1
|
Su C, Tuan NQ, Li WH, Cheng JH, Jin YY, Hong SK, Lee H, Qader M, Klein L, Shetye G, Pauli GF, Flanzblau SG, Cho SH, Zhao XQ, Suh JW. Enhancing rufomycin production by CRISPR/Cas9-based genome editing and promoter engineering in Streptomyces sp. MJM3502. Synth Syst Biotechnol 2025; 10:421-432. [PMID: 39925944 PMCID: PMC11803874 DOI: 10.1016/j.synbio.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 02/11/2025] Open
Abstract
Streptomyces sp. MJM3502 is a promising producer of rufomycins, which are a class of potent anti-tuberculosis lead compounds. Although the structure, activity, and mechanism of the main rufomycin 4/6 and its analogs have been extensively studied, a significant gap remains in our understanding of the genome sequence and biosynthetic pathway of Streptomyces sp. MJM3502, and its metabolic engineering has not yet been reported. This study established the genetic manipulation platform for the strain. Using CRISPR/Cas9-based technology to in-frame insert the strong kasO∗p promoter upstream of the rufB and rufS genes of the rufomycin BGC, we increased rufomycin 4/6 production by 4.1-fold and 2.8-fold, respectively. Furthermore, designing recombinant strains by inserting the kasO∗p promoter upstream of the biosynthetic genes encoding cytochrome P450 enzymes led to new rufomycin derivatives. These findings provide the basis for enhancing the production of valuable natural compounds in Streptomyces and offer insights into the generation of novel active natural products via synthetic biology and metabolic engineering.
Collapse
Affiliation(s)
- Chun Su
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Gyeonggi-Do, 17058, Republic of Korea
| | - Nguyen-Quang Tuan
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, Gyeonggi-Do, 17058, Republic of Korea
- R&D Center, Manbangbio Co. Ltd, Yongin, Gyeonggi-Do, 17058, Republic of Korea
| | - Wen-Hua Li
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Jin-Hua Cheng
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Gyeonggi-Do, 17058, Republic of Korea
- Microbio Healthcare Co. Ltd, Yongin, Gyeonggi-Do, 17058, Republic of Korea
| | - Ying-Yu Jin
- R&D Center, Manbangbio Co. Ltd, Yongin, Gyeonggi-Do, 17058, Republic of Korea
| | - Soon-Kwang Hong
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, Gyeonggi-Do, 17058, Republic of Korea
| | - Hyun Lee
- Institute for Tuberculosis Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60612, United States
| | - Mallique Qader
- Institute for Tuberculosis Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60612, United States
| | - Larry Klein
- Institute for Tuberculosis Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60612, United States
| | - Gauri Shetye
- Institute for Tuberculosis Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60612, United States
| | - Guido F. Pauli
- Institute for Tuberculosis Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60612, United States
| | - Scott G. Flanzblau
- Institute for Tuberculosis Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60612, United States
| | - Sang-Hyun Cho
- Institute for Tuberculosis Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60612, United States
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Joo-Won Suh
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Gyeonggi-Do, 17058, Republic of Korea
- Microbio Healthcare Co. Ltd, Yongin, Gyeonggi-Do, 17058, Republic of Korea
| |
Collapse
|
2
|
Pereira F, McCauley M, Lev K, Verhey-Henke L, Condren AR, Harte RJ, Galvez J, Sherman DH. Optimized production of concanamycins using a rational metabolic engineering strategy. Metab Eng 2025; 88:63-76. [PMID: 39581342 DOI: 10.1016/j.ymben.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Plecomacrolides, such as concanamycins and bafilomycins, are potent and specific inhibitors of vacuolar-type ATPase. Concanamycins are 18-membered macrolides with promising therapeutic potential against multiple diseases, including viral infection, osteoporosis, and cancer. Due to the complexity of their total synthesis, the production of concanamycins is only achieved through microbial fermentation. However, the low titers of concanamycin A and its analogs in the native producing strains are a significant bottleneck for scale-up, robust structure-activity relationship studies, and drug development. To address this challenge, we designed a library of engineered Streptomyces strains for the overproduction of concanamycin A-C by combining the overexpression of target regulatory genes with the optimization of fermentation media. Integration of two endogenous regulators from the concanamycin biosynthetic gene cluster (cms) and one heterologous regulatory gene from the bafilomycin biosynthetic gene cluster significantly increased production of concanamycin A and its less abundant analog concanamycin B in Streptomyces eitanensis. The highest titers reported to date were observed in the engineered S. eitanensis DHS10676, which produced over 900 mg/L of concanamycin A and 300 mg/L of concanamycin B. Heterologous overexpression of the identified target regulatory genes across a panel of Streptomyces spp. harboring a putative concanamycin biosynthetic gene cluster confirmed its identity, and significantly improved concanamycin A production in all tested strains. Strain engineering, optimization of fermentation, and extraction purification protocols enabled swift access to these structurally complex plecomacrolides for semi-synthetic medicinal chemistry-based approaches. Together, this work established a platform for robust overproduction of concanamycin analogs across species.
Collapse
Affiliation(s)
- Filipa Pereira
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Morgan McCauley
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Katherine Lev
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Alanna R Condren
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ralph J Harte
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jesus Galvez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
He F, Liu X, Wang H, Li X, Wu Y, Zhang D, Liang S. The Transcriptional Regulator DhyR Positively Modulates Daptomycin Biosynthesis in Streptomyces roseosporus. Microb Biotechnol 2025; 18:e70110. [PMID: 40025688 PMCID: PMC11872808 DOI: 10.1111/1751-7915.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 03/04/2025] Open
Abstract
Daptomycin (DAP) is a cyclic lipopeptide antibiotic produced by Streptomyces roseosporus, and its biosynthesis is precisely regulated by a complex regulatory network. Although the biosynthetic pathway of DAP has been elucidated, the regulatory mechanism governing its biosynthesis at the transcriptional level is not yet fully understood. In the present study, a new transcriptional regulator, DhyR, was identified. A deletion mutant of dhyR was constructed using the CRISPR-Cas9 tool to elucidate the biological role of DhyR thanks to functional and transcriptomic analyses. The results demonstrated that DhyR positively regulates DAP biosynthesis in S. roseosporus. The in-frame deletion of the dhyR gene resulted in a significant downregulation of the transcription levels of all structural genes within the DAP biosynthetic gene cluster and a significant decrease in DAP yield. In contrast, overexpression of dhyR enhanced the transcription levels of the DAP biosynthetic gene cluster, leading to a 23% increase in DAP yield. Deletion of dhyR caused significant changes in the expression of multiple genes involved in carbohydrate metabolism, energy metabolism and amino acid metabolic pathways through transcriptome analysis. Especially, deletion of dhyR led to a significant downregulation of transcription levels of three DAP biosynthesis-associated genes, including atrA, depR1 and ssig-05090. In summary, DhyR positively regulates DAP biosynthesis in S. roseosporus by influencing the expression of the DAP gene cluster and modulating precursor flux. It functions as a pleiotropic regulator of primary and secondary metabolism in S. roseosporus.
Collapse
Affiliation(s)
- Fuqiang He
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduSichuanP.R. China
| | - Xinpeng Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduSichuanP.R. China
| | - Haiyi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduSichuanP.R. China
| | - Xu Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduSichuanP.R. China
| | - Yun Wu
- Department of Cell Biology, College of Life ScienceSichuan Normal UniversityChengduSichuanP.R. China
| | - Dan Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduSichuanP.R. China
| | - Shufang Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduSichuanP.R. China
| |
Collapse
|
4
|
Xu X, Huang X, Xu W. Marine actinomycetes-derived angucyclines and angucyclinones with biosynthesis and activity--past 10 years (2014-2023). Eur J Med Chem 2025; 283:117161. [PMID: 39700875 DOI: 10.1016/j.ejmech.2024.117161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/01/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
Actinomycete bacteria derived from marine environments are a good source of natural products with diverse biological activities such as cytotoxicity, antiviral, and antimicrobial actions. This review summarizes 191 angucyclines and angucyclinones derived from marine actinomycetes reported in the literature from 2014 to 2023 and introduced the latest developments in actinomycete-silenced biosynthetic gene cluster activation, including heterologous recombination and in situ activation. The key role of redox post-modifications in the biosynthetic process of atypical angucyclines. This review provides insights into the discovery and biosynthesis of valuable angucyclines and angucyclinones from marine-associated actinomycetes and potential lead compounds for the research and development of new drugs.
Collapse
Affiliation(s)
- Xiao Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China; Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China.
| | - Xiaofei Huang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Wenhua Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China; Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China.
| |
Collapse
|
5
|
Duan Y, Liu Z, Huang X, Xu L, Wang X, Liu H, Xie Z. Mitigating genetic instability caused by the excision activity of the phiC31 integrase in Streptomyces. Appl Environ Microbiol 2025; 91:e0181224. [PMID: 39704534 PMCID: PMC11784100 DOI: 10.1128/aem.01812-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
Over the past three decades, the integrase (Int) from Streptomyces phage phiC31 has become a valuable genome engineering tool across various species. phiC31 Int was thought to mediate unidirectional site-specific integration (attP × attB to attL and attR) in the absence of the phage-encoded recombination directionality factor (RDF). However, we have shown in this study that Int can also catalyze reverse excision (attL × attR to attP and attB) at low frequencies in Streptomyces lividans and Escherichia coli, causing genetic instability in engineered strains. To address this issue, we developed a two-plasmid co-conjugation (TPC) system. This system consists of an attP-containing integration vector and an Int expression suicide plasmid, both carrying oriT to facilitate efficient conjugation transfer from E. coli to Streptomyces. Using the TPC system, genetically stable integrants free of Int can be generated quickly and easily. The indigoidine-producing strains generated by the TPC system exhibited higher genetic stability and production efficiency compared to the indigoidine-producing strain generated by the conventional integration system, further demonstrating the utility of the TPC system in the field of biotechnology. We anticipate that the strategies presented here will be widely adopted for stable genetic engineering of industrial microbes using phage integrase-based integration systems.IMPORTANCELarge serine recombinases (LSRs), including the bacteriophage phiC31 integrase, were previously thought to allow only unidirectional site-specific integration (attP × attB to attL and attR). Our study is the first to show that the phiC31 integrase can also catalyze a low-efficiency reverse excision reaction in Streptomyces and E. coli without the involvement of the phage-encoded recombination directionality factor (RDF). The genetic instability caused by the low in vivo excisionase activity of the phiC31 integrase is a major challenge for biotechnological applications. Our study addresses this issue by developing a two-plasmid co-conjugation (TPC) system that facilitates the construction of Int-deficient genomic engineering strains. The Int-deficient integrants produced by this TPC system exhibit strong genetic stability for introduced genes and maintain stable production traits even in the absence of selection pressure, making them highly valuable for industrial applications.
Collapse
Affiliation(s)
- Yadan Duan
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhangliang Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaofang Huang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Lu Xu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xianxue Wang
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, Tianjin, China
| | - Zhoujie Xie
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
6
|
Kim DG, Gu B, Cha Y, Ha J, Lee Y, Kim G, Cho BK, Oh MK. Engineered CRISPR-Cas9 for Streptomyces sp. genome editing to improve specialized metabolite production. Nat Commun 2025; 16:874. [PMID: 39833194 PMCID: PMC11747077 DOI: 10.1038/s41467-025-56278-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
The CRISPR-Cas9 system has frequently been used for genome editing in Streptomyces; however, cytotoxicity, caused by off-target cleavage, limits its application. In this study, we implement innovative modification to Cas9, strategically addressing challenges encountered during gene manipulation using Cas9 within strains possessing high GC content genome. The Cas9-BD, a modified Cas9 with the addition of polyaspartate to its N- and C-termini, is developed with decreased off-target binding and cytotoxicity compared with wild-type Cas9. Cas9-BD and similarly modified dCas9-BD have been successfully employed for simultaneous biosynthetic gene cluster (BGC) refactoring, multiple BGC deletions, or multiplexed gene expression modulations in Streptomyces. We also demonstrate improved secondary metabolite production using multiplexed genome editing with multiple single guide RNA libraries in several Streptomyces strains. Cas9-BD is also used to capture large BGCs using a developed in vivo cloning method. The modified CRISPR-Cas9 system is successfully applied to many Streptomyces sp., providing versatile and efficient genome editing tools for strain engineering of actinomycetes with high GC content genome.
