1
|
Arroussi M, Wu J, Zhu L, Wang P, Zhang D, Wang W. Effect of preferential growth of Shewanella oneidensis MR-1 on microbial corrosion of constituent phases of 2205 duplex stainless steel. Bioelectrochemistry 2025; 163:108859. [PMID: 39637450 DOI: 10.1016/j.bioelechem.2024.108859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Understanding selective growth of electroactive bacteria on surface of constituent phases (ferrite/ austenite) of 2205 DSS is required for mitigating microbiologically influenced corrosion (MIC). In this study, the preferential attachment of bacteria and its impact on corrosion of single phase were investigated under anaerobic condition using Shewanella oneidensis MR-1. Single-ferrite phase was more susceptible to biofilm formation compared with single-austenite phase. Atomic force microscope (AFM) revealed that the surface of ferrite phase coupon was fully covered with S. oneidensis MR-1 biofilm whereas few S. oneidensis MR-1 cells were observed on the surface of austenite phase. After 14 d of incubation, the maximum biofilm thicknesses on 2205 DSS, ferrite and austenite phase were 15.5 ± 1.0 µm, 13.8 ± 3.2 µm, and 10.2 ± 0.8 µm, respectively. S. oneidensis MR-1 accelerated the pitting corrosion of materials. The maximum pits depth on single ferrite and austenite phase in sterile medium (3.2 µm vs 2.2 µm with mean values 2.5 µm vs 1.7 µm) were relatively small than those in biotic medium (6.0 µm vs 4.5 µm with mean values 4.5 µm vs 3.8 µm). Synergistic effects of Cr and Ni enhanced the stability of passive film on austenite phase.
Collapse
Affiliation(s)
- Mohammed Arroussi
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jiajia Wu
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liyang Zhu
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Wang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dun Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenkai Wang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Liu YN, Liu Z, Liu J, Hu Y, Cao B. Unlocking the potential of Shewanella in metabolic engineering: Current status, challenges, and opportunities. Metab Eng 2025; 89:1-11. [PMID: 39952391 DOI: 10.1016/j.ymben.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Shewanella species are facultative anaerobes with distinctive electrochemical properties, making them valuable for applications in energy conversion and environmental bioremediation. Due to their well-characterized electron transfer mechanisms and ease of genetic manipulation, Shewanella spp. have emerged as a promising chassis for metabolic engineering. In this review, we provide a comprehensive overview of the advancements in Shewanella-based metabolic engineering. We begin by discussing the physiological characteristics of Shewanella, with a particular focus on its extracellular electron transfer (EET) capability. Next, we outline the use of Shewanella as a metabolic engineering chassis, presenting a general framework for strain construction based on the Design-Build-Test-Learn (DBTL) cycle and summarizing key advancements in the engineering of Shewanella's metabolic modules. Finally, we offer a perspective on the future development of Shewanella chassis, highlighting the need for deeper mechanistic insights, rational strain design, and interdisciplinary collaboration to drive further progress.
Collapse
Affiliation(s)
- Yi-Nan Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Zhourui Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Jian Liu
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yidan Hu
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| | - Bin Cao
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore.
| |
Collapse
|
3
|
Zhou T, Liu G, Jin R, Zhou J. Altered Cell Viability, Morphology, and Motility under Ciprofloxacin Stress Influence the Transport and Resistance of Bacteria in Saturated Porous Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40265891 DOI: 10.1021/acs.est.5c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The ubiquitous occurrence of antibiotics in the environment induces various stress responses of microbes and increases the risk of the emergence and spread of antimicrobial resistance (AMR). In this study, the transport and retention of Shewanella oneidensis cells in saturated porous media was investigated under different levels of ciprofloxacin (CIP) stress. Exposing to lethal CIP stress caused significant viability loss and stimulated cell transport due to increasing hydrophilicity and decreasing surface roughness. While exposure to sublethal CIP stress did not affect MR-1's viability, elongation of cells promoted their retention in sand columns via straining and orientation effects. The elongated cells likely adopted an end-on configuration to minimize repulsive interaction energy when approaching sand surfaces and deposited in a side-on position due to local surface roughness and charge heterogeneity of sands. The more diminished breakthrough of MR-1 cells in redox-active media was ascribed to their improving extracellular electron transfer and energy taxis activities under sublethal CIP stress. Moreover, the retention of elongated cells in porous media facilitated the de novo emergence of a resistant gyrase mutant, whose remobilization might exacerbate the AMR dissemination.
Collapse
Affiliation(s)
- Tianao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
4
|
Qian Y, Liu T, Yang L, Meng X, Jia F, Liu Z. Electroactivity of Shewanella putrefaciens induced by shrimp matrix: Catalyst for spoilage acceleration. Int J Food Microbiol 2025; 434:111119. [PMID: 40049065 DOI: 10.1016/j.ijfoodmicro.2025.111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/26/2025]
Abstract
The bacterium Shewanella is commonly found in fishery products along the whole cold chain transportation system and poses a significant threat to public health and the global economy due to its propensity for contaminating food and causing spoilage. In this research, four specific spoilage organisms (SSO) (Shewanella spp.) isolated from various refrigerated aquatic products were found to exhibit electrochemical properties. When modifying the conventional microbial fuel cells with shrimp meat extract as the donor-acceptor, an interesting result was found in the current output of the "shrimp battery", where it exhibits a significant activation effect and the accumulation of total volatile basic nitrogen, Trimethylamine N-oxide and bioamines. The transcriptomic analysis reveals that the extracellular electron transport pathway of Shewanella putrefaciens-329 in aquatic environments underwent a transfer from Mtr cluster to cbb3-type, with its metabolic focus transitioning toward the accumulation of amines, sulfides, and biofilms. Our findings demonstrate that the electrochemical characteristics of Shewanella in aquatic environments play a crucial role in accelerating low-temperature spoilage of aquatic products, thereby offering a novel target for mitigating the detrimental loss of aquatic products caused by Shewanella.
Collapse
Affiliation(s)
- Yilin Qian
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266404, China
| | - Taige Liu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266404, China
| | - Liu Yang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266404, China
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266404, China
| | - Fei Jia
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266404, China.
| | - Zunying Liu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266404, China.
| |
Collapse
|
5
|
Chen YC, Chang LC, Liu YL, Chang MC, Liu YF, Chang PY, Manoharan D, Wang WJ, Chen JS, Wang HC, Chiu WT, Li WP, Sheu HS, Su WP, Yeh CS. Redox disruption using electroactive liposome coated gold nanoparticles for cancer therapy. Nat Commun 2025; 16:3253. [PMID: 40188189 PMCID: PMC11972414 DOI: 10.1038/s41467-025-58636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/28/2025] [Indexed: 04/07/2025] Open
Abstract
Cancer remains a global health challenge necessitating innovative therapies. We introduce a strategy to disrupt cancer cell redox balance using gold nanoparticles (Au NPs) as electron sinks combined with electroactive membranes. Utilizing Shewanella oneidensis MR-1 membrane proteins, we develop liposomes enriched with c-type cytochromes. These, coupled with Au NPs, facilitate autonomous electron transfer from cancer cells, disrupting redox processes and inducing cell death. Effective across various cancer types, larger Au NPs show enhanced efficacy, especially under hypoxic conditions. Oxidative stress from Au@MIL (MIL: membrane-integrated liposome) treatments, including mitochondrial and endoplasmic reticulum lipid oxidation and mitochondrial membrane potential changes, triggers apoptosis, bypassing iron-mediated pathways. Surface plasmon band and X-ray absorption near-edge structure (XANES) analyses confirm electron transfer. A SiO2 insulator coating on Au NPs blocks this transfer, suppressing cancer cell damage. This approach highlights the potential of modulated electron transfer pathways in targeted cancer therapy, offering refined and effective treatments.
Collapse
Grants
- NSTC 113-2740-B-006-002 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- NSTC 112-2113-M-037-014-MY2 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- NSTC 113-2320-B-037-007- Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- NSTC 113-2314-B-006 -014 - Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- NSTC 113-2321-B-006 -010 - Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- C.-S.Y. acknowledges the financial support from the National Science and Technology Council (NSTC), Taiwan (NSTC 113-2113-M-006-015). This research was also partially supported by the Higher Education Sprout Project, Ministry of Education, to the Headquarters of University Advancement at National Cheng Kung University. Additional financial support was provided by the Center of Applied Nanomedicine, National Cheng Kung University, under the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project of the Ministry of Education (MOE) in Taiwan. W.-T.C. acknowledges the financial support from NSTC, Taiwan (NSTC 113-2740-B-006-002). W.-P. L. acknowledges the financial support provided by NSTC, Taiwan (NSTC 112-2113-M-037-014-MY2 and 113-2320-B-037-007-) and the Yushan Young Scholar Program of the Ministry of Education of Taiwan. W.-P.S. thanks the financial support by the NSTC (NSTC 113-2314-B-006 -038 -MY3; 113-2314-B-006 -014 -; 113-2321-B-006 -010 -).
Collapse
Affiliation(s)
- Ying-Chi Chen
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Li-Chan Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Yan-Ling Liu
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ming-Che Chang
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yin-Fen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Po-Ya Chang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Divinah Manoharan
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wen-Jyun Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Jia-Sin Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hsueh-Chun Wang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Wei-Peng Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Hwo-Shuenn Sheu
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.
| | - Wen-Pin Su
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan.
- Departments of Oncology and Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan.
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
6
|
Wang LC, Kuo YC, Kuo YT, Chang KL, Chen YC, Wang WJ, Hung MY, Hsu FY, Aich P, Lin YW, Su CH, Manoharan D, Chien YH, Li WP, Tian HK, Yeh CS. Utilizing Electron-Sink-Enhanced Nanoshells for Amplified Nanoplasmonic SERS-Based In Situ Detection of Cancer Cells, Linking Signal Enhancement with Cellular Damage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417950. [PMID: 40159922 DOI: 10.1002/adma.202417950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/12/2025] [Indexed: 04/02/2025]
Abstract
A novel method is presented for detecting cancer cells and assessing apoptosis using electron-sink-enhanced surface-enhanced Raman scattering (SERS) via active electron transfer. By coating gold (Au) shells with electroactive liposome membranes (ELMs) derived from Shewanella oneidensis MR-1, the SERS signal is enhanced through chemical mechanism (CM) enhancement driven by electron transfer. The ELMs first donate electrons to the Au shells, which, upon laser excitation, amplify the local electromagnetic field, resulting in stronger Raman signals from the attached probing molecules. Additionally, the electron flow from cancer cells into the Au shells correlates with apoptosis, producing a strong SERS signal, while normal cells exhibit weaker signals. This method enables real-time monitoring of cancer cell apoptosis, distinguishing cancer cells from normal cells based on the enhanced Raman signal linked to electron flow. This approach marks a breakthrough in CM-based SERS applications, offering a sensitive method for cancer detection through the measurement of electron flow.
