1
|
Tannock GW. The human gut metacommunity as a conceptual aid in the development of precision medicine. Front Microbiol 2024; 15:1469543. [PMID: 39464395 PMCID: PMC11503762 DOI: 10.3389/fmicb.2024.1469543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/13/2024] [Indexed: 10/29/2024] Open
Abstract
Human gut microbiomes (microbiotas) are highly individualistic in taxonomic composition but nevertheless are functionally similar. Thus, collectively, they comprise a "metacommunity." In ecological terminology, the assembly of human gut microbiomes is influenced by four processes: selection, speciation, drift, and dispersal. As a result of fortuitous events associated with these processes, individual microbiomes are taxonomically "tailor-made" for each host. However, functionally they are "off-the-shelf" because of similar functional outputs resulting from metabolic redundancy developed in host-microbe symbiosis. Because of this, future microbiological and molecular studies of microbiomes should emphasize the metabolic interplay that drives the human gut metacommunity and that results in these similar functional outputs. This knowledge will support the development of remedies for specific functional dysbioses and hence provide practical examples of precision medicine.
Collapse
Affiliation(s)
- Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Xu J, Duar RM, Quah B, Gong M, Tin F, Chan P, Sim CK, Tan KH, Chong YS, Gluckman PD, Frese SA, Kyle D, Karnani N. Delayed colonization of Bifidobacterium spp. and low prevalence of B. infantis among infants of Asian ancestry born in Singapore: insights from the GUSTO cohort study. Front Pediatr 2024; 12:1421051. [PMID: 38915873 PMCID: PMC11194334 DOI: 10.3389/fped.2024.1421051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
Background The loss of ancestral microbes, or the "disappearing microbiota hypothesis" has been proposed to play a critical role in the rise of inflammatory and immune diseases in developed nations. The effect of this loss is most consequential during early-life, as initial colonizers of the newborn gut contribute significantly to the development of the immune system. Methods In this longitudinal study (day 3, week 3, and month 3 post-birth) of infants of Asian ancestry born in Singapore, we studied how generational immigration status and common perinatal factors affect bifidobacteria and Bifidobacterium longum subsp. infantis (B. infantis) colonization. Cohort registry identifier: NCT01174875. Results Our findings show that first-generation migratory status, perinatal antibiotics usage, and cesarean section birth, significantly influenced the abundance and acquisition of bifidobacteria in the infant gut. Most importantly, 95.6% of the infants surveyed in this study had undetectable B. infantis, an early and beneficial colonizer of infant gut due to its ability to metabolize the wide variety of human milk oligosaccharides present in breastmilk and its ability to shape the development of a healthy immune system. A comparative analysis of B. infantis in 12 countries by their GDP per capita showed a remarkably low prevalence of this microbe in advanced economies, especially Singapore. Conclusion This study provides new insights into infant gut microbiota colonization, showing the impact of generational immigration on early-life gut microbiota acquisition. It also warrants the need to closely monitor the declining prevalence of beneficial microbes such as B. infantis in developed nations and its potential link to increasing autoimmune and allergic diseases.
Collapse
Affiliation(s)
- Jia Xu
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
| | | | - Baoling Quah
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
| | - Min Gong
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
| | - Felicia Tin
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
| | - Penny Chan
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
- Department of Clinical Data Engagement, Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Choon Kiat Sim
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
| | - Kok Hian Tan
- SingHealth Duke-NUS Institute for Patient Safety and Quality, Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore
- Department of Maternal Fetal Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Yap Seng Chong
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
- Department of Obstetrics and Gynecology and Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Peter D. Gluckman
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
- Centre for SPDS Centre for Informed Futures, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Steven A. Frese
- Department of Nutrition, University of Nevada, Reno, NV, United States
| | - David Kyle
- Infinant Health, Inc., Davis, CA, United States
| | - Neerja Karnani
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
- Department of Clinical Data Engagement, Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Hilliard MA, Sela DA. Transmission and Persistence of Infant Gut-Associated Bifidobacteria. Microorganisms 2024; 12:879. [PMID: 38792709 PMCID: PMC11124121 DOI: 10.3390/microorganisms12050879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Bifidobacterium infantis are the primary colonizers of the infant gut, yet scientific research addressing the transmission of the genus Bifidobacterium to infants remains incomplete. This review examines microbial reservoirs of infant-type Bifidobacterium that potentially contribute to infant gut colonization. Accordingly, strain inheritance from mother to infant via the fecal-oral route is likely contingent on the bifidobacterial strain and phenotype, whereas transmission via the vaginal microbiota may be restricted to Bifidobacterium breve. Additional reservoirs include breastmilk, horizontal transfer from the environment, and potentially in utero transfer. Given that diet is a strong predictor of Bifidobacterium colonization in early life and the absence of Bifidobacterium is observed regardless of breastfeeding, it is likely that additional factors are responsible for bifidobacterial colonization early in life.
