1
|
Avdonin PP, Blinova MS, Generalova GA, Emirova KM, Avdonin PV. The Role of the Complement System in the Pathogenesis of Infectious Forms of Hemolytic Uremic Syndrome. Biomolecules 2023; 14:39. [PMID: 38254639 PMCID: PMC10813406 DOI: 10.3390/biom14010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Hemolytic uremic syndrome (HUS) is an acute disease and the most common cause of childhood acute renal failure. HUS is characterized by a triad of symptoms: microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. In most of the cases, HUS occurs as a result of infection caused by Shiga toxin-producing microbes: hemorrhagic Escherichia coli and Shigella dysenteriae type 1. They account for up to 90% of all cases of HUS. The remaining 10% of cases grouped under the general term atypical HUS represent a heterogeneous group of diseases with similar clinical signs. Emerging evidence suggests that in addition to E. coli and S. dysenteriae type 1, a variety of bacterial and viral infections can cause the development of HUS. In particular, infectious diseases act as the main cause of aHUS recurrence. The pathogenesis of most cases of atypical HUS is based on congenital or acquired defects of complement system. This review presents summarized data from recent studies, suggesting that complement dysregulation is a key pathogenetic factor in various types of infection-induced HUS. Separate links in the complement system are considered, the damage of which during bacterial and viral infections can lead to complement hyperactivation following by microvascular endothelial injury and development of acute renal failure.
Collapse
Affiliation(s)
- Piotr P. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| | - Maria S. Blinova
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| | - Galina A. Generalova
- Saint Vladimir Moscow City Children’s Clinical Hospital, 107014 Moscow, Russia; (G.A.G.); (K.M.E.)
- Department of Pediatrics, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Khadizha M. Emirova
- Saint Vladimir Moscow City Children’s Clinical Hospital, 107014 Moscow, Russia; (G.A.G.); (K.M.E.)
- Department of Pediatrics, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| |
Collapse
|
2
|
Aljabbari A, Kihara S, Rades T, Boyd BJ. The biomolecular gastrointestinal corona in oral drug delivery. J Control Release 2023; 363:536-549. [PMID: 37776905 DOI: 10.1016/j.jconrel.2023.09.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
The formation of a biomolecular corona on exogenous particles in plasma is well studied and is known to dictate the biodistribution and cellular interactions of nanomedicine formulations. In contrast, while the oral route is the most favorable administration method for pharmaceuticals, little is known about the formation and composition of the corona formed by biomolecules on particles within the gastrointestinal tract. This work reviews the current literature understanding of (1) the formation of drug particles after oral administration, (2) the formation of a biomolecular corona within the gastrointestinal tract ("the gastrointestinal corona"), and (3) the possible implications of the formation of a gastrointestinal corona on the interactions of drug particles with their biological environment. In doing so, this work aims to establish the significance of the formation of a gastrointestinal corona in oral drug delivery to ultimately arrive at new avenues to control the behavior of orally administered pharmaceuticals.
Collapse
Affiliation(s)
- Anas Aljabbari
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Shinji Kihara
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Ben J Boyd
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
3
|
Emencheta SC, Olovo CV, Eze OC, Kalu CF, Berebon DP, Onuigbo EB, Vila MMDC, Balcão VM, Attama AA. The Role of Bacteriophages in the Gut Microbiota: Implications for Human Health. Pharmaceutics 2023; 15:2416. [PMID: 37896176 PMCID: PMC10609668 DOI: 10.3390/pharmaceutics15102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Bacteriophages (phages) are nano-sized viruses characterized by their inherent ability to live off bacteria. They utilize diverse mechanisms to absorb and gain entry into the bacterial cell wall via the release of viral genetic material, which uses the replication mechanisms of the host bacteria to produce and release daughter progeny virions that attack the surrounding host cells. They possess specific characteristics, including specificity for particular or closely related bacterial species. They have many applications, including as potential alternatives to antibiotics against multi-resistant bacterial pathogens and as control agents in bacteria-contaminated environments. They are ubiquitously abundant in nature and have diverse biota, including in the gut. Gut microbiota describes the community and interactions of microorganisms within the intestine. As with bacteria, parasitic bacteriophages constantly interact with the host bacterial cells within the gut system and have obvious implications for human health. However, it is imperative to understand these interactions as they open up possible applicable techniques to control gut-implicated bacterial diseases. Thus, this review aims to explore the interactions of bacteriophages with bacterial communities in the gut and their current and potential impacts on human health.
Collapse
Affiliation(s)
- Stephen C. Emencheta
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, Brazil; (M.M.D.C.V.); (V.M.B.)
| | - Chinasa V. Olovo
- Department of Microbiology, University of Nigeria, Nsukka 410001, Nigeria;
| | - Osita C. Eze
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
| | - Chisom F. Kalu
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
| | - Dinebari P. Berebon
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
| | - Ebele B. Onuigbo
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
| | - Marta M. D. C. Vila
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, Brazil; (M.M.D.C.V.); (V.M.B.)
| | - Victor M. Balcão
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, Brazil; (M.M.D.C.V.); (V.M.B.)
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
| | - Anthony A. Attama
- Department of Pharmaceutics, University of Nigeria, Nsukka 410001, Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria, Nsukka 410001, Nigeria
| |
Collapse
|
4
|
Tunsjø HS, Ullmann IF, Charnock C. A preliminary study of the use of MinION sequencing to specifically detect Shiga toxin-producing Escherichia coli in culture swipes containing multiple serovars of this species. Sci Rep 2023; 13:8239. [PMID: 37217775 DOI: 10.1038/s41598-023-35279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
An important challenge relating to clinical diagnostics of the foodborne pathogen Shiga toxin-producing E. coli (STEC), is that PCR-detection of the shiga-toxin gene (stx) in DNA from stool samples can be accompanied by a failure to identify an STEC isolate in pure culture on agar. In this study, we have explored the use of MinION long-read sequencing of DNA from bacterial culture swipes to detect the presence of STEC, and bioinformatic tools to characterize the STEC virulence factors. The online workflow "What's in my pot" (WIMP) in the Epi2me cloud service, rapidly identified STEC also when it was present in culture swipes together with multiple other E. coli serovars, given sufficient abundance. These preliminary results provide useful information about the sensitivity of the method, which has potential to be used in clinical diagnostic of STEC, particularly in cases where a pure culture of the STEC isolate is not obtained due to the 'STEC lost Shiga toxin' phenomenon.
Collapse
Affiliation(s)
- Hege S Tunsjø
- Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway.
| | | | - Colin Charnock
- Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
5
|
Fischer FB, Saucy A, Schmutz C, Mäusezahl D. Do changes in STEC diagnostics mislead interpretation of disease surveillance data in Switzerland? Time trends in positivity, 2007 to 2016. ACTA ACUST UNITED AC 2020; 25. [PMID: 32820716 PMCID: PMC7441602 DOI: 10.2807/1560-7917.es.2020.25.33.1900584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BackgroundLaboratory-confirmed cases of Shiga toxin-producing Escherichia coli (STEC) have been notifiable to the National Notification System for Infectious Diseases in Switzerland since 1999. Since 2015, a large increase in case numbers has been observed. Around the same time, syndromic multiplex PCR started to replace other diagnostic methods in standard laboratory practice for gastrointestinal pathogen testing, suggesting that the increase in notified cases is due to a change in test practices and numbers.AimThis study examined the impact of changes in diagnostic methods, in particular the introduction of multiplex PCR panels, on routine STEC surveillance data in Switzerland.MethodsWe analysed routine laboratory data from 11 laboratories, which reported 61.9% of all STEC cases from 2007 to 2016 to calculate the positivity, i.e. the rate of the number of positive STEC tests divided by the total number of tests performed.ResultsThe introduction of multiplex PCR had a strong impact on STEC test frequency and identified cases, with the number of tests performed increasing sevenfold from 2007 to 2016. Still, age- and sex-standardised positivity increased from 0.8% in 2007 to 1.7% in 2016.ConclusionIncreasing positivity suggests that the increase in case notifications cannot be attributed to an increase in test numbers alone. Therefore, we cannot exclude a real epidemiological trend for the observed increase. Modernising the notification system to address current gaps in information availability, e.g. diagnostic methods, and improved triangulation of clinical presentation, diagnostic and serotype information are needed to deal with emerging disease and technological advances.