Collapse
Affiliation(s)
- Liu-Chun Wang
- Department of Chemistry, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan, China
| | - Yu-Cheng Kuo
- Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan, China
| | - Yen-Ting Kuo
- Department of Chemistry, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan, China
| | - Kai-Lin Chang
- Department of Chemistry, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan, China
| | - Ying-Chi Chen
- Department of Chemistry, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan, China
| | - Wen-Jyun Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin Dist. Kaohsiung City, Taiwan, 80708, China
| | - Ming-Yuan Hung
- Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan, China
| | - Fang-Yi Hsu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin Dist. Kaohsiung City, Taiwan, 80708, China
| | - Pooja Aich
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin Dist. Kaohsiung City, Taiwan, 80708, China
| | - Yu-Wei Lin
- Department of Materials Science and Engineering, Feng Chia University, No. 100, Wenhwa Road, Seatwen Taichung, Taiwan, 40724, China
| | - Chia-Hao Su
- Center for General Education, Chang Gung University, No.259, Wenhua 1st Road, Guishan Dist., Taoyuan City, Taiwan, 33302, China
| | - Divinah Manoharan
- Department of Chemistry, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan, China
| | - Yi-Hsin Chien
- Department of Materials Science and Engineering, Feng Chia University, No. 100, Wenhwa Road, Seatwen Taichung, Taiwan, 40724, China
| | - Wei-Peng Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin Dist. Kaohsiung City, Taiwan, 80708, China
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin Dist. Kaohsiung City, Taiwan, 80708, China
- Center of Applied Nanomedicine, National Cheng Kung University Institution, No.1, University Road, Tainan City 701, Taiwan, China
| | - Hong-Kang Tian
- Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan, China
- Department of Chemical Engineering, Taiwan Department, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan, China
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan, China
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan, China
- Center of Applied Nanomedicine, National Cheng Kung University Institution, No.1, University Road, Tainan City 701, Taiwan, China
| |
Collapse
|
7
|
Tokunou Y, Yamazaki T, Fujikawa T, Okamoto A. Decoding in-cell respiratory enzyme dynamics by label-free in situ electrochemistry. Proc Natl Acad Sci U S A 2025; 122:e2418926122. [PMID: 40117313 PMCID: PMC11962448 DOI: 10.1073/pnas.2418926122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/07/2025] [Indexed: 03/23/2025] Open
Abstract
Deciphering metabolic enzyme catalysis in living cells remains a formidable challenge due to the limitations of in vivo assays, which focus on enzymes isolated from respiration. This study introduces an innovative whole-cell electrochemical assay to reveal the Michaelis-Menten landscape of respiratory enzymes amid complex molecular interactions. We controlled the microbial current generation's rate-limiting step, extracting in vivo kinetic parameters (Km, Ki, and kcat) for the periplasmic nitrite (NrfA) and fumarate (FccA) reductases. Notably, while NrfA kinetics mirrored those of its purified form, FccA exhibited unique kinetic behavior. Further exploration using a mutant strain lacking CymA, a periplasmic hub protein, revealed its crucial role in modulating FccA's kinetics, challenging the prevailing view that molecular crowding is the main cause of discrepancies between in vivo and in vitro enzyme kinetics. This platform offers a groundbreaking approach to studying cellular respiratory enzymatic kinetics, paving the way for future research in bioenergetics and medicine.
Collapse
Affiliation(s)
- Yoshihide Tokunou
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki305-8572, Japan
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki305-0047, Japan
| | - Tomohiko Yamazaki
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki305-0047, Japan
- School of Life Science, Hokkaido University, Sapporo, Hokkaido060-0808, Japan
| | - Takashi Fujikawa
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki305-0047, Japan
| | - Akihiro Okamoto
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki305-8572, Japan
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki305-0047, Japan
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki305-0044, Japan
- School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido060-8628, Japan
- Research Center for Autonomous Systems Materialogy, Institute of Integrated Research, Institute of Science Tokyo (Science Tokyo), Yokohama, Kanagawa226-8503, Japan
| |
Collapse
|
8
|
Han Y, Liao C, Jiang X, Wang Z, Wu Y, Zhang M, Li N, Zhang T, Wang X. Extracellular Electron Uptake Mediated by H 2O 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3624-3633. [PMID: 39945605 DOI: 10.1021/acs.est.4c13792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Harvesting electricity from microbial electron transfer is believed as a promising way of renewable energy generation. However, a major challenge lies in the still-unknown mechanisms of extracellular electron transfer, especially how microbes consume electrons from the cathode to catalyze oxygen reduction. Here we report a previously undescribed yet significant extracellular electron uptake pathway mediated by inevitably produced H2O2, contributing up to 45% of the total biocurrent. This new H2O2-based bioelectrochemical respiration depends on the continuous supply of electrons from the electrode and the presence of the catalase katG. Selective enhancement of two-electron oxygen reduction on the cathode results in a 2.4-fold increase in biocurrent, and both autotrophic biosynthesis and energy production pathways are upregulated to sustain the H2O2-based respiration. Our results highlight the importance of two-electron oxygen reduction in bioelectron uptake at the cathode and provide a basis for the design of bioelectricity production systems.
Collapse
Affiliation(s)
- Yilian Han
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xinlei Jiang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Ziyuan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yue Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Mou Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Tianjin 300350, China
| | - Tong Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
9
|
Kneuer L, Wurst R, Gescher J. Shewanella oneidensis: Biotechnological Application of Metal-Reducing Bacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 39579226 DOI: 10.1007/10_2024_272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
What is an unconventional organism in biotechnology? The γ-proteobacterium Shewanella oneidensis might fall into this category as it was initially established as a laboratory model organism for a process that was not seen as potentially interesting for biotechnology. The reduction of solid-state extracellular electron acceptors such as iron and manganese oxides is highly relevant for many biogeochemical cycles, although it turned out in recent years to be quite relevant for many potential biotechnological applications as well. Applications started with the production of nanoparticles and dramatically increased after understanding that electrodes in bioelectrochemical systems can also be used by these organisms. From the potential production of current and hydrogen in these systems and the development of biosensors, the field expanded to anode-assisted fermentations enabling fermentation reactions that were - so far - dependent on oxygen as an electron acceptor. Now the field expands further to cathode-dependent production routines. As a side product to all these application endeavors, S. oneidensis was understood more and more, and our understanding and genetic repertoire is at eye level to E. coli. Corresponding to this line of thought, this chapter will first summarize the available arsenal of tools in molecular biology that was established for working with the organism and thereafter describe so far established directions of application. Last but not least, we will highlight potential future directions of work with the unconventional model organism S. oneidensis.
Collapse
Affiliation(s)
- Lukas Kneuer
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
| | - René Wurst
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
| | - Johannes Gescher
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany.
| |
Collapse
|
10
|
Rastkhah E, Fatemi F, Maghami P. Optimizing the Metal Bioreduction Process in Recombinant Shewanella azerbaijanica Bacteria: A Novel Approach via mtrC Gene Cloning and Nitrate-Reducing Pathway Destruction. Mol Biotechnol 2024; 66:3150-3163. [PMID: 37917324 DOI: 10.1007/s12033-023-00920-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/22/2023] [Indexed: 11/04/2023]
Abstract
Environmental pollution is growing every day in terms of the increase in population, industrialization, and urbanization. Shewanella azerbaijanica is introduced as a highly potent bacterium in metal bioremediation. The mtrC gene was selected as a cloning target to improve electron flux chains in the EET (extracellular electron transfer) pathway. Using the SDM (site-directed mutagenesis) technique, the unique gene assembly featured the mtrC gene sandwiched between two napD/B genes to disrupt the nitrate reduction pathway, which serves as the primary metal reduction competitor. Shew-mtrC gene construction was transferred to expression plasmid pET28a (+) in the expression host bacteria (E. coli BL21 and S. azerbaijanica), in pUC57, cloning plasmid, which was transferred to the cloning host bacteria E. coli Top10 and S. azerbaijanica. All cloning procedures (i.e., synthesis, insertion, transformation, cloning, and protein expression) were verified and confirmed by precise tests. ATR-FTIR analysis, CD, western blotting, affinity chromatography, SDS-PAGE, and other techniques were used to confirm the expression and structure of the MtrC protein. The genome sequence and primers were designed according to the submitted Shewanella oneidensis MR-1 genome, the most similar bacteria to this native species. The performance of recombinant S. azerbaijanica bacterium in metal bioremediation, as sustainable strategy, has to be verified by more research.
Collapse
Affiliation(s)
- Elham Rastkhah
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Faezeh Fatemi
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.
| | - Parvaneh Maghami
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Zhao J, Wang C, Liu J, Zhang N, Zhao Y, Zhao J, Wang X, Wei W. A biocompatible surface display approach in Shewanella promotes current output efficiency. Biosens Bioelectron 2024; 259:116422. [PMID: 38797034 DOI: 10.1016/j.bios.2024.116422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/04/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
The biology-material hybrid method for chemical-electricity conversion via microbial fuel cells (MFCs) has garnered significant attention in addressing global energy and environmental challenges. However, the efficiency of these systems remains unsatisfactory due to the complex manufacturing process and limited biocompatibility. To overcome these challenges, here, we developed a simple bio-inorganic hybrid system for bioelectricity generation in Shewanella oneidensis (S. oneidensis) MR-1. A biocompatible surface display approach was designed, and silver-binding peptide AgBP2 was expressed on the cell surface. Notably, the engineered Shewanella showed a higher electrochemical sensitivity to Ag+, and a 60 % increase in power density was achieved even at a low concentration of 10 μM Ag+. Further analysis revealed significant upregulations of cell surface negative charge intensity, ATP metabolism, and reducing equivalent (NADH/NAD+) ratio in the engineered S. oneidensis-Ag nanoparticles biohybrid. This work not only provides a novel insight for electrochemical biosensors to detect metal ions, but also offers an alternative biocompatible surface display approach by combining compatible biomaterials with electricity-converting bacteria for advancements in biohybrid MFCs.
Collapse
Affiliation(s)
- Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Chen Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jingjing Liu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Nuo Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuqin Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China; NJU Xishan Institute of Applied Biotechnology, Wuxi, 214000, China.
| | - Xiuxiu Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China; NJU Xishan Institute of Applied Biotechnology, Wuxi, 214000, China.
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China; NJU Xishan Institute of Applied Biotechnology, Wuxi, 214000, China.
| |
Collapse
|
12
|
Wang LC, Chen HK, Wang WJ, Hsu FY, Huang HZ, Kuo RT, Li WP, Tian HK, Yeh CS. Boosting Upconversion Efficiency in Optically Inert Shelled Structures with Electroactive Membrane through Electron Donation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404120. [PMID: 38727702 DOI: 10.1002/adma.202404120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/05/2024] [Indexed: 05/21/2024]
Abstract
This study innovatively addresses challenges in enhancing upconversion efficiency in lanthanide-based nanoparticles (UCNPs) by exploiting Shewanella oneidensis MR-1, a microorganism capable of extracellular electron transfer. Electroactive membranes, rich in c-type cytochromes, are extracted from bacteria and integrated into membrane-integrated liposomes (MILs), encapsulating core-shelled UCNPs with an optically inactive shell, forming UCNP@MIL constructs. The electroactive membrane, tailored to donate electrons through the inert shell, independently boosts upconversion emission under near-infrared excitation (980 or 1550 nm), bypassing ligand-sensitized UCNPs. The optically inactive shell restricts energy migration, emphasizing electroactive membrane electron donation. Density functional theory calculations elucidate efficient electron transfer due to the electroactive membrane hemes' highest occupied molecular orbital being higher than the valence band maximum of the optically inactive shell, crucial for enhancing energy transfer to emitter ions. The introduction of a SiO2 insulator coating diminishes light enhancement, underscoring the importance of unimpeded electron transfer. Luminescence enhancement remains resilient to variations in emitter or sensitizing ions, highlighting the robustness of the electron transfer-induced phenomenon. However, altering the inert shell material diminishes enhancement, emphasizing the role of electron transfer. This methodology holds significant promise for diverse biological applications. UCNP@MIL offers an advantage in cellular uptake, which proves beneficial for cell imaging.