Collapse
Affiliation(s)
- Margaret A. Hilliard
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA;
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - David A. Sela
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA;
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
- Department of Nutrition, University of Massachusetts, Amherst, MA 01003, USA
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
- Department of Microbiology & Physiological Systems and Center for Microbiome Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
4
|
Tannock GW. Understanding the gut microbiota by considering human evolution: a story of fire, cereals, cooking, molecular ingenuity, and functional cooperation. Microbiol Mol Biol Rev 2024; 88:e0012722. [PMID: 38126754 PMCID: PMC10966955 DOI: 10.1128/mmbr.00127-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
SUMMARYThe microbial community inhabiting the human colon, referred to as the gut microbiota, is mostly composed of bacterial species that, through extensive metabolic networking, degrade and ferment components of food and human secretions. The taxonomic composition of the microbiota has been extensively investigated in metagenomic studies that have also revealed details of molecular processes by which common components of the human diet are metabolized by specific members of the microbiota. Most studies of the gut microbiota aim to detect deviations in microbiota composition in patients relative to controls in the hope of showing that some diseases and conditions are due to or exacerbated by alterations to the gut microbiota. The aim of this review is to consider the gut microbiota in relation to the evolution of Homo sapiens which was heavily influenced by the consumption of a nutrient-dense non-arboreal diet, limited gut storage capacity, and acquisition of skills relating to mastering fire, cooking, and cultivation of cereal crops. The review delves into the past to gain an appreciation of what is important in the present. A holistic view of "healthy" microbiota function is proposed based on the evolutionary pathway shared by humans and gut microbes.
Collapse
Affiliation(s)
- Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Therapeutic Potential of Gut Microbiota and Its Metabolite Short-Chain Fatty Acids in Neonatal Necrotizing Enterocolitis. Life (Basel) 2023; 13:life13020561. [PMID: 36836917 PMCID: PMC9959300 DOI: 10.3390/life13020561] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Short chain fatty acids (SCFAs), the principle end-products produced by the anaerobic gut microbial fermentation of complex carbohydrates (CHO) in the colon perform beneficial roles in metabolic health. Butyrate, acetate and propionate are the main SCFA metabolites, which maintain gut homeostasis and host immune responses, enhance gut barrier integrity and reduce gut inflammation via a range of epigenetic modifications in DNA/histone methylation underlying these effects. The infant gut microbiota composition is characterized by higher abundances of SCFA-producing bacteria. A large number of in vitro/vivo studies have demonstrated the therapeutic implications of SCFA-producing bacteria in infant inflammatory diseases, such as obesity and asthma, but the application of gut microbiota and its metabolite SCFAs to necrotizing enterocolitis (NEC), an acute inflammatory necrosis of the distal small intestine/colon affecting premature newborns, is scarce. Indeed, the beneficial health effects attributed to SCFAs and SCFA-producing bacteria in neonatal NEC are still to be understood. Thus, this literature review aims to summarize the available evidence on the therapeutic potential of gut microbiota and its metabolite SCFAs in neonatal NEC using the PubMed/MEDLINE database.