Collapse
Affiliation(s)
- Duck Gyun Kim
- Department of Chemical & Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Boncheol Gu
- Department of Chemical & Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yujin Cha
- Department of Chemical & Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jeonghan Ha
- Department of Chemical & Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Gahyeon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Min-Kyu Oh
- Department of Chemical & Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
7
|
Liu Y, Song C, Cui Q, Sun H, Jiang C, Guo R, He R, Li Z, Luan J, Wang H. Improving polyketide biosynthesis by rescuing the translation of truncated mRNAs into functional polyketide synthase subunits. Nat Commun 2025; 16:774. [PMID: 39824802 PMCID: PMC11742023 DOI: 10.1038/s41467-025-55973-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025] Open
Abstract
Modular polyketide synthases (mPKSs) are multidomain enzymes in bacteria that synthesize a variety of pharmaceutically important compounds. mPKS genes are usually longer than 10 kb and organized in operons. To understand the transcriptional and translational characteristics of these large genes, here we split the 13-kb busA gene, encoding a 456-kDa three-module PKS for butenyl-spinosyn biosynthesis, into three smaller separately translated genes encoding one PKS module in an operon. Expression of the native and split busA genes in Streptomyces albus reveals that the majority ( >93%) of PKS mRNAs are truncated, resulting in a greater abundance of and a higher synthesis rate for the proteins encoded by genes closer to the operon promoter. Splitting the large busA gene rescues translation of truncated mRNAs into functional PKS subunits, and increases the biosynthetic efficiency of butenyl-spinosyn PKS by 13-fold. The truncated mRNA translation rescue strategy will facilitate engineering of multi-domain proteins to enhance their functions.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Chaoyi Song
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Qingwen Cui
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Hongluan Sun
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Chanjuan Jiang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Ruofei Guo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Ruoting He
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Zhen Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Ji Luan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
8
|
Li X, Pan C, Wang H, Shen Y, Li Y, Du L. Heterologous Production of Phenazines in the Biocontrol Agent Lysobacter enzymogenes C3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1345-1355. [PMID: 39743518 DOI: 10.1021/acs.jafc.4c09518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Lysobacter enzymogenes, an environmental bacterium, holds promise as a biocontrol agent due to its ability to produce bioactive compounds effective against plant pathogens, such as fungi, oomycetes, and Gram-positive bacteria. However, it lacks activity against Gram-negative bacteria. To address this, we applied new genetic tools to manipulate the phenazine biosynthetic gene cluster (LaPhz) from L. antibioticus, converting L. enzymogenes to a robust producer of phenazine antibiotics. Through transcriptomics, we identified potent promoters and constructed the first ΦC31-mediated site-specific recombination system for Lysobacter. Engineered strains C3-cophz and C3-phz retained the ability to produce antifungal/antioomycete and anti-Gram-positive compounds while also synthesizing the well-known phenazine antibiotics such as phenazine dicarboxylic acid and phenazine carboxylic acid, along with new derivatives 1,6-dimethoxyphenazine and 1-hydroxy-6-methoxyphenazine-N10-oxide. These strains demonstrated potent activity against Gram-negative bacteria, showing promise for the development of versatile biopesticides. The new tools will facilitate the exploration of silent biosynthetic gene clusters in Lysobacter genomes.
Collapse
Affiliation(s)
- Xue Li
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chen Pan
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
9
|
Glöckle A, Schuler S, Einsiedler M, Gulder TAM. A plug-and-play system for polycyclic tetramate macrolactam production and functionalization. Microb Cell Fact 2025; 24:13. [PMID: 39794810 PMCID: PMC11724479 DOI: 10.1186/s12934-024-02630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND The biosynthesis of the natural product family of the polycyclic tetramate macrolactams (PoTeMs) employs an uncommon iterative polyketide synthase/non-ribosomal peptide synthetase (iPKS/NRPS). This machinery produces a universal PoTeM biosynthetic precursor that contains a tetramic acid moiety connected to two unsaturated polyene side chains. The enormous structural and hence functional diversity of PoTeMs is enabled by pathway-specific tailoring enzymes, particularly cyclization-catalyzing oxidases that process the polyene chains to form distinct ring systems, and further modifying enzymes. RESULTS Ikarugamycin is the first discovered PoTeM and is formed by the three enzymes IkaABC. Utilizing the iPKS/NRPS IkaA, we established a genetic plug-and-play system by screening eight different strong promoters downstream of ikaA to facilitate high-level heterologous expression of PoTeMs in different Streptomyces host systems. Furthermore, we applied the system on three different PoTeM modifying genes (ptmD, ikaD, and cftA), showing the general utility of this approach to study PoTeM post-PKS/NRPS processing of diverse tailoring enzymes. CONCLUSION By employing our plug-and-play system for PoTeMs, we reconstructed the ikarugamycin biosynthesis and generated five derivatives of ikarugamycin. This platform will generally facilitate the investigation of new PoTeM biosynthetic cyclization and tailoring reactions in the future.
Collapse
Affiliation(s)
- Anna Glöckle
- Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Sebastian Schuler
- Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Manuel Einsiedler
- Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
- Department of Natural Product Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University, PharmaScienceHub (PSH), Campus E8.1, 66123, Saarbrücken, Germany
| | - Tobias A M Gulder
- Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany.
- Department of Natural Product Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University, PharmaScienceHub (PSH), Campus E8.1, 66123, Saarbrücken, Germany.
| |
Collapse
|
10
|
Krysenko S. Current Approaches for Genetic Manipulation of Streptomyces spp.-Key Bacteria for Biotechnology and Environment. BIOTECH 2025; 14:3. [PMID: 39846552 PMCID: PMC11755657 DOI: 10.3390/biotech14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025] Open
Abstract
Organisms from the genus Streptomyces feature actinobacteria with complex developmental cycles and a great ability to produce a variety of natural products. These soil bacteria produce more than 2/3 of antibiotics used in medicine, and a large variety of bioactive compounds for industrial, medical and agricultural use. Although Streptomyces spp. have been studied for decades, the engineering of these bacteria remains challenging, and the available genetic tools are rather limited. Furthermore, most biosynthetic gene clusters in these bacteria are silent and require strategies to activate them and exploit their production potential. In order to explore, understand and manipulate the capabilities of Streptomyces spp. as a key bacterial for biotechnology, synthetic biology strategies emerged as a valuable component of Streptomyces research. Recent advancements in strategies for genetic manipulation of Streptomyces involving proposals of a large variety of synthetic components for the genetic toolbox, as well as new approaches for genome mining, assembly of genetic constructs and their delivery into the cell, allowed facilitation of the turnaround time of strain engineering and efficient production of new natural products at an industrial scale, but still have strain- and design-dependent limitations. A new perspective offered recently by technical advances in DNA sequencing, analysis and editing proposed strategies to overcome strain- and construct-specific difficulties in the engineering of Streptomyces. In this review, challenges and recent developments of approaches for Streptomyces engineering are discussed, an overview of novel synthetic biology strategies is provided and examples of successful application of new technologies in molecular genetic engineering of Streptomyces are highlighted.
Collapse
Affiliation(s)
- Sergii Krysenko
- Valent BioSciences, Biorational Research Center, 1910 Innovation Way, Suite 100, Libertyville, IL 60048, USA
| |
Collapse
|
11
|
Yu G, Duan Q, Cui T, Jiang C, Li X, Li Y, Fu J, Zhang Y, Wang H, Luan J. Development of a bacterial gene transcription activating strategy based on transcriptional activator positive feedback. J Adv Res 2024; 66:155-164. [PMID: 38123018 PMCID: PMC11674765 DOI: 10.1016/j.jare.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/26/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
INTRODUCTION Transcription of biological nitrogen fixation (nif) genes is activated by the NifA protein which recognizes specific activating sequences upstream of σ54-dependent nif promoters. The large quantities of nitrogenase which can make up 20% of the total proteins in the cell indicates high transcription activating efficiency of NifA and high transcription level of nifHDK nitrogenase genes. OBJECTIVES Development of an efficient gene transcription activating strategy in bacteria based on positive transcription regulatory proteins and their regulating DNA sequences. METHODS We designed a highly efficient gene transcription activating strategy in which the nifA gene was placed directly downstream of its regulating sequences. The NifA protein binds its regulating sequences and stimulates transcription of itself and downstream genes. Overexpressed NifA causes transcription activation by positive reinforcement. RESULTS When this gene transcription activating strategy was used to overexpress NifA in Pseudomonas stutzeri DSM4166 containing the nif gene cluster, the nitrogenase activity was increased by 368 folds which was 16 times higher than that obtained by nifA driven by the strongest endogenous constitutive promoter. When this strategy was used to activate transcription of exogenous biosynthetic genes for the plant auxin indole-3-acetic acid and the antitumor alkaloid pigment prodigiosin in DSM4166, both of them resulted in better performance than the strongest endogenous constitutive promoter and the highest reported productions in heterologous hosts to date. Finally, we demonstrated the universality of this strategy using the positive transcriptional regulator of the psp operon, PspF, in E. coli and the pathway-specific positive transcription regulator of the polyene antibiotic salinomycin biosynthesis, SlnR, in Streptomyces albus. CONCLUSION Many positive transcription regulatory proteins and their regulating DNA sequences have been identified in bacteria. The gene transcription activating strategy developed in this study will have broad applications in molecular biology and biotechnology.
Collapse
Affiliation(s)
- Guangle Yu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Qiuyue Duan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Tianqi Cui
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Chanjuan Jiang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Xiaochen Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Yutong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China.
| | - Ji Luan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China.
| |
Collapse
|
12
|
Dong Z, Li L, Du G, Zhang Y, Wang X, Li S, Xiang W. A previously unidentified sugar transporter for engineering of high-yield Streptomyces. Appl Microbiol Biotechnol 2024; 108:72. [PMID: 38194147 DOI: 10.1007/s00253-023-12964-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 01/10/2024]
Abstract
Sugar transporters have significant contributions to regulate metabolic flux towards products and they are general potential targets for engineering of high-yield microbial cell factories. Streptomyces, well-known producers of natural product pharmaceuticals, contain an abundance of sugar transporters, while few of them are well characterized and applied. Here, we report a previously unidentified ATP-binding cassette (ABC) sugar transporter TP6568 found within a Streptomyces avermitilis transposon library, along with its key regulator GM006564. Subsequent in silico molecular docking and genetic experiments demonstrated that TP6568 possessed a broad substrate specificity. It could not only promote uptake of diverse monosaccharides and disaccharides, but also enhance the utilization of industrial carbon sources such as starch, sucrose, and dextrin. Constitutive overexpression of TP6568 resulted in decrease of residual total sugar by 36.16%, 39.04%, 38.40%, and 30.21% in engineered S. avermitilis S0, Streptomyces caniferus NEAU6, Streptomyces bingchenggensis BC-101-4, and Streptomyces roseosporus NRRL 11379 than their individual parent strain, respectively. Production of avermectin B1a, guvermectin, and milbemycin A3/A4 increased by 75.61%, 56.89%, and 41.13%, respectively. We then overexpressed TP6568 in combination with the regulator GM006564 in a high-yield strain S. avermitilis S45, and further fine-tuning of their overexpression levels boosted production of avermectin B1a by 50.97% to 7.02 g/L in the engineering strain. Our work demonstrates that TP6568 as a promising sugar transporter may have broad applications in construction of high-yield Streptomyces microbial cell factories for desirable natural product pharmaceuticals. KEY POINTS: • TP6568 from Streptomyces avermitilis was identified as a sugar transporter • TP6568 enhanced utilization of diverse industrially used sugars in Streptomyces • TP6568 is a useful transporter to construct high-yield Streptomyces cell factories.
Collapse
Affiliation(s)
- Zhuoxu Dong
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lei Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guozhong Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
13
|
de la Fuente Tagarro C, Martín-González D, De Lucas A, Bordel S, Santos-Beneit F. Current Knowledge on CRISPR Strategies Against Antimicrobial-Resistant Bacteria. Antibiotics (Basel) 2024; 13:1141. [PMID: 39766530 PMCID: PMC11672446 DOI: 10.3390/antibiotics13121141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
CRISPR/Cas systems have emerged as valuable tools to approach the problem of antimicrobial resistance by either sensitizing or lysing resistant bacteria or by aiding in antibiotic development, with successful applications across diverse organisms, including bacteria and fungi. CRISPR/Cas systems can target plasmids or the bacterial chromosome of AMR-bacteria, and it is especially necessary to have an efficient entry into the target cells, which can be achieved through nanoparticles or bacteriophages. Regarding antibiotic development and production, though the use of CRISPR/Cas in this field is still modest, there is an untapped reservoir of bacterial and fungal natural products, with over 95% yet to be characterized. In Streptomyces, a key antibiotic-producing bacterial genus, CRISPR/Cas has been successfully used to activate silent biosynthetic gene clusters, leading to the discovery of new antibiotics. CRISPR/Cas is also applicable to non-model bacteria and different species of fungi, making it a versatile tool for natural products discovery. Moreover, CRISPR/Cas-based studies offer insights into metabolic regulation and biosynthetic pathways in both bacteria and fungi, highlighting its utility in understanding genetic regulation and improving industrial strains. In this work, we review ongoing innovations on ways to treat antimicrobial resistances and on antibiotic discovery using CRISPR/Cas platforms, highlighting the role of bacteria and fungi in these processes.