Collapse
Affiliation(s)
- Liu-Chun Wang
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Hong-Kai Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wen-Jyun Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Fang-Yi Hsu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hong-Zhang Huang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Rui-Tong Kuo
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wei-Peng Li
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Hong-Kang Tian
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan, 701, Taiwan
- Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
13
|
Suzuki S, Ishii S, Chadwick GL, Tanaka Y, Kouzuma A, Watanabe K, Inagaki F, Albertsen M, Nielsen PH, Nealson KH. A non-methanogenic archaeon within the order Methanocellales. Nat Commun 2024; 15:4858. [PMID: 38871712 DOI: 10.1038/s41467-024-48185-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/22/2024] [Indexed: 06/15/2024] Open
Abstract
Serpentinization, a geochemical process found on modern and ancient Earth, provides an ultra-reducing environment that can support microbial methanogenesis and acetogenesis. Several groups of archaea, such as the order Methanocellales, are characterized by their ability to produce methane. Here, we generate metagenomic sequences from serpentinized springs in The Cedars, California, and construct a circularized metagenome-assembled genome of a Methanocellales archaeon, termed Met12, that lacks essential methanogenesis genes. The genome includes genes for an acetyl-CoA pathway, but lacks genes encoding methanogenesis enzymes such as methyl-coenzyme M reductase, heterodisulfide reductases and hydrogenases. In situ transcriptomic analyses reveal high expression of a multi-heme c-type cytochrome, and heterologous expression of this protein in a model bacterium demonstrates that it is capable of accepting electrons. Our results suggest that Met12, within the order Methanocellales, is not a methanogen but a CO2-reducing, electron-fueled acetogen without electron bifurcation.
Collapse
Affiliation(s)
- Shino Suzuki
- Geobiology and Astrobiology Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa, Japan.
- School of Physical Sciences, SOKENDAI (Graduate University for Advanced Studies), Sagamihara, Kanagawa, Japan.
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine and Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan.
| | - Shun'ichi Ishii
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine and Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan.
| | - Grayson L Chadwick
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Yugo Tanaka
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kazuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Fumio Inagaki
- Advanced Institute for Marine Ecosystem Change (WPI-AIMEC), JAMSTEC, Yokohama, Kanagawa, Japan
- Department of Earth Science, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Mads Albertsen
- Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Kenneth H Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Lin T, Ding W, Zhang D, You Z, Yang Y, Li F, Xu D, Lovley DR, Song H. Expression of filaments of the Geobacter extracellular cytochrome OmcS in Shewanella oneidensis. Biotechnol Bioeng 2024; 121:2002-2012. [PMID: 38555482 DOI: 10.1002/bit.28702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
The physiological role of Geobacter sulfurreducens extracellular cytochrome filaments is a matter of debate and the development of proposed electronic device applications of cytochrome filaments awaits methods for large-scale cytochrome nanowire production. Functional studies in G. sulfurreducens are stymied by the broad diversity of redox-active proteins on the outer cell surface and the redundancy and plasticity of extracellular electron transport routes. G. sulfurreducens is a poor chassis for producing cytochrome nanowires for electronics because of its slow, low-yield, anaerobic growth. Here we report that filaments of the G. sulfurreducens cytochrome OmcS can be heterologously expressed in Shewanella oneidensis. Multiple lines of evidence demonstrated that a strain of S. oneidensis, expressing the G. sulfurreducens OmcS gene on a plasmid, localized OmcS on the outer cell surface. Atomic force microscopy revealed filaments with the unique morphology of OmcS filaments emanating from cells. Electron transfer to OmcS appeared to require a functional outer-membrane porin-cytochrome conduit. The results suggest that S. oneidensis, which grows rapidly to high culture densities under aerobic conditions, may be suitable for the development of a chassis for producing cytochrome nanowires for electronics applications and may also be a good model microbe for elucidating cytochrome filament function in anaerobic extracellular electron transfer.
Collapse
Affiliation(s)
- Tong Lin
- Frontiers Science Centre for Synthetic Biology (Ministry of Education), and Key Laboratory of Systems Bioengineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- College of Life Science, Langfang Normal University, Langfang, Hebei, China
| | - Wenqi Ding
- Frontiers Science Centre for Synthetic Biology (Ministry of Education), and Key Laboratory of Systems Bioengineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Danni Zhang
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China
| | - Zixuan You
- Frontiers Science Centre for Synthetic Biology (Ministry of Education), and Key Laboratory of Systems Bioengineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yun Yang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, China
| | - Feng Li
- Frontiers Science Centre for Synthetic Biology (Ministry of Education), and Key Laboratory of Systems Bioengineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China
| | - Derek R Lovley
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China
| | - Hao Song
- Frontiers Science Centre for Synthetic Biology (Ministry of Education), and Key Laboratory of Systems Bioengineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
15
|
Zhuang X, Wang S, Wu S. Electron Transfer in the Biogeochemical Sulfur Cycle. Life (Basel) 2024; 14:591. [PMID: 38792612 PMCID: PMC11123123 DOI: 10.3390/life14050591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Microorganisms are key players in the global biogeochemical sulfur cycle. Among them, some have garnered particular attention due to their electrical activity and ability to perform extracellular electron transfer. A growing body of research has highlighted their extensive phylogenetic and metabolic diversity, revealing their crucial roles in ecological processes. In this review, we delve into the electron transfer process between sulfate-reducing bacteria and anaerobic alkane-oxidizing archaea, which facilitates growth within syntrophic communities. Furthermore, we review the phenomenon of long-distance electron transfer and potential extracellular electron transfer in multicellular filamentous sulfur-oxidizing bacteria. These bacteria, with their vast application prospects and ecological significance, play a pivotal role in various ecological processes. Subsequently, we discuss the important role of the pili/cytochrome for electron transfer and presented cutting-edge approaches for exploring and studying electroactive microorganisms. This review provides a comprehensive overview of electroactive microorganisms participating in the biogeochemical sulfur cycle. By examining their electron transfer mechanisms, and the potential ecological and applied implications, we offer novel insights into microbial sulfur metabolism, thereby advancing applications in the development of sustainable bioelectronics materials and bioremediation technologies.
Collapse
Affiliation(s)
- Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (X.Z.); (S.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (X.Z.); (S.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (X.Z.); (S.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Brachi M, El Housseini W, Beaver K, Jadhav R, Dantanarayana A, Boucher DG, Minteer SD. Advanced Electroanalysis for Electrosynthesis. ACS ORGANIC & INORGANIC AU 2024; 4:141-187. [PMID: 38585515 PMCID: PMC10995937 DOI: 10.1021/acsorginorgau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 04/09/2024]
Abstract
Electrosynthesis is a popular, environmentally friendly substitute for conventional organic methods. It involves using charge transfer to stimulate chemical reactions through the application of a potential or current between two electrodes. In addition to electrode materials and the type of reactor employed, the strategies for controlling potential and current have an impact on the yields, product distribution, and reaction mechanism. In this Review, recent advances related to electroanalysis applied in electrosynthesis were discussed. The first part of this study acts as a guide that emphasizes the foundations of electrosynthesis. These essentials include instrumentation, electrode selection, cell design, and electrosynthesis methodologies. Then, advances in electroanalytical techniques applied in organic, enzymatic, and microbial electrosynthesis are illustrated with specific cases studied in recent literature. To conclude, a discussion of future possibilities that intend to advance the academic and industrial areas is presented.
Collapse
Affiliation(s)
- Monica Brachi
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Wassim El Housseini
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Kevin Beaver
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Rohit Jadhav
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Ashwini Dantanarayana
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Dylan G. Boucher
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
17
|
Kou B, Yuan Y, Zhu X, Ke Y, Wang H, Yu T, Tan W. Effect of soil organic matter-mediated electron transfer on heavy metal remediation: Current status and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170451. [PMID: 38296063 DOI: 10.1016/j.scitotenv.2024.170451] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Soil contamination by heavy metals poses major risks to human health and the environment. Given the current status of heavy metal pollution, many remediation techniques have been tested at laboratory and contaminated sites. The effects of soil organic matter-mediated electron transfer on heavy metal remediation have not been adequately studied, and the key mechanisms underlying this process have not yet been elucidated. In this review, microbial extracellular electron transfer pathways, organic matter electron transfer for heavy metal reduction, and the factors affecting these processes were discussed to enhance our understanding of heavy metal pollution. It was found that microbial extracellular electrons delivered by electron shuttles have the longest distance among the three electron transfer pathways, and the application of exogenous electron shuttles lays the foundation for efficient and persistent remediation of heavy metals. The organic matter-mediated electron transfer process, wherein organic matter acts as an electron shuttle, promotes the conversion of high valence state metal ions, such as Cr(VI), Hg(II), and U(VI), into less toxic and morphologically stable forms, which inhibits their mobility and bioavailability. Soil type, organic matter structural and content, heavy metal concentrations, and environmental factors (e.g., pH, redox potential, oxygen conditions, and temperature) all influence organic matter-mediated electron transfer processes and bioremediation of heavy metals. Organic matter can more effectively mediate electron transfer for heavy metal remediation under anaerobic conditions, as well as when the heavy metal content is low and the redox potential is suitable under fluvo-aquic/paddy soil conditions. Organic matter with high aromaticity, quinone groups, and phenol groups has a stronger electron transfer ability. This review provides new insights into the control and management of soil contamination and heavy metal remediation technologies.
Collapse
Affiliation(s)
- Bing Kou
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Yuan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China.
| | - Yuxin Ke
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Hui Wang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tingqiao Yu
- International Education College, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Wenbing Tan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
18
|
Tokunou Y, Tongu H, Kogure Y, Okamoto A, Toyofuku M, Nomura N. Colony-Based Electrochemistry Reveals Electron Conduction Mechanisms Mediated by Cytochromes and Flavins in Shewanella oneidensis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4670-4679. [PMID: 38411077 DOI: 10.1021/acs.est.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Bacteria utilize electron conduction in their communities to drive their metabolism, which has led to the development of various environmental technologies, such as electrochemical microbial systems and anaerobic digestion. It is challenging to measure the conductivity among bacterial cells when they hardly form stable biofilms on electrodes. This makes it difficult to identify the biomolecules involved in electron conduction. In the present study, we aimed to identify c-type cytochromes involved in electron conduction in Shewanella oneidensis MR-1 and examine the molecular mechanisms. We established a colony-based bioelectronic system that quantifies bacterial electrical conductivity, without the need for biofilm formation on electrodes. This system enabled the quantification of the conductivity of gene deletion mutants that scarcely form biofilms on electrodes, demonstrating that c-type cytochromes, MtrC and OmcA, are involved in electron conduction. Furthermore, the use of colonies of gene deletion mutants demonstrated that flavins participate in electron conduction by binding to OmcA, providing insight into the electron conduction pathways at the molecular level. Furthermore, phenazine-based electron transfer in Pseudomonas aeruginosa PAO1 and flavin-based electron transfer in Bacillus subtilis 3610 were confirmed, indicating that this colony-based system can be used for various bacteria, including weak electricigens.