Collapse
|
6
|
Renall N, Lawley B, Vatanen T, Merz B, Douwes J, Corbin M, Te Morenga L, Kruger R, Breier BH, Tannock GW. The fecal microbiotas of women of Pacific and New Zealand European ethnicities are characterized by distinctive enterotypes that reflect dietary intakes and fecal water content. Gut Microbes 2023; 15:2178801. [PMID: 36799472 PMCID: PMC9980675 DOI: 10.1080/19490976.2023.2178801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Obesity is a complex, multifactorial condition that is an important risk factor for noncommunicable diseases including cardiovascular disease and type 2 diabetes. While prevention and management require a healthy and energy balanced diet and adequate physical activity, the taxonomic composition and functional attributes of the colonic microbiota may have a supplementary role in the development of obesity. The taxonomic composition and metabolic capacity of the fecal microbiota of 286 women, resident in Auckland New Zealand, was determined by metagenomic analysis. Associations with BMI (obese, nonobese), body fat composition, and ethnicity (Pacific, n = 125; NZ European women [NZE], n = 161) were assessed using regression analyses. The fecal microbiotas were characterized by the presence of three distinctive enterotypes, with enterotype 1 represented in both Pacific and NZE women (39 and 61%, respectively), enterotype 2 mainly in Pacific women (84 and 16%) and enterotype 3 mainly in NZE women (13 and 87%). Enterotype 1 was characterized mainly by the relative abundances of butyrate producing species, Eubacterium rectale and Faecalibacterium prausnitzii, enterotype 2 by the relative abundances of lactic acid producing species, Bifidobacterium adolescentis, Bifidobacterium bifidum, and Lactobacillus ruminis, and enterotype 3 by the relative abundances of Subdoligranulum sp., Akkermansia muciniphila, Ruminococcus bromii, and Methanobrevibacter smithii. Enterotypes were also associated with BMI, visceral fat %, and blood cholesterol. Habitual food group intake was estimated using a 5 day nonconsecutive estimated food record and a 30 day, 220 item semi-quantitative Food Frequency Questionnaire. Higher intake of 'egg' and 'dairy' products was associated with enterotype 3, whereas 'non-starchy vegetables', 'nuts and seeds' and 'plant-based fats' were positively associated with enterotype 1. In contrast, these same food groups were inversely associated with enterotype 2. Fecal water content, as a proxy for stool consistency/colonic transit time, was associated with microbiota taxonomic composition and gene pools reflective of particular bacterial biochemical pathways. The fecal microbiotas of women of Pacific and New Zealand European ethnicities are characterized by distinctive enterotypes, most likely due to differential dietary intake and fecal consistency/colonic transit time. These parameters need to be considered in future analyses of human fecal microbiotas.
Collapse
Affiliation(s)
- Nikki Renall
- School of Sport, Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand,Riddet Institute, Centre of Research Excellence, Massey University, Palmerston North, New Zealand,Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Blair Lawley
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Tommi Vatanen
- Liggins Institute, University of Auckland, Auckland, New Zealand,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Benedikt Merz
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-InstitutKarlsruhe, Germany
| | - Jeroen Douwes
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Marine Corbin
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Lisa Te Morenga
- Riddet Institute, Centre of Research Excellence, Massey University, Palmerston North, New Zealand,Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Rozanne Kruger
- School of Sport, Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand
| | - Bernhard H Breier
- School of Sport, Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand,Riddet Institute, Centre of Research Excellence, Massey University, Palmerston North, New Zealand
| | - Gerald W Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand,CONTACT Gerald W Tannock Department of Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Derrien M, Mikulic N, Uyoga MA, Chenoll E, Climent E, Howard-Varona A, Nyilima S, Stoffel NU, Karanja S, Kottler R, Stahl B, Zimmermann MB, Bourdet-Sicard R. Gut microbiome function and composition in infants from rural Kenya and association with human milk oligosaccharides. Gut Microbes 2023; 15:2178793. [PMID: 36794816 PMCID: PMC9980514 DOI: 10.1080/19490976.2023.2178793] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
The gut microbiota evolves rapidly after birth, responding dynamically to environmental factors and playing a key role in short- and long-term health. Lifestyle and rurality have been shown to contribute to differences in the gut microbiome, including Bifidobacterium levels, between infants. We studied the composition, function and variability of the gut microbiomes of 6- to 11-month-old Kenyan infants (n = 105). Shotgun metagenomics showed Bifidobacterium longum to be the dominant species. A pangenomic analysis of B. longum in gut metagenomes revealed a high prevalence of B. longum subsp. infantis (B. infantis) in Kenyan infants (80%), and possible co-existence of this subspecies with B. longum subsp. longum. Stratification of the gut microbiome into community (GMC) types revealed differences in composition and functional features. GMC types with a higher prevalence of B. infantis and abundance of B. breve also had a lower pH and a lower abundance of genes encoding pathogenic features. An analysis of human milk oligosaccharides (HMOs) classified the human milk (HM) samples into four groups defined on the basis of secretor and Lewis polymorphisms revealed a higher prevalence of HM group III (Se+, Le-) (22%) than in most previously studied populations, with an enrichment in 2'-fucosyllactose. Our results show that the gut microbiome of partially breastfed Kenyan infants over the age of six months is enriched in bacteria from the Bifidobacterium community, including B. infantis, and that the high prevalence of a specific HM group may indicate a specific HMO-gut microbiome association. This study sheds light on gut microbiome variation in an understudied population with limited exposure to modern microbiome-altering factors.
