1
|
Liu Z, Kabir MT, Chen S, Zhang H, Wakim LM, Rehm BHA. Intranasal Epitope-Polymer Vaccine Lodges Resident Memory T Cells Protecting Against Influenza Virus. Adv Healthc Mater 2024; 13:e2304188. [PMID: 38411375 PMCID: PMC11469178 DOI: 10.1002/adhm.202304188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Intranasal vaccines, unlike injectable vaccines, boost immunity along the respiratory tract; this can significantly limit respiratory virus replication and shedding. There remains a need to develop mucosal adjuvants and vaccine delivery systems that are both safe and effective following intranasal administration. Here, biopolymer particles (BP) densely coated with repeats of MHC class I restricted immunodominant epitopes derived from influenza A virus namely NP366, a nucleoprotein-derived epitope and PA224, a polymerase acidic subunit derived epitope, are bioengineered. These BP-NP366/PA224 can be manufactured at a high yield and are obtained at ≈93% purity, exhibiting ambient-temperature stability. Immunological characterization includes comparing systemic and mucosal immune responses mounted following intramuscular or intranasal immunization. Immunization with BP-NP366/PA224 without adjuvant triggers influenza-specific CD8+ T cell priming and memory CD8+ T cell development. Co-delivery with the adjuvant poly(I:C) significantly boosts the size and functionality of the influenza-specific pulmonary resident memory CD8+ T cell pool. Intranasal, but not intramuscular delivery of BP-NP366/PA224 with poly(I:C), provides protection against influenza virus challenge. Overall, the BP approach demonstrates as a suitable antigen formulation for intranasal delivery toward induction of systemic protective T cell responses against influenza virus.
Collapse
Affiliation(s)
- Ziyang Liu
- Department of Microbiology and ImmunologyThe University of MelbourneThe Peter Doherty Institute for Infection and ImmunityMelbourneVictoria3000Australia
| | - Md. Tanvir Kabir
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityDon Young RoadNathanQueensland4111Australia
| | - Shuxiong Chen
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityDon Young RoadNathanQueensland4111Australia
| | - Heran Zhang
- Department of Microbiology and ImmunologyThe University of MelbourneThe Peter Doherty Institute for Infection and ImmunityMelbourneVictoria3000Australia
| | - Linda M. Wakim
- Department of Microbiology and ImmunologyThe University of MelbourneThe Peter Doherty Institute for Infection and ImmunityMelbourneVictoria3000Australia
| | - Bernd H. A. Rehm
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityDon Young RoadNathanQueensland4111Australia
| |
Collapse
|
2
|
Altermann E, Reilly K, Young W, Ronimus RS, Muetzel S. Tailored Nanoparticles With the Potential to Reduce Ruminant Methane Emissions. Front Microbiol 2022; 13:816695. [PMID: 35359731 PMCID: PMC8963448 DOI: 10.3389/fmicb.2022.816695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Agricultural methane produced by archaea in the forestomach of ruminants is a key contributor to rising levels of greenhouse gases leading to climate change. Functionalized biological polyhydroxybutyrate (PHB) nanoparticles offer a new concept for the reduction of enteric methane emissions by inhibiting rumen methanogens. Nanoparticles were functionalized in vivo with an archaeal virus lytic enzyme, PeiR, active against a range of rumen Methanobrevibacter species. The impact of functionalized nanoparticles against rumen methanogens was demonstrated in pure cultures, in rumen batch and continuous flow rumen models yielding methane reduction of up to 15% over 11 days in the most complex system. We further present evidence of biological nanoparticle fermentation in a rumen environment. Elevated levels of short-chain fatty acids essential to ruminant nutrition were recorded, giving rise to a promising new strategy combining methane mitigation with a possible increase in animal productivity.
Collapse
Affiliation(s)
- Eric Altermann
- AgResearch Ltd., Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
- *Correspondence: Eric Altermann,
| | | | - Wayne Young
- AgResearch Ltd., Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | | |
Collapse
|
3
|
Chen S, Evert B, Adeniyi A, Salla‐Martret M, Lua LH, Ozberk V, Pandey M, Good MF, Suhrbier A, Halfmann P, Kawaoka Y, Rehm BHA. Ambient Temperature Stable, Scalable COVID-19 Polymer Particle Vaccines Induce Protective Immunity. Adv Healthc Mater 2022; 11:e2102089. [PMID: 34716678 PMCID: PMC8652985 DOI: 10.1002/adhm.202102089] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 12/15/2022]
Abstract
There is an unmet need for safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines that are stable and can be cost-effectively produced at large scale. Here, a biopolymer particle (BP) vaccine technology that can be quickly adapted to new and emerging variants of SARS-CoV-2 is used. Coronavirus antigen-coated BPs are described as vaccines against SARS-CoV-2. The spike protein subunit S1 or epitopes from S and M proteins (SM) plus/minus the nucleocapsid protein (N) are selected as antigens to either coat BPs during assembly inside engineered Escherichia coli or BPs are engineered to specifically ligate glycosylated spike protein (S1-ICC) produced by using baculovirus expression in insect cell culture (ICC). BP vaccines are safe and immunogenic in mice. BP vaccines, SM-BP-N and S1-ICC-BP induced protective immunity in the hamster SARS-CoV-2 infection model as shown by reduction of virus titers up to viral clearance in lungs post infection. The BP platform offers the possibility for rapid design and cost-effective large-scale manufacture of ambient temperature stable and globally available vaccines to combat the coronavirus disease 2019 (COVID-19) pandemic.
Collapse
Affiliation(s)
- Shuxiong Chen
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityNathanQLD4111Australia
| | - Benjamin Evert
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityNathanQLD4111Australia
| | - Adetayo Adeniyi
- Protein Expression FacilityUniversity of QueenslandBrisbaneQLD4072Australia
| | | | - Linda H.‐L. Lua
- Protein Expression FacilityUniversity of QueenslandBrisbaneQLD4072Australia
| | - Victoria Ozberk
- Institute for GlycomicsGriffith UniversityGold CoastQLD4215Australia
| | - Manisha Pandey
- Institute for GlycomicsGriffith UniversityGold CoastQLD4215Australia
| | - Michael F. Good
- Institute for GlycomicsGriffith UniversityGold CoastQLD4215Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research InstituteBrisbaneQLD4006Australia
| | - Peter Halfmann
- Department of Pathobiological SciencesSchool of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological SciencesSchool of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Bernd H. A. Rehm
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityNathanQLD4111Australia
- Menzies Health Institute QueenslandGriffith UniversityGold Coast4222Australia
| |
Collapse
|
4
|
Marques CR, Wibowo D, Rubio-Reyes P, Serafim LS, Soares AMVM, Rehm BHA. Bacterially assembled biopolyester nanobeads for removing cadmium from water. WATER RESEARCH 2020; 186:116357. [PMID: 32916618 DOI: 10.1016/j.watres.2020.116357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd)-contaminated waterbodies are a worldwide concern for the environment, impacting human health. To address the need for efficient, sustainable and cost-effective remediation measures, we developed innovative Cd bioremediation agents by engineering Escherichia coli to assemble poly(3-hydroxybutyric acid) (PHB) beads densely coated with Cd-binding peptides. This was accomplished by translational fusion of Cd-binding peptides to the N- or C-terminus of a PHB synthase that catalyzes PHB synthesis and mediates assembly of Cd2 or Cd1 coated PHB beads, respectively. Cd1 beads showed greater Cd adsorption with 441 nmol Cd mg-1 bead mass when compared to Cd2 beads (334 nmol Cd mg-1 bead-mass) and plain beads (238 nmol Cd mg-1 bead-mass). The Cd beads were not ecotoxic and did attenuate Cd-spiked solutions toxicity. Overall, the bioengineered beads provide a means to remediate Cd-contaminated sites, can be cost-effectively produced at large scale, and offer a biodegradable and safe alternative to synthetic ecotoxic treatments.