Collapse
Affiliation(s)
- Yoshihide Tokunou
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8577, Japan
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Ibaraki 305-0044, Japan
| | - Hiromasa Tongu
- Degree Programs in Life and Earth Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8577, Japan
| | - Yugo Kogure
- Degree Programs in Life and Earth Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8577, Japan
| | - Akihiro Okamoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8577, Japan
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Ibaraki 305-0044, Japan
- School of Chemical Sciences and Engineering, Hokkaido University, 13 Kita, 8 Nishi, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Masanori Toyofuku
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8577, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8577, Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8577, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8577, Japan
| |
Collapse
|
19
|
Jalili P, Ala A, Nazari P, Jalili B, Ganji DD. A comprehensive review of microbial fuel cells considering materials, methods, structures, and microorganisms. Heliyon 2024; 10:e25439. [PMID: 38371992 PMCID: PMC10873675 DOI: 10.1016/j.heliyon.2024.e25439] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/02/2024] [Accepted: 01/26/2024] [Indexed: 02/20/2024] Open
Abstract
Microbial fuel cells (MFCs) are promising for generating renewable energy from organic matter and efficient wastewater treatment. Ensuring their practical viability requires meticulous optimization and precise design. Among the critical components of MFCs, the membrane separator plays a pivotal role in segregating the anode and cathode chambers. Recent investigations have shed light on the potential benefits of membrane-less MFCs in enhancing power generation. However, it is crucial to recognize that such configurations can adversely impact the electrocatalytic activity of anode microorganisms due to increased substrate and oxygen penetration, leading to decreased coulombic efficiency. Therefore, when selecting a membrane for MFCs, it is essential to consider key factors such as internal resistance, substrate loss, biofouling, and oxygen diffusion. Addressing these considerations carefully allows researchers to advance the performance and efficiency of MFCs, facilitating their practical application in sustainable energy production and wastewater treatment. Accelerated substrate penetration could also lead to cathode clogging and bacterial inactivation, reducing the MFC's efficiency. Overall, the design and optimization of MFCs, including the selection and use of membranes, are vital for their practical application in renewable energy generation and wastewater treatment. Further research is necessary to overcome the challenges of MFCs without a membrane and to develop improved membrane materials for MFCs. This review article aims to compile comprehensive information about all constituents of the microbial fuel cell, providing practical insights for researchers examining various variables in microbial fuel cell research.
Collapse
Affiliation(s)
- Payam Jalili
- Department of Mechanical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Amirhosein Ala
- Department of Mechanical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Parham Nazari
- Department of Mechanical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Bahram Jalili
- Department of Mechanical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Davood Domiri Ganji
- Department of Mechanical Engineering, Babol Noshirvani University of Technology, P.O. Box 484, Babol, Iran
| |
Collapse
|
20
|
Cheng M, Liang L, Sun Y, Zhang H, Hu X. Reduction of selenite and tellurite by a highly metal-tolerant marine bacterium. Int Microbiol 2024; 27:203-212. [PMID: 37261581 DOI: 10.1007/s10123-023-00382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Selenium (Se) and tellurium (Te) contaminations in soils and water bodies have been widely reported in recent years. Se(IV) and Te(IV) were regarded as their most dangerous forms. Microbial treatments of Se(IV)- and Te(IV)-containing wastes are promising approaches because of their environmentally friendly and sustainable advantages. However, the salt-tolerant microbial resources that can be used for selenium/tellurium pollution control are still limited since industrial wastewaters usually contain a large number of salts. In this study, a marine Shewanella sp. FDA-1 (FDA-1) was reported for efficient Se(IV) and Te(IV) reduction under saline conditions. Process and product analyses were performed to investigate the bioreduction processes of Se(IV) and Te(IV). The results showed that FDA-1 can effectively reduce Se(IV) and Te(IV) to Se0 and Te0 Se(IV)/Te(IV) to Se0/Te0 in 72 h, which were further confirmed by XRD and XPS analyses. In addition, enzymatic and RT‒qPCR assays showed that flavin-related proteins, reductases, dehydrogenases, etc., could be involved in the bioreduction of Se(IV)/Te(IV). Overall, our results demonstrate the ability of FDA-1 to reduce high concentrations of Se(IV)/or Te(IV) to Se0/or Te0 under saline conditions and thus provide efficient microbial candidate for controlling Se and Te pollution.
Collapse
Affiliation(s)
- Manman Cheng
- College of Life Sciences, Yantai University, Yantai, 264000, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, China
| | - Likun Liang
- College of Life Sciences, Yantai University, Yantai, 264000, China
| | - Yanyu Sun
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, China
| | - Haikun Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, China.
| | - Xiaoke Hu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, China.
| |
Collapse
|
21
|
Heom KA, Wangsanuwat C, Butkovich LV, Tam SC, Rowe AR, O'Malley MA, Dey SS. Targeted rRNA depletion enables efficient mRNA sequencing in diverse bacterial species and complex co-cultures. mSystems 2023; 8:e0028123. [PMID: 37855606 PMCID: PMC10734481 DOI: 10.1128/msystems.00281-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Microbes present one of the most diverse sources of biochemistry in nature, and mRNA sequencing provides a comprehensive view of this biological activity by quantitatively measuring microbial transcriptomes. However, efficient mRNA capture for sequencing presents significant challenges in prokaryotes as mRNAs are not poly-adenylated and typically make up less than 5% of total RNA compared with rRNAs that exceed 80%. Recently developed methods for sequencing bacterial mRNA typically rely on depleting rRNA by tiling large probe sets against rRNAs; however, such approaches are expensive, time-consuming, and challenging to scale to varied bacterial species and complex microbial communities. Therefore, we developed EMBR-seq+, a method that requires fewer than 10 short oligonucleotides per rRNA to achieve up to 99% rRNA depletion in diverse bacterial species. Finally, EMBR-seq+ resulted in a deeper view of the transcriptome, enabling systematic quantification of how microbial interactions result in altering the transcriptional state of bacteria within co-cultures.
Collapse
Affiliation(s)
- Kellie A. Heom
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, California, USA
| | - Chatarin Wangsanuwat
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, California, USA
| | - Lazarina V. Butkovich
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
| | - Scott C. Tam
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
| | - Annette R. Rowe
- Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michelle A. O'Malley
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, California, USA
| | - Siddharth S. Dey
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
22
|
Zang Y, Cao B, Zhao H, Xie B, Ge Y, Liu H, Yi Y. Mechanism and applications of bidirectional extracellular electron transfer of Shewanella. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1863-1877. [PMID: 37787043 DOI: 10.1039/d3em00224a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Electrochemically active microorganisms (EAMs) play an important role in the fields of environment and energy. Shewanella is the most common EAM. Research into Shewanella contributes to a deeper comprehension of EAMs and expands practical applications. In this review, the outward and inward extracellular electron transfer (EET) mechanisms of Shewanella are summarized and the roles of riboflavin in outward and inward EET are compared. Then, four methods for the enhancement of EET performance are discussed, focusing on riboflavin, intracellular reducing force, biofilm formation and substrate spectrum, respectively. Finally, the applications of Shewanella in the environment are classified, and the restrictions are discussed. Potential solutions and promising prospects for Shewanella are also provided.
Collapse
Affiliation(s)
- Yuxuan Zang
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing 100191, China.
- International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Bo Cao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing 100191, China.
- International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Hongyu Zhao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing 100191, China.
- International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Beizhen Xie
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing 100191, China.
- International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Yanhong Ge
- Infore Environment Technology Group, Foshan 528000, Guangdong Province, China
| | - Hong Liu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing 100191, China.
- International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Yue Yi
- School of Life, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
23
|
Chen YC, Li YT, Lee CL, Kuo YT, Ho CL, Lin WC, Hsu MC, Long X, Chen JS, Li WP, Su CH, Okamoto A, Yeh CS. Electroactive membrane fusion-liposome for increased electron transfer to enhance radiodynamic therapy. NATURE NANOTECHNOLOGY 2023; 18:1492-1501. [PMID: 37537274 DOI: 10.1038/s41565-023-01476-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023]
Abstract
Dynamic therapies have potential in cancer treatments but have limitations in efficiency and penetration depth. Here a membrane-integrated liposome (MIL) is created to coat titanium dioxide (TiO2) nanoparticles to enhance electron transfer and increase radical production under low-dose X-ray irradiation. The exoelectrogenic Shewanella oneidensis MR-1 microorganism presents an innate capability for extracellular electron transfer (EET). An EET-mimicking photocatalytic system is created by coating the TiO2 nanoparticles with the MIL, which significantly enhances superoxide anions generation under low-dose (1 Gy) X-ray activation. The c-type cytochromes-constructed electron channel in the membrane mimics electron transfer to surrounding oxygen. Moreover, the hole transport in the valence band is also observed for water oxidation to produce hydroxyl radicals. The TiO2@MIL system is demonstrated against orthotopic liver tumours in vivo.
Collapse
Affiliation(s)
- Ying-Chi Chen
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ting Li
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Lai Lee
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yen-Ting Kuo
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Lun Ho
- Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki, Japan
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ming-Chien Hsu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Xizi Long
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Japan
| | - Jia-Sin Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Peng Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chia-Hao Su
- Center for General Education, Chang Gung University, Taoyuan, Taiwan.
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Japan.
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan.
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan.
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
24
|
Cheng M, Zhang H, Li Y, Chen W. Riboflavin secreted by Shewanella sp. FDL-2 facilitates its reduction of Se(iv) and Te(iv) by promoting electron transfer. RSC Adv 2023; 13:34445-34454. [PMID: 38024980 PMCID: PMC10667860 DOI: 10.1039/d3ra07093j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023] Open
Abstract
The biological reduction of selenite (Se(iv)) or tellurite (Te(iv)) to Se0 or Te0 has received increasing attention, as related studies have favored the development of Se/Te pollution control methods. In the presence of the electron donor, the microbes acquired energy and transferred electrons to Se(iv) or Te(iv) to achieve their detoxication. However, the microbial electron transfer pathways involved in this process are still not fully understood. In this study, we reported that marine Shewanella sp. FDL-2 (FDL-2) was capable of reducing Se(iv) and Te(iv) through a novel riboflavin-involved pathway. The results showed that FDL-2 can effectively reduce 10 mM Se(iv) and 5 mM Te(iv) to Se0 and Te0, which was further confirmed by XPS and XRD analyses. RT-qPCR results indicate the upregulation of genes coding flavin-related proteins, and the production of flavin-related substances by strain FDL-2 during Se(iv)/Te(iv) bioreduction was proven by fluorescence chromatography analysis. In addition, the presence of riboflavin enhanced the electron transfer efficiency, indicating its promoting effect on the bioreduction of Se(iv)/Te(iv). Overall, our results highlight a riboflavin-involved electron transfer pathway during Se(iv)/Te(iv) bioreduction and thus deepen our understanding of the corresponding mechanism.