Collapse
Affiliation(s)
- Muriel Derrien
- Advanced Health & Science, Danone Nutricia Research, Palaiseau, France,CONTACT Muriel Derrien Advanced Health & Science, Danone Nutricia Research, Palaiseau, France
| | - Nadja Mikulic
- Laboratory of Human Nutrition, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Mary A Uyoga
- Laboratory of Human Nutrition, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Empar Chenoll
- ADM-Biopolis, ADM, Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
| | - Eric Climent
- ADM-Biopolis, ADM, Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
| | - Adrian Howard-Varona
- ADM-Biopolis, ADM, Parc Cientific Universitat de Valencia, Paterna, Valencia, Spain
| | - Suzane Nyilima
- Public and Community Health Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Nicole U Stoffel
- Laboratory of Human Nutrition, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Simon Karanja
- Public and Community Health Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | | | - Bernd Stahl
- Advanced Health & Science, Danone Nutricia Research, Utrecht, The Netherlands,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Michael B Zimmermann
- Laboratory of Human Nutrition, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Raphaëlle Bourdet-Sicard
- Advanced Health & Science, Danone Nutricia Research, Palaiseau, France,Raphaëlle Bourdet-Sicard Advanced Health & Science, Danone Nutricia Research, Palaiseau, France
| |
Collapse
|
8
|
Mills DA, German JB, Lebrilla CB, Underwood MA. Translating neonatal microbiome science into commercial innovation: metabolism of human milk oligosaccharides as a basis for probiotic efficacy in breast-fed infants. Gut Microbes 2023; 15:2192458. [PMID: 37013357 PMCID: PMC10075334 DOI: 10.1080/19490976.2023.2192458] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
For over a century, physicians have witnessed a common enrichment of bifidobacteria in the feces of breast-fed infants that was readily associated with infant health status. Recent advances in bacterial genomics, metagenomics, and glycomics have helped explain the nature of this unique enrichment and enabled the tailored use of probiotic supplementation to restore missing bifidobacterial functions in at-risk infants. This review documents a 20-year span of discoveries that set the stage for the current use of human milk oligosaccharide-consuming bifidobacteria to beneficially colonize, modulate, and protect the intestines of at-risk, human milk-fed, neonates. This review also presents a model for probiotic applications wherein bifidobacterial functions, in the form of colonization and HMO-related catabolic activity in situ, represent measurable metabolic outcomes by which probiotic efficacy can be scored toward improving infant health.
Collapse
Affiliation(s)
- David A. Mills
- Department of Food Science and Technology, University of California-Davis, Davis, CA, United States
- Department of Viticulture and Enology, University of California-Davis, Davis, CA, United States
- Foods for Health Institute, University of California-Davis, Davis, CA, United States
| | - J. Bruce German
- Department of Food Science and Technology, University of California-Davis, Davis, CA, United States
- Foods for Health Institute, University of California-Davis, Davis, CA, United States
| | - Carlito B. Lebrilla
- Foods for Health Institute, University of California-Davis, Davis, CA, United States
- Department of Chemistry, University of California-Davis, Davis, CA, United States
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Davis, CA, United States
| | - Mark A. Underwood
- Foods for Health Institute, University of California-Davis, Davis, CA, United States
- Division of Neonatology, Department of Pediatrics, University of California-Davis, Sacramento, CA, United States
| |
Collapse
|
9
|
Nomura R, Tsuzuki S, Kojima T, Nagasawa M, Sato Y, Uefune M, Baba Y, Hayashi T, Nakano H, Kato M, Shimizu M. Administration of Aspergillus oryzae suppresses DSS-induced colitis. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 4:100063. [PMID: 35415669 PMCID: PMC8991515 DOI: 10.1016/j.fochms.2021.100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022]
Abstract
Effects of A. oryzae treatment on mouse intestinal environment were investigated. Treatment with A. oryzae and its cell wall increased Bifidobacterium abundance. Administration of heat-killed A. oryzae spores alleviated DSS-induced colitis. A. oryzae is highly suitable for application in new prebiotic food production.