Collapse
Affiliation(s)
- Fabienne Beatrice Fischer
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Apolline Saucy
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Claudia Schmutz
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Daniel Mäusezahl
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| |
Collapse
|
6
|
Recording mobile DNA in the gut microbiota using an Escherichia coli CRISPR-Cas spacer acquisition platform. Nat Commun 2020; 11:95. [PMID: 31911609 PMCID: PMC6946703 DOI: 10.1038/s41467-019-14012-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
The flow of genetic material between bacteria is central to the adaptation and evolution of bacterial genomes. However, our knowledge about DNA transfer within complex microbiomes is lacking, with most studies of horizontal gene transfer (HGT) relying on bioinformatic analyses of genetic elements maintained on evolutionary timescales or experimental measurements of phenotypically trackable markers. Here, we utilize the CRISPR-Cas spacer acquisition process to detect DNA acquisition events from complex microbiota in real-time and at nucleotide resolution. In this system, an E. coli recording strain is exposed to a microbial sample and spacers are acquired from transferred plasmids and permanently stored in genomic CRISPR arrays. Sequencing and analysis of acquired spacers enables identification of the transferred plasmids. This approach allowed us to identify individual mobile elements without relying on phenotypic markers or post-transfer replication. We found that HGT into the recording strain in human clinical fecal samples can be extensive and is driven by different plasmid types, with the IncX type being the most actively transferred.
Collapse
|
7
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Jenkins C, Monteiro Pires S, Morabito S, Niskanen T, Scheutz F, da Silva Felício MT, Messens W, Bolton D. Pathogenicity assessment of Shiga toxin‐producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. EFSA J 2020. [DOI: 10.2903/j.efsa.2020.5967] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
8
|
Shkoporov AN, Hill C. Bacteriophages of the Human Gut: The "Known Unknown" of the Microbiome. Cell Host Microbe 2019; 25:195-209. [PMID: 30763534 DOI: 10.1016/j.chom.2019.01.017] [Citation(s) in RCA: 378] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The human gut microbiome is a dense and taxonomically diverse consortium of microorganisms. While the bacterial components of the microbiome have received considerable attention, comparatively little is known about the composition and physiological significance of human gut-associated bacteriophage populations (phageome). By extrapolating our knowledge of phage-host interactions from other environments, one could expect that >1012 viruses reside in the human gut, and we can predict that they play important roles in regulating the complex microbial networks operating in this habitat. Before delving into their function, we need to first overcome the challenges associated with studying and characterizing the phageome. In this Review, we summarize the available methods and main findings regarding taxonomic composition, community structure, and population dynamics in the human gut phageome. We also discuss the main challenges in the field and identify promising avenues for future research.
Collapse
Affiliation(s)
- Andrey N Shkoporov
- APC Microbiome Ireland & School of Microbiology, University College Cork, Co. Cork, Ireland.
| | - Colin Hill
- APC Microbiome Ireland & School of Microbiology, University College Cork, Co. Cork, Ireland
| |
Collapse
|
9
|
Rapid culture-based identification of Shiga toxin-producing Escherichia coli and Shigella spp./Enteroinvasive E. coli using the eazyplex® EHEC complete assay. Eur J Clin Microbiol Infect Dis 2019; 39:151-158. [PMID: 31529306 DOI: 10.1007/s10096-019-03704-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) and Shigella spp./enteroinvasive E. coli (EIEC) are common diarrheagenic bacteria that cause sporadic diseases and outbreaks. Clinical manifestations vary from mild symptoms to severe complications. For microbiological diagnosis, culture confirmation of a positive stool screening PCR test is challenging because of time-consuming methods for isolation of strains, wide variety of STEC pathotypes, and increased emergence of non-classical strains with unusual serotypes. Therefore, molecular assays for the rapid identification of suspect colonies growing on selective media are very useful. In this study, the performance of the newly introduced eazyplex® EHEC assay based on loop-mediated isothermal amplification (LAMP) was evaluated using 18 representative STEC and Shigella strains and 31 isolates or positive-enrichment broths that were collected from clinical stool samples following screening by BD MAX™ EBP PCR. Results were compared to real-time PCR as a reference standard. Overall, sensitivities and specificities of the eazyplex® EHEC were as follows: 94.7% and 100% for Shiga toxin 1 (stx1), 100% and 100% for stx2, 93.3% and 97.1% for intimin (eae), 100% and 100% for enterohemolysin A (ehlyA), and 100% and 100% for invasion-associated plasmid antigen H (ipaH) as Shigella spp./EIEC target, respectively. Sample preparation for LAMP took only some minutes, and the time to result of the assay ranged from 8.5 to 13 min. This study shows that eazyplex® EHEC is a very fast and easy to perform molecular assay that provides reliable results as a culture confirmation assay for the diagnosis of STEC and Shigella spp./EIEC infections.
Collapse
|
10
|
Characterization of Non-O157 Escherichia coli from Cattle Faecal Samples in the North-West Province of South Africa. Microorganisms 2019; 7:microorganisms7080272. [PMID: 31434244 PMCID: PMC6723556 DOI: 10.3390/microorganisms7080272] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 02/06/2023] Open
Abstract
Escherichia coli are commensal bacteria in the gastrointestinal tract of mammals, but some strains have acquired Shiga-toxins and can cause enterohemorrhagic diarrhoea and kidney failure in humans. Shiga-toxigenic E. coli (STEC) strains such as E. coli O157:H7 and some non-O157 strains also contain other virulence traits, some of which contribute to their ability to form biofilms. This study characterized non-O157 E. coli from South African cattle faecal samples for their virulence potential, antimicrobial resistance (AMR), biofilm-forming ability, and genetic relatedness using culture-based methods, pulsed-field gel electrophoresis (PFGE), and whole genome sequencing (WGS). Of 80 isolates screened, 77.5% (62/80) possessed Shiga-toxins genes. Of 18 antimicrobials tested, phenotypic resistance was detected against seven antimicrobials. Resistance ranged from 1.3% (1/80) for ampicillin-sulbactam to 20% (16/80) for tetracycline. Antimicrobial resistance genes were infrequently detected except for tetA, which was found in 31.3% (25/80) and tetB detected in 11.3% (9/80) of isolates. Eight biofilm-forming associated genes were detected in STEC isolates (n = 62) and two non-STEC strains. Prevalence of biofilm genes ranged from 31.3% (20/64) for ehaAβ passenger to 100% for curli structural subunit (csgA) and curli regulators (csgA and crl). Of the 64 STEC and multi-drug resistant isolates, 70.3% (45/64) and 37.5% (24/64) formed strong biofilms on polystyrene at 22 and 37 °C, respectively. Of 59 isolates screened by PFGE, 37 showed unique patterns and the remaining isolates were grouped into five clusters with a ≥90% relatedness. In silico serotyping following WGS on a subset of 24 non-O157 STEC isolates predicted 20 serotypes comprising three novel serotypes, indicating their diversity as potential pathogens. These findings show that North West South African cattle harbour genetically diverse, virulent, antimicrobial-resistant and biofilm-forming non-O157 E. coli. Biofilm-forming ability may increase the likelihood of persistence of these pathogens in the environment and facilitate their dissemination, increasing the risk of cross contamination or establishment of infections in hosts.
Collapse
|
11
|
Martin CC, Svanevik CS, Lunestad BT, Sekse C, Johannessen GS. Isolation and characterisation of Shiga toxin-producing Escherichia coli from Norwegian bivalves. Food Microbiol 2019; 84:103268. [PMID: 31421781 DOI: 10.1016/j.fm.2019.103268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 06/24/2019] [Accepted: 07/12/2019] [Indexed: 10/26/2022]
Abstract
Only a few studies concerning Shiga toxin-producing E. coli (STEC) detection in bivalves and their harvesting areas have been reported, and to the best of our knowledge there are no outbreaks associated with STEC from bivalves described. The aim of the present study was to investigate the occurrence of STEC in Norwegian bivalves, and to characterize potential STEC isolated from the samples. A total of 269 samples of bivalves were screened for the presence of stx and eae genes, and markers for the serogroups O26, O103, O111, O145 and O157 by using ISO TS 13136 (2012). The screening returned 19 samples that were positive for stx and eae, and attempts of isolation of STEC were made from these samples. Presumptive STEC were obtained from three samples, and three isolates (one from each sample) were subjected to whole-genome-sequencing (WGS). The WGS revealed that one of the isolates did not carry the stx genes, while the other two were identified as stx2i positive E. coli O9:H19 and stx2g positive E. coli O96:H19. Neither of the two STEC isolates were positive for virulence markers such as eae and ehx. The results suggest that the occurrence of STEC in Norwegian bivalves is low.