Collapse
Affiliation(s)
- Manman Cheng
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University Yibin City Sichuan Province 644000 China
- College of Life Sciences, Yantai University Yantai 264000 China
| | - Haikun Zhang
- Yantai Institute of Costal Zone Research, Chinese Academy of Sciences Yantai 264000 China
| | - Yan Li
- College of Life Sciences, Yantai University Yantai 264000 China
| | - Wenhao Chen
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University Yibin City Sichuan Province 644000 China
| |
Collapse
|
25
|
Niman CM, Sukenik N, Dang T, Nwachukwu J, Thirumurthy MA, Jones AK, Naaman R, Santra K, Das TK, Paltiel Y, Baczewski LT, El-Naggar MY. Bacterial extracellular electron transfer components are spin selective. J Chem Phys 2023; 159:145101. [PMID: 37811828 DOI: 10.1063/5.0154211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/01/2023] [Indexed: 10/10/2023] Open
Abstract
Metal-reducing bacteria have adapted the ability to respire extracellular solid surfaces instead of soluble oxidants. This process requires an electron transport pathway that spans from the inner membrane, across the periplasm, through the outer membrane, and to an external surface. Multiheme cytochromes are the primary machinery for moving electrons through this pathway. Recent studies show that the chiral-induced spin selectivity (CISS) effect is observable in some of these proteins extracted from the model metal-reducing bacteria, Shewanella oneidensis MR-1. It was hypothesized that the CISS effect facilitates efficient electron transport in these proteins by coupling electron velocity to spin, thus reducing the probability of backscattering. However, these studies focused exclusively on the cell surface electron conduits, and thus, CISS has not been investigated in upstream electron transfer components such as the membrane-associated MtrA, or periplasmic proteins such as small tetraheme cytochrome (STC). By using conductive probe atomic force microscopy measurements of protein monolayers adsorbed onto ferromagnetic substrates, we show that electron transport is spin selective in both MtrA and STC. Moreover, we have determined the spin polarization of MtrA to be ∼77% and STC to be ∼35%. This disparity in spin polarizations could indicate that spin selectivity is length dependent in heme proteins, given that MtrA is approximately two times longer than STC. Most significantly, our study indicates that spin-dependent interactions affect the entire extracellular electron transport pathway.
Collapse
Affiliation(s)
- Christina M Niman
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Nir Sukenik
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Tram Dang
- Department of Biological Sciences, University of Southern California, Los Angeles, California 91030, USA
| | - Justus Nwachukwu
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Miyuki A Thirumurthy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Anne K Jones
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Ron Naaman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kakali Santra
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tapan K Das
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yossi Paltiel
- Institute of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | | | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, California 91030, USA
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
26
|
Zhu J, Wang B, Zhang Y, Wei T, Gao T. Living electrochemical biosensing: Engineered electroactive bacteria for biosensor development and the emerging trends. Biosens Bioelectron 2023; 237:115480. [PMID: 37379794 DOI: 10.1016/j.bios.2023.115480] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Bioelectrical interfaces made of living electroactive bacteria (EAB) provide a unique opportunity to bridge biotic and abiotic systems, enabling the reprogramming of electrochemical biosensing. To develop these biosensors, principles from synthetic biology and electrode materials are being combined to engineer EAB as dynamic and responsive transducers with emerging, programmable functionalities. This review discusses the bioengineering of EAB to design active sensing parts and electrically connective interfaces on electrodes, which can be applied to construct smart electrochemical biosensors. In detail, by revisiting the electron transfer mechanism of electroactive microorganisms, engineering strategies of EAB cells for biotargets recognition, sensing circuit construction, and electrical signal routing, engineered EAB have demonstrated impressive capabilities in designing active sensing elements and developing electrically conductive interfaces on electrodes. Thus, integration of engineered EAB into electrochemical biosensors presents a promising avenue for advancing bioelectronics research. These hybridized systems equipped with engineered EAB can promote the field of electrochemical biosensing, with applications in environmental monitoring, health monitoring, green manufacturing, and other analytical fields. Finally, this review considers the prospects and challenges of the development of EAB-based electrochemical biosensors, identifying potential future applications.
Collapse
Affiliation(s)
- Jin Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Baoguo Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yixin Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|
27
|
Grenfell AW, Intile PJ, McFarlane JA, Leung DC, Abdalla K, Wold MC, Kees ED, Gralnick JA. The Outer Membrane Cytochrome OmcA Is Essential for Infection of Shewanella oneidensis by a Zebrafish-Associated Bacteriophage. J Bacteriol 2023; 205:e0046922. [PMID: 37227287 PMCID: PMC10294696 DOI: 10.1128/jb.00469-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/25/2023] [Indexed: 05/26/2023] Open
Abstract
The microbiota-the mixture of microorganisms in the intestinal tract of animals-plays an important role in host biology. Bacteriophages are a prominent, though often overlooked, component of the microbiota. The mechanisms that phage use to infect susceptible cells associated with animal hosts, and the broader role they could play in determining the substituents of the microbiota, are poorly understood. In this study, we isolated a zebrafish-associated bacteriophage, which we named Shewanella phage FishSpeaker. This phage infects Shewanella oneidensis strain MR-1, which cannot colonize zebrafish, but it is unable to infect Shewanella xiamenensis strain FH-1, a strain isolated from the zebrafish gut. Our data suggest that FishSpeaker uses the outer membrane decaheme cytochrome OmcA, which is an accessory component of the extracellular electron transfer (EET) pathway in S. oneidensis, as well as the flagellum to recognize and infect susceptible cells. In a zebrafish colony that lacks detectable FishSpeaker, we found that most Shewanella spp. are sensitive to infection and that some strains are resistant to infection. Our results suggest that phage could act as a selectivity filter for zebrafish-associated Shewanella and show that the EET machinery can be targeted by phage in the environment. IMPORTANCE Phage exert selective pressure on bacteria that influences and shapes the composition of microbial populations. However, there is a lack of native, experimentally tractable systems for studying how phage influence microbial population dynamics in complex communities. Here, we show that a zebrafish-associated phage requires both the outer membrane-associated extracellular electron transfer protein OmcA and the flagellum to infect Shewanella oneidensis strain MR-1. Our results suggest that the newly discovered phage-FishSpeaker-could exert selective pressure that restricts which Shewanella spp. colonize zebrafish. Moreover, the requirement of OmcA for infection by FishSpeaker suggests that the phage preferentially infects cells that are oxygen limited, a condition required for OmcA expression and an ecological feature of the zebrafish gut.
Collapse
Affiliation(s)
- Andrew W. Grenfell
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - Peter J. Intile
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - John A. McFarlane
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - Dani C. Leung
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - Khalid Abdalla
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - Michael C. Wold
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - Eric D. Kees
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - Jeffrey A. Gralnick
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| |
Collapse
|
28
|
Zhang X, Liu Y, Zhou Q, Bai Y, Li R, Li T, Li J, Alessi DS, Konhauser KO. Exogenous Electroactive Microbes Regulate Soil Geochemical Properties and Microbial Communities by Enhancing the Reduction and Transformation of Fe(III) Minerals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7743-7752. [PMID: 37171176 DOI: 10.1021/acs.est.3c00407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Electroactive microbes can conduct extracellular electron transfer and have the potential to be applied as a bioresource to regulate soil geochemical properties and microbial communities. In this study, we incubated Fe-limited and Fe-enriched farmland soil together with electroactive microbes for 30 days; both soils were incubated with electroactive microbes and a common iron mineral, ferrihydrite. Our results indicated that the exogenous electroactive microbes decreased soil pH, total organic carbon (TOC), and total nitrogen (TN) but increased soil conductivity and promoted Fe(III) reduction. The addition of electroactive microbes also changed the soil microbial community from Firmicutes-dominated to Proteobacteria-dominated. Moreover, the total number of detected microbial species in the soil decreased from over 700 to less than 500. Importantly, the coexistence of N-transforming bacteria, Fe(III)-reducing bacteria and methanogens was also observed with the addition of electroactive microbes in Fe-rich soil, indicating the accelerated interspecies electron transfer of functional microflora.
Collapse
Affiliation(s)
- Xiaolin Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuxia Liu
- State Key Laboratory of Petroleum Pollution Control, State Key Laboratory of Heavy Oil Processing, Department of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102200, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuge Bai
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Ruixiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jintian Li
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| |
Collapse
|
29
|
Draft Genome Sequence of a Delftia sp., a Member of an Electroactive Community Enriched from Wastewater from the Indian Institute of Technology Delhi, India. Microbiol Resour Announc 2023; 12:e0112122. [PMID: 36920194 PMCID: PMC10112246 DOI: 10.1128/mra.01121-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The draft genome sequence of Delftia sp. is reported here. The genome was recovered from a mixed-species electroactive community in a microbial fuel cell that had been inoculated with wastewater from the Indian Institute of Technology Delhi, India. Sequencing was performed using Nanopore technology.
Collapse
|
30
|
Guo Z, Wang L, Yu C. Over-expressing NadA quinolinate synthase in Escherichia coli enhances the bioelectrochemistry in microbial fuel cells. Biol Open 2023; 12:297054. [PMID: 36877035 PMCID: PMC10084859 DOI: 10.1242/bio.059554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 01/13/2023] [Indexed: 03/07/2023] Open
Abstract
The microbial fuel cell (MFC), which converts biomass energy into electricity through microbial metabolism, is one of the important devices for generating new bioenergy. However, low power production efficiency limits the development of MFCs. One possible method to solve this problem is to genetically modify the microbial metabolism pathways to enhance the efficiency of MFCs. In this study, we over-expressed the nicotinamide adenine dinucleotide A quinolinate synthase gene (nadA) in order to increase the NADH/+ level in Escherichia coli and obtain a new electrochemically active bacteria strain. The following experiments showed an enhanced performance of the MFC, including increased peak voltage output (70.81 mV) and power density (0.29 μW/cm2), which increased by 361% and 20.83% compared to the control group, respectively. These data suggest that genetic modification of electricity producing microbes could be a potential way to improve MFC performance.
Collapse
Affiliation(s)
- Zhenyu Guo
- Department of Pharmaceutical Engineering, College of Life Sciences and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Wang
- Department of Pharmaceutical Engineering, College of Life Sciences and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changyuan Yu
- Department of Pharmaceutical Engineering, College of Life Sciences and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
31
|
Zhou Q, Li R, Li T, Zhou R, Hou Z, Zhang X. Interactions among microorganisms functionally active for electron transfer and pollutant degradation in natural environments. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:3-15. [PMID: 38074455 PMCID: PMC10702900 DOI: 10.1016/j.eehl.2023.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 03/03/2024]
Abstract
Compared to single microbial strains, complex interactions between microbial consortia composed of various microorganisms have been shown to be effective in expanding ecological functions and accomplishing biological processes. Electroactive microorganisms (EMs) and degradable microorganisms (DMs) play vital roles in bioenergy production and the degradation of organic pollutants hazardous to human health. These microorganisms can strongly interact with other microorganisms and promote metabolic cooperation, thus facilitating electricity production and pollutant degradation. In this review, we describe several specific types of EMs and DMs based on their ability to adapt to different environments, and summarize the mechanism of EMs in extracellular electron transfer. The effects of interactions between EMs and DMs are evaluated in terms of electricity production and degradation efficiency. The principle of the enhancement in microbial consortia is also introduced, such as improved biomass, changed degradation pathways, and biocatalytic potentials, which are directly or indirectly conducive to human health.