Aspergillus oryzae, a filamentous fungus, has long been used for the production of traditional Japanese foods. Here, we analyzed how A. oryzae administration affects the intestinal environment in mice. The results of 16S rRNA gene sequencing of the gut microbiota indicated that after the administration of heat-killed A. oryzae spores, the relative abundance of an anti-inflammatory Bifidobacterium pseudolongum strain became 2.0-fold greater than that of the control. Next, we examined the effect of A. oryzae spore administration on the development of colitis induced by dextran sodium sulfate in mice; we found that colitis was alleviated by not only heat-killed A. oryzae spores, but also the cell wall extracted from the spores. Our findings suggest that A. oryzae holds considerable potential for commercial application in the production of both traditional Japanese fermented foods and new foods with prebiotic functions.
Collapse
Affiliation(s)
- Ryo Nomura
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Sho Tsuzuki
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Takaaki Kojima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Mao Nagasawa
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Yusuke Sato
- Department of Animal Science, School of Agriculture, Tokai University, Kumamoto 862-8652, Japan
| | - Masayoshi Uefune
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Yasunori Baba
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Toshiya Hayashi
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Hideo Nakano
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Masashi Kato
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Motoyuki Shimizu
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502, Japan
- Corresponding author.
| |
Collapse
|
10
|
Abstract
The neonatal body provides a range of potential habitats, such as the gut, for microbes. These sites eventually harbor microbial communities (microbiotas). A "complete" (adult) gut microbiota is not acquired by the neonate immediately after birth. Rather, the exclusive, milk-based nutrition of the infant encourages the assemblage of a gut microbiota of low diversity, usually dominated by bifidobacterial species. The maternal fecal microbiota is an important source of bacterial species that colonize the gut of infants, at least in the short-term. However, development of the microbiota is influenced by the use of human milk (breast feeding), infant formula, preterm delivery of infants, caesarean delivery, antibiotic administration, family details and other environmental factors. Following the introduction of weaning (complementary) foods, the gut microbiota develops in complexity due to the availability of a diversity of plant glycans in fruits and vegetables. These glycans provide growth substrates for the bacterial families (such as members of the Ruminococcaceae and Lachnospiraceae) that, in due course, will dominate the gut microbiota of the adult. Although current data are often fragmentary and observational, it can be concluded that the nutrition that a child receives in early life is likely to impinge not only on the development of the microbiota at that time but also on the subsequent lifelong, functional relationships between the microbiota and the human host. The purpose of this review, therefore, is to discuss the importance of promoting the assemblage of functionally robust gut microbiotas at appropriate times in early life.
Collapse
Affiliation(s)
- Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Duar RM, Kyle D, Tribe RM. Reintroducing B. infantis to the cesarean-born neonate: an ecologically sound alternative to "vaginal seeding". FEMS Microbiol Lett 2021; 367:5739918. [PMID: 32068827 PMCID: PMC7182402 DOI: 10.1093/femsle/fnaa032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
There is a burgeoning literature highlighting differences in health outcomes between babies born vaginally and by caesarean section (c-section) This has led to the suggestion that infants born by c-section may benefit from vaginal swabbing/seeding. Here, we discuss from an ecological perspective that it is gut-adapted, not vagina-adapted microbes that are likely to take up residence in the gut and have the most beneficial impact on the developing neonate. Further, we caution the practice of 'vaginal seeding' may be potentially unsafe and also give parents and health professionals a false sense of action in restoring the infant gut microbiome following c-section. Instead, we argue that restoring B. longum subsp. infantis, which has evolved to colonize the infant gut, is a safe and ecologically-sound approach to restoring the gut microbiome of infants born by c-section.