Collapse
Affiliation(s)
- Carlota Cedillo Martin
- Institute of Marine Research, Section for Contaminants and Biohazards, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway
| | - Cecilie Smith Svanevik
- Institute of Marine Research, Section for Contaminants and Biohazards, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway
| | - Bjørn Tore Lunestad
- Institute of Marine Research, Section for Contaminants and Biohazards, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway
| | - Camilla Sekse
- Norwegian Veterinary Institute, Pb 750 Sentrum, N-0106, Oslo, Norway
| | - Gro S Johannessen
- Norwegian Veterinary Institute, Pb 750 Sentrum, N-0106, Oslo, Norway.
| |
Collapse
|
12
|
Carroll KJ, Harvey-Vince L, Jenkins C, Mohan K, Balasegaram S. The epidemiology of Shiga toxin-producing Escherichia coli infections in the South East of England: November 2013-March 2017 and significance for clinical and public health. J Med Microbiol 2019; 68:930-939. [PMID: 30994441 DOI: 10.1099/jmm.0.000970] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE This study describes the epidemiology of Shiga toxin-producing Escherichia coli (STEC) infections in a population in the South East of England. METHODS From 1 November 2013 to 31 March 2017 participating diagnostic laboratories reported Shiga toxin gene (stx) positive real-time PCR results to local public health teams. Stx positive faecal samples/isolates were referred to the Gastrointestinal Bacteria Reference Unit (GBRU) for confirmation by culture and typing by whole genome sequencing (WGS). Key clinical information was collected by public health teams.Results/Key findings. Altogether, 548 faecal specimens (420 were non-travel associated) were stx positive locally, 535 were submitted to the GBRU. STEC were isolated from 42 %, confirmed by stx PCR in 21 % and 37 % were PCR negative. The most common non-travel associated STEC serogroups were O157, O26, O146 and O91. The annualized incidence of confirmed STEC infections (PCR or culture) was 5.8 per 100 000. The ratio of O157 to non-O157 STEC serogroups was 1:7. The annualized incidence of non-O157 haemolytic uraemic syndrome-associated Escherichia coli (HUSEC) strains was 0.4 per 100 000. Bloody diarrhoea was reported by 58 % of cases infected with E. coli O157, 33 % of cases infected with non-O157 HUSEC strains and 12 % of other lower risk non-O157 strains. Overall, 76 % of non-O157 HUSEC isolates possessed the eae virulence gene. CONCLUSIONS HUSEC including serogroup O157 were uncommon and more likely to cause bloody diarrhoea than other STEC. The routine use of stx PCR testing can influence clinical management. Understanding the local epidemiology facilitates a proportionate public health response to STEC, based on clinical and microbiological characteristics including stx subtype(s).
Collapse
Affiliation(s)
- Kevin J Carroll
- 1 PHE South East, Surrey and Sussex HPT, Parkside, Chart Way, Horsham RH12 1XA, UK
| | - Lisa Harvey-Vince
- 1 PHE South East, Surrey and Sussex HPT, Parkside, Chart Way, Horsham RH12 1XA, UK
| | - Claire Jenkins
- 2 Gastrointestinal Bacteria Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5HT, UK
| | - Keerthi Mohan
- 3 PHE South East, Thames Valley HPT, Chilton, Oxon, OX11 0RQ, UK
| | - Sooria Balasegaram
- 4 Field Services, National Infection Service, Public Health England, London, UK
| |
Collapse
|
13
|
Hazard Identification and Characterization: Criteria for Categorizing Shiga Toxin-Producing Escherichia coli on a Risk Basis †. J Food Prot 2019; 82:7-21. [PMID: 30586326 DOI: 10.4315/0362-028x.jfp-18-291] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) comprise a large, highly diverse group of strains. Since the emergence of STEC serotype O157:H7 as an important foodborne pathogen, serotype data have been used for identifying STEC strains, and this use continued as other serotypes were implicated in human infections. An estimated 470 STEC serotypes have been identified, which can produce one or more of the 12 known Shiga toxin (Stx) subtypes. The number of STEC serotypes that cause human illness varies but is probably higher than 100. However, many STEC virulence genes are mobile and can be lost or transferred to other bacteria; therefore, STEC strains that have the same serotype may not carry the same virulence genes or pose the same risk. Although serotype information is useful in outbreak investigations and surveillance studies, it is not a reliable means of assessing the human health risk posed by a particular STEC serotype. To contribute to the development of a set of criteria that would more reliably support hazard identification, this review considered each of the factors contributing to a negative human health outcome: mild diarrhea, bloody diarrhea, and hemolytic uremic syndrome (HUS). STEC pathogenesis involves entry into the human gut (often via ingestion), attachment to the intestinal epithelial cells, and elaboration of Stx. Production of Stx, which disrupts normal cellular functions and causes cell damage, alone without adherence of bacterial cells to gut epithelial cells is insufficient to cause severe illness. The principal adherence factor in STEC is the intimin protein coded by the eae gene. The aggregative adherence fimbriae adhesins regulated by the aggR gene of enteroaggregative E. coli strains are also effective adherence factors. The stx2a gene is most often present in locus of enterocyte effacement ( eae)-positive STEC strains and has consistently been associated with HUS. The stx2a gene has also been found in eae-negative, aggR-positive STEC that have caused HUS. HUS cases where other stx gene subtypes were identified indicate that other factors such as host susceptibility and the genetic cocktail of virulence genes in individual isolates may affect their association with severe diseases.
Collapse
Affiliation(s)
-
- The Joint FAO/WHO Expert Meetings on Microbiological Risk Assessment (JEMRA) Secretariat, * Food Safety and Quality Unit, Agriculture and Consumer Protection Department, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy
| |
Collapse
|
14
|
Senthakumaran T, Brandal LT, Lindstedt BA, Jørgensen SB, Charnock C, Tunsjø HS. Implications of stx loss for clinical diagnostics of Shiga toxin-producing Escherichia coli. Eur J Clin Microbiol Infect Dis 2018; 37:2361-2370. [PMID: 30267169 DOI: 10.1007/s10096-018-3384-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 09/18/2018] [Indexed: 12/17/2022]
Abstract
The dynamics related to the loss of stx genes from Shiga toxin-producing Escherichia coli remain unclear. Current diagnostic procedures have shortcomings in the detection and identification of STEC. This is partly owing to the fact that stx genes may be lost during an infection or in the laboratory. The aim of the present study was to provide new insight into in vivo and in vitro stx loss in order to improve diagnostic procedures. Results from the study support the theory that loss of stx is a strain-related phenomenon and not induced by patient factors. It was observed that one strain could lose stx both in vivo and in vitro. Whole genome comparison of stx-positive and stx-negative isolates from the same patient revealed that different genomic rearrangements, such as complete or partial loss of the parent prophage, may be factors in the loss of stx. Of diagnostic interest, it was shown that patients can be co-infected with different E. coli pathotypes. Therefore, identification of eae-positive, but stx-negative isolates should not be interpreted as "Shiga toxin-lost" E. coli without further testing. Growth and recovery of STEC were supported by different selective agar media for different strains, arguing for inclusion of several media in STEC diagnostics.