Collapse
Affiliation(s)
- Carlos de la Fuente Tagarro
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain; (C.d.l.F.T.); (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain
| | - Diego Martín-González
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain; (C.d.l.F.T.); (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain
| | - Andrea De Lucas
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain; (C.d.l.F.T.); (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain
| | - Sergio Bordel
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain; (C.d.l.F.T.); (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain
| | - Fernando Santos-Beneit
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain; (C.d.l.F.T.); (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain
| |
Collapse
|
14
|
Sen BC, Mavi PS, Irazoki O, Datta S, Kaiser S, Cava F, Flärdh K. A dispensable SepIVA orthologue in Streptomyces venezuelae is associated with polar growth and not cell division. BMC Microbiol 2024; 24:481. [PMID: 39558276 PMCID: PMC11571769 DOI: 10.1186/s12866-024-03625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND SepIVA has been reported to be an essential septation factor in Mycolicibacterium smegmatis and Mycobacterium tuberculosis. It is a coiled-coil protein with similarity to DivIVA, a protein necessary for polar growth in members of the phylum Actinomycetota. Orthologues of SepIVA are broadly distributed among actinomycetes, including in Streptomyces spp. RESULTS To clarify the role of SepIVA and its potential involvement in cell division in streptomycetes, we generated sepIVA deletion mutants in Streptomyces venezuelae and found that sepIVA is dispensable for growth, cell division and sporulation. Further, mNeonGreen-SepIVA fusion protein did not localize at division septa, and we found no evidence of involvement of SepIVA in cell division. Instead, mNeonGreen-SepIVA was accumulated at the tips of growing vegetative hyphae in ways reminiscent of the apical localization of polarisome components like DivIVA. Bacterial two-hybrid system analyses revealed an interaction between SepIVA and DivIVA. The results indicate that SepIVA is associated with polar growth. However, no phenotypic effects of sepIVA deletion could be detected, and no evidence was observed of redundancy with the other DivIVA-like coiled-coil proteins Scy and FilP that are also associated with apical growth in streptomycetes. CONCLUSIONS We conclude that S. venezuelae SepIVA, in contrast to the situation in mycobacteria, is dispensable for growth and viability. The results suggest that it is associated with polar growth rather than septum formation.
Collapse
Affiliation(s)
- Beer Chakra Sen
- Department of Biology, Lund University, Kontaktvägen 13, Lund, 223 62, Sweden
| | | | - Oihane Irazoki
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Susmita Datta
- Department of Biology, Lund University, Kontaktvägen 13, Lund, 223 62, Sweden
| | - Sebastian Kaiser
- Department of Biology, Lund University, Kontaktvägen 13, Lund, 223 62, Sweden
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Klas Flärdh
- Department of Biology, Lund University, Kontaktvägen 13, Lund, 223 62, Sweden.
| |
Collapse
|
15
|
Li X, Sang Z, Zhao X, Wen Y. Metabolic engineering of Streptomyces roseosporus for increased production of clinically important antibiotic daptomycin. Microb Biotechnol 2024; 17:e70038. [PMID: 39487765 PMCID: PMC11530997 DOI: 10.1111/1751-7915.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024] Open
Abstract
Daptomycin (DAP), a novel cyclic lipopeptide antibiotic produced by Streptomyces roseosporus, is clinically important for treatment of infections caused by multidrug-resistant Gram-positive pathogens, but the low yield hampers its large-scale industrial production. Here, we describe a combination metabolic engineering strategy for constructing a DAP high-yielding strain. Initially, we enhanced aspartate (Asp) precursor supply in S. roseosporus wild-type (WT) strain by separately inhibiting Asp degradation and competitive pathway genes using CRISPRi and overexpressing Asp synthetic pathway genes using strong promoter kasOp*. The resulting strains all showed increased DAP titre. Combined inhibition of acsA4, pta, pyrB, and pyrC increased DAP titre to 167.4 μg/mL (73.5% higher than WT value). Co-overexpression of aspC, gdhA, ppc, and ecaA led to DAP titre 168 μg/mL (75.7% higher than WT value). Concurrently, we constructed a chassis strain favourable for DAP production by abolishing by-product production (i.e., deleting a 21.1 kb region of the red pigment biosynthetic gene cluster (BGC)) and engineering the DAP BGC (i.e., replacing its native dptEp with kasOp*). Titre for the resulting chassis strain reached 185.8 μg/mL. Application of our Asp precursor supply strategies to the chassis strain further increased DAP titre to 302 μg/mL (2.1-fold higher than WT value). Subsequently, we cloned the engineered DAP BGC and duplicated it in the chassis strain, leading to DAP titre 274.6 μg/mL. The above strategies, in combination, resulted in maximal DAP titre 350.7 μg/mL (2.6-fold higher than WT value), representing the highest reported DAP titre in shake-flask fermentation. These findings provide an efficient combination strategy for increasing DAP production and can also be readily applied in the overproduction of other Asp-related antibiotics.
Collapse
Affiliation(s)
- Xingwang Li
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Ziwei Sang
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xuejin Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Ying Wen
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
16
|
Noya R, Murakoshi K, Fukuda M, Yushina T, Kitamura K, Kobayashi M, Takano H. Light inducible gene expression system for Streptomyces. Sci Rep 2024; 14:25852. [PMID: 39468183 PMCID: PMC11519972 DOI: 10.1038/s41598-024-76860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
The LitR/CarH family comprises adenosyl B12-based photosensory transcriptional regulators that control light-inducible carotenoid production in nonphototrophic bacteria. In this study, we established a blue-green light-inducible hyperexpression system using LitR and its partner ECF-type sigma factor LitS in streptomycin-producing Streptomyces griseus NBRC 13350. The constructed multiple-copy number plasmid, pLit19, carried five genetic elements: pIJ101rep, the thiostrepton resistance gene, litR, litS, and σLitS-recognized light-inducible crtE promoter. Streptomyces griseus transformants harboring pLit19 exhibited a light-dependent hyper-production of intracellular reporter enzymes including catechol-2,3-dioxygenase and β-glucuronidase, extracellular secreted enzymes including laccase and transglutaminase, and secondary metabolites including melanin, flaviolin, and indigoidine. Cephamycin-producing Streptomyces sp. NBRC 13304, carrying an entire actinorhodin gene cluster, exhibited light-dependent actinorhodin production after the introduction of the pLit19 shuttle-type plasmid with the pathway-specific activator actII-ORF4. Insertion of sti fragment derived from Streptomyces phaeochromogenes pJV1 plasmid into pLit19 increased its light sensitivity, allowing gene expression under weak light irradiation. The two constructed Escherichia coli-Streptomyces shuttle-type pLit19 plasmids were found to have abilities similar to those of pLit19. We successfully established an optogenetically controlled hyperproduction system for S. griseus NBRC 13350 and Streptomyces sp. NBRC 13304.
Collapse
Affiliation(s)
- Ryuta Noya
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, 252-0880, Japan
| | - Kyohei Murakoshi
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, 252-0880, Japan
| | - Madoka Fukuda
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, 252-0880, Japan
| | - Tetsuya Yushina
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, 252-0880, Japan
| | - Kaichi Kitamura
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, 252-0880, Japan
| | - Manami Kobayashi
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, 252-0880, Japan
| | - Hideaki Takano
- Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, 252-0880, Japan.
| |
Collapse
|
17
|
Massicard JM, Noel D, Calderari A, Le Jeune A, Pauthenier C, Weissman KJ. Modular Cloning Tools for Streptomyces spp. and Application to the De Novo Biosynthesis of Flavokermesic Acid. ACS Synth Biol 2024; 13:3354-3365. [PMID: 39307986 DOI: 10.1021/acssynbio.4c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The filamentous Streptomyces are among the most prolific producers of bioactive natural products and are thus attractive chassis for the heterologous expression of native and designed biosynthetic pathways. Although suitable Streptomyces hosts exist, including genetically engineered cluster-free mutants, the approach is currently limited by the relative paucity of synthetic biology tools facilitating the de novo assembly of multicomponent gene clusters. Here, we report a modular system (MoClo) for Streptomyces including a set of adapted vectors and genetic elements, which allow for the construction of complete genetic circuits. Critical functional validation of each of the elements was obtained using the previously reported β-glucuronidase (GusA) reporter system. Furthermore, we provide proof-of-principle for the toolbox inS. albus, demonstrating the efficient assembly of a biosynthetic pathway to flavokermesic acid (FK), an advanced precursor of the commercially valuable carminic acid.
Collapse
Affiliation(s)
| | - Delphine Noel
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | - André Le Jeune
- Abolis Biotechnologies, 5 Rue Henri Auguste Desbruères Bâtiment 6, 91030 Évry, France
| | - Cyrille Pauthenier
- Abolis Biotechnologies, 5 Rue Henri Auguste Desbruères Bâtiment 6, 91030 Évry, France
| | | |
Collapse
|
18
|
Yang T, Chen Y, Luo X, Keasling JD, Fan K, Pan G. A Simple and Effective Strategy for the Development of Robust Promoter-Centric Gene Expression Tools. ACS Synth Biol 2024; 13:2780-2790. [PMID: 39120429 DOI: 10.1021/acssynbio.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Promoter-centric genetic tools play a crucial role in controlling gene expression for various applications, such as strain engineering and synthetic biology studies. Hence, a critical need persists for the development of robust gene expression tools. Streptomyces are well-known prolific producers of natural products and exceptional surrogate hosts for the production of high-value chemical compounds and enzymes. In this study, we reported a straightforward and effective strategy for the creation of potent gene expression tools. This was primarily achieved by introducing an additional -35-like motif upstream of the original -35 region of the promoter, coupled with the integration of a palindromic cis-element into the 5'-UTR region. This approach has generated a collection of robust constitutive and inducible gene expression tools tailored for Streptomyces. Of particular note, the fully activated oxytetracycline-inducible gene expression system containing an engineered kasOp* promoter (OK) exhibited nearly an order of magnitude greater activity compared to the well-established high-strength promoter kasOp* under the tested conditions, establishing itself as a powerful gene expression system for Streptomyces. This strategy is expected to be applicable in modifying various other promoters to acquire robust gene expression tools, as evidenced by the enhancement observed in the other two promoters, PL and P21 in this study. Moreover, the effectiveness of these tools has been demonstrated through the augmented production of transglutaminase and daptomycin. The gene expression tools established in this study, alongside those anticipated in forthcoming research, are positioned to markedly advance pathway engineering and synthetic biology investigations in Streptomyces and other microbial strains.
Collapse
Affiliation(s)
- Tongjian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaozhou Luo
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jay D Keasling
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering & Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohui Pan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Javorova R, Rezuchova B, Feckova L, Novakova R, Csolleiova D, Kopacova M, Patoprsty V, Opaterny F, Sevcikova B, Kormanec J. A new synthetic biology system for investigating the biosynthesis of antibiotics and other secondary metabolites in streptomycetes. J Biotechnol 2024; 392:128-138. [PMID: 39004405 DOI: 10.1016/j.jbiotec.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
We have created a novel synthetic biology expression system allowing easy refactoring of biosynthetic gene clusters (BGCs) as monocistronic transcriptional units. The system is based on a set of plasmids containing a strong kasOp* promoter, RBS and terminators. It allows the cloning of biosynthetic genes into transcriptional units kasOp*-gene(s)-terminator flanked by several rare restriction cloning sites that can be sequentially combined into the artificial BGC in three compatible Streptomyces integration vectors. They allow a simultaneous integration of these BGCs at three different attB sites in the Streptomyces chromosome. The system was validated with biosynthetic genes from two known BGCs for aromatic polyketides landomycin and mithramycin.
