking water (DW) systems contributes to legionellosis outbreaks, especially in the presence of suitable protozoan hosts. This study examined L. pneumophila behavior within DW biofilms grown on copper (Cu) and unplasticized polyvinylchloride (uPVC) surfaces in the presence of Acanthamoeba polyphaga. One year-old DW biofilms were established within six CDC biofilm reactors: three each containing Cu or uPVC coupons. Biofilms were then inoculated with L. pneumophila (uPVC-Lp and Cu-Lp), or L. pneumophila and A. polyphaga (uPVC-Lp/Ap and Cu-Lp/Ap) and compared to sterile water inoculated controls (uPVC- and Cu-Control) over a 4 month period. L. pneumophila appeared more persistent by qPCR within Cu biofilms in the presence of A. polyphaga compared to uPVC biofilms with or without A. polyphaga, but maintained their cultivability in uPVC biofilms compared to Cu biofilms. Also, persistent shedding of L. pneumophila cells (assayed by qPCR) in the effluent water implied colonization of L. pneumophila within Cu-coupon reactors compared to no detection from uPVC-coupon reactor effluent 14 days after inoculation. Hence, L. pneumophila appeared to colonize Cu surfaces more effectively and may be shed from the biofilms at a greater frequency and duration compared to L. pneumophila colonized uPVC surfaces with host amoebae playing a role in L. pneumophila persistence within Cu biofilms.
Collapse
|
35
|
Molecular survey of the occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and amoeba hosts in two chloraminated drinking water distribution systems. Appl Environ Microbiol 2012; 78:6285-94. [PMID: 22752174 DOI: 10.1128/aem.01492-12] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spread of opportunistic pathogens via public water systems is of growing concern. The purpose of this study was to identify patterns of occurrence among three opportunistic pathogens (Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa) relative to biotic and abiotic factors in two representative chloraminated drinking water distribution systems using culture-independent methods. Generally, a high occurrence of Legionella (≥69.0%) and mycobacteria (100%), lower occurrence of L. pneumophila (≤20%) and M. avium (≤33.3%), and rare detection of Pseudomonas aeruginosa (≤13.3%) were observed in both systems according to quantitative PCR. Also, Hartmanella vermiformis was more prevalent than Acanthamoeba, both of which are known hosts for opportunistic pathogen amplification, the latter itself containing pathogenic members. Three-minute flushing served to distinguish distribution system water from plumbing in buildings (i.e., premise plumbing water) and resulted in reduced numbers of copies of Legionella, mycobacteria, H. vermiformis, and 16S rRNA genes (P < 0.05) while yielding distinct terminal restriction fragment polymorphism (T-RFLP) profiles of 16S rRNA genes. Within certain subgroups of samples, some positive correlations, including correlations of numbers of mycobacteria and total bacteria (16S rRNA genes), H. vermiformis and total bacteria, mycobacteria and H. vermiformis, and Legionella and H. vermiformis, were noted, emphasizing potential microbial ecological relationships. Overall, the results provide insight into factors that may aid in controlling opportunistic pathogen proliferation in real-world water systems.
Collapse
|
36
|
Dallaire-Dufresne S, Paquet VE, Charette SJ. [Dictyostelium discoideum: a model for the study of bacterial virulence]. Can J Microbiol 2012; 57:699-707. [PMID: 21877947 DOI: 10.1139/w11-072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The amoeba Dictyostelium discoideum, a bacterial predator, has emerged as a valuable tool for studying bacterial virulence. All its features make this unicellular eukaryote a versatile model organism. It can be used to study virulence factors of pathogenic bacteria as well as host elements involved in resistance to pathogens. The virulence of more than 20 bacterial species pathogenic for humans or animals has been studied using D. discoideum so far. These bacteria are either extracellular or intracellular pathogens. This review presents an overview of the question, with special emphasis on the reasons why D. discoideum is a suitable host model to study bacterial virulence, as well as on the type of information on host–pathogen relationship this amoeba can provide.