Collapse
Affiliation(s)
| | - David Kyle
- Evolve BioSytems, Inc. Davis, California, 95618 USA
| | - Rachel M Tribe
- Dept. of Women and Children's Health, School of Life Course Sciences, St Thomas' Hospital, London SE1 7EH UK
| |
Collapse
|
12
|
Modulating the Gut Microbiota of Humans by Dietary Intervention with Plant Glycans. Appl Environ Microbiol 2021; 87:AEM.02757-20. [PMID: 33355114 DOI: 10.1128/aem.02757-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human colon contains a community of microbial species, mostly bacteria, which is often referred to as the gut microbiota. The community is considered essential to human well-being by conferring additional energy-harvesting capacity, niche exclusion of pathogens, and molecular signaling activities that are integrated into human physiological processes. Plant polysaccharides (glycans, dietary fiber) are an important source of carbon and energy that supports the maintenance and functioning of the gut microbiota. Therefore, the daily quantity and quality of plant glycans consumed by the human host have the potential to influence health. Members of the gut microbiota differ in ability to utilize different types of plant glycans. Dietary interventions with specific glycans could modulate the microbiota, counteracting ecological perturbations that disrupt the intricate relationships between microbiota and host (dysbiosis). This review considers prospects and research options for modulation of the gut microbiota by the formulation of diets that, when consumed habitually, would correct dysbiosis by building diverse consortia that boost functional resilience. Traditional "prebiotics" favor bifidobacteria and lactobacilli, whereas dietary mixtures of plant glycans that are varied in chemical complexity would promote high-diversity microbiotas. It is concluded that research should aim at improving knowledge of bacterial consortia that, through shared nourishment, degrade and ferment plant glycans. The consortia may vary in composition from person to person, but functional outputs will be consistent in a given context because of metabolic redundancy among bacteria. Thus, the individuality of gut microbiotas could be encompassed, functional resilience encouraged, and correction of dysbiosis achieved.
Collapse
|
13
|
Alsharairi NA. The Role of Short-Chain Fatty Acids in the Interplay between a Very Low-Calorie Ketogenic Diet and the Infant Gut Microbiota and Its Therapeutic Implications for Reducing Asthma. Int J Mol Sci 2020; 21:E9580. [PMID: 33339172 PMCID: PMC7765661 DOI: 10.3390/ijms21249580] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota is well known as playing a critical role in inflammation and asthma development. The very low-calorie ketogenic diet (VLCKD) is suggested to affect gut microbiota; however, the effects of VLCKD during pregnancy and lactation on the infant gut microbiota are unclear. The VLCKD appears to be more effective than caloric/energy restriction diets for the treatment of several diseases, such as obesity and diabetes. However, whether adherence to VLCKD affects the infant gut microbiota and the protective effects thereof on asthma remains uncertain. The exact mechanisms underlying this process, and in particular the potential role of short chain fatty acids (SCFAs), are still to be unravelled. Thus, the aim of this review is to identify the potential role of SCFAs that underlie the effects of VLCKD during pregnancy and lactation on the infant gut microbiota, and explore whether it incurs significant implications for reducing asthma.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind & Body Research Group, Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
| |
Collapse
|
14
|
Xu J, Lawley B, Wong G, Otal A, Chen L, Ying TJ, Lin X, Pang WW, Yap F, Chong YS, Gluckman PD, Lee YS, Chong MFF, Tannock GW, Karnani N. Ethnic diversity in infant gut microbiota is apparent before the introduction of complementary diets. Gut Microbes 2020; 11:1362-1373. [PMID: 32453615 PMCID: PMC7524347 DOI: 10.1080/19490976.2020.1756150] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human gut microbiota develops soon after birth and can acquire inter-individual variation upon exposure to intrinsic and environmental cues. However, inter-individual variation has not been comprehensively assessed in a multi-ethnic study. We studied a longitudinal birth cohort of 106 infants of three Asian ethnicities (Chinese, Malay, and Indian) that resided in the same geographical location (Singapore). Specific and temporal influences of ethnicity, mode of delivery, breastfeeding status, gestational age, birthweight, gender, and maternal education on the development of the gut microbiota in the first 2 years of life were studied. Mode of delivery, breastfeeding status, and ethnicity were identified as the main factors influencing the compositional development of the gut microbiota. Effects of delivery mode and breastfeeding status lasted until 6M and 3M, respectively, with the primary impact on the diversity and temporal colonization of the genera Bacteroides and Bifidobacterium. The effect of ethnicity was apparent at 3M post-birth, even before the introduction of weaning (complementary) foods, and remained significant after adjusting for delivery mode and breastfeeding status. Ethnic influences remained significant until 12M in the Indian and Chinese infants. The microbiota of Indian infants was characterized by higher abundances of Bifidobacterium and Lactobacillus, while Chinese infants had higher abundances of Bacteroides and Akkermansia. These findings provide a detailed insight into the specific and temporal influences of early life factors and ethnicity in the development of the human gut microbiota. Trial Registration: Clinicaltrials.gov registration no. NCT01174875.