Collapse
Affiliation(s)
- Thulasika Senthakumaran
- Department of Multidisciplinary Laboratory Science and Medical Biochemistry, Genetic Unit, Akershus University Hospital, Lørenskog, Akershus, Norway.,Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
| | - Lin Torstensen Brandal
- Department of Zoonotic, Food- and Waterborne Infections, Norwegian Institute of Public Health, Oslo, Norway
| | - Bjørn-Arne Lindstedt
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Akershus, Norway
| | - Silje Bakken Jørgensen
- Department of Microbiology and Infection control, Akershus University Hospital, Lørenskog, Akershus, Norway
| | - Colin Charnock
- Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
| | - Hege Smith Tunsjø
- Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway. .,Department of Microbiology and Infection control, Akershus University Hospital, Lørenskog, Akershus, Norway.
| |
Collapse
|
15
|
Rahman M, Nabi A, Asadulghani M, Faruque SM, Islam MA. Toxigenic properties and stx phage characterization of Escherichia coli O157 isolated from animal sources in a developing country setting. BMC Microbiol 2018; 18:98. [PMID: 30170562 PMCID: PMC6119239 DOI: 10.1186/s12866-018-1235-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022] Open
Abstract
Background In many Asian countries including Bangladesh E. coli O157 are prevalent in animal reservoirs and in the food chain, but the incidence of human infection due to E. coli O157 is rare. One of the reasons could be inability of the organism from animal origin to produce sufficient amount of Shiga toxin (Stx), which is the main virulence factor associated with the severe sequelae of infection. This study aimed to fill out this knowledge gap by investigating the toxigenic properties and characteristics of stx phage of E. coli O157 isolated from animal sources in Bangladesh. Results We analysed 47 stx2 positive E. coli O157 of food/animal origin for stx2 gene variants, Shiga toxin production, presence of other virulence genes, stx phage insertion sites, presence of genes associated with functionality of stx phages (Q933 and Q21) and stx2 upstream region. Of the 47 isolates, 46 were positive for both stx2a and stx2d while the remaining isolate was positive for stx2d only. Reverse Passive Latex Agglutination assay (RPLA) showed that 42/47 isolates produced little or no toxin, while 5 isolates produced a high titre of toxin (64 to 128). 39/47 isolates were positive for the Toxin Non-Producing (TNP) specific regions in the stx2 promoter. Additionally, all isolates were negative for antiterminator Q933while a majority of isolates were positive for Q21 gene suggesting the presence of defective stx phage. Of the yehV and wrbA phage insertion sites, yehV was found occupied in 11 isolates while wrbA site was intact in all the isolates. None of the isolates was positive for the virulence gene, cdt but all were positive for hlyA, katP, etpD and eae genes. Isolates that produced high titre Stx (n = 5) produced complete phage particles capable of infecting multiple bacterial hosts. One of these phages was shown to produce stable lysogens in host strains rendering the Stx2 producing ability. Conclusion Despite low frequency in the tested isolates, E. coli O157 isolates in Bangladesh carry inducible stx phages and have the capacity to produce Stx2, indicating a potential risk of E. coli O157 infection in humans.
Collapse
Affiliation(s)
- Mahdia Rahman
- Enteric and Food Microbiology Laboratory, Laboratory Sciences and Services Division (LSSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212, Bangladesh
| | - Ashikun Nabi
- Enteric and Food Microbiology Laboratory, Laboratory Sciences and Services Division (LSSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212, Bangladesh.,Present Address: Department of Biology, University of Vermont, Burlington, VT, 05405, USA
| | - Md Asadulghani
- Enteric and Food Microbiology Laboratory, Laboratory Sciences and Services Division (LSSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212, Bangladesh
| | - Shah M Faruque
- Enteric and Food Microbiology Laboratory, Laboratory Sciences and Services Division (LSSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212, Bangladesh.,Present Address: Department of Mathematics and Natural Sciences, BRAC University, Mohakhali, Dhaka, 1212, Bangladesh
| | - Mohammad Aminul Islam
- Enteric and Food Microbiology Laboratory, Laboratory Sciences and Services Division (LSSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, 1212, Bangladesh.
| |
Collapse
|
16
|
Serotypes and virulence profiles of Shiga toxin-producing Escherichia coli strains isolated during 2017 from human infections in Switzerland. Int J Med Microbiol 2018; 308:933-939. [PMID: 30042042 DOI: 10.1016/j.ijmm.2018.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/19/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Since 2015, the Swiss Federal Office of Public Health registered an increase of notifications of STEC, probably due to the adoption of culture independent stx screening tests in diagnostic laboratories. This study aimed to identify the serotypes and virulence genes of 120 STEC isolated from human clinical stx positive specimens during 2017 in order to estimate any changes in serotype distribution and toxin profiles of STEC compared to the time span 2010-2014. Culturing of STEC from stool samples was achieved using the streak plate technique on MacConkey agar. We performed O and H serotyping by PCR and by micro array. Virulence genes were identified and subtyped using molecular methods, including stx1 and stx2 subtypes, and the intimin encoding gene, eae. STEC were recovered from 27.5% of the stx positive samples. STEC O157:H7 accounted for 7.5% of all isolates, and STEC O80:H2, O91:H10/H14/H21, O103:H2/H11, and O26:H11 accounted for 36.9% of the non-O157 strains. Forty-five isolates with stx1 variants, 47 with stx2 variants and 28 isolates with both stx1 and stx2 variants were identified. Forty (33.3% of all isolates) carried the subtypes associated with high pathogenic potential, stx2a, stx2c, or stx2d. The eae gene for intimin was detected in 54 strains (45% of all strains). Compared to 2010-2014, our data show that the proportion of the so called "top five" serogroups, STEC O26, O111, O103, and O157 declined from 53.7% to 28.3% in 2017. The proportion of isolates with stx2a, stx2c, or stx2d decreased from 50.5% to 33.3%. We also observed an increase of STEC harbouring the low pathogenic subtypes stx2b and stx2e from 12.6% to 29.2%, and of eae negative STEC from 29.5% in 2010-2014 to 55% in 2017. Simultaneously, there was a sharp increase of the patients' median age from 24 years to 46.5 years. Clinical manifestations in the patients included abdominal pain without diarrhea (22.3%), diarrhea (77.7%), and the haemolytic-uremic syndrome (HUS) (7.4%). Our data show that a greater number and a wider range of STEC serotypes are detected by culture-independent testing, with implications for public health services.
Collapse
|
17
|
Kiel M, Sagory-Zalkind P, Miganeh C, Stork C, Leimbach A, Sekse C, Mellmann A, Rechenmann F, Dobrindt U. Identification of Novel Biomarkers for Priority Serotypes of Shiga Toxin-Producing Escherichia coli and the Development of Multiplex PCR for Their Detection. Front Microbiol 2018; 9:1321. [PMID: 29997582 PMCID: PMC6028524 DOI: 10.3389/fmicb.2018.01321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/30/2018] [Indexed: 12/22/2022] Open
Abstract
It would be desirable to have an unambiguous scheme for the typing of Shiga toxin-producing Escherichia coli (STEC) isolates to subpopulations. Such a scheme should take the high genomic plasticity of E. coli into account and utilize the stratification of STEC into subgroups, based on serotype or phylogeny. Therefore, our goal was to identify specific marker combinations for improved classification of STEC subtypes. We developed and evaluated two bioinformatic pipelines for genomic marker identification from larger sets of bacterial genome sequences. Pipeline A performed all-against-all BLASTp analyses of gene products predicted in STEC genome test sets against a set of control genomes. Pipeline B identified STEC marker genes by comparing the STEC core proteome and the "pan proteome" of a non-STEC control group. Both pipelines defined an overlapping, but not identical set of discriminative markers for different STEC subgroups. Differential marker prediction resulted from differences in genome assembly, ORF finding and inclusion cut-offs in both workflows. Based on the output of the pipelines, we defined new specific markers for STEC serogroups and phylogenetic groups frequently associated with outbreaks and cases of foodborne illnesses. These included STEC serogroups O157, O26, O45, O103, O111, O121, and O145, Shiga toxin-positive enteroaggregative E. coli O104:H4, and HUS-associated sequence type (ST)306. We evaluated these STEC marker genes for their presence in whole genome sequence data sets. Based on the identified discriminative markers, we developed a multiplex PCR (mPCR) approach for detection and typing of the targeted STEC. The specificity of the mPCR primer pairs was verified using well-defined clinical STEC isolates as well as isolates from the ECOR, DEC, and HUSEC collections. The application of the STEC mPCR for food analysis was tested with inoculated milk. In summary, we evaluated two different strategies to screen large genome sequence data sets for discriminative markers and implemented novel marker genes found in this genome-wide approach into a DNA-based typing tool for STEC that can be used for the characterization of STEC from clinical and food samples.