Collapse
Affiliation(s)
- Stéphanie Dallaire-Dufresne
- Institut de biologie intégrative et des systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | | | | |
Collapse
|
37
|
RpkA, a highly conserved GPCR with a lipid kinase domain, has a role in phagocytosis and anti-bacterial defense. PLoS One 2011; 6:e27311. [PMID: 22073313 PMCID: PMC3206951 DOI: 10.1371/journal.pone.0027311] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 10/13/2011] [Indexed: 12/03/2022] Open
Abstract
RpkA (Receptor phosphatidylinositol kinase A) is an unusual seven-helix transmembrane protein of Dictyostelium discoideum with a G protein coupled receptor (GPCR) signature and a C-terminal lipid kinase domain (GPCR-PIPK) predicted as a phosphatidylinositol-4-phosphate 5-kinase. RpkA-homologs are present in all so far sequenced Dictyostelidae as well as in several other lower eukaryotes like the oomycete Phytophthora, and in the Legionella host Acanthamoeba castellani. Here we show by immunofluorescence that RpkA localizes to endosomal membranes and is specifically recruited to phagosomes. RpkA interacts with the phagosomal protein complex V-ATPase as proteins of this complex co-precipitate with RpkA-GFP as well as with the GST-tagged PIPK domain of RpkA. Loss of RpkA leads to a defect in phagocytosis as measured by yeast particle uptake. The uptake of the pathogenic bacterium Legionella pneumophila was however unaltered whereas its intra-cellular replication was significantly enhanced in rpkA-. The difference between wild type and rpkA- was even more prominent when L. hackeliae was used. When we investigated the reason for the enhanced susceptibility for L. pneumophila of rpkA- we could not detect a difference in endosomal pH but rpkA- showed depletion of phosphoinositides (PIP and PIP2) when we compared metabolically labeled phosphoinositides from wild type and rpkA-. Furthermore rpkA- exhibited reduced nitrogen starvation tolerance, an indicator for a reduced autophagy rate. Our results indicate that RpkA is a component of the defense system of D. discoideum as well as other lower eukaryotes.
Collapse
|
38
|
Relationships between free-living protozoa, cultivable Legionella spp., and water quality characteristics in three drinking water supplies in the Caribbean. Appl Environ Microbiol 2011; 77:7321-8. [PMID: 21873489 DOI: 10.1128/aem.05575-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The study whose results are presented here aimed at identifying free-living protozoa (FLP) and conditions favoring the growth of these organisms and cultivable Legionella spp. in drinking water supplies in a tropical region. Treated and distributed water (±30°C) of the water supplies of three Caribbean islands were sampled and investigated with molecular techniques, based on the 18S rRNA gene. The protozoan host Hartmannella vermiformis and cultivable Legionella pneumophila were observed in all three supplies. Operational taxonomic units (OTUs) with the highest similarity to the potential or candidate hosts Acanthamoeba spp., Echinamoeba exundans, E. thermarum, and an Neoparamoeba sp. were detected as well. In total, 59 OTUs of FLP were identified. The estimated protozoan richness did not differ significantly between the three supplies. In supply CA-1, the concentration of H. vermiformis correlated with the concentration of Legionella spp. and clones related to Amoebozoa predominated (82%) in the protozoan community. These observations, the low turbidity (<0.2 nephelometric turbidity units [NTU]), and the varying ATP concentrations (1 to 12 ng liter(-1)) suggest that biofilms promoted protozoan growth in this supply. Ciliophora represented 25% of the protozoan OTUs in supply CA-2 with elevated ATP concentrations (maximum, 55 ng liter(-1)) correlating with turbidity (maximum, 62 NTU) caused by corroding iron pipes. Cercozoan types represented 70% of the protozoan clones in supply CA-3 with ATP concentrations of <1 ng liter(-1) and turbidity of <0.5 NTU in most samples of distributed water. The absence of H. vermiformis in most samples from supply CA-3 suggests that growth of this protozoan is limited at ATP concentrations of <1 ng liter(-1).
Collapse
|