Collapse
Affiliation(s)
- Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruixiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruiren Zhou
- Department of Biological and Agricultural Engineering, Texas A&M University, TX 77843-2117, USA
| | - Zelin Hou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaolin Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
32
|
Atkinson JT, Chavez MS, Niman CM, El-Naggar MY. Living electronics: A catalogue of engineered living electronic components. Microb Biotechnol 2023; 16:507-533. [PMID: 36519191 PMCID: PMC9948233 DOI: 10.1111/1751-7915.14171] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/26/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022] Open
Abstract
Biology leverages a range of electrical phenomena to extract and store energy, control molecular reactions and enable multicellular communication. Microbes, in particular, have evolved genetically encoded machinery enabling them to utilize the abundant redox-active molecules and minerals available on Earth, which in turn drive global-scale biogeochemical cycles. Recently, the microbial machinery enabling these redox reactions have been leveraged for interfacing cells and biomolecules with electrical circuits for biotechnological applications. Synthetic biology is allowing for the use of these machinery as components of engineered living materials with tuneable electrical properties. Herein, we review the state of such living electronic components including wires, capacitors, transistors, diodes, optoelectronic components, spin filters, sensors, logic processors, bioactuators, information storage media and methods for assembling these components into living electronic circuits.
Collapse
Affiliation(s)
- Joshua T Atkinson
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Christina M Niman
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.,Department of Chemistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
33
|
Zhu X, Dou F, Long M, Wang X, Liu W, Li F, Liu T, Wu Y. Electron shuttle-dependent biofilm formation and biocurrent generation: Concentration effects and mechanistic insights. Front Microbiol 2023; 14:1070800. [PMID: 36937307 PMCID: PMC10016380 DOI: 10.3389/fmicb.2023.1070800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/31/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction Electron shuttles (ESs) play a key role in extracellular electron transfer (EET) in Shewanella oneidensis MR-1. However, the quantification relationship between ES concentration, biofilm formation, and biocurrent generation has not been clarified. Methods In this study, 9,10-anthraquinone-2-sulfonic acid (AQS)-mediated EET and biofilm formation were evaluated at different AQS concentrations in bioelectrochemical systems (BESs) with S. oneidensis MR-1. Results and discussion Both the biofilm biomass (9- to 17-fold) and biocurrent (21- to 80-fold) were substantially enhanced by exogenous AQS, suggesting the dual ability of AQS to promote both biofilm formation and electron shuttling. Nevertheless, biofilms barely grew without the addition of exogenous AQS, revealing that biofilm formation by S. oneidensis MR-1 is highly dependent on electron shuttling. The biofilm growth was delayed in a BES of 2,000 μM AQS, which is probably because the redundant AQS in the bulk solution acted as a soluble electron acceptor and delayed biofilm formation. In addition, the maximum biocurrent density in BESs with different concentrations of AQS was fitted to the Michaelis-Menten equation (R 2 = 0.97), demonstrating that microbial-catalyzed ES bio-reduction is the key limiting factor of the maximum biocurrent density in BESs. This study provided a fundamental understanding of ES-mediated EET, which could be beneficial for the enrichment of electroactive biofilms, the rapid start-up of microbial fuel cells (MFCs), and the design of BESs for wastewater treatment.
Collapse
Affiliation(s)
- Xiao Zhu
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, China
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Dou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, China
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
| | - Mingliang Long
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, China
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Xinxin Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, China
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Wei Liu
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, China
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, China
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
| | - Yundang Wu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, China
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
- *Correspondence: Yundang Wu
| |
Collapse
|
34
|
Bedendi G, De Moura Torquato LD, Webb S, Cadoux C, Kulkarni A, Sahin S, Maroni P, Milton RD, Grattieri M. Enzymatic and Microbial Electrochemistry: Approaches and Methods. ACS MEASUREMENT SCIENCE AU 2022; 2:517-541. [PMID: 36573075 PMCID: PMC9783092 DOI: 10.1021/acsmeasuresciau.2c00042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 06/17/2023]
Abstract
The coupling of enzymes and/or intact bacteria with electrodes has been vastly investigated due to the wide range of existing applications. These span from biomedical and biosensing to energy production purposes and bioelectrosynthesis, whether for theoretical research or pure applied industrial processes. Both enzymes and bacteria offer a potential biotechnological alternative to noble/rare metal-dependent catalytic processes. However, when developing these biohybrid electrochemical systems, it is of the utmost importance to investigate how the approaches utilized to couple biocatalysts and electrodes influence the resulting bioelectrocatalytic response. Accordingly, this tutorial review starts by recalling some basic principles and applications of bioelectrochemistry, presenting the electrode and/or biocatalyst modifications that facilitate the interaction between the biotic and abiotic components of bioelectrochemical systems. Focus is then directed toward the methods used to evaluate the effectiveness of enzyme/bacteria-electrode interaction and the insights that they provide. The basic concepts of electrochemical methods widely employed in enzymatic and microbial electrochemistry, such as amperometry and voltammetry, are initially presented to later focus on various complementary methods such as spectroelectrochemistry, fluorescence spectroscopy and microscopy, and surface analytical/characterization techniques such as quartz crystal microbalance and atomic force microscopy. The tutorial review is thus aimed at students and graduate students approaching the field of enzymatic and microbial electrochemistry, while also providing a critical and up-to-date reference for senior researchers working in the field.
Collapse
Affiliation(s)
- Giada Bedendi
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | | | - Sophie Webb
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Cécile Cadoux
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Amogh Kulkarni
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Selmihan Sahin
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Plinio Maroni
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Ross D. Milton
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Matteo Grattieri
- Dipartimento
di Chimica, Università degli Studi
di Bari “Aldo Moro”, via E. Orabona 4, Bari 70125, Italy
- IPCF-CNR
Istituto per i Processi Chimico Fisici, Consiglio Nazionale delle Ricerche, via E. Orabona 4, Bari 70125, Italy
| |
Collapse
|
35
|
Huang J, Cai XL, Peng JR, Fan YY, Xiao X. Extracellular pollutant degradation feedback regulates intracellular electron transfer process of exoelectrogens: Strategy and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158630. [PMID: 36084783 DOI: 10.1016/j.scitotenv.2022.158630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Exoelectrogens possess extraordinary degradation ability to various pollutants through extracellular electron transfer (EET). Compared with extracellular electron release process, intracellular electron transfer network is not yet fully recognized. Especially, controversy remains regarding the role of CymA, an essential electron-transfer hub of Shewanella oneidensis MR-1, in EET process. In this study, we thoroughly surveyed the intracellular transfer strategies during EET through dye decolorization. Loss of CymA severely impaired the reduction ability of S. oneidensis MR-1 to methyl orange (MO), but hardly affected the decolorization of aniline blue (AB). Complement of cymA fully restored the MO decolorization ability of ΔcymA mutant. The contribution of CymA to extracellular decolorization was subjected to MO concentrations. The defect in the decolorization ability of ΔcymA mutant was not evident at low MO concentration, but severe at high MO concentration. Further investigation revealed that EET rate determined the significance of CymA in the extracellular bioremediation by S. oneidensis MR-1. Coupled with MO concentrations increasing from 15 to 120 mg/L, the initial electron transfer rates of S. oneidensis MR-1 increased accordingly from 2.69 × 104 to 11.21 × 104 electrons CFU-1 s-1, which led to a gradual increase of the dependencyCymA. Thus, we first revealed that extracellular degradation performance could feedback regulate the intracellular electron transfer process of S. oneidensis MR-1. This work is helpful to fully understand the complex EET process of exoelectrogens and facilitates the application of exoelectrogens in bioremediation of environmental pollutants.
Collapse
Affiliation(s)
- Jing Huang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xin-Lu Cai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Jie-Ru Peng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yang-Yang Fan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
36
|
Guo J, Jiang J, Peng Z, Zhong Y, Jiang Y, Jiang Z, Hu Y, Dong Y, Shi L. Global occurrence of the bacteria with capability for extracellular reduction of iodate. Front Microbiol 2022; 13:1070601. [PMID: 36504819 PMCID: PMC9732548 DOI: 10.3389/fmicb.2022.1070601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
The γ-proteobacterium Shewanella oneidensis MR-1 reduces iodate to iodide extracellularly. Both dmsEFAB and mtrCAB gene clusters are involved in extracellular reduction of iodate by S. oneidensis MR-1. DmsEFAB reduces iodate to hypoiodous acid and hydrogen peroxide (H2O2). Subsequently, H2O2 is reduced by MtrCAB to facilitate DmsEFAB-mediated extracellular reduction of iodate. To investigate the distribution of bacteria with the capability for extracellular reduction of iodate, bacterial genomes were systematically searched for both dmsEFAB and mtrCAB gene clusters. The dmsEFAB and mtrCAB gene clusters were found in three Ferrimonas and 26 Shewanella species. Coexistence of both dmsEFAB and mtrCAB gene clusters in these bacteria suggests their potentials for extracellular reduction of iodate. Further analyses demonstrated that these bacteria were isolated from a variety of ecosystems, including the lakes, rivers, and subsurface rocks in East and Southeast Asia, North Africa, and North America. Importantly, most of the bacteria with both dmsEFAB and mtrCAB gene clusters were found in different marine environments, which ranged from the Arctic Ocean to Antarctic coastal marine environments as well as from the Atlantic Ocean to the Indian and Pacific Oceans. Widespread distribution of the bacteria with capability for extracellular reduction of iodate around the world suggests their significant importance in global biogeochemical cycling of iodine. The genetic organization of dmsEFAB and mtrCAB gene clusters also varied substantially. The identified mtrCAB gene clusters often contained additional genes for multiheme c-type cytochromes. The numbers of dmsEFAB gene cluster detected in a given bacterial genome ranged from one to six. In latter, duplications of dmsEFAB gene clusters occurred. These results suggest different paths for these bacteria to acquire their capability for extracellular reduction of iodate.