Collapse
Affiliation(s)
- Jia Xu
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Blair Lawley
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Gerard Wong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Anna Otal
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Li Chen
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Toh Jia Ying
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Xinyi Lin
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore,Centre for Quantitative Medicine and Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore
| | - Wei Wei Pang
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Fabian Yap
- Department of Pediatric Endocrinology, KK Women’s and Children’s Hospital, Singapore
| | - Yap-Seng Chong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore,Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Peter D. Gluckman
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore,Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Yung Seng Lee
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore,Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mary Foong-Fong Chong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore,Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore,Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand,Gerald W. Tannock Department of Microbiology and Immunology, University of Otago, Dunedin9054, New Zealand
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,CONTACT Neerja Karnani Brenner Centre for Molecular Medicine, Singapore Institute for Clinical Sciences (SICS), A*STAR, 30 Medical Drive117609, Singapore
| |
Collapse
|
15
|
Abstract
The neonatal developmental window represents a key time for establishment of the gut microbiota. First contact with these microbes within the infant gastrointestinal tract signifies the start of a critical mutualistic relationship, which is central for short- and longer-term health. Recent research has provided insights into the origin of these microbial pioneers, how they are maintained within the gut environment, and how factors such as antibiotics or preterm birth may disrupt the succession of beneficial microbes. The acquisition, colonisation, and maintenance of the early life microbiota, and subsequent interactions with the host is a rapidly developing research area. In this review we explore some of these key topics which have been illuminated by recent research, and we highlight some of the important unresolved questions which currently limit our overall understanding of the neonatal gut microbiome.
Collapse
Affiliation(s)
- Matthew J. Dalby
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Lindsay J. Hall
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Intestinal Microbiome, School of Life Sciences, Technical University of Munich, Freising, Germany
- ZIEL – Institute for Food & Health, Technical University of Munich, Freising, Germany
| |
Collapse
|
16
|
Galacto- and Fructo-oligosaccharides Utilized for Growth by Cocultures of Bifidobacterial Species Characteristic of the Infant Gut. Appl Environ Microbiol 2020; 86:AEM.00214-20. [PMID: 32220841 DOI: 10.1128/aem.00214-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Bifidobacterial species are common inhabitants of the gut of human infants during the period when milk is a major component of the diet. Bifidobacterium breve, Bifidobacterium bifidum, Bifidobacterium longum subspecies longum, and B. longum subspecies infantis have been detected frequently in infant feces, but B. longum subsp. infantis may be disadvantaged numerically in the gut of infants in westernized countries. This may be due to the different durations of breast milk feeding in different countries. Supplementation of the infant diet or replacement of breast milk using formula feeds is common in Western countries. Formula milks often contain galacto- and/or fructo-oligosaccharides (GOS and FOS, respectively) as additives to augment the concentration of oligosaccharides in ruminant milks, but the ability of B. longum subsp. infantis to utilize these potential growth substrates when they are in competition with other bifidobacterial species is unknown. We compared the growth and oligosaccharide utilization of GOS and FOS by bifidobacterial species in pure culture and coculture. Short-chain GOS and FOS (degrees of polymerization [DP] 2 and 3) were favored growth substrates for strains of B. bifidum and B. longum subsp. longum, whereas both B. breve and B. longum subsp. infantis had the ability to utilize both short- and longer-chain GOS and FOS (DP 2 to 6). B. breve was nevertheless numerically dominant over B. longum subsp. infantis in cocultures. This was probably related to the slower use of GOS of DP 3 by B. longum subsp. infantis, indicating that the kinetics of substrate utilization is an important ecological factor in the assemblage of gut communities.IMPORTANCE The kinds of bacteria that form the collection of microbes (the microbiota) in the gut of human infants may influence health and well-being. Knowledge of how the composition of the infant diet influences the assemblage of the bacterial collection is therefore important because dietary interventions may offer opportunities to alter the microbiota with the aim of improving health. Bifidobacterium longum subspecies infantis is a well-known bacterial species, but under modern child-rearing conditions it may be disadvantaged in the gut. Modern formula milks often contain particular oligosaccharide additives that are generally considered to support bifidobacterial growth. However, studies of the ability of various bifidobacterial species to grow together in the presence of these oligosaccharides have not been conducted. These kinds of studies are essential for developing concepts of microbial ecology related to the influence of human nutrition on the development of the gut microbiota.