Collapse
Affiliation(s)
- Catarina R Marques
- CESAM - Centre of Marine and Environmental Studies, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal.
| | - David Wibowo
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Patricia Rubio-Reyes
- Malaghan Institute of Medical Research, Gate 7, Victoria University Central Services Building, Kelburn, Wellington 6012, New Zealand
| | - Luísa S Serafim
- CICECO - Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- CESAM - Centre of Marine and Environmental Studies, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
5
|
Wong JX, Gonzalez-Miro M, Sutherland-Smith AJ, Rehm BHA. Covalent Functionalization of Bioengineered Polyhydroxyalkanoate Spheres Directed by Specific Protein-Protein Interactions. Front Bioeng Biotechnol 2020; 8:44. [PMID: 32117925 PMCID: PMC7015861 DOI: 10.3389/fbioe.2020.00044] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
Bioengineered polyhydroxyalkanoate (PHA) spheres assembled in engineered bacteria are showing promising potential in protein immobilization for high-value applications. Here, we have designed innovative streamlined approaches to add functional proteins from complex mixtures (e.g., without prior purification) to bioengineered PHA spheres directly harnessing the specificity of the SpyTag/SpyCatcher mediated protein ligation. Escherichia coli was engineered to assemble PHA spheres displaying the SpyCatcher domain while simultaneously producing a SpyTagged target protein, which was in vivo specifically ligated to the PHA spheres. To further demonstrate the specificity of this ligation reaction, we incubated isolated SpyCatcher-coated PHA spheres with cell lysates containing SpyTagged target protein, which also resulted in specific ligation mediating surface functionalization. An even cruder approach was used by lysing a mixture of cells, either producing PHA spheres or target protein, which resulted in specific surface functionalization suggesting that ligation between the SpyCatcher-coated PHA spheres and the SpyTagged target proteins is highly specific. To expand the design space of this general modular approach toward programmable multifunctionalization, e.g., one-pot construction of immobilized multienzyme cascade systems on PHA spheres, we designed various recombinant bimodular PHA spheres utilizing alternative Tag/Catcher pairs (e.g., SnoopTag/SnoopCatcher and SdyTag/SdyCatcher systems). One of our bimodular PHA spheres resulted in simultaneous multifunctionalization of plain PHA spheres in one-step with two differently tagged proteins under in vitro and ex vivo reaction conditions while remaining functional. Our bimodular PHA spheres also showed high orthogonality with the non-target peptide tag and exhibited decent robustness against repeated freeze-thaw treatment. We demonstrated the utility of these approaches by using a fluorescent protein, a monomeric amylase, and a dimeric organophosphate hydrolase as target proteins. We established a versatile toolbox for dynamic functionalization of PHA spheres for biomedical and industrial applications.
Collapse
Affiliation(s)
- Jin Xiang Wong
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington, New Zealand
| | | | | | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
6
|
|
7
|
Soda N, Rehm BHA, Sonar P, Nguyen NT, Shiddiky MJA. Advanced liquid biopsy technologies for circulating biomarker detection. J Mater Chem B 2019; 7:6670-6704. [PMID: 31646316 DOI: 10.1039/c9tb01490j] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liquid biopsy is a new diagnostic concept that provides important information for monitoring and identifying tumor genomes in body fluid samples. Detection of tumor origin biomolecules like circulating tumor cells (CTCs), circulating tumor specific nucleic acids (circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), microRNAs (miRNAs), long non-coding RNAs (lnRNAs)), exosomes, autoantibodies in blood, saliva, stool, urine, etc. enables cancer screening, early stage diagnosis and evaluation of therapy response through minimally invasive means. From reliance on painful and hazardous tissue biopsies or imaging depending on sophisticated equipment, cancer management schemes are witnessing a rapid evolution towards minimally invasive yet highly sensitive liquid biopsy-based tools. Clinical application of liquid biopsy is already paving the way for precision theranostics and personalized medicine. This is achieved especially by enabling repeated sampling, which in turn provides a more comprehensive molecular profile of tumors. On the other hand, integration with novel miniaturized platforms, engineered nanomaterials, as well as electrochemical detection has led to the development of low-cost and simple platforms suited for point-of-care applications. Herein, we provide a comprehensive overview of the biogenesis, significance and potential role of four widely known biomarkers (CTCs, ctDNA, miRNA and exosomes) in cancer diagnostics and therapeutics. Furthermore, we provide a detailed discussion of the inherent biological and technical challenges associated with currently available methods and the possible pathways to overcome these challenges. The recent advances in the application of a wide range of nanomaterials in detecting these biomarkers are also highlighted.
Collapse
Affiliation(s)
- Narshone Soda
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery (GRIDD), Griffith University, Nathan, QLD 4111, Australia
| | - Prashant Sonar
- School of Chemistry, Physics and Mechanical Engineering, Molecular Design and Synthesis, Queensland University of Technology (QUT), Brisbane, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia
| |
Collapse
|
8
|
Harada K, Nambu Y, Mizuno S, Tsuge T. In vivo and in vitro characterization of hydrophilic protein tag-fused Ralstonia eutropha polyhydroxyalkanoate synthase. Int J Biol Macromol 2019; 138:379-385. [PMID: 31315020 DOI: 10.1016/j.ijbiomac.2019.07.095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/13/2019] [Accepted: 07/13/2019] [Indexed: 01/02/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are synthesized by bacteria as an intracellular storage polyester, where PHA synthase (PhaC) catalyzes the polymerization of its substrate hydroxyacyl-coenzyme A (HA-CoA) to form PHA. When PhaC is overexpressed in Escherichia coli, most PhaC protein is produced as insoluble inclusion bodies due to its low aqueous solubility. This study aimed to improve the solubility of Ralstonia eutropha PHA synthase (PhaCRe) by fusing a hydrophilic tag, glutathione S-transferase (GST), to the protein's N-terminus. In in vivo assays, the GST tag had no obvious effect on solubility and enzymatic activity of PhaCRe. However, an in vitro assay revealed that the surface of GST-fused PhaCRe (GST-PhaCRe) had increased hydrophilicity, and tended to form correct PhaCRe dimers when added to the (R)-3-hydroxybutyryl-CoA substrate. Although GST-PhaCRe displayed a long lag phase at the start of a polymerization reaction, granule-associated GST-PhaCRe showed higher catalytic activity than PhaCRe in kinetic analysis. The results are discussed in light of the dimerization mechanisms of PhaCRe.