Collapse
Affiliation(s)
- Rachel Javorova
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava 845 51, Slovak Republic.
| | - Bronislava Rezuchova
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava 845 51, Slovak Republic.
| | - Lubomira Feckova
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava 845 51, Slovak Republic.
| | - Renata Novakova
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava 845 51, Slovak Republic.
| | - Dominika Csolleiova
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava 845 51, Slovak Republic.
| | - Maria Kopacova
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava 845 38, Slovak Republic.
| | - Vladimir Patoprsty
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava 845 38, Slovak Republic.
| | - Filip Opaterny
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava 845 51, Slovak Republic.
| | - Beatrica Sevcikova
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava 845 51, Slovak Republic.
| | - Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava 845 51, Slovak Republic.
| |
Collapse
|
20
|
Jin S, Chen H, Zhang J, Lin Z, Qu X, Jia X, Lei C. Analyzing and engineering of the biosynthetic pathway of mollemycin A for enhancing its production. Synth Syst Biotechnol 2024; 9:445-452. [PMID: 38606205 PMCID: PMC11007384 DOI: 10.1016/j.synbio.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Mollemycin A (MOMA) is a unique glyco-hexadepsipeptide-polyketide that was isolated from a Streptomyces sp. derived from the Australian marine environment. MOMA exhibits remarkable inhibitory activity against both drug-sensitive and multidrug-resistant malaria parasites. Optimizing MOMA through structural modifications or product enhancements is necessary for the development of effective analogues. However, modifying MOMA using chemical approaches is challenging, and the production titer of MOMA in the wild-type strain is low. This study identified and characterized the biosynthetic gene cluster of MOMA for the first time, proposed its complex biosynthetic pathway, and achieved an effective two-pronged enhancement of MOMA production. The fermentation medium was optimized to increase the yield of MOMA from 0.9 mg L-1 to 1.3 mg L-1, a 44% boost. Additionally, a synergistic mutant strain was developed by deleting the momB3 gene and overexpressing momB2, resulting in a 2.6-fold increase from 1.3 mg L-1 to 3.4 mg L-1. These findings pave the way for investigating the biosynthetic mechanism of MOMA, creating opportunities to produce a wide range of MOMA analogues, and developing an efficient strain for the sustainable and economical production of MOMA and its analogues.
Collapse
Affiliation(s)
- Shixue Jin
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Huixue Chen
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jun Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinying Jia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
- Department of Biochemistry, National University of Singapore, 14 Medical Dr, Singapore, 117599
| | - Chun Lei
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
21
|
Tang H, Wei W, Wu J, Cui X, Wang W, Qian T, Wo J, Ye BC. Engineering Streptomyces albus B4 for Enhanced Production of ( R)-Mellein: A High-Titer Heterologous Biosynthesis Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17499-17509. [PMID: 39045837 DOI: 10.1021/acs.jafc.4c02463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The natural compound (R)-(-)-mellein exhibits antiseptic and fungicidal activities. We investigated its biosynthesis using the polyketide synthase encoded by SACE_5532 (pks8) from Saccharopolyspora erythraea heterologously expressed in Streptomyces albus B4, a chassis chosen for its fast growth, genetic manipulability, and ample large short-chain acyl-CoA precursor supply. High-level heterologous (R)-(-)-mellein yield was achieved by pks8 overexpression and duplication. The precursor supply pathways were strengthened by overexpression of SACE_0028 (encoding acetyl-CoA carboxylase) and four genes involved in β-oxidation (fadD, fadE, fadB, and fadA). Cell growth inhibition by (R)-(-)-mellein production at high concentration was relieved by in situ adsorption using Amberlite XAD16 resin. The final strain, B4mel12, produced (R)-(-)-mellein at 6395.2 mg/L in shake-flask fermentation. Overall, this is the first report of heterologous (R)-(-)-mellein synthesis in microorganism with a high titer. (R)-(-)-mellein prototype in this study opens a possibility for the overproduction of valuable melleins in S. albus B4.
Collapse
Affiliation(s)
- Hao Tang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Wenping Wei
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Jing Wu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Xingjun Cui
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Wenzong Wang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Tao Qian
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Jing Wo
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
22
|
Wang J, Wang K, Deng Z, Zhong Z, Sun G, Mei Q, Zhou F, Deng Z, Sun Y. Engineered cytosine base editor enabling broad-scope and high-fidelity gene editing in Streptomyces. Nat Commun 2024; 15:5687. [PMID: 38971862 PMCID: PMC11227558 DOI: 10.1038/s41467-024-49987-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024] Open
Abstract
Base editing (BE) faces protospacer adjacent motif (PAM) constraints and off-target effects in both eukaryotes and prokaryotes. For Streptomyces, renowned as one of the most prolific bacterial producers of antibiotics, the challenges are more pronounced due to its diverse genomic content and high GC content. Here, we develop a base editor named eSCBE3-NG-Hypa, tailored with both high efficiency and -fidelity for Streptomyces. Of note, eSCBE3-NG-Hypa recognizes NG PAM and exhibits high activity at challenging sites with high GC content or GC motifs, while displaying minimal off-target effects. To illustrate its practicability, we employ eSCBE3-NG-Hypa to achieve precise key amino acid conversion of the dehydratase (DH) domains within the modular polyketide synthase (PKS) responsible for the insecticide avermectins biosynthesis, achieving domains inactivation. The resulting DH-inactivated mutants, while ceasing avermectins production, produce a high yield of oligomycin, indicating competitive relationships among multiple biosynthetic gene clusters (BGCs) in Streptomyces avermitilis. Leveraging this insight, we use eSCBE3-NG-Hypa to introduce premature stop codons into competitor gene cluster of ave in an industrial S. avermitilis, with the mutant Δolm exhibiting the highest 4.45-fold increase in avermectin B1a compared to the control. This work provides a potent tool for modifying biosynthetic pathways and advancing metabolic engineering in Streptomyces.
Collapse
Affiliation(s)
- Jian Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ke Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhe Deng
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhiyu Zhong
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Guo Sun
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Qing Mei
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yuhui Sun
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
- School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
23
|
Javorova R, Sevcikova B, Rezuchova B, Novakova R, Opaterny F, Csolleiova D, Feckova L, Kormanec J. Multiple SigB homologues govern the transcription of the ssgBp promoter in the sporulation-specific ssgB gene in Streptomyces coelicolor A3(2). Res Microbiol 2024; 175:104201. [PMID: 38522628 DOI: 10.1016/j.resmic.2024.104201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Unlike Bacillus subtilis, Streptomyces coelicolor contains nine SigB homologues of the stress-response sigma factor SigB. By using a two-plasmid system, we previously identified promoters recognized by these sigma factors. Almost all promoters were recognized by several SigB homologues. However, no specific sequences of these promoters were found. One of these promoters, ssgBp, was selected to examine this cross-recognition in the native host. It controls the expression of the sporulation-specific gene ssgB. Using a luciferase reporter, the activity of this promoter in S. coelicolor and nine mutant strains lacking individual sigB homologous genes showed that sgBp is dependent on three sigma factors, SigH, SigN, and SigI. To determine which nucleotides in the-10 region are responsible for the selection of a specific SigB homologue, promoters mutated at the last three nucleotide positions were tested in the two-plasmid system. Some mutant promoters were specifically recognized by a distinct set of SigB homologues. Analysis of these mutant promoters in the native host showed the role of these nucleotides. A conserved nucleotide A at position 5 was essential for promoter activity, and two variable nucleotides at positions 4 and 6 were responsible for the partial selectivity of promoter recognition by SigB homologues.
Collapse
Affiliation(s)
- Rachel Javorova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Beatrica Sevcikova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Bronislava Rezuchova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Renata Novakova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Filip Opaterny
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Dominika Csolleiova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Lubomira Feckova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| |
Collapse
|
24
|
Shi X, Yan H, Yuan F, Li G, Liu J, Li C, Yu X, Li Z, Zhu Y, Wang W. LexA, an SOS response repressor, activates TGase synthesis in Streptomyces mobaraensis. Front Microbiol 2024; 15:1397314. [PMID: 38855760 PMCID: PMC11157053 DOI: 10.3389/fmicb.2024.1397314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
Transglutaminase (EC 2.3.2.13, TGase), an enzyme that catalyzes the formation of covalent cross-links between protein or peptide molecules, plays a critical role in commercial food processing, medicine, and textiles. TGase from Streptomyces is the sole commercial enzyme preparation for cross-linking proteins. In this study, we revealed that the SOS response repressor protein LexA in Streptomyces mobaraensis not only triggers morphological development but also enhances TGase synthesis. The absence of lexA significantly diminished TGase production and sporulation. Although LexA does not bind directly to the promoter region of the TGase gene, it indirectly stimulates transcription of the tga gene, which encodes TGase. Furthermore, LexA directly enhances the expression of genes associated with protein synthesis and transcription factors, thus favorably influencing TGase synthesis at both the transcriptional and posttranscriptional levels. Moreover, LexA activates four crucial genes involved in morphological differentiation, promoting spore maturation. Overall, our findings suggest that LexA plays a dual role as a master regulator of the SOS response and a significant contributor to TGase regulation and certain aspects of secondary metabolism, offering insights into the cellular functions of LexA and facilitating the strategic engineering of TGase overproducers.
Collapse
Affiliation(s)
- Xinyu Shi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Hao Yan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fang Yuan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Yiming Biological Technology Co., Ltd., Taixing, China
| | - Guoying Li
- Jiangsu Yiming Biological Technology Co., Ltd., Taixing, China
| | - Jingfang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chunli Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaobin Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yunping Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Wang R, Nji Wandi B, Schwartz N, Hecht J, Ponomareva L, Paige K, West A, Desanti K, Nguyen J, Niemi J, Thorson JS, Shaaban KA, Metsä-Ketelä M, Nybo SE. Diverse Combinatorial Biosynthesis Strategies for C-H Functionalization of Anthracyclinones. ACS Synth Biol 2024; 13:1523-1536. [PMID: 38662967 PMCID: PMC11101304 DOI: 10.1021/acssynbio.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Streptomyces spp. are "nature's antibiotic factories" that produce valuable bioactive metabolites, such as the cytotoxic anthracycline polyketides. While the anthracyclines have hundreds of natural and chemically synthesized analogues, much of the chemical diversity stems from enzymatic modifications to the saccharide chains and, to a lesser extent, from alterations to the core scaffold. Previous work has resulted in the generation of a BioBricks synthetic biology toolbox in Streptomyces coelicolor M1152ΔmatAB that could produce aklavinone, 9-epi-aklavinone, auramycinone, and nogalamycinone. In this work, we extended the platform to generate oxidatively modified analogues via two crucial strategies. (i) We swapped the ketoreductase and first-ring cyclase enzymes for the aromatase cyclase from the mithramycin biosynthetic pathway in our polyketide synthase (PKS) cassettes to generate 2-hydroxylated analogues. (ii) Next, we engineered several multioxygenase cassettes to catalyze 11-hydroxylation, 1-hydroxylation, 10-hydroxylation, 10-decarboxylation, and 4-hydroxyl regioisomerization. We also developed improved plasmid vectors and S. coelicolor M1152ΔmatAB expression hosts to produce anthracyclinones. This work sets the stage for the combinatorial biosynthesis of bespoke anthracyclines using recombinant Streptomyces spp. hosts.
Collapse
Affiliation(s)
- Rongbin Wang
- Department
of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Benjamin Nji Wandi
- Department
of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Nora Schwartz
- Department
of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| | - Jacob Hecht
- Department
of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| | - Larissa Ponomareva
- Center
for Pharmaceutical Research and Innovation, Department of Pharmaceutical Sciences,
College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Kendall Paige
- Department
of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| | - Alexis West
- Department
of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| | - Kathryn Desanti
- Department
of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| | - Jennifer Nguyen
- Department
of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| | - Jarmo Niemi
- Department
of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Jon S. Thorson
- Center
for Pharmaceutical Research and Innovation, Department of Pharmaceutical Sciences,
College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Khaled A. Shaaban
- Center
for Pharmaceutical Research and Innovation, Department of Pharmaceutical Sciences,
College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Mikko Metsä-Ketelä
- Department
of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - S. Eric Nybo
- Department
of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| |
Collapse
|
26
|
Sang Z, Li X, Yan H, Wang W, Wen Y. Development of a group II intron-based genetic manipulation tool for Streptomyces. Microb Biotechnol 2024; 17:e14472. [PMID: 38683679 PMCID: PMC11057498 DOI: 10.1111/1751-7915.14472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024] Open
Abstract
The availability of an alternative and efficient genetic editing technology is critical for fundamental research and strain improvement engineering of Streptomyces species, which are prolific producers of complex secondary metabolites with significant pharmaceutical activities. The mobile group II introns are retrotransposons that employ activities of catalytic intron RNAs and intron-encoded reverse transcriptase to precisely insert into DNA target sites through a mechanism known as retrohoming. We here developed a group II intron-based gene editing tool to achieve precise chromosomal gene insertion in Streptomyces. Moreover, by repressing the potential competition of RecA-dependent homologous recombination, we enhanced site-specific insertion efficiency of this tool to 2.38%. Subsequently, we demonstrated the application of this tool by screening and characterizing the secondary metabolite biosynthetic gene cluster (BGC) responsible for synthesizing the red pigment in Streptomyces roseosporus. Accompanied with identifying and inactivating this BGC, we observed that the impair of this cluster promoted cell growth and daptomycin production. Additionally, we applied this tool to activate silent jadomycin BGC in Streptomyces venezuelae. Overall, this work demonstrates the potential of this method as an alternative tool for genetic engineering and cryptic natural product mining in Streptomyces species.
