1
|
Wang Y, Wang M, Zhang Y, Peng L, Dai D, Zhang F, Zhang J. Efficient control of root-knot nematodes by expressing Bt nematicidal proteins in root leucoplasts. MOLECULAR PLANT 2024; 17:1504-1519. [PMID: 39148293 DOI: 10.1016/j.molp.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/12/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Root-knot nematodes (RKNs) are plant pests that infect the roots of host plants. Bacillus thuringiensis (Bt) nematicidal proteins exhibited toxicity to nematodes. However, the application of nematicidal proteins for plant protection is hampered by the lack of effective delivery systems in transgenic plants. In this study, we discovered the accumulation of leucoplasts (root plastids) in galls and RKN-induced giant cells. RKN infection causes the degradation of leucoplasts into small vesicle-like structures, which are responsible for delivering proteins to RKNs, as observed through confocal microscopy and immunoelectron microscopy. We showed that different-sized proteins from leucoplasts could be taken up by Meloidogyne incognita female. To further explore the potential applications of leucoplasts, we introduced the Bt crystal protein Cry5Ba2 into tobacco and tomato leucoplasts by fusing it with a transit peptide. The transgenic plants showed significant resistance to RKNs. Intriguingly, RKN females preferentially took up Cry5Ba2 protein when delivered through plastids rather than the cytosol. The decrease in progeny was positively correlated with the delivery efficiency of the nematicidal protein. In conclusion, this study offers new insights into the feeding behavior of RKNs and their ability to ingest leucoplast proteins, and demonstrates that root leucoplasts can be used for delivering nematicidal proteins, thereby offering a promising approach for nematode control.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Mengnan Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yali Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Longwei Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Dadong Dai
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fengjuan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
2
|
Palma L, Bel Y, Escriche B. Draft genome sequence of Bacillus thuringiensis strain V-AB8.18, a novel isolate with potential nematicidal activity. Microbiol Resour Announc 2024; 13:e0022724. [PMID: 38847518 PMCID: PMC11256787 DOI: 10.1128/mra.00227-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/09/2024] [Indexed: 07/19/2024] Open
Abstract
We report the draft genome of Bacillus thuringiensis strain V-AB8.18, comprising 308 contigs totaling 6,182,614 bp, with 35% G + C content. It contains 6,151 putative protein-coding genes, including App6 and Cry5-like crystal proteins, exhibiting 99% pairwise identity to nematicidal proteins App6Aa2 and Cry5Ba2, active against Meloidogyne incognita and Meloidogyne hapla.
Collapse
Affiliation(s)
- Leopoldo Palma
- Laboratorio de Control Biotecnológico de Plagas, Departamento de Genética, Instituto BIOTECMED, Universitat de València, Burjassot-València, Spain
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Argentina
| | - Yolanda Bel
- Laboratorio de Control Biotecnológico de Plagas, Departamento de Genética, Instituto BIOTECMED, Universitat de València, Burjassot-València, Spain
| | - Baltasar Escriche
- Laboratorio de Control Biotecnológico de Plagas, Departamento de Genética, Instituto BIOTECMED, Universitat de València, Burjassot-València, Spain
| |
Collapse
|
3
|
Wang Y, Wang M, Zhang Y, Chen F, Sun M, Li S, Zhang J, Zhang F. Resistance to both aphids and nematodes in tobacco plants expressing a Bacillus thuringiensis crystal protein. PEST MANAGEMENT SCIENCE 2024; 80:3098-3106. [PMID: 38319036 DOI: 10.1002/ps.8013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/23/2024] [Accepted: 02/03/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Bacillus thuringiensis (Bt) and its crystal toxin or δ-endotoxins (Cry) offer great potential for the efficient control of crop pests. A vast number of pests can potentially infect the same host plant, either simultaneously or sequentially. However, no effective Bt-Cry protein has been reported to control both aphids and plant parasitic nematodes due to its highly specific activity. RESULTS Our study indicated that the Cry5Ba2 protein was toxic to the green peach aphid Myzus persicae, which had a median lethal concentration (LC50) of 9.7 ng μL-1 and fiducial limits of 3.1-34.6 ng μL-1. Immunohistochemical localization of Cry5Ba2 revealed that it could bind to the apical tip of microvilli in midgut regions. Moreover, transgenic tobacco plants expressing Cry5Ba2 exhibited significant resistance to Myzus persicae, as evidenced by reduced insect survival and impaired fecundity, and also intoxicated the Meloidogyne incognita as indicated by a decrease in galls and progeny reproduction. CONCLUSION In sum, we identified a new aphicidal Bt toxin resource that could simultaneously control both aboveground and belowground pests, thus extending the application range of Bt-based strategy for crop protection. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei Hongshan laboratory, Wuhan, China