Collapse
Affiliation(s)
- Ken Harada
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Yuka Nambu
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Shoji Mizuno
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Takeharu Tsuge
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan.
| |
Collapse
|
9
|
Hildenbrand JC, Reinhardt S, Jendrossek D. Formation of an Organic-Inorganic Biopolymer: Polyhydroxybutyrate-Polyphosphate. Biomacromolecules 2019; 20:3253-3260. [PMID: 31062966 DOI: 10.1021/acs.biomac.9b00208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A considerable variety of different biopolymers is formed by the entirety of organisms present on earth. Most of these compounds are organic polymers such as polysaccharides, polyamino acids, polynucleotides, polyisoprenes or polyhydroxyalkanoates (PHAs), but some biopolymers can consist of solely inorganic monomers such as phosphate in polyphosphates (polyPs). In this contribution, we describe the formation of an organic-inorganic block copolymer consisting of poly(3-hydroxybutyrate) (PHB) and polyP. This was achieved by the expression of a fusion of the polyP kinase gene (ppk2c) with the PHB synthase gene (phaC) of Ralstonia eutropha in a polyP-free and PHB-free mutant background of R. eutropha. The fusion protein catalyzed both the formation of polyP by its polyP kinase domain and the formation of PHB by its PHB synthase domain. It was also possible to synthesize the polyP-PHB polymer in vitro with purified Ppk2c-PhaC, if the monomers, adenosine triphosphate (ATP) and 3-hydroxybutyryl-CoA (3HB-CoA), were provided. Most likely, the formed block copolymer (polyP-protein-PHB) turns into a blend of polyP and PHB after release from the enzyme.
Collapse
Affiliation(s)
| | - Simone Reinhardt
- Institute of Microbiology , University of Stuttgart , 70174 Stuttgart , Germany
| | - Dieter Jendrossek
- Institute of Microbiology , University of Stuttgart , 70174 Stuttgart , Germany
| |
Collapse
|
10
|
Wong JX, Rehm BHA. Design of Modular Polyhydroxyalkanoate Scaffolds for Protein Immobilization by Directed Ligation. Biomacromolecules 2018; 19:4098-4112. [DOI: 10.1021/acs.biomac.8b01093] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jin Xiang Wong
- Institute of Fundamental Sciences, Massey University, Private Bag, 11222 Palmerston North, New Zealand
- MacDiarmid Institute of Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, 4111 Queensland, Australia
| |
Collapse
|
11
|
Kutralam-Muniasamy G, Peréz-Guevara F. Genome characteristics dictate poly-R-(3)-hydroxyalkanoate production in Cupriavidus necator H16. World J Microbiol Biotechnol 2018; 34:79. [DOI: 10.1007/s11274-018-2460-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/19/2018] [Indexed: 11/28/2022]
|
12
|
Du J, Rehm BHA. Purification of target proteins from intracellular inclusions mediated by intein cleavable polyhydroxyalkanoate synthase fusions. Microb Cell Fact 2017; 16:184. [PMID: 29096637 PMCID: PMC5667439 DOI: 10.1186/s12934-017-0799-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/24/2017] [Indexed: 11/12/2022] Open
Abstract
Background Recombinant protein production and purification from Escherichia coli is often accompanied with expensive and complicated procedures, especially for therapeutic proteins. Here it was demonstrated that, by using an intein cleavable polyhydroxyalkanoate synthase fusion, recombinant proteins can be first produced and sequestered on a natural resin, the polyhydroxyalkanoate (PHA) inclusions, then separated from contaminating host proteins via simple PHA bead isolation steps, and finally purified by specific release into the soluble fraction induced by a pH reduction. Results By translationally fusing a target protein to PHA synthase using a self-cleaving intein as linker, intracellular production of PHA beads was achieved. Upon isolation of respective PHA beads the soluble pure target protein was released by a simple pH shift to 6. The utility of this approach was exemplified by producing six target proteins, including Aequorea victoria green fluorescent protein (GFP), Mycobacterium tuberculosis vaccine candidate Rv1626, the immunoglobulin G (IgG) binding ZZ domain of protein A derived from Staphylococcus aureus, human tumor necrosis factor alpha (TNFα), human granulocyte colony-stimulating factor (G-CSF), and human interferon alpha 2b (IFNα2b). Conclusions Here a new method for production and purification of a tag-less protein was developed through intein cleavable polyhydroxyalkanoate synthase fusion. Pure target protein could be easily obtained without laborious downstream processing. Electronic supplementary material The online version of this article (10.1186/s12934-017-0799-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinping Du
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Bernd H A Rehm
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand. .,Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.
| |
Collapse
|
13
|
Rubio‐Reyes P, Parlane NA, Buddle BM, Wedlock DN, Rehm BHA. Immunological properties and protective efficacy of a single mycobacterial antigen displayed on polyhydroxybutyrate beads. Microb Biotechnol 2017; 10:1434-1440. [PMID: 28714174 PMCID: PMC5658617 DOI: 10.1111/1751-7915.12754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/01/2017] [Indexed: 01/07/2023] Open
Abstract
In 2015, there were an estimated 10.4 million new tuberculosis (TB) cases and 1.4 million deaths worldwide. Bacille Calmette-Guérin (BCG), an attenuated strain of Mycobacterium bovis, is the vaccine available against TB, but it is insufficient for global TB control. This study evaluated the immunogenicity of the Mycobacterium tuberculosis antigen Rv1626 in mice while assessing the effect of co-delivering either Cpe30 (immunostimulatory peptide), CS.T3378-395 (promiscuous T helper epitope) or flagellin (TLR5 agonist) or a combination of all three immunostimulatory agents. Rv1626 and the respective immunostimulatory proteins/peptides were co-displayed on polyhydroxybutyrate beads assembled inside an engineered endotoxin-free mutant of Escherichia coli. Mice vaccinated with these beads produced immune responses biased towards Th1-/Th17-type responses, but inclusion of Cpe30, CS.T3378-395 and flagellin did not enhance immunogenicity of the Rv1626 protein. This was confirmed in a M. bovis challenge experiment in mice, where Rv1626 beads reduced bacterial cell counts in the lungs by 0.48 log10 compared with the adjuvant alone control group. Co-delivery of immunostimulatory peptides did not further enhance protective immunity.
Collapse
Affiliation(s)
- Patricia Rubio‐Reyes
- Institute of Fundamental SciencesMassey University11222 Private BagPalmerston NorthNew Zealand
| | - Natalie A. Parlane
- AgResearch, Hopkirk Research InstituteGrasslands Research Centre11008 Private BagPalmerston NorthNew Zealand
| | - Bryce M. Buddle
- AgResearch, Hopkirk Research InstituteGrasslands Research Centre11008 Private BagPalmerston NorthNew Zealand
| | - D. Neil Wedlock
- AgResearch, Hopkirk Research InstituteGrasslands Research Centre11008 Private BagPalmerston NorthNew Zealand
| | - Bernd H. A. Rehm
- Institute of Fundamental SciencesMassey University11222 Private BagPalmerston NorthNew Zealand
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanQLDAustralia
| |
Collapse
|
14
|
Rehm BHA. Bioengineering towards self-assembly of particulate vaccines. Curr Opin Biotechnol 2017; 48:42-53. [PMID: 28365472 DOI: 10.1016/j.copbio.2017.03.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/20/2017] [Accepted: 03/15/2017] [Indexed: 02/07/2023]
Abstract
There is an unmet demand for safe and efficient vaccines for prevention of various infectious diseases. Subunit vaccines comprise selected pathogen specific antigens are a safe alternative to whole organism vaccines. However they often lack immunogenicity. Natural and synthetic self-assembling polymers and proteins will be reviewed in view their use to encapsulate and/or display antigens to serve as immunogenic antigen carriers for induction of protective immunity. Recent advances made in in vivo assembly of antigen-displaying polyester inclusions will be a focus. Particulate vaccines are inherently immunogenic due to enhanced uptake by antigen presenting cells which process antigens mediating adaptive immune responses. Bioengineering approaches enable the design of tailor-made particulate vaccines to fine tune immune responses towards protective immunity.