Collapse
|
17
|
Ford EL, Underwood MA, German JB. Helping Mom Help Baby: Nutrition-Based Support for the Mother-Infant Dyad During Lactation. Front Nutr 2020; 7:54. [PMID: 32373623 PMCID: PMC7186439 DOI: 10.3389/fnut.2020.00054] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Lactation and breastfeeding support the short- and long-term health of both mother and infant, yet the success of these processes depend upon individual and combined factors of the pair. Complications during pregnancy and delivery greatly affect the likelihood that a mother will be capable of breastfeeding for at least the recommended 6 months. Guidelines for women regarding postpartum diet and lifestyle management also fail to reflect the diversity of mother-infant pairs and their circumstances. In our analysis of the literature, we have identified a categorical deficit in modern scientific discourse regarding human lactation; namely, that postpartum involves full-body contribution of resources and thus requires the application of nutrition from a systemic perspective.
Collapse
Affiliation(s)
- Erin L Ford
- Department of Food Science and Technology, Foods for Health Institute, University of California, Davis, Davis, CA, United States
| | | | - J Bruce German
- Department of Food Science and Technology, Foods for Health Institute, University of California, Davis, Davis, CA, United States.,Foods for Health Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|
18
|
Duar RM, Henrick BM, Casaburi G, Frese SA. Integrating the Ecosystem Services Framework to Define Dysbiosis of the Breastfed Infant Gut: The Role of B. infantis and Human Milk Oligosaccharides. Front Nutr 2020; 7:33. [PMID: 32346537 PMCID: PMC7171047 DOI: 10.3389/fnut.2020.00033] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
Mounting evidence supports a connection between the composition of the infant gut microbiome and long-term health. In fact, aberrant microbiome compositions during key developmental windows in early life are associated with increased disease risk; therefore, making pertinent modifications to the microbiome during infancy offers significant promise to improve human health. There is growing support for integrating the concept of ecosystem services (the provision of benefits from ecosystems to humans) in linking specific microbiome functions to human well-being. This framework is widely applied in conservation efforts of macro-ecosystems and offers a systematic approach to guide restoration actions aimed to recover critical ecological functions. The aim of this work is to apply the ecosystem services framework to integrate recent studies demonstrating stable alteration of the gut microbiome of breastfed infants when Bifidobacterium longum subsp. infantis EVC001, a gut symbiont capable of efficiently utilizing human milk oligosaccharides into organic acids that are beneficial for the infant and lower intestinal pH, is reintroduced. Additionally, using examples from the literature we illustrate how the absence of B. infantis results in diminished ecosystem services, which may be associated with health consequences related to immune and metabolic disorders. Finally, we propose a model by which infant gut dysbiosis can be defined as a reduction in ecosystem services supplied to the host by the gut microbiome rather than merely changes in diversity or taxonomic composition. Given the increased interest in targeted microbiome modification therapies to decrease acute and chronic disease risk, the model presented here provides a framework to assess the effectiveness of such strategies from a host-centered perspective.
Collapse
Affiliation(s)
| | - Bethany M Henrick
- Evolve BioSystems, Inc., Davis, CA, United States.,Department of Food Science and Technology, University of Nebraska, Lincoln, NE, United States
| | | | - Steven A Frese
- Evolve BioSystems, Inc., Davis, CA, United States.,Department of Food Science and Technology, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
19
|
Colonization Resistance in the Infant Gut: The Role of B. infantis in Reducing pH and Preventing Pathogen Growth. High Throughput 2020; 9:ht9020007. [PMID: 32230716 PMCID: PMC7349288 DOI: 10.3390/ht9020007] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022] Open
Abstract
Over the past century, there has been a steady increase in the stool pH of infants from industrialized countries. Analysis of historical data revealed a strong association between abundance of Bifidobacterium in the gut microbiome of breasted infants and stool pH, suggesting that this taxon plays a key role in determining the pH in the gut. Bifidobacterium longum subsp. infantis is uniquely equipped to metabolize human milk oligosaccharides (HMO) from breastmilk into acidic end products, mainly lactate and acetate. The presence of these acidic compounds in the infant gut is linked to a lower stool pH. Conversely, infants lacking B. infantis have a significantly higher stool pH, carry a higher abundance of potential pathogens and mucus-eroding bacteria in their gut microbiomes, and have signs of chronic enteric inflammation. This suggests the presence of B. infantis and low intestinal pH may be critical to maintaining a protective environment in the infant gut. Here, we summarize recent studies demonstrating that feeding B. infantis EVC001 to breastfed infants results in significantly lower fecal pH compared to controls and propose that low pH is one critical factor in preventing the invasion and overgrowth of harmful bacteria in the infant gut, a process known as colonization resistance.
Collapse
|