Collapse
Affiliation(s)
- Ziwei Sang
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xingwang Li
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Hao Yan
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Ying Wen
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
27
|
Yuan F, Li G, Li Z, Li M, Liu X, Yang H, Yu X. Efficient biosynthesis of transglutaminase in Streptomyces mobaraensis via systematic engineering strategies. Curr Res Food Sci 2024; 8:100756. [PMID: 38736907 PMCID: PMC11087917 DOI: 10.1016/j.crfs.2024.100756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/07/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024] Open
Abstract
Transglutaminases (TGases) have been widely used in food, pharmaceutical, biotechnology, and other industries because of their ability to catalyze deamidation, acyl transfer, and crosslinking reactions between Ƴ-carboxamide groups of peptides or protein-bound glutamine and the Ɛ-amino group of lysine. In this study, we demonstrated an efficient systematic engineering strategy to enhance the synthesis of TGase in a recombinant Streptomyces mobaraensis smL2020 strain in a 1000-L fermentor. Briefly, the enzymatic properties of the TGase TGL2020 from S. mobaraensis smL2020 and TGase TGLD from S. mobaraensis smLD were compared to obtain the TGase TGLD with perfected characteristics for heterologous expression in a recombinant S. mobaraensis smL2020ΔTG without the gene tgL 2020. Through multiple engineering strategies, including promoter engineering, optimizing the signal peptides and recombination sites, and increasing copies of the expression cassettes, the final TGLD activity in the recombinant S. mobaraensis smL2020ΔTG: (PL2020-spL2020-protgLD-tgLD)2 (tgL2020and BT1) reached 56.43 U/mL and 63.18 U/mL in shake flask and 1000-L fermentor, respectively, which was the highest reported to date. With the improvement of expression level, the application scope of TGLD in the food industry will continue to expand. Moreover, the genetic stability of the recombinant strain maintained at more than 20 generations. These findings proved the feasibility of multiple systematic engineering strategies in synthetic biology and provided an emerging solution to improve biosynthesis of industrial enzymes.
Collapse
Affiliation(s)
- Fang Yuan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guoying Li
- Jiangsu Yiming Biological Technology Co., Ltd., Taixing, 225400, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mingming Li
- Jiangsu Yiming Biological Technology Co., Ltd., Taixing, 225400, China
| | - Xiaobo Liu
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, Jiangsu, 210094, China
| | - Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaobin Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
28
|
Yang M, Hao Y, Liu G, Wen Y. Enhancement of acyl-CoA precursor supply for increased avermectin B1a production by engineering meilingmycin polyketide synthase and key primary metabolic pathway genes. Microb Biotechnol 2024; 17:e14470. [PMID: 38683675 PMCID: PMC11057500 DOI: 10.1111/1751-7915.14470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Avermectins (AVEs), a family of macrocyclic polyketides produced by Streptomyces avermitilis, have eight components, among which B1a is noted for its strong insecticidal activity. Biosynthesis of AVE "a" components requires 2-methylbutyryl-CoA (MBCoA) as starter unit, and malonyl-CoA (MalCoA) and methylmalonyl-CoA (MMCoA) as extender units. We describe here a novel strategy for increasing B1a production by enhancing acyl-CoA precursor supply. First, we engineered meilingmycin (MEI) polyketide synthase (PKS) for increasing MBCoA precursor supply. The loading module (using acetyl-CoA as substrate), extension module 7 (using MMCoA as substrate) and TE domain of MEI PKS were assembled to produce 2-methylbutyrate, providing the starter unit for B1a production. Heterologous expression of the newly designed PKS (termed Mei-PKS) in S. avermitilis wild-type (WT) strain increased MBCoA level, leading to B1a titer 262.2 μg/mL - 4.36-fold higher than WT value (48.9 μg/mL). Next, we separately inhibited three key nodes in essential pathways using CRISPRi to increase MalCoA and MMCoA levels in WT. The resulting strains all showed increased B1a titer. Combined inhibition of these key nodes in Mei-PKS expression strain increased B1a titer to 341.9 μg/mL. Overexpression of fatty acid β-oxidation pathway genes in the strain further increased B1a titer to 452.8 μg/mL - 8.25-fold higher than WT value. Finally, we applied our precursor supply strategies to high-yield industrial strain A229. The strategies, in combination, led to B1a titer 8836.4 μg/mL - 37.8% higher than parental A229 value. These findings provide an effective combination strategy for increasing AVE B1a production in WT and industrial S. avermitilis strains, and our precursor supply strategies can be readily adapted for overproduction of other polyketides.
Collapse
Affiliation(s)
- Mengyao Yang
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yi Hao
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Gang Liu
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Ying Wen
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
29
|
Ji CH, Je HW, Kim H, Kang HS. Promoter engineering of natural product biosynthetic gene clusters in actinomycetes: concepts and applications. Nat Prod Rep 2024; 41:672-699. [PMID: 38259139 DOI: 10.1039/d3np00049d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Covering 2011 to 2022Low titers of natural products in laboratory culture or fermentation conditions have been one of the challenging issues in natural products research. Many natural product biosynthetic gene clusters (BGCs) are also transcriptionally silent in laboratory culture conditions, making it challenging to characterize the structures and activities of their metabolites. Promoter engineering offers a potential solution to this problem by providing tools for transcriptional activation or optimization of biosynthetic genes. In this review, we summarize the 10 years of progress in promoter engineering approaches in natural products research focusing on the most metabolically talented group of bacteria actinomycetes.
Collapse
Affiliation(s)
- Chang-Hun Ji
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| | - Hyun-Woo Je
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| | - Hiyoung Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| | - Hahk-Soo Kang
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
30
|
Feng Y, Jiang Y, Chen X, Zhu L, Xue H, Wu M, Yang L, Yu H, Lin J. Improving the production of carbamoyltobramycin by an industrial Streptoalloteichus tenebrarius through metabolic engineering. Appl Microbiol Biotechnol 2024; 108:304. [PMID: 38643456 PMCID: PMC11033246 DOI: 10.1007/s00253-024-13141-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/22/2024]
Abstract
Tobramycin is an essential and extensively used broad-spectrum aminoglycoside antibiotic obtained through alkaline hydrolysis of carbamoyltobramycin, one of the fermentation products of Streptoalloteichus tenebrarius. To simplify the composition of fermentation products from industrial strain, the main byproduct apramycin was blocked by gene disruption and constructed a mutant mainly producing carbamoyltobramycin. The generation of antibiotics is significantly affected by the secondary metabolism of actinomycetes which could be controlled by modifying the pathway-specific regulatory proteins within the cluster. Within the tobramycin biosynthesis cluster, a transcriptional regulatory factor TobR belonging to the Lrp/AsnC family was identified. Based on the sequence and structural characteristics, tobR might encode a pathway-specific transcriptional regulatory factor during biosynthesis. Knockout and overexpression strains of tobR were constructed to investigate its role in carbamoyltobramycin production. Results showed that knockout of TobR increased carbamoyltobramycin biosynthesis by 22.35%, whereas its overexpression decreased carbamoyltobramycin production by 10.23%. In vitro electrophoretic mobility shift assay (EMSA) experiments confirmed that TobR interacts with DNA at the adjacent tobO promoter position. Strains overexpressing tobO with ermEp* promoter exhibited 36.36% increase, and tobO with kasOp* promoter exhibited 22.84% increase in carbamoyltobramycin titer. When the overexpressing of tobO and the knockout of tobR were combined, the production of carbamoyltobramycin was further enhanced. In the shake-flask fermentation, the titer reached 3.76 g/L, which was 42.42% higher than that of starting strain. Understanding the role of Lrp/AsnC family transcription regulators would be useful for other antibiotic biosynthesis in other actinomycetes. KEY POINTS: • The transcriptional regulator TobR belonging to the Lrp/AsnC family was identified. • An oxygenase TobO was identified within the tobramycin biosynthesis cluster. • TobO and TobR have significant effects on the synthesis of carbamoyltobramycin.
Collapse
Affiliation(s)
- Yun Feng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yiqi Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xutong Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Li Zhu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hailong Xue
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Mianbin Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Lirong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Haoran Yu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China.
| | - Jianping Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
31
|
Lee SQE, Ma GL, Candra H, Khandelwal S, Pang LM, Low ZJ, Cheang QW, Liang ZX. Streptomyces sungeiensis SD3 as a Microbial Chassis for the Heterologous Production of Secondary Metabolites. ACS Synth Biol 2024; 13:1259-1272. [PMID: 38513222 DOI: 10.1021/acssynbio.3c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
We present the newly isolated Streptomyces sungeiensis SD3 strain as a promising microbial chassis for heterologous production of secondary metabolites. S. sungeiensis SD3 exhibits several advantageous traits as a microbial chassis, including genetic tractability, rapid growth, susceptibility to antibiotics, and metabolic capability supporting secondary metabolism. Genomic and transcriptomic sequencing unveiled the primary metabolic capabilities and secondary biosynthetic pathways of S. sungeiensis SD3, including a previously unknown pathway responsible for the biosynthesis of streptazone B1. The unique placement of S. sungeiensis SD3 in the phylogenetic tree designates it as a type strain, setting it apart from other frequently employed Streptomyces chassis. This distinction makes it the preferred chassis for expressing biosynthetic gene clusters (BGCs) derived from strains within the same phylogenetic or neighboring phylogenetic clade. The successful expression of secondary biosynthetic pathways from a closely related yet slow-growing strain underscores the utility of S. sungeiensis SD3 as a heterologous expression chassis. Validation of CRISPR/Cas9-assisted genetic tools for chromosomal deletion and insertion paved the way for further strain improvement and BGC refactoring through rational genome editing. The addition of S. sungeiensis SD3 to the heterologous chassis toolkit will facilitate the discovery and production of secondary metabolites.
Collapse
Affiliation(s)
- Sean Qiu En Lee
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Guang-Lei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hartono Candra
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Srashti Khandelwal
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Li Mei Pang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Zhen Jie Low
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Qing Wei Cheang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
32
|
Zhang C, Xu Q, Fu J, Wu L, Li Y, Lu Y, Shi Y, Sun H, Li X, Wang L, Hong B. Engineering Streptomyces sp. CPCC 204095 for the targeted high-level production of isatropolone A by elucidating its pathway-specific regulatory mechanism. Microb Cell Fact 2024; 23:113. [PMID: 38622698 PMCID: PMC11020959 DOI: 10.1186/s12934-024-02387-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Isatropolone A and C, produced by Streptomyces sp. CPCC 204095, belong to an unusual class of non-benzenoid aromatic compounds and contain a rare seven-membered ring structure. Isatropolone A exhibits potent activity against Leishmania donovani, comparable to the only oral drug miltefosine. However, its variably low productivity represents a limitation for this lead compound in the future development of new anti-leishmaniasis drugs to meet unmet clinical needs. RESULTS Here we first elucidated the regulatory cascade of biosynthesis of isatropolones, which consists of two SARP family regulators, IsaF and IsaJ. Through a series of in vivo and in vitro experiments, IsaF was identified as a pathway-specific activator that orchestrates the transcription of the gene cluster essential for isatropolone biosynthesis. Interestingly, IsaJ was found to only upregulate the expression of the cytochrome P450 monooxygenase IsaS, which is crucial for the yield and proportion of isatropolone A and C. Through targeted gene deletions of isaJ or isaS, we effectively impeded the conversion of isatropolone A to C. Concurrently, the facilitation of isaF overexpression governed by selected promoters, prompted the comprehensive activation of the production of isatropolone A. Furthermore, meticulous optimization of the fermentation parameters was conducted. These strategies culminated in the attainment of an unprecedented maximum yield-980.8 mg/L of isatropolone A-achieved in small-scale solid-state fermentation utilizing the genetically modified strains, thereby establishing the highest reported titer to date. CONCLUSION In Streptomyces sp. CPCC 204095, the production of isatropolone A and C is modulated by the SARP regulators IsaF and IsaJ. IsaF serves as a master pathway-specific regulator for the production of isatropolones. IsaJ, on the other hand, only dictates the transcription of IsaS, the enzyme responsible for the conversion of isatropolone A and C. By engineering the expression of these pivotal genes, we have devised a strategy for genetic modification aimed at the selective and high-yield biosynthesis of isatropolone A. This study not only unveils the unique regulatory mechanisms governing isatropolone biosynthesis for the first time, but also establishes an essential engineering framework for the targeted high-level production of isatropolone A.