Collapse
Affiliation(s)
- Bernd H A Rehm
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
15
|
Engineering Mycobacteria for the Production of Self-Assembling Biopolyesters Displaying Mycobacterial Antigens for Use as a Tuberculosis Vaccine. Appl Environ Microbiol 2017; 83:AEM.02289-16. [PMID: 28087528 PMCID: PMC5311400 DOI: 10.1128/aem.02289-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/09/2016] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis or Mycobacterium bovis and still remains one of the world's biggest global health burdens. Recently, engineered polyhydroxyalkanoate (PHA) biobeads that were produced in both Escherichia coli and Lactococcus lactis and displayed mycobacterial antigens were found to induce significant cell-mediated immune responses in mice. We observed that such PHA beads contained host cell proteins as impurities, which we hypothesized to have the potential to induce immunity. In this study, we aimed to develop PHA beads produced in mycobacteria (mycobacterial PHA biobeads [MBB]) and test their potential as a TB vaccine in a mouse model. As a model organism, nonpathogenic Mycobacterium smegmatis was engineered to produce MBB or MBB with immobilized mycobacterial antigens Ag85A and ESAT-6 on their surface (A:E-MBB). Three key enzymes involved in the poly(3-hydroxybutyric acid) pathway, namely, β-ketothiolase (PhaA), acetoacetyl-coenzyme A reductase (PhaB), and PHA synthase (PhaC), were engineered into E. coli-Mycobacterium shuttle plasmids and expressed in trans. Immobilization of specific antigens to the surface of the MBB was achieved by creating a fusion with the PHA synthase which remains covalently attached to the polyester core, resulting in PHA biobeads displaying covalently immobilized antigens. MBB, A:E-MBB, and an M. smegmatis vector control (MVC) were used in a mouse immunology trial, with comparison to phosphate-buffered saline (PBS)-vaccinated and Mycobacterium bovis BCG-vaccinated groups. We successfully produced MBB and A:E-MBB and used them as vaccines to induce a cellular immune response to mycobacterial antigens. IMPORTANCE Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis or Mycobacterium bovis and still remains one of the world's biggest global health burdens. In this study, we produced polyhydroxyalkanoate (PHA) biobeads in mycobacteria and used them as vaccines to induce a cellular immune response to mycobacterial antigens.
Collapse
|
16
|
Bioengineering a bacterial pathogen to assemble its own particulate vaccine capable of inducing cellular immunity. Sci Rep 2017; 7:41607. [PMID: 28150705 PMCID: PMC5288705 DOI: 10.1038/srep41607] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023] Open
Abstract
Many bacterial pathogens naturally form cellular inclusions. Here the immunogenicity of polyhydroxyalkanoate (PHA) inclusions and their use as particulate vaccines delivering a range of host derived antigens was assessed. Our study showed that PHA inclusions of pathogenic Pseudomonas aeruginosa are immunogenic mediating a specific cell-mediated immune response. Protein engineering of the PHA inclusion forming enzyme by translational fusion of epitopes from vaccine candidates outer membrane proteins OprI, OprF, and AlgE mediated self-assembly of PHA inclusions coated by these selected antigens. Mice vaccinated with isolated PHA inclusions produced a Th1 type immune response characterized by antigen-specific production of IFN-γ and IgG2c isotype antibodies. This cell-mediated immune response was found to be associated with the production of functional antibodies reacting with cells of various P. aeruginosa strains as well as facilitating opsonophagocytic killing. This study showed that cellular inclusions of pathogenic bacteria are immunogenic and can be engineered to display selected antigens suitable to serve as particulate subunit vaccines against infectious diseases.
Collapse
|
17
|
Lee SY. Applications of Microbial Biopolymers in Display Technology. CONSEQUENCES OF MICROBIAL INTERACTIONS WITH HYDROCARBONS, OILS, AND LIPIDS: PRODUCTION OF FUELS AND CHEMICALS 2017. [PMCID: PMC7123360 DOI: 10.1007/978-3-319-50436-0_377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Microorganisms produce a variety of different polymers such as polyamides, polysaccharides, and polyesters. The polyesters, the polyhydroxyalkanoates (PHAs), are the most extensively studied polymers in regard to their use in display technology. The material properties of bacterial PHAs in combination with their biocompatibility and biodegradability make them attractive substrates for use in display technology applications. By translationally fusing bioactive molecules to a gene encoding a PHA-binding domain, the appropriate functionalization for a given application can be achieved such that the need for chemical immobilization is circumvented. By separately extracting and processing the biopolymer, using it to coat a surface, and then treating this surface with the fusion proteins, surface functionalization for immunodiagnostic microarray or tissue engineering applications can be accomplished. Conversely, by expressing the fusion protein directly in the PHA-producing organisms, one-step production of functionalized beads can be achieved. Such beads have been demonstrated in diverse applications, including fluorescence-activated cell sorting, enzyme-linked immunosorbent assays, microarrays, diagnostic skin test for tuberculosis, vaccines, protein purification, and affinity bioseparation.
Collapse
Affiliation(s)
- Sang Yup Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea (Republic of)
| |
Collapse
|
18
|
Thomson NM, Sangiambut S, Ushimaru K, Sivaniah E, Tsuge T. Poly(hydroxyalkanoate) Generation from Nonchiral Substrates Using Multiple Enzyme Immobilizations on Peptide Nanofibers. ACS Biomater Sci Eng 2016; 3:3076-3082. [DOI: 10.1021/acsbiomaterials.6b00329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Nicholas M. Thomson
- Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Smith Sangiambut
- Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Kazunori Ushimaru
- Department
of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Easan Sivaniah
- Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Institute
for Integrated Cell-Material Sciences, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takeharu Tsuge
- Department
of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| |
Collapse
|
19
|
Visser F, Müller B, Rose J, Prüfer D, Noll GA. Forizymes - functionalised artificial forisomes as a platform for the production and immobilisation of single enzymes and multi-enzyme complexes. Sci Rep 2016; 6:30839. [PMID: 27502156 PMCID: PMC4977538 DOI: 10.1038/srep30839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/11/2016] [Indexed: 01/27/2023] Open
Abstract
The immobilisation of enzymes plays an important role in many applications, including biosensors that require enzyme activity, stability and recyclability in order to function efficiently. Here we show that forisomes (plant-derived mechanoproteins) can be functionalised with enzymes by translational fusion, leading to the assembly of structures designated as forizymes. When forizymes are expressed in the yeast Saccharomyces cerevisiae, the enzymes are immobilised by the self-assembly of forisome subunits to form well-structured protein bodies. We used glucose-6-phosphate dehydrogenase (G6PDH) and hexokinase 2 (HXK2) as model enzymes for the one-step production and purification of catalytically active forizymes. These structures retain the typical stimulus-response reaction of the forisome and the enzyme remains active even after multiple assay cycles, which we demonstrated using G6PDH forizymes as an example. We also achieved the co-incorporation of both HXK2 and G6PDH in a single forizyme, facilitating a two-step reaction cascade that was 30% faster than the coupled reaction using the corresponding enzymes on different forizymes or in solution. Our novel forizyme immobilisation technique therefore not only combines the sensory properties of forisome proteins with the catalytic properties of enzymes but also allows the development of multi-enzyme complexes for incorporation into technical devices.