| | - MengNan Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei Hongshan laboratory, Wuhan, China
| | - Yali Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei Hongshan laboratory, Wuhan, China
| | - Feng Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei Hongshan laboratory, Wuhan, China
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei Hongshan laboratory, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Fengjuan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei Hongshan laboratory, Wuhan, China
| |
Collapse
|
4
|
Chen F, Pang C, Zheng Z, Zhou W, Guo Z, Xiao D, Du H, Bravo A, Soberón M, Sun M, Peng D. Aminopeptidase MNP-1 triggers intestine protease production by activating daf-16 nuclear location to degrade pore-forming toxins in Caenorhabditis elegans. PLoS Pathog 2023; 19:e1011507. [PMID: 37440595 PMCID: PMC10368266 DOI: 10.1371/journal.ppat.1011507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Pore-forming toxins (PFTs) are effective tools for pathogens infection. By disrupting epithelial barriers and killing immune cells, PFTs promotes the colonization and reproduction of pathogenic microorganisms in their host. In turn, the host triggers defense responses, such as endocytosis, exocytosis, or autophagy. Bacillus thuringiensis (Bt) bacteria produce PFT, known as crystal proteins (Cry) which damage the intestinal cells of insects or nematodes, eventually killing them. In insects, aminopeptidase N (APN) has been shown to act as an important receptor for Cry toxins. Here, using the nematode Caenorhabditis elegans as model, an extensive screening of APN gene family was performed to analyze the potential role of these proteins in the mode of action of Cry5Ba against the nematode. We found that one APN, MNP-1, participate in the toxin defense response, since the mnp-1(ok2434) mutant showed a Cry5Ba hypersensitive phenotype. Gene expression analysis in mnp-1(ok2434) mutant revealed the involvement of two protease genes, F19C6.4 and R03G8.6, that participate in Cry5Ba degradation. Finally, analysis of the transduction pathway involved in F19C6.4 and R03G8.6 expression revealed that upon Cry5Ba exposure, the worms up regulated both protease genes through the activation of the FOXO transcription factor DAF-16, which was translocated into the nucleus. The nuclear location of DAF-16 was found to be dependent on mnp-1 under Cry5Ba treatment. Our work provides evidence of new host responses against PFTs produced by an enteric pathogenic bacterium, resulting in activation of host intestinal proteases that degrade the PFT in the intestine.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Cuiyun Pang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Ziqiang Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Wei Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Zhiqing Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Danyang Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Hongwen Du
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
5
|
Bel Y, Andrés-Antón M, Escriche B. Abundance, distribution, and expression of nematicidal crystal protein genes in Bacillus thuringiensis strains from diverse habitats. Int Microbiol 2022; 26:295-308. [PMID: 36484913 PMCID: PMC10148773 DOI: 10.1007/s10123-022-00307-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Abstract Bacillus thuringiensis (Bt) is a Gram-positive bacterium that accumulates pesticidal proteins (Cry and Cyt) in parasporal crystals. Proteins from the Cry5, App6 (formerly Cry6), Cry12, Cry13, Cry14, Cry21, and Xpp55 (formerly Cry55) families have been identified as toxic to nematodes. In this study, a total of 846 Bt strains belonging to four collections were analyzed to determine the diversity and distribution of the Bt Cry nematicidal protein genes. We analyzed their presence by PCR, and positives were confirmed by sequencing. As a result, 164 Bt isolates (20%) contained at least one gene coding for nematicidal Cry proteins. The cry5 and cry21 genes were enriched in collection 1 and were often found together in the same strain. Differently, in collection 4, obtained from similar habitats but after 10 years, cry14 was the gene most frequently found. In collection 2, cry5 and app6 were the most abundant genes, and collection 3 had a low incidence of any of these genes. The results point to high variability in the frequencies of the studied genes depending on the timing, geographical origins, and sources. The occurrence of cry1A, cry2, and cry3 genes was also analyzed and showed that the nematicidal Cry protein genes were frequently accompanied by cry1A + cry2. The expression of the genes was assessed by mass spectrometry showing that only 14% of the positive strains produced nematicidal proteins. To our knowledge, this is the first comprehensive screening that examines the presence and expression of genes from the seven known Bt Cry nematicidal families.