Collapse
Affiliation(s)
- Cong Zhang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qianqian Xu
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jie Fu
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Linzhuan Wu
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yihong Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuan Lu
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuanyuan Shi
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hongmin Sun
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xingxing Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Lifei Wang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Bin Hong
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
33
|
Tan LL, Heng E, Leong CY, Ng V, Yang LK, Seow DCS, Koduru L, Kanagasundaram Y, Ng SB, Peh G, Lim YH, Wong FT. Application of Cas12j for Streptomyces Editing. Biomolecules 2024; 14:486. [PMID: 38672502 PMCID: PMC11048056 DOI: 10.3390/biom14040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, CRISPR-Cas toolboxes for Streptomyces editing have rapidly accelerated natural product discovery and engineering. However, Cas efficiencies are oftentimes strain-dependent, and the commonly used Streptococcus pyogenes Cas9 (SpCas9) is notorious for having high levels of off-target toxicity effects. Thus, a variety of Cas proteins is required for greater flexibility of genetic manipulation within a wider range of Streptomyces strains. This study explored the first use of Acidaminococcus sp. Cas12j, a hypercompact Cas12 subfamily, for genome editing in Streptomyces and its potential in activating silent biosynthetic gene clusters (BGCs) to enhance natural product synthesis. While the editing efficiencies of Cas12j were not as high as previously reported efficiencies of Cas12a and Cas9, Cas12j exhibited higher transformation efficiencies compared to SpCas9. Furthermore, Cas12j demonstrated significantly improved editing efficiencies compared to Cas12a in activating BGCs in Streptomyces sp. A34053, a strain wherein both SpCas9 and Cas12a faced limitations in accessing the genome. Overall, this study expanded the repertoire of Cas proteins for genome editing in actinomycetes and highlighted not only the potential of recently characterized Cas12j in Streptomyces but also the importance of having an extensive genetic toolbox for improving the editing success of these beneficial microbes.
Collapse
Affiliation(s)
- Lee Ling Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos #07-06, Singapore 138673, Singapore; (L.L.T.); (E.H.)
| | - Elena Heng
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos #07-06, Singapore 138673, Singapore; (L.L.T.); (E.H.)
| | - Chung Yan Leong
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #02-01, Singapore 138669, Singapore; (C.Y.L.); (V.N.); (L.K.Y.); (D.C.S.S.); (Y.K.); (S.B.N.)
| | - Veronica Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #02-01, Singapore 138669, Singapore; (C.Y.L.); (V.N.); (L.K.Y.); (D.C.S.S.); (Y.K.); (S.B.N.)
| | - Lay Kien Yang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #02-01, Singapore 138669, Singapore; (C.Y.L.); (V.N.); (L.K.Y.); (D.C.S.S.); (Y.K.); (S.B.N.)
| | - Deborah Chwee San Seow
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #02-01, Singapore 138669, Singapore; (C.Y.L.); (V.N.); (L.K.Y.); (D.C.S.S.); (Y.K.); (S.B.N.)
| | - Lokanand Koduru
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos #07-06, Singapore 138673, Singapore; (L.L.T.); (E.H.)
| | - Yoganathan Kanagasundaram
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #02-01, Singapore 138669, Singapore; (C.Y.L.); (V.N.); (L.K.Y.); (D.C.S.S.); (Y.K.); (S.B.N.)
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #02-01, Singapore 138669, Singapore; (C.Y.L.); (V.N.); (L.K.Y.); (D.C.S.S.); (Y.K.); (S.B.N.)
| | - Guangrong Peh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore; (G.P.); (Y.H.L.)
| | - Yee Hwee Lim
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore; (G.P.); (Y.H.L.)
| | - Fong Tian Wong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos #07-06, Singapore 138673, Singapore; (L.L.T.); (E.H.)
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore; (G.P.); (Y.H.L.)
| |
Collapse
|
34
|
Duan Y, Fang F, Mu X, Wang H, Shen Z, Deng Z, Liu T, Wang Z, Liu R. Exploration of Streptomyces fradiae J1-021 as a Potential Host for the Heterologous Production of Spinosad. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38597928 DOI: 10.1021/acs.jafc.3c08884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Spinosad is a potent insecticide produced by Saccharopolyspora spinosa. However, it harbors certain limitations of a low growing rate and unfeasible genetic manipulation that can be overcome by adopting a superior platform, such as Streptomyces. Herein, we exploited the industrial tylosin-producing Streptomyces fradiae J1-021 for the heterologous production of spinosad. An engineered strain (HW01) with deletion of the tylosin biosynthetic gene cluster (BGC) was constructed and then transformed with the natural spinosad BGC. The distribution and expression levels of the tylosin BGC operons were assessed to construct a natural promoter library. The rate-limiting steps of spinosad biosynthesis were identified by analyzing the transcriptional expression of the spinosad biosynthetic genes. The stepwise engineering work involved the overexpression of the biosynthetic genes participating in rate-limiting pathways using strong promoters, affording an increase in spinosad production to 112.4 μg/L. These results demonstrate that strain HW01 has the potential to be used as a chassis for the heterologous production of polyketides.
Collapse
Affiliation(s)
- Yuhua Duan
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fang Fang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Mu
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China
| | - Hui Wang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China
| | - Zhiyong Shen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tiangang Liu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhangqian Wang
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ran Liu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
35
|
Zang H, Cheng Y, Li M, Zhou L, Hong LL, Deng H, Lin HW, Zhou Y. Mutagenetic analysis of the biosynthetic pathway of tetramate bripiodionen bearing 3-(2H-pyran-2-ylidene)pyrrolidine-2,4-dione skeleton. Microb Cell Fact 2024; 23:87. [PMID: 38515152 PMCID: PMC10956176 DOI: 10.1186/s12934-024-02364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Natural tetramates are a family of hybrid polyketides bearing tetramic acid (pyrrolidine-2,4-dione) moiety exhibiting a broad range of bioactivities. Biosynthesis of tetramates in microorganisms is normally directed by hybrid polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) machineries, which form the tetramic acid ring by recruiting trans- or cis-acting thioesterase-like Dieckmann cyclase in bacteria. There are a group of tetramates with unique skeleton of 3-(2H-pyran-2-ylidene)pyrrolidine-2,4-dione, which remain to be investigated for their biosynthetic logics. RESULTS Herein, the tetramate type compounds bripiodionen (BPD) and its new analog, featuring the rare skeleton of 3-(2H-pyran-2-ylidene)pyrrolidine-2,4-dione, were discovered from the sponge symbiotic bacterial Streptomyces reniochalinae LHW50302. Gene deletion and mutant complementation revealed the production of BPDs being correlated with a PKS-NRPS biosynthetic gene cluster (BGC), in which a Dieckmann cyclase gene bpdE was identified by sit-directed mutations. According to bioinformatic analysis, the tetramic acid moiety of BPDs should be formed on an atypical NRPS module constituted by two discrete proteins, including the C (condensation)-A (adenylation)-T (thiolation) domains of BpdC and the A-T domains of BpdD. Further site-directed mutagenetic analysis confirmed the natural silence of the A domain in BpdC and the functional necessities of the two T domains, therefore suggesting that an unusual aminoacyl transthiolation should occur between the T domains of two NRPS subunits. Additionally, characterization of a LuxR type regulator gene led to seven- to eight-fold increasement of BPDs production. The study presents the first biosynthesis case of the natural molecule with 3-(2H-pyran-2-ylidene)pyrrolidine-2,4-dione skeleton. Genomic mining using BpdD as probe reveals that the aminoacyl transthiolation between separate NRPS subunits should occur in a certain population of NRPSs in nature.
Collapse
Affiliation(s)
- Haixia Zang
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yijia Cheng
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mengjia Li
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lin Zhou
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li-Li Hong
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Hou-Wen Lin
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yongjun Zhou
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
36
|
Liu Q, Wang Y, Xia X, Li Z, Li Y, Shen Y, Wang H. Combinatorial Biosynthesis of 3- O-Carbamoylmaytansinol by Rational Engineering of the Tailoring Steps of Ansamitocins. ACS Synth Biol 2024; 13:721-727. [PMID: 38377312 DOI: 10.1021/acssynbio.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Currently, most maytansine-containing antibody-drug conjugates (ADCs) in clinical trials are prepared with DM1 or DM4, which in turn is synthesized mainly from ansamitocin P-3 (AP-3), a bacterial maytansinoid, isolated from Actinosynnema pretiosum. However, due to the high self-toxicity of AP-3 to A. pretiosum, the yield of AP-3 has been difficult to improve. Herein, a new maytansinoid with much lower self-toxicity to A. pretiosum, 3-O-carbamoylmaytansinol (CAM, 3), was designed and generated by introducing the 3-O-carbamoyltransferase gene asc21b together with the N-methyltransferase genes from exogenous maytansinoid gene clusters into the 3-O-acyltransferase gene (asm19) deleted mutant HGF052. Meanwhile, two new shunt products, 20-O-demethyl-19-dechloro-N-demethyl-4,5-desepoxy-CAM (4) and 20-O-demethyl-N-demethyl-4,5-desepoxy-CAM (5) were identified from the recombinant strain. Furthermore, by screening of liquid fermentation media, overexpression of bottleneck tailoring enzymes and the pathway-specific activator, the titer of CAM reached 498 mg/L in the engineered strain. Since the 3-O-carbamoyl group of CAM can be removed by chemical cleavage as AP-3 to produce maytansinol, our work suggests that CAM may be a promising alternative to AP-3 in the future development of ADCs.
Collapse
Affiliation(s)
- Qingqing Liu
- State Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yu Wang
- State Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xin Xia
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhongyue Li
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Haoxin Wang
- State Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
37
|
Li S, Tang D, Zhao X, Zhu M, Zhu X, Duan Y, Huang Y. Identification and application of a strong bidirectional acmN2p promoter from actinomycin D-producing streptomycetes. ENGINEERING MICROBIOLOGY 2024; 4:100121. [PMID: 39628790 PMCID: PMC11610978 DOI: 10.1016/j.engmic.2023.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 12/06/2024]
Abstract
Natural product biosynthesis is controlled at multiple levels. Characterization of naturally occurring promoters has facilitated the study of the synthetic biology of natural products. Herein, we report the discovery of two high-yield actinomycin D (ActD)-producing streptomycetes and the identification of a strong bidirectional acmN2p promoter from the ActD gene clusters and its application in heterologous expression of three core genes involved in the bacterial alkaloid bohemamine biosynthesis, providing a good example for identification of new promoters for synthetic biological applications.
Collapse
Affiliation(s)
- Sainan Li
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China
| | - Danfeng Tang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China
| | - Xu Zhao
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230093, China
| | - Manxiang Zhu
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230093, China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha 410011, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha 410011, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha 410011, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230093, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha 410011, China
| |
Collapse
|
38
|
Zhao M, Yang Z, Li X, Liu Y, Zhang Y, Zhang M, Li Y, Wang X, Deng Z, Hong K, Zhu D. Development of Integrated Vectors with Strong Constitutive Promoters for High-Yield Antibiotic Production in Mangrove-Derived Streptomyces. Mar Drugs 2024; 22:94. [PMID: 38393065 PMCID: PMC10890193 DOI: 10.3390/md22020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
It is important to improve the production of bioactive secondary products for drug development. The Escherichia coli-Streptomyces shuttle vector pSET152 and its derived vector pIB139 containing a strong constitutive promoter ermEp* are commonly used as integrative vectors in actinomycetes. Four new integrative vectors carrying the strong constitutive promoter kasOp*, hrdBp, SCO5768p, and SP44, respectively, were constructed and proven to be functional in different mangrove-derived Streptomyces host strains by using kanamycin resistance gene neo as a reporter. Some biosynthetic genes of elaiophylins, azalomycin Fs, and armeniaspirols were selected and inserted into these vectors to overexpress in their producers including Streptomyces sp. 219807, Streptomyces sp. 211726, and S. armeniacus DSM 43125, resulting in an approximately 1.1-1.4-fold enhancement of the antibiotic yields.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (M.Z.); (Z.Y.); (X.L.); (Y.L.); (Y.Z.); (M.Z.); (Y.L.); (X.W.); (Z.D.)
| | - Dongqing Zhu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (M.Z.); (Z.Y.); (X.L.); (Y.L.); (Y.Z.); (M.Z.); (Y.L.); (X.W.); (Z.D.)
| |
Collapse
|
39
|
Lu WJ, Zhang MS, Lu DL, Li ZW, Yang ZD, Wu L, Ni JT, Chen WD, Deng JJ, Luo XC. Sustainable valorizing high-protein feather waste utilization through solid-state fermentation by keratinase-enhanced Streptomyces sp. SCUT-3 using a novel promoter. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:528-538. [PMID: 38134540 DOI: 10.1016/j.wasman.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Feather waste, a rich source of proteins, has traditionally been processed through high-temperature puffing and acid-base hydrolysis, contributing to generation of greenhouse gases and H2S. To address this issue, we employed circular economy techniques to recover the nutritional value of feather waste. Streptomyces sp. SCUT-3, an efficient proteolytic and chitinolytic bacterium, was isolated for feather degradation previously. This study aimed to valorize feather waste for feed purposes by enhancing its feather transformation ability through promoter optimization. Seven promoters were identified through omics analysis and compared to a common Streptomyces promoter ermE*p. The strongest promoter, p24880, effectively enhanced the expression of three candidate keratinases (Sep39, Sep40, and Sep53). The expression efficiency of double-, triple-p24880 and sandwich p24880-sep39-p24880 promoters were further verified. The co-overexpression strain SCUT-3-p24880-sep39-p24880-sep40 exhibited a 16.21-fold increase in keratinase activity compared to the wild-type. Using this strain, a solid-state fermentation process was established that increased the feather/water ratio (w/w) to 1:1.5, shortened the fermentation time to 2.5 days, and increased soluble peptide and free amino acid yields to 0.41 g/g and 0.14 g/g, respectively. The resulting has high protein content (90.49 %), with high in vitro digestibility (94.20 %). This method has the potential to revolutionize the feather waste processing industry.