Collapse
Affiliation(s)
- Franziska Visser
- University of Münster, Institute of Plant Biology and Biotechnology, Münster, 48143, Germany
| | - Boje Müller
- University of Münster, Institute of Plant Biology and Biotechnology, Münster, 48143, Germany
| | - Judith Rose
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, 48143, Germany
| | - Dirk Prüfer
- University of Münster, Institute of Plant Biology and Biotechnology, Münster, 48143, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, 48143, Germany
| | - Gundula A Noll
- University of Münster, Institute of Plant Biology and Biotechnology, Münster, 48143, Germany
| |
Collapse
|
20
|
Hay ID, Du J, Reyes PR, Rehm BHA. In vivo polyester immobilized sortase for tagless protein purification. Microb Cell Fact 2015; 14:190. [PMID: 26608345 PMCID: PMC4658790 DOI: 10.1186/s12934-015-0385-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Laboratory scale recombinant protein production and purification techniques are often complicated, involving multiple chromatography steps and specialized equipment and reagents. Here it was demonstrated that recombinant proteins can be expressed as covalently immobilized to the surface of polyester (polyhydroxyalkanoate, PHA) beads in vivo in Escherichia coli by genetically fusing them to a polyester synthase gene (phaC). The insertion of a self-cleaving module, a modified sortase A (SrtA) from Staphylococcus aureus and its five amino acid recognition sequence between the synthase and the target protein led to a simple protein production and purification method. RESULTS The generation of hybrid genes encoding tripartite PhaC-SrtA-Target fusion proteins, enabled immobilization of proteins of interest to the surface of PHA beads in vivo. After simple cell lysis and isolation of the PHA beads, the target proteins could be selectively and efficiently released form the beads by activating the sortase with CaCl2 and triglycine. Up to 6 mg/l of soluble proteins at a purity of ~98 % could be isolated in one step with no optimization. This process was used to produce and isolate three proteins: Green fluorescent protein, maltose binding protein and the Mycobacterium tuberculosis vaccine candidate Rv1626. CONCLUSIONS We have developed a new technique for easy production and purification of recombinant proteins. This technique is capable of producing and purifying high yields of proteins suitable for research application in less than 2 days. No costly or specialized protein chromatography equipment, resins, reagents or expertise are required.
Collapse
Affiliation(s)
- Iain D Hay
- Department of Microbiology, Monash University, Clayton, 3800, Australia. .,Polybatics Ltd., Palmerston North, New Zealand.
| | - Jinping Du
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| | - Patricia Rubio Reyes
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| | - Bernd H A Rehm
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand. .,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand. .,Polybatics Ltd., Palmerston North, New Zealand.
| |
Collapse
|
21
|
Display of Antigens on Polyester Inclusions Lowers the Antigen Concentration Required for a Bovine Tuberculosis Skin Test. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 23:19-26. [PMID: 26512049 DOI: 10.1128/cvi.00462-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/14/2015] [Indexed: 11/20/2022]
Abstract
The tuberculin skin test is the primary screening test for the diagnosis of bovine tuberculosis (TB), and use of this test has been very valuable in the control of this disease in many countries. However, the test lacks specificity when cattle have been exposed to environmental mycobacteria or vaccinated with Mycobacterium bovis bacille Calmette-Guérin (BCG). Recent studies showed that the use of three or four recombinant mycobacterial proteins, including 6-kDa early secretory antigenic target (ESAT6), 10-kDa culture filtrate protein (CFP10), Rv3615c, and Rv3020c, or a peptide cocktail derived from those proteins, in the skin test greatly enhanced test specificity, with minimal loss of test sensitivity. The proteins are present in members of the pathogenic Mycobacterium tuberculosis complex but are absent in or not expressed by the majority of environmental mycobacteria and the BCG vaccine strain. To produce a low-cost skin test reagent, the proteins were displayed at high density on polyester beads through translational fusion to a polyhydroxyalkanoate synthase that mediates the formation of antigen-displaying inclusions in recombinant Escherichia coli. Display of the proteins on the polyester beads greatly increased their immunogenicity, allowing for the use of very low concentrations of proteins (0.1 to 3 μg of mycobacterial protein/inoculum) in the skin test. Polyester beads simultaneously displaying all four proteins were produced in a single fermentation process. The polyester beads displaying three or four mycobacterial proteins were shown to have high sensitivity for detection of M. bovis-infected cattle and induced minimal responses in animals exposed to environmental mycobacteria or vaccinated with BCG.
Collapse
|
22
|
Hooks DO, Rehm BHA. Insights into the surface topology of polyhydroxyalkanoate synthase: self-assembly of functionalized inclusions. Appl Microbiol Biotechnol 2015; 99:8045-53. [DOI: 10.1007/s00253-015-6719-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/17/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
|
23
|
Dinjaski N, Prieto MA. Smart polyhydroxyalkanoate nanobeads by protein based functionalization. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:885-99. [PMID: 25720989 PMCID: PMC7106125 DOI: 10.1016/j.nano.2015.01.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 10/11/2014] [Accepted: 01/05/2015] [Indexed: 11/29/2022]
Abstract
The development of innovative medicines and personalized biomedical approaches calls for new generation easily tunable biomaterials that can be manufactured applying straightforward and low-priced technologies. Production of functionalized bacterial polyhydroxyalkanoate (PHA) nanobeads by harnessing their natural carbon-storage granule production system is a thrilling recent development. This branch of nanobiotechnology employs proteins intrinsically binding the PHA granules as tags to immobilize recombinant proteins of interest and design functional nanocarriers for wide range of applications. Additionally, the implementation of new methodological platforms regarding production of endotoxin free PHA nanobeads using Gram-positive bacteria opened new avenues for biomedical applications. This prompts serious considerations of possible exploitation of bacterial cell factories as alternatives to traditional chemical synthesis and sources of novel bioproducts that could dramatically expand possible applications of biopolymers. From the Clinical Editor In the 21st century, we are coming into the age of personalized medicine. There is a growing use of biomaterials in the clinical setting. In this review article, the authors describe the use of natural polyhydroxyalkanoate (PHA) nanoparticulates, which are formed within bacterial cells and can be easily functionalized. The potential uses would include high-affinity bioseparation, enzyme immobilization, protein delivery, diagnostics etc. The challenges of this approach remain the possible toxicity from endotoxin and the high cost of production.
Collapse
Affiliation(s)
- Nina Dinjaski
- Polymer Biotechnology Lab, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - M Auxiliadora Prieto
- Polymer Biotechnology Lab, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
| |
Collapse
|
24
|
Jahns AC, Maspolim Y, Chen S, Guthrie JM, Blackwell LF, Rehm BHA. In vivo self-assembly of fluorescent protein microparticles displaying specific binding domains. Bioconjug Chem 2014; 24:1314-23. [PMID: 23876002 DOI: 10.1021/bc300551j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this study, fluorescent proteins (FPs) were engineered to self-assemble into protein particles inside recombinant Escherichia coli while mediating the display of various protein functionalities such as maltose binding protein or IgG binding domains of Protein A or G, respectively. Escherichia coli produced functional FP particles of up to 30% of cellular dry weight. The use of respective FP particles displaying certain binding domains in diagnostics and as bioseparation resins was demonstrated by direct comparison to commercial offerings. It was demonstrated that variable extensions (AVTS, FHKP, LAVG, or TS) of the N-terminus of FPs (GFP, YFP, CFP, HcRed) in combination with large C-terminal extensions such as translational fusion of the polyester synthase from Ralstonia eutropha or an aldolase from Escherichia coli led to extensive intracellular self-assembly of strongly fluorescent fusion protein particles of oval shape (0.5×1 μm). The strong fluorescent label of these bioparticles in combination with covalent display of protein functions provides a molecular toolbox for the design of self-assembled microparticles suitable for antibody-capture or ligand binding based diagnostic assays as well as the high affinity purification of target compounds such as antibodies.