Collapse
Affiliation(s)
- Matthias Kiel
- Institute of Hygiene, University of Münster, Münster, Germany
| | | | - Céline Miganeh
- Genostar Bioinformatics, Montbonnot-Saint-Martin, France
| | - Christoph Stork
- Institute of Hygiene, University of Münster, Münster, Germany
| | | | | | | | | | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| |
Collapse
|
18
|
Górski A, Jończyk-Matysiak E, Międzybrodzki R, Weber-Dąbrowska B, Łusiak-Szelachowska M, Bagińska N, Borysowski J, Łobocka MB, Węgrzyn A, Węgrzyn G. Phage Therapy: Beyond Antibacterial Action. Front Med (Lausanne) 2018; 5:146. [PMID: 29876350 PMCID: PMC5974148 DOI: 10.3389/fmed.2018.00146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Until recently, phages were considered as mere “bacteria eaters” with potential for use in combating antimicrobial resistance. The real value of phage therapy assessed according to the standards of evidence-based medicine awaits confirmation by clinical trials. However, the progress in research on phage biology has shed more light on the significance of phages. Accumulating data indicate that phages may also interact with eukaryotic cells. How such interactions could be translated into advances in medicine (especially novel means of therapy) is discussed herein.
Collapse
Affiliation(s)
- Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marzanna Łusiak-Szelachowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Natalia Bagińska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata B Łobocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Alicja Węgrzyn
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
19
|
Liao YT, Quintela IA, Nguyen K, Salvador A, Cooley MB, Wu VCH. Investigation of prevalence of free Shiga toxin-producing Escherichia coli (STEC)-specific bacteriophages and its correlation with STEC bacterial hosts in a produce-growing area in Salinas, California. PLoS One 2018; 13:e0190534. [PMID: 29300761 PMCID: PMC5754052 DOI: 10.1371/journal.pone.0190534] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/11/2017] [Indexed: 01/20/2023] Open
Abstract
Shiga toxin-producing E. coli (STEC) causes approximately 265,000 illnesses and 3,600 hospitalizations annually and is highly associated with animal contamination due to the natural reservoir of ruminant gastrointestinal tracts. Free STEC-specific bacteriophages against STEC strains are also commonly isolated from fecal-contaminated environment. Previous studies have evaluated the correlation between the prevalence of STEC-specific bacteriophages and STEC strains to improve animal-associated environment. However, the similar information regarding free STEC-specific bacteriophages prevalence in produce growing area is lacking. Thus, the objectives of this research were to determine the prevalence of STEC-specific phages, analyze potential effects of environmental factors on the prevalence of the phages, and study correlations between STEC-specific bacteriophages and the bacterial hosts in pre-harvest produce environment. Surface water from 20 samples sites was subjected to free bacteriophage isolation using host strains of both generic E. coli and STEC (O157, six non-O157 and one O179 strains) cocktails, and isolation of O157 and non-O157 STEC strains by use of culture methods combined with PCR-based confirmation. The weather data were obtained from weather station website. Free O145- and O179-specific bacteriophages were the two most frequently isolated bacteriophages among all (O45, O145, O157 and O179) in this study. The results showed June and July had relatively high prevalence of overall STEC-specific bacteriophages with minimum isolation of STEC strains. In addition, the bacteriophages were likely isolated in the area—around or within city—with predominant human impact, whereas the STEC bacterial isolates were commonly found in agriculture impact environment. Furthermore, there was a trend that the sample sites with positive of free STEC bacteriophage did not have the specific STEC bacterial hosts. The findings of the study enable us to understand the ecology between free STEC-specific phages and STEC bacteria for further pre-harvest food safety management in produce environment.
Collapse
Affiliation(s)
- Yen-Te Liao
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Irwin A Quintela
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America.,School of Food and Agriculture, University of Maine, Orono, Maine, United States of America
| | - Kimberly Nguyen
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Alexandra Salvador
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Michael B Cooley
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Vivian C H Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| |
Collapse
|
20
|
Contribution of cropland to the spread of Shiga toxin phages and the emergence of new Shiga toxin-producing strains. Sci Rep 2017; 7:7796. [PMID: 28798380 PMCID: PMC5552810 DOI: 10.1038/s41598-017-08169-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/07/2017] [Indexed: 11/09/2022] Open
Abstract
A growing interest in healthy eating has lead to an increase in the consumption of vegetables, associated with a rising number of bacterial outbreaks related to fresh produce. This is the case of the outbreak in Germany, caused by a O104:H4 enteroaggregative E. coli strain lysogenic for a Stx phage. Temperate Stx phages released from their hosts occur as free particles in various environments. This study reports the occurrence of Stx phages in vegetables (lettuce, cucumber, and spinach) and cropland soil samples. Infectious Stx2 phages were found in all samples and many carried also Stx1 phages. Their persistence in vegetables, including germinated sprouts, of Stx phage 933 W and an E. coli C600 (933 W∆stx::gfp-cat) lysogen used as surrogate, showed reductions below 2 log10 units of both microorganisms at 23 °C and 4 °C over 10 days. Higher reductions (up to 3.9 log10) units were observed in cropland soils at both temperatures. Transduction of a recombinant 933 W∆stx::kan phage was observed in all matrices. Protecting against microbial contamination of vegetables is imperative to ensure a safe food chain. Since the emergence of new Stx strains by Stx phage transduction is possible in vegetable matrices, methods aimed at reducing microbial risks in vegetables should not neglect phages.
Collapse
|
21
|
Tokajian S, Salloum T, Eisen JA, Jospin G, Farra A, Mokhbat JE, Coil DA. Genomic attributes of extended-spectrum β-lactamase-producing Escherichia coli isolated from patients in Lebanon. Future Microbiol 2017; 12:213-226. [DOI: 10.2217/fmb-2017-0171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Extended-spectrum β-lactamase-producing (ESBL) Escherichia coli are a public threat worldwide. This study aimed at analyzing the genomic and functional attributes of nine ESBLs taken from rectal swabs. Materials & methods: Samples were isolated from patients admitted for gastrointestinal and urological procedures at the University Medical Center-Rizk Hospital (UMCRH) in Lebanon. Illumina paired-end libraries were prepared and sequenced. Results: The isolates were distributed into five lineages: ST131, ST648, ST405, ST73 and ST38, and harbored bla OXA-1, bla TEM-1B, bla TEM-1C and aac(6′)Ib-cr. ST131 isolates were carriers of stx2 converting I phage. Conclusion: This is the first comprehensive genomic analysis performed on ESBLs in Lebanon.
Collapse
Affiliation(s)
- Sima Tokajian
- School of Arts & Sciences, Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Tamara Salloum
- School of Arts & Sciences, Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Jonathan A Eisen
- Department of Evolution and Ecology, University of California Davis Genome Center, Davis, CA 95616, USA
| | - Guillaume Jospin
- Department of Evolution and Ecology, University of California Davis Genome Center, Davis, CA 95616, USA
| | - Anna Farra
- School of Medicine, Lebanese American University, Byblos, Lebanon
| | | | - David A Coil
- Department of Evolution and Ecology, University of California Davis Genome Center, Davis, CA 95616, USA
| |
Collapse
|
22
|
Shigella sonnei and hemolytic uremic syndrome: A case report and literature review. IDCases 2017; 8:6-8. [PMID: 28239557 PMCID: PMC5322170 DOI: 10.1016/j.idcr.2017.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/04/2017] [Accepted: 02/07/2017] [Indexed: 11/30/2022] Open
Abstract
Hemolytic uremic syndrome (HUS) is a well-described process that is known to cause severe renal dysfunction, thrombocytopenia, and anemia. HUS is typically associated with toxins (shiga-like and shigella toxin) found in strains of E. coli and Shigella spp [1], [2], [3]. We present a case of a 27 year-old man with jaundice, thrombocytopenia, and renal dysfunction who was found to have HUS in the setting of Shigella sonnei infection. Outside of developing countries, cases of HUS related to S. sonnei are largely unreported.