Collapse
Affiliation(s)
- Wen-Jun Lu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong 510006, China
| | - Ming-Shu Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong 510006, China
| | - De-Lin Lu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong 510006, China
| | - Zhi-Wei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong 510006, China
| | - Zhen-Dong Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong 510006, China
| | - Lei Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong 510006, China
| | - Jing-Tao Ni
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong 510006, China
| | - Wei-Dong Chen
- Institute of Animal Sciences, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jun-Jin Deng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong 510006, China; Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Crop Germplasm Resources Conservation and Utilization, Guangzhou 510640, China.
| | - Xiao-Chun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
40
|
Yan YS, Zou LS, Wei HG, Yang MY, Yang YQ, Li XF, Xia HY. An atypical two-component system, AtcR/AtcK, simultaneously regulates the biosynthesis of multiple secondary metabolites in Streptomyces bingchenggensis. Appl Environ Microbiol 2024; 90:e0130023. [PMID: 38112424 PMCID: PMC10807435 DOI: 10.1128/aem.01300-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023] Open
Abstract
Streptomyces bingchenggensis is an industrial producer of milbemycins, which are important anthelmintic and insecticidal agents. Two-component systems (TCSs), which are typically situated in the same operon and are composed of a histidine kinase and a response regulator, are the predominant signal transduction pathways involved in the regulation of secondary metabolism in Streptomyces. Here, an atypical TCS, AtcR/AtcK, in which the encoding genes (sbi_06838/sbi_06839) are organized in a head-to-head pair, was demonstrated to be indispensable for the biosynthesis of multiple secondary metabolites in S. bingchenggensis. With the null TCS mutants, the production of milbemycin and yellow compound was abolished but nanchangmycin was overproduced. Transcriptional analysis and electrophoretic mobility shift assays showed that AtcR regulated the biosynthesis of these three secondary metabolites by a MilR3-mediated cascade. First, AtcR was activated by phosphorylation from signal-triggered AtcK. Second, the activated AtcR promoted the transcription of milR3. Third, MilR3 specifically activated the transcription of downstream genes from milbemycin and yellow compound biosynthetic gene clusters (BGCs) and nanR4 from the nanchangmycin BGC. Finally, because NanR4 is a specific repressor in the nanchangmycin BGC, activation of MilR3 downstream genes led to the production of yellow compound and milbemycin but inhibited nanchangmycin production. By rewiring the regulatory cascade, two strains were obtained, the yield of nanchangmycin was improved by 45-fold to 6.08 g/L and the production of milbemycin was increased twofold to 1.34 g/L. This work has broadened our knowledge on atypical TCSs and provided practical strategies to engineer strains for the production of secondary metabolites in Streptomyces.IMPORTANCEStreptomyces bingchenggensis is an important industrial strain that produces milbemycins. Two-component systems (TCSs), which consist of a histidine kinase and a response regulator, are the predominant signal transduction pathways involved in the regulation of secondary metabolism in Streptomyces. Coupled encoding genes of TCSs are typically situated in the same operon. Here, TCSs with encoding genes situated in separate head-to-head neighbor operons were labeled atypical TCSs. It was found that the atypical TCS AtcR/AtcK played an indispensable role in the biosynthesis of milbemycin, yellow compound, and nanchangmycin in S. bingchenggensis. This atypical TCS regulated the biosynthesis of specialized metabolites in a cascade mediated via a cluster-situated regulator, MilR3. Through rewiring the regulatory pathways, strains were successfully engineered to overproduce milbemycin and nanchangmycin. To the best of our knowledge, this is the first report on atypical TCS, in which the encoding genes of RR and HK were situated in separate head-to-head neighbor operons, involved in secondary metabolism. In addition, data mining showed that atypical TCSs were widely distributed in actinobacteria.
Collapse
Affiliation(s)
- Yu-Si Yan
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, Zhejiang, China
| | - Li-Sha Zou
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, Zhejiang, China
| | - He-Geng Wei
- Zhejiang Yongtai Technology Co., LTD., Taizhou, Zhejiang, China
| | - Meng-Yao Yang
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, Zhejiang, China
| | - Yun-Qi Yang
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, Zhejiang, China
| | - Xiao-Fang Li
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, Zhejiang, China
| | - Hai-Yang Xia
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
41
|
Zhao M, Zhang XS, Xiong LB, Liu K, Li XF, Liu Y, Wang FQ. Establishment of an Efficient Expression and Regulation System in Streptomyces for Economical and High-Level Production of the Natural Blue Pigment Indigoidine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:483-492. [PMID: 38146267 DOI: 10.1021/acs.jafc.3c05696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Indigoidine, as a kind of natural blue pigment, is widely used in textiles, food, and pharmaceuticals and is mainly synthesized from l-glutamine via a condensation reaction by indigoidine synthetases, most of which originates from Streptomyces species. However, due to the complex metabolic switches of Streptomyces, most of the researchers choose to overexpress indigoidine synthetases in the heterologous host to achieve high-level production of indigoidine. Considering the advantages of low-cost culture medium and simple culture conditions during the large-scale culture of Streptomyces, here, an updated regulation system derived from the Streptomyces self-sustaining system, constructed in our previous study, was established for the highly efficient production of indigoidine in Streptomyces lividans TK24. The updated system was constructed via promoter mining and σhrdB expression optimization, and this system was applied to precisely and continuously regulate the expression of indigoidine synthetase IndC derived from Streptomyces albus J1704. Finally, the engineered strain was cultured with cheap industrial glycerol as a supplementary carbon source, and 14.3 and 46.27 g/L indigoidine could be achieved in a flask and a 4 L fermentor, respectively, reaching the highest level of microbial synthesis of indigoidine. This study will lay a foundation for the industrial application of Streptomyces cell factories to produce indigoidine.
Collapse
Affiliation(s)
- Ming Zhao
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xiu-Shan Zhang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Liang-Bin Xiong
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Kun Liu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xiang-Fei Li
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yan Liu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
42
|
Tay DWP, Tan LL, Heng E, Zulkarnain N, Ching KC, Wibowo M, Chin EJ, Tan ZYQ, Leong CY, Ng VWP, Yang LK, Seow DCS, Lim YW, Koh W, Koduru L, Kanagasundaram Y, Ng SB, Lim YH, Wong FT. Exploring a general multi-pronged activation strategy for natural product discovery in Actinomycetes. Commun Biol 2024; 7:50. [PMID: 38184720 PMCID: PMC10771470 DOI: 10.1038/s42003-023-05648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/29/2023] [Indexed: 01/08/2024] Open
Abstract
Natural products possess significant therapeutic potential but remain underutilized despite advances in genomics and bioinformatics. While there are approaches to activate and upregulate natural product biosynthesis in both native and heterologous microbial strains, a comprehensive strategy to elicit production of natural products as well as a generalizable and efficient method to interrogate diverse native strains collection, remains lacking. Here, we explore a flexible and robust integrase-mediated multi-pronged activation approach to reliably perturb and globally trigger antibiotics production in actinobacteria. Across 54 actinobacterial strains, our approach yielded 124 distinct activator-strain combinations which consistently outperform wild type. Our approach expands accessible metabolite space by nearly two-fold and increases selected metabolite yields by up to >200-fold, enabling discovery of Gram-negative bioactivity in tetramic acid analogs. We envision these findings as a gateway towards a more streamlined, accelerated, and scalable strategy to unlock the full potential of Nature's chemical repertoire.
Collapse
Grants
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- NRF-CRP19-2017-05-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- C211917006 Agency for Science, Technology and Research (A*STAR)
- C233017006 Agency for Science, Technology and Research (A*STAR)
- C211917003 Agency for Science, Technology and Research (A*STAR)
- C211917006 Agency for Science, Technology and Research (A*STAR)
- C233017006 Agency for Science, Technology and Research (A*STAR)
- C211917006 Agency for Science, Technology and Research (A*STAR)
- National Research Foundation Singapore (National Research Foundation-Prime Minister’s office, Republic of Singapore)
Collapse
Affiliation(s)
- Dillon W P Tay
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore
| | - Lee Ling Tan
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
| | - Elena Heng
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
| | - Nadiah Zulkarnain
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
| | - Kuan Chieh Ching
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Mario Wibowo
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Elaine Jinfeng Chin
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Zann Yi Qi Tan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Chung Yan Leong
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Veronica Wee Pin Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Lay Kien Yang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Deborah C S Seow
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Yi Wee Lim
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore
| | - Winston Koh
- Bioinformatics Institute (BII), Agency of Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore, 138671, Republic of Singapore
| | - Lokanand Koduru
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
| | - Yoganathan Kanagasundaram
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02, Nanos, Singapore, 138669, Republic of Singapore
| | - Yee Hwee Lim
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore.
- Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Republic of Singapore.
| | - Fong Tian Wong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore.
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore.
| |
Collapse
|
43
|
Qiu S, Yang B, Li Z, Li S, Yan H, Xin Z, Liu J, Zhao X, Zhang L, Xiang W, Wang W. Building a highly efficient Streptomyces super-chassis for secondary metabolite production by reprogramming naturally-evolved multifaceted shifts. Metab Eng 2024; 81:210-226. [PMID: 38142854 DOI: 10.1016/j.ymben.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Streptomyces has an extensive array of bioactive secondary metabolites (SMs). Nevertheless, devising a framework for the heterologous production of these SMs remains challenging. We here reprogrammed a versatile plug-and-play Streptomyces super-chassis and established a universal pipeline for production of diverse SMs via understanding of the inherent pleiotropic effects of ethanol shock on jadomycin production in Streptomyces venezuelae. We initially identified and characterized a set of multiplex targets (afsQ1, bldD, bldA, and miaA) that contribute to SM (jadomycin) production when subjected to ethanol shock. Subsequently, we developed an ethanol-induced orthogonal amplification system (EOAS), enabling dynamic and precise control over targets. Ultimately, we integrated these multiplex targets into functional units governed by the EOAS, generating a universal and plug-and-play Streptomyces super-chassis. In addition to achieving the unprecedented titer and yield of jadomycin B, we also evidenced the potential of this super-chassis for production of diverse heterologous SMs, including antibiotic oxytetracycline, anticancer drug doxorubicins, agricultural herbicide thaxtomin A, and plant growth regulator guvermectin, all with the yields of >10 mg/g glucose in a simple mineral medium. Given that the production of SMs all required complexed medium and the cognate yields were usually much lower, our achievement of using a universal super-chassis and engineering pipeline in a simple mineral medium is promising for convenient heterologous production of SMs.
Collapse
Affiliation(s)
- Shiwen Qiu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bowen Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hao Yan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenguo Xin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jingfang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuejin Zhao
- State Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, 200237, China.
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China.