Collapse
|
25
|
Bioengineering of bacteria to assemble custom-made polyester affinity resins. Appl Environ Microbiol 2014; 81:282-91. [PMID: 25344238 DOI: 10.1128/aem.02595-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proof of concept for the in vivo bacterial production of a polyester resin displaying various customizable affinity protein binding domains is provided. This was achieved by engineering various protein binding domains into a bacterial polyester-synthesizing enzyme. Affinity binding domains based on various structural folds and derived from molecular libraries were used to demonstrate the potential of this technique. Designed ankyrin repeat proteins (DARPins), engineered OB-fold domains (OBodies), and VHH domains from camelid antibodies (nanobodies) were employed. The respective resins were produced in a single bacterial fermentation step, and a simple purification protocol was developed. Purified resins were suitable for most lab-scale affinity chromatography purposes. All of the affinity domains tested produced polyester beads with specific affinity for the target protein. The binding capacity of these affinity resins ranged from 90 to 600 nmol of protein per wet gram of polyester affinity resin, enabling purification of a recombinant protein target from a complex bacterial cell lysate up to a purity level of 96% in one step. The polyester resin was efficiently produced by conventional lab-scale shake flask fermentation, resulting in bacteria accumulating up to 55% of their cellular dry weight as polyester. A further proof of concept demonstrating the practicality of this technique was obtained through the intracellular coproduction of a specific affinity resin and its target. This enables in vivo binding and purification of the coproduced "target protein." Overall, this study provides evidence for the use of molecular engineering of polyester synthases toward the microbial production of specific bioseparation resins implementing previously selected binding domains.
Collapse
|
26
|
Polyhydroyxalkanoate synthase fusions as a strategy for oriented enzyme immobilisation. Molecules 2014; 19:8629-43. [PMID: 24962396 PMCID: PMC6271518 DOI: 10.3390/molecules19068629] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 01/21/2023] Open
Abstract
Polyhydroxyalkanoate (PHA) is a carbon storage polymer produced by certain bacteria in unbalanced nutrient conditions. The PHA forms spherical inclusions surrounded by granule associate proteins including the PHA synthase (PhaC). Recently, the intracellular formation of PHA granules with covalently attached synthase from Ralstonia eutropha has been exploited as a novel strategy for oriented enzyme immobilisation. Fusing the enzyme of interest to PHA synthase results in a bifunctional protein able to produce PHA granules and immobilise the active enzyme of choice to the granule surface. Functionalised PHA granules can be isolated from the bacterial hosts, such as Escherichia coli, and maintain enzymatic activity in a wide variety of assay conditions. This approach to oriented enzyme immobilisation has produced higher enzyme activities and product levels than non-oriented immobilisation techniques such as protein inclusion based particles. Here, enzyme immobilisation via PHA synthase fusion is reviewed in terms of the genetic designs, the choices of enzymes, the control of enzyme orientations, as well as their current and potential applications.
Collapse
|
27
|
In vivo self-assembly of stable green fluorescent protein fusion particles and their uses in enzyme immobilization. Appl Environ Microbiol 2014; 80:3062-71. [PMID: 24610847 DOI: 10.1128/aem.00323-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial inclusion bodies are aggregations of mostly inactive and misfolded proteins. However, previously the in vivo self-assembly of green fluorescent protein (GFP) fusions into fluorescent particles which displayed specific binding sites suitable for applications in bioseparation and diagnostics was demonstrated. Here, the suitability of GFP particles for enzyme immobilization was assessed. The enzymes tested were a thermostable α-amylase from Bacillus licheniformis, N-acetyl-d-neuraminic acid aldolase (NanA) from Escherichia coli, and organophosphohydrolase (OpdA) from Agrobacterium radiobacter. Respective GFP particles were isolated and could be stably maintained outside the cell. These enzyme-bearing GFP particles exhibited considerable stability across a range of temperature, pH, and storage conditions and could be recycled. The α-amylase-bearing particles retained activity after treatments at 4 to 85°C and at pHs 4 to 10, were stable for 3 months at 4°C, and could be recycled up to three times. OpdA-bearing particles retained degradation activity after treatments at 4 to 45°C and at pHs 5 to 10 and were able to be recycled up to four times. In contrast, the performance of NanA-bearing particles rapidly declined (>50% loss) after each recycling step and 3 months storage at 4°C. However, they were still able to convert N-acetylmannosamine and pyruvate to N-acetylneuraminic acid after treatment at 4 to 85°C and at pHs 4 to 11. Fluorescent GFP fusion particles represent a novel method for the immobilization and display of enzymes. Potential applications include diagnostic assays, biomass conversion, pharmaceutical production, and bioremediation.
Collapse
|
28
|
New skin test for detection of bovine tuberculosis on the basis of antigen-displaying polyester inclusions produced by recombinant Escherichia coli. Appl Environ Microbiol 2014; 80:2526-35. [PMID: 24532066 DOI: 10.1128/aem.04168-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The tuberculin skin test for diagnosing tuberculosis (TB) in cattle lacks specificity if animals are sensitized to environmental mycobacteria, as some antigens in purified protein derivative (PPD) prepared from Mycobacterium bovis are present in nonpathogenic mycobacteria. Three immunodominant TB antigens, ESAT6, CFP10, and Rv3615c, are present in members of the pathogenic Mycobacterium tuberculosis complex but absent from the majority of environmental mycobacteria. These TB antigens have the potential to enhance skin test specificity. To increase their immunogenicity, these antigens were displayed on polyester beads by translationally fusing them to a polyhydroxyalkanoate (PHA) synthase which mediated formation of antigen-displaying inclusions in recombinant Escherichia coli. The most common form of these inclusions is poly(3-hydroxybutyric acid) (PHB). The respective fusion proteins displayed on these PHB inclusions (beads) were identified using tryptic peptide fingerprinting analysis in combination with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The surface exposure and accessibility of antigens were assessed by enzyme-linked immunosorbent assay (ELISA). Polyester beads displaying all three TB antigens showed greater reactivity with TB antigen-specific antibody than did beads displaying only one TB antigen. This was neither due to cross-reactivity of antibodies with the other two antigens nor due to differences in protein expression levels between beads displaying single or three TB antigens. The triple-antigen-displaying polyester beads were used for skin testing of cattle and detected all cattle experimentally infected with M. bovis with no false-positive reactions observed in those sensitized to environmental mycobacteria. The results suggested applicability of TB antigen-displaying polyester inclusions as diagnostic reagents for distinguishing TB-infected from noninfected animals.
Collapse
|
29
|
Jendrossek D, Pfeiffer D. New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3-hydroxybutyrate). Environ Microbiol 2014; 16:2357-73. [PMID: 24329995 DOI: 10.1111/1462-2920.12356] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/27/2013] [Accepted: 12/05/2013] [Indexed: 12/18/2022]
Abstract
The metabolism of polyhydroxybutyrate (PHB) and related polyhydroxyalkanoates (PHAs) has been investigated by many groups for about three decades, and good progress was obtained in understanding the mechanisms of biosynthesis and biodegradation of this class of storage molecules. However, the molecular events that happen at the onset of PHB synthesis and the details of the initiation of PHB/PHA granule formation, as well as the complex composition of the proteinaceous surface layer of PHB/PHA granules, have only recently come into the focus of research and were not reviewed yet. In this contribution, we summarize the progress in understanding the initiation and formation of the PHA granule complex at the example of Ralstonia eutropha H16 (model organism of PHB-accumulating bacteria). Where appropriate, we include information on PHA granules of Pseudomonas putida as a representative species for medium-chain-length PHA-accumulating bacteria. We suggest to replace the previous micelle mode of PHB granule formation by the Scaffold Model in which the PHB synthase initiation complex is bound to the bacterial nucleoid. In the second part, we highlight data on other forms of PHB: oligo-PHB with ≈100 to 200 3-hydroxybutyrate (3HB) units and covalently bound PHB (cPHB) are unrelated in function to storage PHB but are presumably present in all living organisms, and therefore must be of fundamental importance.