Collapse
Affiliation(s)
- Jinzhi Guo
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Jie Jiang
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Zhaofeng Peng
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China,*Correspondence: Zhaofeng Peng,
| | - Yuhong Zhong
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yongguang Jiang
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Zhou Jiang
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Yidan Hu
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yiran Dong
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China,Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China,State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, China
| | - Liang Shi
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China,Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China,State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, China,*Correspondence: Zhaofeng Peng,
| |
Collapse
|
37
|
Atkinson JT, Su L, Zhang X, Bennett GN, Silberg JJ, Ajo-Franklin CM. Real-time bioelectronic sensing of environmental contaminants. Nature 2022; 611:548-553. [DOI: 10.1038/s41586-022-05356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/15/2022] [Indexed: 11/07/2022]
|
38
|
Electrochemical Enrichment and Isolation of Electrogenic Bacteria from 0.22 µm Filtrate. Microorganisms 2022; 10:microorganisms10102051. [PMID: 36296327 PMCID: PMC9611719 DOI: 10.3390/microorganisms10102051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/30/2022] [Accepted: 10/16/2022] [Indexed: 11/23/2022] Open
Abstract
Ultramicrobacteria (UMB) that can pass through a 0.22 µm filter are attractive because of their novelty and diversity. However, isolating UMB has been difficult because of their symbiotic or parasitic lifestyles in the environment. Some UMB have extracellular electron transfer (EET)-related genes, suggesting that these symbionts may grow on an electrode surface independently. Here, we attempted to culture from soil samples bacteria that passed through a 0.22 µm filter poised with +0.2 V vs. Ag/AgCl and isolated Cellulomonas sp. strain NTE-D12 from the electrochemical reactor. A phylogenetic analysis of the 16S rRNA showed 97.9% similarity to the closest related species, Cellulomonas algicola, indicating that the strain NTE-D12 is a novel species. Electrochemical and genomic analyses showed that the strain NTE-D12 generated the highest current density compared to that in the three related species, indicating the presence of a unique electron transfer system in the strain. Therefore, the present study provides a new isolation scheme for cultivating and isolating novel UMB potentially with a symbiotic relationship associated with interspecies electron transfer.
Collapse
|
39
|
Cao FT, Ma XL, Zhou XT, Han JC, Xiao X. Performance and mechanisms exploration of nano zinc oxide (nZnO) on anaerobic decolorization by Shewanella oneidensis MR-1. CHEMOSPHERE 2022; 305:135510. [PMID: 35772516 DOI: 10.1016/j.chemosphere.2022.135510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Although the ecological safety of nanomaterials is of widespread concern, their current ambient concentrations are not yet sufficient to cause serious toxic effects. Thus, the nontoxic bioimpact of nanomaterials in wastewater treatment has attracted increasing attention. In this study, the effect of nano zinc oxide (nZnO), one of the most widely used nanomaterials, on the anaerobic biodegradation of methyl orange (MO) by Shewanella oneidensis MR-1 was comprehensively investigated. High-dosage nZnO (>0.5 mg/L) caused severe toxic stress on S. oneidensis MR-1, resulting in the decrease in decolorization efficiency. However, nZnO at ambient concentrations could act as nanostimulants and promote the anaerobic removal of MO by S. oneidensis MR-1, which should be attributed to the improvement of decolorization efficiency rather than cell proliferation. The dissolved Zn2+ was found to contribute to the bioeffect of nZnO on MO decolorization. Further investigation revealed that low-dosage nZnO could promote the cell viability, membrane permeability, anaerobic metabolism, as well as related gene expression, indicating that nZnO facilitated rather than inhibited the anaerobic wastewater treatment under ambient conditions. Thus, this work provides a new insight into the bioeffect of nZnO in actual environment and facilitates the practical application of nanomaterials as nanostimulants in biological process.
Collapse
Affiliation(s)
- Feng-Ting Cao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xiao-Lin Ma
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiang-Tong Zhou
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jun-Cheng Han
- Department of Civil and Environmental Engineering, School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
40
|
Hu Y, Han X, Shi L, Cao B. Electrochemically active biofilm-enabled biosensors: Current status and opportunities for biofilm engineering. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Yu YY, Zhang Y, Peng L. Investigating the interaction between Shewanella oneidensis and phenazine 1-carboxylic acid in the microbial electrochemical processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156501. [PMID: 35667430 DOI: 10.1016/j.scitotenv.2022.156501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Many exoelectrogens utilize small redox mediators for extracellular electron transfer (EET). Notable examples include Shewanella species, which synthesize flavins, and Pseudomonas species, which produce phenazines. In natural and engineered environments, redox-active metabolites from different organisms coexist. The interaction between Shewanella oneidensis and phenazine 1-carboxylic acid (PCA, a representative phenazine compound) was investigated to demonstrate exoelectrogens utilizing metabolites secreted by other organisms as redox mediators. After 24 h in a reactor with and without added PCA (1 μM), the anodic current generated by Shewanella was 235 ± 11 and 51.7 ± 2.8 μA, respectively. Shewanella produced oxidative current approximately three times as high with medium containing PCA as with medium containing the same concentration of riboflavin. PCA also stimulated inward EET in Shewanella. The strong effect of PCA on EET was attributed to its enrichment at the biofilm/electrode interface. The PCA voltammetric peak heights with a Shewanella bioanode were 25-30 times higher than under abiotic conditions. The electrochemical properties of PCA were also altered by the transition from two-electron to single-electron electrochemistry, which suggests PCA was bound between the electrode and cell surface redox proteins. This behavior would benefit electroactive bacteria, which usually dwell in open systems where mediators are present in low concentrations. Like flavins, PCA can be immobilized under both bioanode and biocathode conditions but not under metabolically inactive conditions. Shewanella rapidly transfers electrons to PCA via its Mtr pathway. Compared with wild-type Shewanella, the PCA reduction ability was decreased in gene knockout mutants lacking Mtr pathway cytochromes, especially in the mutants with severely undermined electrode-reduction capacities. These strains also lost the ability to immobilize PCA, even under current-generating conditions.
Collapse
Affiliation(s)
- Yi-Yan Yu
- School of Resources & Environment, Southwest University, Chongqing 400716, PR China
| | - Yong Zhang
- School of Resources & Environment, Southwest University, Chongqing 400716, PR China
| | - Luo Peng
- School of Resources & Environment, Southwest University, Chongqing 400716, PR China.
| |
Collapse
|
42
|
Increasing the glucose metabolism enhances the bioelectricity generation in microbial fuel cells. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1566-1567. [PMID: 36111746 PMCID: PMC9828298 DOI: 10.3724/abbs.2022129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
43
|
Roy AS, Sharma A, Thapa BS, Pandit S, Lahiri D, Nag M, Sarkar T, Pati S, Ray RR, Shariati MA, Wilairatana P, Mubarak MS. Microbiomics for enhancing electron transfer in an electrochemical system. Front Microbiol 2022; 13:868220. [PMID: 35966693 PMCID: PMC9372394 DOI: 10.3389/fmicb.2022.868220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
In microbial electrochemical systems, microorganisms catalyze chemical reactions converting chemical energy present in organic and inorganic molecules into electrical energy. The concept of microbial electrochemistry has been gaining tremendous attention for the past two decades, mainly due to its numerous applications. This technology offers a wide range of applications in areas such as the environment, industries, and sensors. The biocatalysts governing the reactions could be cell secretion, cell component, or a whole cell. The electroactive bacteria can interact with insoluble materials such as electrodes for exchanging electrons through colonization and biofilm formation. Though biofilm formation is one of the major modes for extracellular electron transfer with the electrode, there are other few mechanisms through which the process can occur. Apart from biofilm formation electron exchange can take place through flavins, cytochromes, cell surface appendages, and other metabolites. The present article targets the various mechanisms of electron exchange for microbiome-induced electron transfer activity, proteins, and secretory molecules involved in the electron transfer. This review also focuses on various proteomics and genetics strategies implemented and developed to enhance the exo-electron transfer process in electroactive bacteria. Recent progress and reports on synthetic biology and genetic engineering in exploring the direct and indirect electron transfer phenomenon have also been emphasized.
Collapse
Affiliation(s)
- Ayush Singha Roy
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, India
| | - Aparna Sharma
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Bhim Sen Thapa
- Department of Biological Sciences, WEHR Life Sciences, Marquette University, Milwaukee, WI, United States
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
- *Correspondence: Soumya Pandit,
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering and Management, Kolkata, WB, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering and Management, Kolkata, WB, India
| | - Tanmay Sarkar
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, WB, India
| | - Siddhartha Pati
- NatNov Bioscience Private Ltd., Balasore, India
- Association for Biodiversity Conservation and Research Balasore (ABC), Balasore, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, WB, India
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Polrat Wilairatana,
| | - Mohammad S. Mubarak
- Department of Chemistry, The University of Jordan, Amman, Jordan
- Mohammad S. Mubarak,
| |
Collapse
|
44
|
Guo J, Jiang Y, Hu Y, Jiang Z, Dong Y, Shi L. The Roles of DmsEFAB and MtrCAB in Extracellular Reduction of Iodate by Shewanella oneidensis MR-1 with Lactate as the Sole Electron Donor. Environ Microbiol 2022; 24:5039-5050. [PMID: 35837844 DOI: 10.1111/1462-2920.16130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022]
Abstract
To investigate their roles in extracellular reduction of iodate (IO3 - ) with lactate as an electron donor, the gene clusters of dmsEFAB, mtrCAB, mtrDEF, and so4360-4357 in Shewanella oneidensis MR-1were systematically deleted. Deletions of dmsEFAB and/or mtrCAB gene clusters diminished the bacterial ability to reduce IO3 - . Furthermore, DmsEFAB and MtrCAB worked collaboratively to reduce IO3 - of which DmsEFAB played a more dominant role than MtrCAB. MtrCAB was involved in detoxifying the reaction intermediate hydrogen peroxide (H2 O2 ). The reaction intermediate hypoiodous acid (HIO) was also found to inhibit microbial IO3 - reduction. SO4360-4357 and MtrDEF, however, were not involved in IO3 - reduction. Collectively, these results suggest a novel mechanism of extracellular reduction of IO3 - at molecular level, in which DmsEFAB reduces IO3 - to HIO and H2 O2 . The latter is further reduced to H2 O by MtrCAB to facilitate the DmsEFAB-mediated IO3 - reduction. The extracellular electron transfer pathway of S. oneidensis MR-1is believed to mediate electron transfer from bacterial cytoplasmic membrane, across the cell envelope to the DmsEFAB and MtrCAB on the bacterial outer membrane.