Collapse
|
23
|
Cui Z, Feng T, Gu F, Li Q, Dong K, Zhang Y, Zhu Y, Han L, Qin J, Guo X. Characterization and complete genome of the virulent Myoviridae phage JD007 active against a variety of Staphylococcus aureus isolates from different hospitals in Shanghai, China. Virol J 2017; 14:26. [PMID: 28179010 PMCID: PMC5299689 DOI: 10.1186/s12985-017-0701-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/07/2017] [Indexed: 11/25/2022] Open
Abstract
Background The implementation of phage therapy is re-emerging with the increase in widespread antibiotic-resistant bacteria. Methods Staphylococcus phage JD007 was characterized and its complete genome sequence analysed. Results Staphylococcus phage JD007 was classified as belonging to the Myoviridae family based on its morphology, as observed by transmission electron microscopy. Its lytic activity was stable between pH 5–11 and below 42 °C; moreover, an absorbance curve showed that nearly 90% of the viral particles had adsorbed to its host after a 20 min co-incubation. The complete genome size is 141,836 bp, making JD007 one of the largest Staphylococcus phages of Myoviridae. No identifiable resistance or virulence genes were found in the JD007 genome. JD007 was able to lyse 95% of S. aureus isolates, including the prevalent ST239-MRSA and ST59-MRSA strains isolated from different hospitals in Shanghai, China, and inhibition assays showed that JD007 could inhibit S. aureus growth at a multiplicity of infection of 0.1. Conclusions The results suggested that Staphylococcus phage JD007 can potentially be used in phage therapy or for the detection of S. aureus. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0701-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zelin Cui
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China. .,Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Tingting Feng
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Feifei Gu
- Department of Clinical Microbiology, Shanghai Ruijin hospital, Shanghai, 200025, China
| | - Qingtian Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ke Dong
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yan Zhang
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yongzhang Zhu
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Lizhong Han
- Department of Clinical Microbiology, Shanghai Ruijin hospital, Shanghai, 200025, China
| | - Jinhong Qin
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiaokui Guo
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
24
|
Staples M, Fang NX, Graham RM, Smith HV, Jennison AV. Evaluation of the SHIGA TOXIN QUIK CHEK and ImmunoCard STAT! EHEC as screening tools for the detection of Shiga toxin in fecal specimens. Diagn Microbiol Infect Dis 2017; 87:95-99. [DOI: 10.1016/j.diagmicrobio.2016.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/19/2016] [Accepted: 03/07/2016] [Indexed: 11/26/2022]
|
25
|
Cui Z, Guo X, Dong K, Zhang Y, Li Q, Zhu Y, Zeng L, Tang R, Li L. Safety assessment of Staphylococcus phages of the family Myoviridae based on complete genome sequences. Sci Rep 2017; 7:41259. [PMID: 28117392 PMCID: PMC5259776 DOI: 10.1038/srep41259] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 12/19/2016] [Indexed: 11/25/2022] Open
Abstract
Staphylococcus phages of the Myoviridae family have a wide host range and potential applications in phage therapy. In this report, safety assessments of these phages were conducted based on their complete genome sequences. The complete genomes of Staphylococcus phages of the Myoviridae family were analyzed, and the Open Reading Frame (ORFs) were compared with a pool of virulence and antibiotic resistance genes using the BLAST algorithm. In addition, the lifestyle of the phages (virulent or temperate) was also confirmed using PHACTS. The results showed that all phages were lytic and did not contain resistance or virulence genes based on bioinformatic analyses, excluding the possibility that they could be vectors for the dissemination of these undesirable genes. These findings suggest that the phages are safe at the genome level. The SceD-like transglycosylase, which is a biomarker for vancomycin-intermediate strains, was widely distributed in the phage genomes. Approximately 70% of the ORFs encoded in the phage genomes have unknown functions; therefore, their roles in the antibiotic resistance and virulence of Staphylococcus aureus are still unknown and require consideration before use in phage therapy.
Collapse
Affiliation(s)
- Zelin Cui
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaokui Guo
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Ke Dong
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yan Zhang
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Qingtian Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yongzhang Zhu
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Lingbing Zeng
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Rong Tang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Li Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
26
|
Brown-Jaque M, Muniesa M, Navarro F. Bacteriophages in clinical samples can interfere with microbiological diagnostic tools. Sci Rep 2016; 6:33000. [PMID: 27609086 PMCID: PMC5016790 DOI: 10.1038/srep33000] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/18/2016] [Indexed: 01/15/2023] Open
Abstract
Bacteriophages are viruses that infect bacteria, and they are found everywhere their bacterial hosts are present, including the human body. To explore the presence of phages in clinical samples, we assessed 65 clinical samples (blood, ascitic fluid, urine, cerebrospinal fluid, and serum). Infectious tailed phages were detected in >45% of ascitic fluid and urine samples. Three examples of phage interference with bacterial isolation were observed. Phages prevented the confluent bacterial growth required for an antibiogram assay when the inoculum was taken from an agar plate containing lysis plaques, but not when taken from a single colony in a phage-free area. In addition, bacteria were isolated directly from ascitic fluid, but not after liquid enrichment culture of the same samples, since phage propagation lysed the bacteria. Lastly, Gram-negative bacilli observed in a urine sample did not grow on agar plates due to the high densities of infectious phages in the sample.
Collapse
Affiliation(s)
- Maryury Brown-Jaque
- Department of Microbiology, University of Barcelona, Diagonal 645, Annex, Floor 0, 08028 Barcelona, Spain
| | - Maite Muniesa
- Department of Microbiology, University of Barcelona, Diagonal 645, Annex, Floor 0, 08028 Barcelona, Spain
| | - Ferran Navarro
- Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Sant Quintí 89, 08041 Barcelona, Spain
| |
Collapse
|
27
|
Nyholm O, Lienemann T, Halkilahti J, Mero S, Rimhanen-Finne R, Lehtinen V, Salmenlinna S, Siitonen A. Characterization of Shigella sonnei Isolate Carrying Shiga Toxin 2-Producing Gene. Emerg Infect Dis 2016; 21:891-2. [PMID: 25897522 PMCID: PMC4412214 DOI: 10.3201/eid2105.140621] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
28
|
An Environmental Shiga Toxin-Producing Escherichia coli O145 Clonal Population Exhibits High-Level Phenotypic Variation That Includes Virulence Traits. Appl Environ Microbiol 2015; 82:1090-1101. [PMID: 26637597 DOI: 10.1128/aem.03172-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/24/2015] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) serotype O145 is one of the major non-O157 serotypes associated with severe human disease. Here we examined the genetic diversity, population structure, virulence potential, and antimicrobial resistance profiles of environmental O145 strains recovered from a major produce production region in California. Multilocus sequence typing analyses revealed that sequence type 78 (ST-78), a common ST in clinical strains, was the predominant genotype among the environmental strains. Similarly, all California environmental strains belonged to H28, a common H serotype in clinical strains. Although most environmental strains carried an intact fliC gene, only one strain retained swimming motility. Diverse stx subtypes were identified, including stx1a, stx2a, stx2c, and stx2e. Although no correlation was detected between the stx genotype and Stx1 production, high Stx2 production was detected mainly in strains carrying stx2a only and was correlated positively with the cytotoxicity of Shiga toxin. All environmental strains were capable of producing enterohemolysin, whereas only 10 strains were positive for anaerobic hemolytic activity. Multidrug resistance appeared to be common, as nearly half of the tested O145 strains displayed resistance to at least two different classes of antibiotics. The core virulence determinants of enterohemorrhagic E. coli were conserved in the environmental STEC O145 strains; however, there was large variation in the expression of virulence traits among the strains that were highly related genotypically, implying a trend of clonal divergence. Several cattle isolates exhibited key virulence traits comparable to those of the STEC O145 outbreak strains, emphasizing the emergence of hypervirulent strains in agricultural environments.
Collapse
|
29
|
Balière C, Rincé A, Blanco J, Dahbi G, Harel J, Vogeleer P, Giard JC, Mariani-Kurkdjian P, Gourmelon M. Prevalence and Characterization of Shiga Toxin-Producing and Enteropathogenic Escherichia coli in Shellfish-Harvesting Areas and Their Watersheds. Front Microbiol 2015; 6:1356. [PMID: 26648928 PMCID: PMC4664706 DOI: 10.3389/fmicb.2015.01356] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/16/2015] [Indexed: 11/13/2022] Open
Abstract
more strains formed a strong biofilm at 18 than at 30°C. Finally, more than 85% of analyzed strains were found to be sensitive to the 16 tested antibiotics. These data suggest the low risk of human infection by STEC if shellfish from these shellfish-harvesting areas were consumed.