Collapse
|
30
|
Use of Bacterial Polyhydroxyalkanoates in Protein Display Technologies. SPRINGER PROTOCOLS HANDBOOKS 2014. [DOI: 10.1007/8623_2014_34] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
31
|
Parlane NA, Rehm BHA, Wedlock DN, Buddle BM. Novel particulate vaccines utilizing polyester nanoparticles (bio-beads) for protection against Mycobacterium bovis infection - a review. Vet Immunol Immunopathol 2013; 158:8-13. [PMID: 23707076 DOI: 10.1016/j.vetimm.2013.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/26/2013] [Accepted: 04/05/2013] [Indexed: 11/20/2022]
Abstract
Bovine tuberculosis (TB) continues to be a major health problem in cattle and development of a safe effective vaccine to control TB in cattle would be very useful. This paper reviews progress and provides new data in development of a TB bio-bead vaccine based on polyester nanoparticle inclusions which were produced by bioengineered bacteria. Polyhydroxybutyrate (PHB) biopolyester nanoparticles (bio-beads) have been produced which displayed mycobacterial antigens, Ag85A and ESAT-6, on the surface of the bio-beads for use as vaccines for the control of tuberculosis. Bio-beads were purified from the host production bacteria, Escherichia coli and the generally regarded as safe (GRAS) bacterium, Lactococcus lactis. Previous published studies showed that vaccination with Ag85A/ESAT-6 bio-beads induced antigen-specific IFN-γ, IL-17A, IL-6, TNF-α and IL-2 in splenocytes, but no significant increase in IL-4, IL-5 or IL-10. New results showed that antigen-specific IFN-γ release was induced by both CD4 and CD8 T cells in mice vaccinated with the Ag85A/ESAT-6 bio-beads. Mice vaccinated with Ag85A/ESAT-6 bio-beads alone or in combination with BCG had significantly lower bacterial counts from the lungs and spleen following aerosol challenge with Mycobacterium bovis compared to control groups. This unique approach to the design and production of bacterial-derived bio-beads displaying antigens enables a cost-effective way to express a diverse antigen repertoire for use as vaccines to combat TB or other diseases.
Collapse
Affiliation(s)
- Natalie A Parlane
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Bernd H A Rehm
- Institute of Fundamental Sciences and MacDiarmid Institute for Advanced Materials and Nanotechnology, Massey University, Palmerston North, New Zealand
| | - D Neil Wedlock
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Bryce M Buddle
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand.
| |
Collapse
|
32
|
Robins KJ, Hooks DO, Rehm BHA, Ackerley DF. Escherichia coli NemA is an efficient chromate reductase that can be biologically immobilized to provide a cell free system for remediation of hexavalent chromium. PLoS One 2013; 8:e59200. [PMID: 23527133 PMCID: PMC3596305 DOI: 10.1371/journal.pone.0059200] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 02/14/2013] [Indexed: 11/19/2022] Open
Abstract
Hexavalent chromium is a serious and widespread environmental pollutant. Although many bacteria have been identified that can transform highly water-soluble and toxic Cr(VI) to insoluble and relatively non-toxic Cr(III), bacterial bioremediation of Cr(VI) pollution is limited by a number of issues, in particular chromium toxicity to the remediating cells. To address this we sought to develop an immobilized enzymatic system for Cr(VI) remediation. To identify novel Cr(VI) reductase enzymes we first screened cell extracts from an Escherichia coli library of soluble oxidoreductases derived from a range of bacteria, but found that a number of these enzymes can reduce Cr(VI) indirectly, via redox intermediates present in the crude extracts. Instead, activity assays for 15 candidate enzymes purified as His6-tagged proteins identified E. coli NemA as a highly efficient Cr(VI) reductase (kcat/KM = 1.1×105 M−1s−1 with NADH as cofactor). Fusion of nemA to the polyhydroxyalkanoate synthase gene phaC from Ralstonia eutropha enabled high-level biosynthesis of functionalized polyhydroxyalkanoate granules displaying stable and active NemA on their surface. When these granules were combined with either Bacillus subtilis glucose dehydrogenase or Candida boidinii formate dehydrogenase as a cofactor regenerating partner, high levels of chromate transformation were observed with only low initial concentrations of expensive NADH cofactor being required, the overall reaction being powered by consumption of the cheap sacrificial substrates glucose or formic acid, respectively. This system therefore offers promise as an economic solution for ex situ Cr(VI) remediation.
Collapse
Affiliation(s)
- Katherine J. Robins
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, New Zealand
| | - David O. Hooks
- Institute of Fundamental Sciences, Massey University, Tennent Drive, Palmerston North, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Kelburn Parade, Wellington, New Zealand
| | - Bernd H. A. Rehm
- Institute of Fundamental Sciences, Massey University, Tennent Drive, Palmerston North, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Kelburn Parade, Wellington, New Zealand
| | - David F. Ackerley
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Kelburn Parade, Wellington, New Zealand
- * E-mail:
| |
Collapse
|
33
|
Bioengineering of bacterial polymer inclusions catalyzing the synthesis of N-acetylneuraminic acid. Appl Environ Microbiol 2013; 79:3116-21. [PMID: 23455347 DOI: 10.1128/aem.03947-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
N-Acetylneuraminic acid is produced by alkaline epimerization of N-acetylglucosamine to N-acetylmannosamine and then subsequent condensation with pyruvate catalyzed by free N-acetylneuraminic acid aldolase. The high-alkaline conditions of this process result in the degradation of reactants and products, while the purification of free enzymes to be used for the synthesis reaction is a costly process. The use of N-acetylglucosamine 2-epimerase has been seen as an alternative to the alkaline epimerization process. In this study, these two enzymes involved in N-acetylneuraminic acid production were immobilized to biopolyester beads in vivo in a one-step, cost-efficient process of production and isolation. Beads with epimerase-only, aldolase-only, and combined epimerase/aldolase activity were recombinantly produced in Escherichia coli. The enzymatic activities were 32 U, 590 U, and 2.2 U/420 U per gram dry bead weight, respectively. Individual beads could convert 18% and 77% of initial GlcNAc and ManNAc, respectively, at high substrate concentrations and near-neutral pH, demonstrating the application of this biobead technology to fine-chemical synthesis. Beads establishing the entire N-acetylneuraminic acid synthesis pathway were able to convert up to 22% of the initial N-acetylglucosamine after a 50-h reaction time into N-acetylneuraminic acid.