Collapse
Affiliation(s)
- Jinzhi Guo
- Department of Biological Sciences and Technology, School of Environmental Studies, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, Hubei, China
| | - Yongguang Jiang
- Department of Biological Sciences and Technology, School of Environmental Studies, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, Hubei, China
| | - Yidan Hu
- Department of Biological Sciences and Technology, School of Environmental Studies, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, Hubei, China
| | - Zhou Jiang
- Department of Biological Sciences and Technology, School of Environmental Studies, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, Hubei, China
| | - Yiran Dong
- Department of Biological Sciences and Technology, School of Environmental Studies, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, Hubei, China.,State Key Laboratory of Biogeology and Environmental Geology, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, Hubei, China.,Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, Hubei, China
| | - Liang Shi
- Department of Biological Sciences and Technology, School of Environmental Studies, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, Hubei, China.,State Key Laboratory of Biogeology and Environmental Geology, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, Hubei, China.,Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, Hubei, China.,State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, Hubei, China
| |
Collapse
|
45
|
Sackett JD, Kamble N, Leach E, Schuelke T, Wilbanks E, Rowe AR. Genome-Scale Mutational Analysis of Cathode-Oxidizing Thioclava electrotropha ElOx9 T. Front Microbiol 2022; 13:909824. [PMID: 35756027 PMCID: PMC9226611 DOI: 10.3389/fmicb.2022.909824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular electron transfer (EET) – the process by which microorganisms transfer electrons across their membrane(s) to/from solid-phase materials – has implications for a wide range of biogeochemically important processes in marine environments. Though EET is thought to play an important role in the oxidation of inorganic minerals by lithotrophic organisms, the mechanisms involved in the oxidation of solid particles are poorly understood. To explore the genetic basis of oxidative EET, we utilized genomic analyses and transposon insertion mutagenesis screens (Tn-seq) in the metabolically flexible, lithotrophic Alphaproteobacterium Thioclava electrotropha ElOx9T. The finished genome of this strain is 4.3 MB, and consists of 4,139 predicted ORFs, 54 contain heme binding motifs, and 33 of those 54 are predicted to localize to the cell envelope or have unknown localizations. To begin to understand the genetic basis of oxidative EET in ElOx9T, we constructed a transposon mutant library in semi-rich media which was comprised of >91,000 individual mutants encompassing >69,000 unique TA dinucleotide insertion sites. The library was subjected to heterotrophic growth on minimal media with acetate and autotrophic oxidative EET conditions on indium tin oxide coated glass electrodes poised at –278 mV vs. SHE or un-poised in an open circuit condition. We identified 528 genes classified as essential under these growth conditions. With respect to electrochemical conditions, 25 genes were essential under oxidative EET conditions, and 29 genes were essential in both the open circuit control and oxidative EET conditions. Though many of the genes identified under electrochemical conditions are predicted to be localized in the cytoplasm and lack heme binding motifs and/or homology to known EET proteins, we identified several hypothetical proteins and poorly characterized oxidoreductases that implicate a novel mechanism(s) for EET that warrants further study. Our results provide a starting point to explore the genetic basis of novel oxidative EET in this marine sediment microbe.
Collapse
Affiliation(s)
- Joshua D Sackett
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Nitin Kamble
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Edmund Leach
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Taruna Schuelke
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Elizabeth Wilbanks
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Annette R Rowe
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
46
|
Wang JX, Yang XJ, Wang YZ, Yang K, Chen H, Yong YC. Bio-Nanohybrid Cell Based Signal Amplification System for Electrochemical Sensing. Anal Chem 2022; 94:7738-7742. [PMID: 35616684 DOI: 10.1021/acs.analchem.2c01384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A signal amplification system for electrochemical sensing was established by bio-nanohybrid cells (BNC) based on bacterial self-assembly and biomineralization. The BNC was constructed by partially encapsulating a Shewanella oneidensis MR-1 cell with the self-biomineralized iron sulfide nanoparticles. The iron sulfide nanoparticle encapsulated BNCs showed high transmembrane electron transfer efficiency and was explored as a superior redox cycling module. Impressively, by integrating this BNC redox cycling module into the electrochemical sensing system, the output signal was amplified over 260 times compared to that without the BNC module. Uniquely, with this BNC redox cycling system, ultrasensitive detection of riboflavin with an extremely low LOD of 0.2 nM was achieved. This work demonstrated the power of BNC in the area of biosensing and provided a new possibility for the design of a whole cell redox cycling based signal amplification system.
Collapse
Affiliation(s)
- Jing-Xian Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xue-Jin Yang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yan-Zhai Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kai Yang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
47
|
Luo J, Yuan Q, Mao Y, Wei F, Zhao J, Yu W, Kong S, Guo Y, Cai J, Liao X, Wang Z, Ma H. Reconstruction of a Genome-Scale Metabolic Network for Shewanella oneidensis MR-1 and Analysis of its Metabolic Potential for Bioelectrochemical Systems. Front Bioeng Biotechnol 2022; 10:913077. [PMID: 35646853 PMCID: PMC9133699 DOI: 10.3389/fbioe.2022.913077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/26/2022] [Indexed: 11/28/2022] Open
Abstract
Bioelectrochemical systems (BESs) based on Shewanella oneidensis MR-1 offer great promise for sustainable energy/chemical production, but the low rate of electron generation remains a crucial bottleneck preventing their industrial application. Here, we reconstructed a genome-scale metabolic model of MR-1 to provide a strong theoretical basis for novel BES applications. The model iLJ1162, comprising 1,162 genes, 1,818 metabolites and 2,084 reactions, accurately predicted cellular growth using a variety of substrates with 86.9% agreement with experimental results, which is significantly higher than the previously published models iMR1_799 and iSO783. The simulation of microbial fuel cells indicated that expanding the substrate spectrum of MR-1 to highly reduced feedstocks, such as glucose and glycerol, would be beneficial for electron generation. In addition, 31 metabolic engineering targets were predicted to improve electricity production, three of which have been experimentally demonstrated, while the remainder are potential targets for modification. Two potential electron transfer pathways were identified, which could be new engineering targets for increasing the electricity production capacity of MR-1. Finally, the iLJ1162 model was used to simulate the optimal biosynthetic pathways for six platform chemicals based on the MR-1 chassis in microbial electrosynthesis systems. These results offer guidance for rational design of novel BESs.
Collapse
Affiliation(s)
- Jiahao Luo
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Frontier Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qianqian Yuan
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yufeng Mao
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Fan Wei
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Juntao Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Frontier Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wentong Yu
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Frontier Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Shutian Kong
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Frontier Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yanmei Guo
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jingyi Cai
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiaoping Liao
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhiwen Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Frontier Science Center for Synthetic Biology (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- *Correspondence: Zhiwen Wang, ; Hongwu Ma,
| | - Hongwu Ma
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- *Correspondence: Zhiwen Wang, ; Hongwu Ma,
| |
Collapse
|
48
|
Oliver N, Avramov AP, Nürnberg DJ, Dau H, Burnap RL. From manganese oxidation to water oxidation: assembly and evolution of the water-splitting complex in photosystem II. PHOTOSYNTHESIS RESEARCH 2022; 152:107-133. [PMID: 35397059 DOI: 10.1007/s11120-022-00912-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The manganese cluster of photosystem II has been the focus of intense research aiming to understand the mechanism of H2O-oxidation. Great effort has also been applied to investigating its oxidative photoassembly process, termed photoactivation that involves the light-driven incorporation of metal ions into the active Mn4CaO5 cluster. The knowledge gained on these topics has fundamental scientific significance, but may also provide the blueprints for the development of biomimetic devices capable of splitting water for solar energy applications. Accordingly, synthetic chemical approaches inspired by the native Mn cluster are actively being explored, for which the native catalyst is a useful benchmark. For both the natural and artificial catalysts, the assembly process of incorporating Mn ions into catalytically active Mn oxide complexes is an oxidative process. In both cases this process appears to share certain chemical features, such as producing an optimal fraction of open coordination sites on the metals to facilitate the binding of substrate water, as well as the involvement of alkali metals (e.g., Ca2+) to facilitate assembly and activate water-splitting catalysis. This review discusses the structure and formation of the metal cluster of the PSII H2O-oxidizing complex in the context of what is known about the formation and chemical properties of different Mn oxides. Additionally, the evolutionary origin of the Mn4CaO5 is considered in light of hypotheses that soluble Mn2+ was an ancient source of reductant for some early photosynthetic reaction centers ('photomanganotrophy'), and recent evidence that PSII can form Mn oxides with structural resemblance to the geologically abundant birnessite class of minerals. A new functional role for Ca2+ to facilitate sustained Mn2+ oxidation during photomanganotrophy is proposed, which may explain proposed physiological intermediates during the likely evolutionary transition from anoxygenic to oxygenic photosynthesis.
Collapse
Affiliation(s)
- Nicholas Oliver
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Anton P Avramov
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Dennis J Nürnberg
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Holger Dau
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Robert L Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
49
|
Ma XL, He EJ, Cao FT, Fan YY, Zhou XT, Xiao X. Re-evaluation of the environmental hazards of nZnO to denitrification: Performance and mechanism. CHEMOSPHERE 2022; 291:132824. [PMID: 34752835 DOI: 10.1016/j.chemosphere.2021.132824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Numerous studies have shown that zinc oxide nanoparticles (nZnO) have an inhibitory effect on wastewater biotreatment, where doses exceeding ambient concentrations are used. However, the effect of ambient concentrations of ZnO (<1 mg/L) on anaerobic digestion processes is not clear. Herein, this study comprehensively explored the impact of nZnO on the denitrification performance and core microbial community of activated sludge under ambient concentrations. Results showed that only 0.075 mg/L nZnO had shown a beneficial effect on nitrogen removal by activated sludge. When nZnO concentration reached 0.75 mg/L, significant enhancement of nitrate reduction and mitigation of nitrite accumulation were observed, indicating a remarkable stimulatory effect on nitrogen removal. Simultaneously, nZnO could weaken the sludge surface charge and improve the secretion of extracellular polymeric substances, thus enhancing sludge flocculation for denitrification. Microbial community analysis revealed that nZnO exposure increased the relative abundance of denitrifying bacteria, which could contribute to the reinforcement of traditional denitrification. Furthermore, exogenous addition of NH4+ significantly inhibited the accumulation of nitrite, implying that nZnO had a potential to improve the denitrification process via a partial denitrification-anammox pathway. Considering current ambient concentration, the stimulatory effect shown in our work may better represent the actual behavior of ZnO in wastewater biotreatment.
Collapse
Affiliation(s)
- Xiao-Lin Ma
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - En-Jing He
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Feng-Ting Cao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Yang-Yang Fan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Xiang-Tong Zhou
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
50
|
Hu Y, Wang Y, Han X, Shan Y, Li F, Shi L. Biofilm Biology and Engineering of Geobacter and Shewanella spp. for Energy Applications. Front Bioeng Biotechnol 2021; 9:786416. [PMID: 34926431 PMCID: PMC8683041 DOI: 10.3389/fbioe.2021.786416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 01/04/2023] Open
Abstract
Geobacter and Shewanella spp. were discovered in late 1980s as dissimilatory metal-reducing microorganisms that can transfer electrons from cytoplasmic respiratory oxidation reactions to external metal-containing minerals. In addition to mineral-based electron acceptors, Geobacter and Shewanella spp. also can transfer electrons to electrodes. The microorganisms that have abilities to transfer electrons to electrodes are known as exoelectrogens. Because of their remarkable abilities of electron transfer, Geobacter and Shewanella spp. have been the two most well studied groups of exoelectrogens. They are widely used in bioelectrochemical systems (BESs) for various biotechnological applications, such as bioelectricity generation via microbial fuel cells. These applications mostly associate with Geobacter and Shewanella biofilms grown on the surfaces of electrodes. Geobacter and Shewanella biofilms are electrically conductive, which is conferred by matrix-associated electroactive components such as c-type cytochromes and electrically conductive nanowires. The thickness and electroactivity of Geobacter and Shewanella biofilms have a significant impact on electron transfer efficiency in BESs. In this review, we first briefly discuss the roles of planktonic and biofilm-forming Geobacter and Shewanella cells in BESs, and then review biofilm biology with the focus on biofilm development, biofilm matrix, heterogeneity in biofilm and signaling regulatory systems mediating formation of Geobacter and Shewanella biofilms. Finally, we discuss strategies of Geobacter and Shewanella biofilm engineering for improving electron transfer efficiency to obtain enhanced BES performance.
Collapse
Affiliation(s)
- Yidan Hu
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yinghui Wang
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xi Han
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yawei Shan
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Feng Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Liang Shi
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China.,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.,Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China.,State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan, China
| |
Collapse
|