Collapse
Affiliation(s)
- Charlotte Balière
- Laboratoire Santé Environnement et Microbiologie, Unité Santé, Génétique et Microbiologie des Mollusques, Département Ressources Biologiques et Environnement, Ifremer Plouzané, France
| | - Alain Rincé
- U2RM EA4655 Stress/Virulence, Normandie-Université, University of Caen Normandy Caen, France
| | - Jorge Blanco
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela Lugo, Spain
| | - Ghizlane Dahbi
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela Lugo, Spain
| | - Josée Harel
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Centre de Recherche d'Infectiologie Porcine et Avicole, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Philippe Vogeleer
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Centre de Recherche d'Infectiologie Porcine et Avicole, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Jean-Christophe Giard
- U2RM EA4655 Antibio-Résistance, Normandie-Université, University of Caen Normandy Caen, France
| | - Patricia Mariani-Kurkdjian
- Service de Microbiologie, CNR Associé Escherichia coli, AP-HP, Hôpital Robert-Debré Paris, France ; Infection, Antimicrobials, Modelling, Evolution, UMR 1137, INSERM Paris, France ; Infection, Antimicrobials, Modelling, Evolution, UMR 1137, Université Paris Diderot - Sorbonne Paris Cité Paris, France
| | - Michèle Gourmelon
- Laboratoire Santé Environnement et Microbiologie, Unité Santé, Génétique et Microbiologie des Mollusques, Département Ressources Biologiques et Environnement, Ifremer Plouzané, France
| |
Collapse
|
30
|
Grau-Leal F, Quirós P, Martínez-Castillo A, Muniesa M. Free Shiga toxin 1-encoding bacteriophages are less prevalent than Shiga toxin 2 phages in extraintestinal environments. Environ Microbiol 2015; 17:4790-801. [DOI: 10.1111/1462-2920.13053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/31/2015] [Accepted: 09/11/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Ferran Grau-Leal
- Department of Microbiology; University of Barcelona; Diagonal 643, Annex, Floor 0 Barcelona E-08028 Spain
| | - Pablo Quirós
- Department of Microbiology; University of Barcelona; Diagonal 643, Annex, Floor 0 Barcelona E-08028 Spain
| | | | - Maite Muniesa
- Department of Microbiology; University of Barcelona; Diagonal 643, Annex, Floor 0 Barcelona E-08028 Spain
| |
Collapse
|
31
|
Tunsjø HS, Kvissel AK, Follin-Arbelet B, Brotnov BM, Ranheim TE, Leegaard TM. Suitability of stx-PCR directly from fecal samples in clinical diagnostics of STEC. APMIS 2015; 123:872-8. [PMID: 26303619 DOI: 10.1111/apm.12428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/04/2015] [Indexed: 01/01/2023]
Abstract
PCR-based testing for Shiga toxin producing Escherichia coli (STEC) directly from fecal samples is increasingly being implemented in routine diagnostic laboratories. These methods aim to detect clinically relevant amounts of microbes and not stx-carrying phages or low backgrounds of STEC. We present a diagnostic procedure and results from 1 year of stx-targeted real-time PCR of fecal samples from patients with gastrointestinal symptoms in Norway. A rapid stx2 subtyping strategy is described, which aims to quickly reveal the virulence potential of the microbe. stx was detected in 22 of 3320 samples, corresponding to a PCR positive rate of 0.66%. STEC were cultured from 72% of the PCR positive samples. Four stx1 isolates, eight stx2 isolates, and four isolates with both stx1 and stx2 were identified. With the method presented, stx-carrying phages are not commonly detected. Our results support the use of molecular testing combined with classical culture techniques for routine diagnostic purposes.
Collapse
Affiliation(s)
- Hege S Tunsjø
- Unit of Gene Technology, Department of Multidisciplinary Laboratory Medicine and Medical Biochemistry, Division of Diagnostics and Technology, Akershus University Hospital, Nordbyhagen, Norway
| | - Anne K Kvissel
- Unit of Gene Technology, Department of Multidisciplinary Laboratory Medicine and Medical Biochemistry, Division of Diagnostics and Technology, Akershus University Hospital, Nordbyhagen, Norway
| | - Benoit Follin-Arbelet
- Unit of Gene Technology, Department of Multidisciplinary Laboratory Medicine and Medical Biochemistry, Division of Diagnostics and Technology, Akershus University Hospital, Nordbyhagen, Norway
| | - Beth-Marie Brotnov
- Unit of Gene Technology, Department of Multidisciplinary Laboratory Medicine and Medical Biochemistry, Division of Diagnostics and Technology, Akershus University Hospital, Nordbyhagen, Norway
| | - Trond E Ranheim
- Department of Microbiology and Infection Control, Division of Diagnostics and Technology, Akershus University Hospital, Nordbyhagen, Norway
| | - Truls M Leegaard
- Department of Microbiology and Infection Control, Division of Diagnostics and Technology, Akershus University Hospital, Nordbyhagen, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
Muniesa M, Jofre J. Identifying and analyzing bacteriophages in human fecal samples: what could we discover? Future Microbiol 2015; 9:879-86. [PMID: 25156377 DOI: 10.2217/fmb.14.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The human gut is a complex ecosystem, densely populated with microbes including enormous amounts of phages. Metagenomic studies indicate a great diversity of bacteriophages, and because of the variety of gut bacterial species, the human or animal gut is probably a perfect ecological niche for phages that can infect and propagate in their bacterial communities. In addition, some phages have the capacity to mobilize genes, as demonstrated by the enormous fraction of phage particles in feces that contain bacterial DNA. All these facts indicate that, through predation and horizontal gene transfer, bacteriophages play a key role in shaping the size, structure and function of intestinal microbiomes, although our understanding of their effects on gut bacterial populations is only just beginning.
Collapse
Affiliation(s)
- Maite Muniesa
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, Barcelona, Spain
| | | |
Collapse
|
33
|
Assessing the public health risk of Shiga toxin-producing Escherichia coli by use of a rapid diagnostic screening algorithm. J Clin Microbiol 2015; 53:1588-98. [PMID: 25740764 DOI: 10.1128/jcm.03590-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/21/2015] [Indexed: 12/31/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is an enteropathogen of public health concern because of its ability to cause serious illness and outbreaks. In this prospective study, a diagnostic screening algorithm to categorize STEC infections into risk groups was evaluated. The algorithm consists of prescreening stool specimens with real-time PCR (qPCR) for the presence of stx genes. The qPCR-positive stool samples were cultured in enrichment broth and again screened for stx genes and additional virulence factors (escV, aggR, aat, bfpA) and O serogroups (O26, O103, O104, O111, O121, O145, O157). Also, PCR-guided culture was performed with sorbitol MacConkey agar (SMAC) and CHROMagar STEC medium. The presence of virulence factors and O serogroups was used for presumptive pathotype (PT) categorization in four PT groups. The potential risk for severe disease was categorized from high risk for PT group I to low risk for PT group III, whereas PT group IV consists of unconfirmed stx qPCR-positive samples. In total, 5,022 stool samples of patients with gastrointestinal symptoms were included. The qPCR detected stx genes in 1.8% of samples. Extensive screening for virulence factors and O serogroups was performed on 73 samples. After enrichment, the presence of stx genes was confirmed in 65 samples (89%). By culture on selective media, STEC was isolated in 36% (26/73 samples). Threshold cycle (CT) values for stx genes were significantly lower after enrichment compared to direct qPCR (P < 0.001). In total, 11 (15%), 19 (26%), 35 (48%), and 8 (11%) samples were categorized into PT groups I, II, III, and IV, respectively. Several virulence factors (stx2, stx2a, stx2f, toxB, eae, efa1, cif, espA, tccP, espP, nleA and/or nleB, tir cluster) were associated with PT groups I and II, while others (stx1, eaaA, mch cluster, ireA) were associated with PT group III. Furthermore, the number of virulence factors differed between PT groups (analysis of variance, P < 0.0001). In conclusion, a diagnostic algorithm enables fast discrimination of STEC infections associated with a high to moderate risk for severe disease (PT groups I and II) from less-virulent STEC (PT group III).