Collapse
|
34
|
Efficient production of active polyhydroxyalkanoate synthase in Escherichia coli by coexpression of molecular chaperones. Appl Environ Microbiol 2013; 79:1948-55. [PMID: 23335776 DOI: 10.1128/aem.02881-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type I polyhydroxyalkanoate synthase from Cupriavidus necator was heterologously expressed in Escherichia coli with simultaneous overexpression of chaperone proteins. Compared to expression of synthase alone (14.55 mg liter(-1)), coexpression with chaperones resulted in the production of larger total quantities of enzyme, including a larger proportion in the soluble fraction. The largest increase was seen when the GroEL/GroES system was coexpressed, resulting in approximately 6-fold-greater enzyme yields (82.37 mg liter(-1)) than in the absence of coexpressed chaperones. The specific activity of the purified enzyme was unaffected by coexpression with chaperones. Therefore, the increase in yield was attributed to an enhanced soluble fraction of synthase. Chaperones were also coexpressed with a polyhydroxyalkanoate production operon, resulting in the production of polymers with generally reduced molecular weights. This suggests a potential use for chaperones to control the physical properties of the polymer.
Collapse
|
35
|
Draper JL, Rehm BH. Engineering bacteria to manufacture functionalized polyester beads. Bioengineered 2012; 3:203-8. [PMID: 22705844 DOI: 10.4161/bioe.19567] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The ability to generate tailor-made, functionalized polyester (polyhydroxyalkanoate, PHA) beads in bacteria by harnessing their natural carbon-storage granule production system is an exciting recent development. Proteins that naturally attach to the polyester granule core were rationally engineered to enable in vivo production of PHA beads which are applicable in bioseparation, protein purification, enzyme immobilization and diagnostics and which show advantageous properties toward the development of safe and efficient particulate vaccines. These beads are recombinantly produced as fully functional, insoluble polyester inclusions that can be easily separated from the cell. This simple one-step production of functionalized beads provides a tantalizing alternative to current commercial functional beads, for which proteins must be expressed, purified and then chemically attached to solid supports. The recent success in generating antigen-displaying PHA granules in the food-grade bacterium Lactococcus lactis capable of mediating protective immunity against Mycobacterium tuberculosis infection highlights the promise and flexibility of this new technology.
Collapse
Affiliation(s)
- Jenny L Draper
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
36
|
Blatchford PA, Scott C, French N, Rehm BHA. Immobilization of organophosphohydrolase OpdA from Agrobacterium radiobacter by overproduction at the surface of polyester inclusions inside engineered Escherichia coli. Biotechnol Bioeng 2011; 109:1101-8. [PMID: 22170266 DOI: 10.1002/bit.24402] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/08/2011] [Accepted: 11/28/2011] [Indexed: 11/06/2022]
Abstract
Organophosphorus pesticides (OP) are highly toxic and are widely used as insecticides. Bacterial organophosphohydrolases which hydrolyze a variety of OPs have been considered for the clean-up of polluted environments. This study describes the engineering of Escherichia coli towards the overproduction of the organophosphohydrolase (OpdA) from Agrobacterium radiobacter at the surface of polyester inclusions. The OpdA was N-terminally fused via a designed linker region to the C-terminus of polyester inclusion-forming enzyme PhaC of Ralstonia eutropha. The PhaC-L-OpdA fusion protein was overproduced by using the strong T7 promoter and when coexpressed with genes phaA (encoding β-ketothiolase) and phaB (encoding acetoacetyl-CoA reductase) from R. eutropha this led to formation of polyester inclusions abundantly displaying OpdA. These OpdA beads showed organophosphohydrolase activity of 1,840 U/g wet polyester beads or 4,412 U/g protein. Steady state kinetics revealed that when compared with free OpdA the k(cat) (s(-1)) of 139 of immobilized OpdA was reduced by about 16.5-fold while the K(M) (M) of 2.5 × 10(-4) was increased by 1.6-fold. The immobilized OpdA showed increased temperature stability. Moreover, the stability of OpdA immobilized to polyester beads was assessed by incubating OpdA beads at 25°C for up to 11 days and no significant loss in enzyme activity was detected. The application performance of the OpdA beads with respect to hydrolysis of OPs in contaminated environments was demonstrated in wool scour spiked with fluorescent coumaphos. This study demonstrated a new strategy toward the efficient recombinant production of immobilized organophosphohydrolase, the OpdA, suitable for bioremediation applications.
Collapse
Affiliation(s)
- Paul A Blatchford
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand
| | | | | | | |
Collapse
|
37
|
Vaccines displaying mycobacterial proteins on biopolyester beads stimulate cellular immunity and induce protection against tuberculosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 19:37-44. [PMID: 22072720 DOI: 10.1128/cvi.05505-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
New improved vaccines are needed for control of both bovine and human tuberculosis. Tuberculosis protein vaccines have advantages with regard to safety and ease of manufacture, but efficacy against tuberculosis has been difficult to achieve. Protective cellular immune responses can be preferentially induced when antigens are displayed on small particles. In this study, Escherichia coli and Lactococcus lactis were engineered to produce spherical polyhydroxybutyrate (PHB) inclusions which displayed a fusion protein of Mycobacterium tuberculosis, antigen 85A (Ag85A)-early secreted antigenic target 6-kDa protein (ESAT-6). L. lactis was chosen as a possible production host due its extensive use in the food industry and reduced risk of lipopolysaccharide contamination. Mice were vaccinated with PHB bead vaccines with or without displaying Ag85A-ESAT-6, recombinant Ag85A-ESAT-6, or M. bovis BCG. Separate groups of mice were used to measure immune responses and assess protection against an aerosol M. bovis challenge. Increased amounts of antigen-specific gamma interferon, interleukin-17A (IL-17A), IL-6, and tumor necrosis factor alpha were produced from splenocytes postvaccination, but no or minimal IL-4, IL-5, or IL-10 was produced, indicating Th1- and Th17-biased T cell responses. Decreased lung bacterial counts and less extensive foci of inflammation were observed in lungs of mice receiving BCG or PHB bead vaccines displaying Ag85A-ESAT-6 produced in either E. coli or L. lactis compared to those observed in the lungs of phosphate-buffered saline-treated control mice. No differences between those receiving wild-type PHB beads and those receiving recombinant Ag85A-ESAT-6 were observed. This versatile particulate vaccine delivery system incorporates a relatively simple production process using safe bacteria, and the results show that it is an effective delivery system for a tuberculosis protein vaccine.
Collapse
|
38
|
Jahns AC, Rehm BHA. Relevant uses of surface proteins--display on self-organized biological structures. Microb Biotechnol 2011; 5:188-202. [PMID: 21906264 PMCID: PMC3815779 DOI: 10.1111/j.1751-7915.2011.00293.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Proteins are often found attached to surfaces of self‐assembling biological units such as whole microbial cells or subcellular structures, e.g. intracellular inclusions. In the last two decades surface proteins were identified that could serve as anchors for the display of foreign protein functions. Extensive protein engineering based on structure–function data enabled efficient display of technically and/or medically relevant protein functions. Small size, diversity of the anchor protein as well as support structure, genetic manipulability and controlled cultivation of phages, bacterial cells and yeasts contributed to the establishment of designed and specifically functionalized tools for applications as sensors, catalysis, biomedicine, vaccine development and library‐based screening technologies. Traditionally, phage display is employed for library screening but applications in biomedicine and vaccine development are also perceived. For some diagnostic purposes phages are even too small in size so other carrier materials where needed and gave way for cell and yeast display. Only recently, intracellular inclusions such as magnetosomes, polyhydroxyalkanoate granules and lipid bodies were conceived as stable subcellular structures enabling the display of foreign protein functions and showing potential as specific and tailor‐made devices for medical and biotechnological applications.
Collapse
Affiliation(s)
- Anika C Jahns
- Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | |
Collapse
|
39
|
Lu XY, Wu DC, Li ZJ, Chen GQ. Polymer Nanoparticles. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 104:299-323. [DOI: 10.1016/b978-0-12-416020-0.00007-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|