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
44
|
Hao Y, Liu W, Li X, Wen Y. Streptomyces global regulators AfsR and AfsS interact to co-regulate antibiotic production and morphological development. Microb Biotechnol 2024; 17:e14319. [PMID: 37986689 PMCID: PMC10832544 DOI: 10.1111/1751-7915.14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 11/22/2023] Open
Abstract
Streptomyces species have a complex life cycle and are the producers of ~70% of commercial antibiotics. Global regulators AfsR and AfsS are widespread among Streptomyces and have been identified as key activators of antibiotic production in several species. However, their roles as repressors of antibiotic production are unclear; in particular, nothing is known regarding the regulatory mechanism of AfsS, despite many decades of research, because it has no DNA-binding domain. Here, we demonstrate that AfsR and AfsS negatively regulate avermectin production and morphological development in the industrially important species S. avermitilis. AfsR directly represses ave structural genes (aveA1, aveA4), cluster-situated activator gene aveR, and eight key developmental genes, whereas it directly activates afsS, aco (for autoregulator avenolide biosynthesis), and avaR1 (encoding avenolide receptor). GST pull-down, microscale thermophoresis, co-immunoprecipitation, and chromatin immunoprecipitation-quantitative PCR assays demonstrated that AfsS interacts with AfsR to co-regulate target genes involved in avermectin production and development and that this interaction requires intact AfsS repeated sequences and enhances the binding affinity of AfsR to target promoters. AfsR/AfsS interaction also occurs in model species S. coelicolor and S. roseosporus (producer of daptomycin, a cyclic lipopeptide antibiotic widely used for the treatment of human infections), suggesting that such interaction is conserved in Streptomyces species. The master developmental repressor BldD acts as a direct activator of both afsR and afsS. Deletion of afsR or afsS strongly enhances avermectin production in wild-type and industrial S. avermitilis strains. Our findings demonstrate novel regulatory roles and mechanisms of AfsR and AfsS in Streptomyces and facilitate methods for antibiotic overproduction.
Collapse
Affiliation(s)
- Yi Hao
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Wenshuai Liu
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xingwang Li
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Ying Wen
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
45
|
Xia Y, Zhu G, Zhang X, Li S, Du L, Zhu W. Biosynthesis of 4-Acyl-5-aminoimidazole Alkaloids Featuring a New Friedel-Crafts Acyltransferase. J Am Chem Soc 2023; 145:26308-26317. [PMID: 37983668 DOI: 10.1021/jacs.3c09522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Friedel-Crafts acylation (FCA) is a highly beneficial approach in organic chemistry for creating the important C-C bonds that are necessary for building intricate frameworks between aromatic substrates and an acyl group. However, there are few reports about enzyme catalyzed FCA reactions. In this study, 4-acyl-5-aminoimidazole alkaloids (AAIAs), streptimidazoles A-C (1-3), and the enantiopure (+)-nocarimidazole C (4) as well as their ribosides, streptimidazolesides A-D (5-8), were identified from the fermentation broth of Streptomyces sp. OUCMDZ-944 or heterologous S. coelicolor M1154 mutant. The biosynthetic gene cluster (smz) was identified, and the biosynthetic pathway of AAIAs was elucidated for the first time. In vivo and in vitro studies proved the catalytic activity of the four essential genes smzB, -C, -E, and -F for AAIAs biosynthesis and clarified the biosynthetic process of the alkaloids. The ligase SmzE activates fatty acyl groups and connects them to the acyl carrier protein (ACP) holo-SmzF. Then, the acyl group is transferred onto the key residue Cys49 of SmzB, a new Friedel-Crafts acyltransferase (FCase). Subsequently, the FCA reaction between the acyl groups and 5-aminoimidazole ribonucleotide (AIR) occurs to generate the key intermediate AAIA-nucleotides catalyzed by SmzB. Finally, the hydrolase SmzC catalyzes the N-glycosidic bond cleavage of the intermediates to form AAIAs. Structural simulation, molecular modeling, and mutational analysis of SmzB showed that Tyr26, Cys49, and Tyr93 are the key catalytic residues in the C-C bond formation of the acyl chain of AAIAs, providing mechanistic insights into the enzymatic FCA reaction.
Collapse
Affiliation(s)
- Yuwei Xia
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guoliang Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
46
|
Guo MX, Zhang MM, Sun K, Cui JJ, Liu YC, Gao K, Dong SH, Luo S. Genome Mining of Linaridins Provides Insights into the Widely Distributed LinC Oxidoreductases. JOURNAL OF NATURAL PRODUCTS 2023; 86:2333-2341. [PMID: 37819880 DOI: 10.1021/acs.jnatprod.3c00527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Linaridins are a family of underexplored ribosomally synthesized and post-translationally modified peptides despite the prevalence of their biosynthetic gene clusters (BGCs) in microbial genomes, as shown by bioinformatic studies. Our genome mining efforts reveal that 96 putative oxidoreductase genes, namely, LinC, are encoded in linaridin BGCs. We heterologously expressed two such LinC-containing linaridin BGCs, yan and ydn, from Streptomyces yunnanensis and obtained three new linaridins, named yunnanaridins A-C (1-3). Their structures are characterized by Z-configurations of the dehydrobutyrines and the presence of a variety of epimerized amino acid residues. Yunnanaridin A (1) is the sixth member of the family of type-B linaridins, whereas yunnanaridins B (2) and C (3) represent the first examples of expressed type-C linaridins. Interestingly, heterologous expression of the same BGCs with LinC in-frame knockouts produced the same compounds. This work expands the structural diversity of linaridins and provides evidence for the notion that the widespread LinCs may not be involved in linaridin biosynthesis.
Collapse
Affiliation(s)
- Meng-Xue Guo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Meng-Meng Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ke Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jiao-Jiao Cui
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yi-Cheng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Shi-Hui Dong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Shangwen Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
47
|
Yang L, Hatanaka T. Enhanced overexpression of secreted enzymes by discrete repeat promoters in Streptomyces lividans. Biosci Biotechnol Biochem 2023; 87:1420-1426. [PMID: 37541954 DOI: 10.1093/bbb/zbad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Streptomyces lividans is an efficient host for extracellular overproduction of recombinant proteins. To enhance the overexpression strength of S. lividans, we designed several kinds of expression plasmids with different positioning of repeat promoters. The effect of repeat promoters was evaluated by measuring the accumulated amounts of a stable transglutaminase or an unstable carboxypeptidase that was secreted into the medium. Successive tandem positions of repeat promoters upstream of the normal promoter did not enhance the expression of transglutaminase. Discrete positions of repeat promoters both upstream and downstream of the normal promoter enhanced the expression of transglutaminase to 2-fold, and the downstream ones also enhanced the expression of carboxypeptidase to 1.7-fold. On the other hand, there were still some constructs of plasmids with discrete repeat promoters that did not promote the expression of the target enzymes, indicating the complexity of the mechanisms of repeat promoters working on gene expression.
Collapse
Affiliation(s)
- Lingli Yang
- Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Research Institute for Biological Sciences (RIBS), Okayama, 7549-1 Kibichuo-cho, Kaga-gun, Okayama, Japan
| | - Tadashi Hatanaka
- Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Research Institute for Biological Sciences (RIBS), Okayama, 7549-1 Kibichuo-cho, Kaga-gun, Okayama, Japan
| |
Collapse
|
48
|
Gu B, Kim DG, Kim DK, Kim M, Kim HU, Oh MK. Heterologous overproduction of oviedomycin by refactoring biosynthetic gene cluster and metabolic engineering of host strain Streptomyces coelicolor. Microb Cell Fact 2023; 22:212. [PMID: 37838667 PMCID: PMC10576301 DOI: 10.1186/s12934-023-02218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Oviedomycin is one among several polyketides known for their potential as anticancer agents. The biosynthetic gene cluster (BGC) for oviedomycin is primarily found in Streptomyces antibioticus. However, because this BGC is usually inactive under normal laboratory conditions, it is necessary to employ systematic metabolic engineering methods, such as heterologous expression, refactoring of BGCs, and optimization of precursor biosynthesis, to allow efficient production of these compounds. RESULTS Oviedomycin BGC was captured from the genome of Streptomyces antibioticus by a newly constructed plasmid, pCBA, and conjugated into the heterologous strain, S. coelicolor M1152. To increase the production of oviedomycin, clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system was utilized in an in vitro setting to refactor the native promoters within the ovm BGC. The target promoters of refactoring were selected based on examination of factors such as transcription levels and metabolite profiling. Furthermore, genome-scale metabolic simulation was applied to find overexpression targets that could enhance the biosynthesis of precursors or cofactors related to oviedomycin production. The combined approach led to a significant increase in oviedomycin production, reaching up to 670 mg/L, which is the highest titer reported to date. This demonstrates the potential of the approach undertaken in this study. CONCLUSIONS The metabolic engineering approach used in this study led to the successful production of a valuable polyketide, oviedomycin, via BGC cloning, promoter refactoring, and gene manipulation of host metabolism aided by genome-scale metabolic simulation. This approach can be also useful for the efficient production of other secondary molecules encoded by 'silent' BGCs.
Collapse
Affiliation(s)
- Boncheol Gu
- Department of Chemical & Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Duck Gyun Kim
- Department of Chemical & Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Do-Kyung Kim
- Department of Chemical & Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Minji Kim
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Min-Kyu Oh
- Department of Chemical & Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
49
|
Yang M, Li W, Zhou L, Lin X, Zhang W, Shen Y, Deng H, Lin HW, Zhou Y. Biosynthesis of trialkyl-substituted aromatic polyketide NFAT-133 involves unusual P450 monooxygenase-mediating aromatization and a putative metallo-beta-lactamase fold hydrolase. Synth Syst Biotechnol 2023; 8:349-356. [PMID: 37325182 PMCID: PMC10265476 DOI: 10.1016/j.synbio.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
The bacterial trialkyl-substituted aromatic polyketides are structurally featured with the unusual aromatic core in the middle of polyketide chain such as TM-123 (1), veramycin A (2), NFAT-133 (3) and benwamycin I (4), which were discovered from Streptomyces species and demonstrated with antidiabetic and immunosuppressant activities. Though the biosynthetic pathway of 1-3 was reported as a type I polyketide synthase (PKS), the PKS assembly line was interpreted inconsistently, and it remains a mystery how the compound 3 was generated. Herein, the PKS assembly logic of 1-4 was revised by site-mutagenetic analysis of the PKS dehydratase domains. Based on gene deletion and complementation, the putative P450 monooxygenase nftE1 and metallo-beta-lactamase (MBL) fold hydrolase nftF1 were verified as essential genes for the biosynthesis of 1-4. The absence of nftE1 led to abolishment of 1-4 and accumulation of new products (5-8). Structural elucidation reveals 5-8 as the non-aromatic analogs of 1, suggesting the NftE1-catalyzed aromatic core formation. Deletion of nftF1 resulted in disappearance of 3 and 4 with the compounds 1 and 2 unaffected. As a rare MBL-fold hydrolase from type I PKSs, NftF1 potentially generates the compound 3 through two strategies: catalyze premature chain-offloading as a trans-acting thioesterase or hydrolyze the lactone-bond of compound 1 as an esterase.
Collapse
Affiliation(s)
- Ming Yang
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wanlu Li
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lin Zhou
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiao Lin
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Institute of Marine Drugs, Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, PR China
| | - Wenyu Zhang
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yaoyao Shen
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Hou-wen Lin
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yongjun Zhou
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
50
|
Huang Q, Zhang X, Guo Z, Fu X, Zhao Y, Kang Q, Bai L. Biosynthesis of ansamitocin P-3 incurs stress on the producing strain Actinosynnema pretiosum at multiple targets. Commun Biol 2023; 6:860. [PMID: 37596387 PMCID: PMC10439133 DOI: 10.1038/s42003-023-05227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023] Open
Abstract
Microbial bioactive natural products mediate ecologically beneficial functions to the producing strains, and have been widely used in clinic and agriculture with clearly defined targets and underlying mechanisms. However, the physiological effects of their biosynthesis on the producing strains remain largely unknown. The antitumor ansamitocin P-3 (AP-3), produced by Actinosynnema pretiosum ATCC 31280, was found to repress the growth of the producing strain at high concentration and target the FtsZ protein involved in cell division. Previous work suggested the presence of additional cryptic targets of AP-3 in ATCC 31280. Herein we use chemoproteomic approach with an AP-3-derived photoaffinity probe to profile the proteome-wide interactions of AP-3. AP-3 exhibits specific bindings to the seemingly unrelated deoxythymidine diphosphate glucose-4,6-dehydratase, aldehyde dehydrogenase, and flavin-dependent thymidylate synthase, which are involved in cell wall assembly, central carbon metabolism and nucleotide biosynthesis, respectively. AP-3 functions as a non-competitive inhibitor of all three above target proteins, generating physiological stress on the producing strain through interfering diverse metabolic pathways. Overexpression of these target proteins increases strain biomass and markedly boosts AP-3 titers. This finding demonstrates that identification and engineering of cryptic targets of bioactive natural products can lead to in-depth understanding of microbial physiology and improved product titers.
Collapse
Affiliation(s)
- Qungang Huang
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Zhang
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ziyue Guo
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinnan Fu
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yilei Zhao
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|