Collapse
|
34
|
Balière C, Rincé A, Thevenot D, Gourmelon M. Successful detection of pathogenic Shiga-toxin-producing Escherichia coli
in shellfish, environmental waters and sediment using the ISO/TS-13136 method. Lett Appl Microbiol 2015; 60:315-20. [DOI: 10.1111/lam.12386] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/18/2014] [Accepted: 01/04/2015] [Indexed: 11/29/2022]
Affiliation(s)
- C. Balière
- Unité SG2M, Département RBE; Laboratoire Santé Environnement et Microbiologie; IFREMER; Plouzané France
| | - A. Rincé
- UCBN; U2RM Stress/Virulence EA4655; Normandie-Université; Caen France
| | - D. Thevenot
- Laboratoire LMAP-LNR; UMR5557/Equipe 6; Marcy-L'Etoile France
| | - M. Gourmelon
- Unité SG2M, Département RBE; Laboratoire Santé Environnement et Microbiologie; IFREMER; Plouzané France
| |
Collapse
|
35
|
Improving detection of Shiga toxin-producing Escherichia coli by molecular methods by reducing the interference of free Shiga toxin-encoding bacteriophages. Appl Environ Microbiol 2014; 81:415-21. [PMID: 25362055 DOI: 10.1128/aem.02941-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Detection of Shiga toxin-producing Escherichia coli (STEC) by culture methods is advisable to identify the pathogen, but recovery of the strain responsible for the disease is not always possible. The use of DNA-based methods (PCR, quantitative PCR [qPCR], or genomics) targeting virulence genes offers fast and robust alternatives. However, detection of stx is not always indicative of STEC because stx can be located in the genome of temperate phages found in the samples as free particles; this could explain the numerous reports of positive stx detection without successful STEC isolation. An approach based on filtration through low-protein-binding membranes and additional washing steps was applied to reduce free Stx phages without reducing detection of STEC bacteria. River water, food, and stool samples were spiked with suspensions of phage 933W and, as a STEC surrogate, a lysogen harboring a recombinant Stx phage in which stx was replaced by gfp. Bacteria were tested either by culture or by qPCR for gfp while phages were tested using qPCR targeting stx in phage DNA. The procedure reduces phage particles by 3.3 log10 units without affecting the recovery of the STEC population (culturable or assessed by qPCR). The method is applicable regardless of phage and bacteria densities and is useful in different matrices (liquid or solid). This approach eliminates or considerably reduces the interference of Stx phages in the detection of STEC by molecular methods. The reduction of possible interference would increase the efficiency and reliability of genomics for STEC detection when the method is applied routinely in diagnosis and food analysis.
Collapse
|
36
|
Evaluation of real time PCR assays for the detection and enumeration of enterohemorrhagic Escherichia coli directly from cattle feces. J Microbiol Methods 2014; 105:72-9. [DOI: 10.1016/j.mimet.2014.07.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 01/29/2023]
|
37
|
Franz E, Delaquis P, Morabito S, Beutin L, Gobius K, Rasko DA, Bono J, French N, Osek J, Lindstedt BA, Muniesa M, Manning S, LeJeune J, Callaway T, Beatson S, Eppinger M, Dallman T, Forbes KJ, Aarts H, Pearl DL, Gannon VP, Laing CR, Strachan NJ. Exploiting the explosion of information associated with whole genome sequencing to tackle Shiga toxin-producing Escherichia coli (STEC) in global food production systems. Int J Food Microbiol 2014; 187:57-72. [DOI: 10.1016/j.ijfoodmicro.2014.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/27/2014] [Accepted: 07/04/2014] [Indexed: 12/24/2022]
|
38
|
Martínez-Castillo A, Muniesa M. Implications of free Shiga toxin-converting bacteriophages occurring outside bacteria for the evolution and the detection of Shiga toxin-producing Escherichia coli. Front Cell Infect Microbiol 2014; 4:46. [PMID: 24795866 PMCID: PMC3997033 DOI: 10.3389/fcimb.2014.00046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 03/27/2014] [Indexed: 11/13/2022] Open
Abstract
In this review we highlight recent work that has increased our understanding of the distribution of Shiga toxin-converting phages that can be detected as free phage particles, independently of Shiga toxin-producing bacteria (STEC). Stx phages are a quite diverse group of temperate phages that can be found in their prophage state inserted within the STEC chromosome, but can also be found as phages released from the cell after activation of their lytic cycle. They have been detected in extraintestinal environments such as water polluted with feces from humans or animals, food samples or even in stool samples of healthy individuals. The high persistence of phages to several inactivation conditions makes them suitable candidates for the successful mobilization of stx genes, possibly resulting in the genes reaching a new bacterial genomic background by means of transduction, where ultimately they may be expressed, leading to Stx production. Besides the obvious fact that Stx phages circulating between bacteria can be, and probably are, involved in the emergence of new STEC strains, we review here other possible ways in which free Stx phages could interfere with the detection of STEC in a given sample by current laboratory methods and how to avoid such interference.
Collapse
Affiliation(s)
| | - Maite Muniesa
- Department of Microbiology, Faculty of Biology, University of BarcelonaBarcelona, Spain
| |
Collapse
|
39
|
Persistence of infectious Shiga toxin-encoding bacteriophages after disinfection treatments. Appl Environ Microbiol 2014; 80:2142-9. [PMID: 24463973 DOI: 10.1128/aem.04006-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In Shiga toxin-producing Escherichia coli (STEC), induction of Shiga toxin-encoding bacteriophages (Stx phages) causes the release of free phages that can later be found in the environment. The ability of Stx phages to survive different inactivation conditions determines their prevalence in the environment, the risk of stx transduction, and the generation of new STEC strains. We evaluated the infectivity and genomes of two Stx phages (Φ534 and Φ557) under different conditions. Infectious Stx phages were stable at 4, 22, and 37°C and at pH 7 and 9 after 1 month of storage but were completely inactivated at pH 3. Infective Stx phages decreased moderately when treated with UV (2.2-log10 reduction for an estimated UV dose of 178.2 mJ/cm(2)) or after treatment at 60 and 68°C for 60 min (2.2- and 2.5-log10 reductions, respectively) and were highly inactivated (3 log10) by 10 ppm of chlorine in 1 min. Assays in a mesocosm showed lower inactivation of all microorganisms in winter than in summer. The number of Stx phage genomes did not decrease significantly in most cases, and STEC inactivation was higher than phage inactivation under all conditions. Moreover, Stx phages retained the ability to lysogenize E. coli after some of the treatments.
Collapse
|
40
|
Langsrud S, Heir E, Rode TM. Survival of Shiga toxin-producing Escherichia coli and Stx bacteriophages in moisture enhanced beef. Meat Sci 2013; 97:339-46. [PMID: 24134920 DOI: 10.1016/j.meatsci.2013.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 09/13/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
Abstract
Moisture enhancement of meat through injection is a technology to improve the sensory properties and the weight of meat. However, the technology may increase the risk of food borne infections. Shiga toxin-producing Escherichia coli (STEC) or bacteriophages carrying cytotoxin genes (Shiga toxin genes, stx), which is normally only present on the surface of intact beef, may be transferred to the inner parts of the muscle during the injection process. Pathogens and bacteriophages surviving the storage period may not be eliminated in the cooking process since many consumers prefer undercooked beef. Measures to increase the microbial food safety of moisture enhanced beef may include sterilization or washing of the outer surface of the meat before injection, avoiding recycling of marinade and addition of antimicrobial agents to the marinade. This paper reviews the literature regarding microbial safety of moisture enhanced beef with special emphasis on STEC and Stx bacteriophages. Also, results from a European Union research project, ProSafeBeef (Food-CT-16 2006-36241) are presented.
Collapse
Affiliation(s)
- Solveig Langsrud
- Nofima, Norwegian Institute of Food, Fishery and Aquaculture, P.O. Box 210, N-1431 Ås, Norway
| | - Even Heir
- Nofima, Norwegian Institute of Food, Fishery and Aquaculture, P.O. Box 210, N-1431 Ås, Norway
| | - Tone Mari Rode
- Nofima, Norwegian Institute of Food, Fishery and Aquaculture, P.O. Box 210, N-1431 Ås, Norway
| |
Collapse
|