Collapse
Affiliation(s)
- Yolanda Bel
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Departament de Genètica, Universitat de València, C/Dr. Moliner, 50, 46100, Burjassot, Spain
| | - Miguel Andrés-Antón
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Departament de Genètica, Universitat de València, C/Dr. Moliner, 50, 46100, Burjassot, Spain
| | - Baltasar Escriche
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Departament de Genètica, Universitat de València, C/Dr. Moliner, 50, 46100, Burjassot, Spain.
| |
Collapse
|
6
|
Unzue A, Caballero CJ, Villanueva M, Fernández AB, Caballero P. Multifunctional Properties of a Bacillus thuringiensis Strain (BST-122): Beyond the Parasporal Crystal. Toxins (Basel) 2022; 14:toxins14110768. [PMID: 36356018 PMCID: PMC9695252 DOI: 10.3390/toxins14110768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Chemical products still represent the most common form of controlling crop pests and diseases. However, their extensive use has led to the selection of resistances. This makes the finding of new solutions paramount to countering the economic losses that pests and diseases represent in modern agriculture. Bacillus thuringiensis (Bt) is one of the most reliable alternatives to chemical-based solutions. In this study, we aimed to further expand the global applicability of Bt strains beyond their spores and crystals. To this end, we selected a new Bt strain (BST-122) with relevant toxicity factors and tested its activity against species belonging to different phyla. The spore and crystal mixture showed toxicity to coleopterans. Additionally, a novel Cry5-like protein proved active against the two-spotted spider mite. In vivo and plant assays revealed significant control of the parasitic nematode, Meloidogyne incognita. Surprisingly, our data indicated that the nematocidal determinants may be secreted. When evaluated against phytopathogenic fungi, the strain seemed to decelerate their growth. Overall, our research has highlighted the potential of Bt strains, expanding their use beyond the confinements of spores and crystals. However, further studies are required to pinpoint the factors responsible for the wide host range properties of the BST-122 strain.
Collapse
Affiliation(s)
- Argine Unzue
- Institute of Multidisciplinary Research in Applied Biology-IMAB, Universidad Pública de Navarra, 31192 Mutilva, Spain
- Departamento de Investigación y Desarrollo, Bioinsectis SL, Plaza Cein 5, Nave A14, 31110 Noáin, Spain
| | - Carlos J. Caballero
- Departamento de Investigación y Desarrollo, Bioinsectis SL, Plaza Cein 5, Nave A14, 31110 Noáin, Spain
| | - Maite Villanueva
- Departamento de Investigación y Desarrollo, Bioinsectis SL, Plaza Cein 5, Nave A14, 31110 Noáin, Spain
| | - Ana Beatriz Fernández
- Departamento de Investigación y Desarrollo, Bioinsectis SL, Plaza Cein 5, Nave A14, 31110 Noáin, Spain
| | - Primitivo Caballero
- Institute of Multidisciplinary Research in Applied Biology-IMAB, Universidad Pública de Navarra, 31192 Mutilva, Spain
- Correspondence:
| |
Collapse
|
7
|
Liang Z, Ali Q, Wang Y, Mu G, Kan X, Ren Y, Manghwar H, Gu Q, Wu H, Gao X. Toxicity of Bacillus thuringiensis Strains Derived from the Novel Crystal Protein Cry31Aa with High Nematicidal Activity against Rice Parasitic Nematode Aphelenchoides besseyi. Int J Mol Sci 2022; 23:ijms23158189. [PMID: 35897765 PMCID: PMC9331774 DOI: 10.3390/ijms23158189] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
The plant parasitic nematode, Aphelenchoides besseyi, is a serious pest causing severe damage to various crop plants and vegetables. The Bacillus thuringiensis (Bt) strains, GBAC46 and NMTD81, and the biological strain, FZB42, showed higher nematicidal activity against A. besseyi, by up to 88.80, 82.65, and 75.87%, respectively, in a 96-well plate experiment. We screened the whole genomes of the selected strains by protein-nucleic acid alignment. It was found that the Bt strain GBAC46 showed three novel crystal proteins, namely, Cry31Aa, Cry73Aa, and Cry40ORF, which likely provide for the safe control of nematodes. The Cry31Aa protein was composed of 802 amino acids with a molecular weight of 90.257 kDa and contained a conserved delta-endotoxin insecticidal domain. The Cry31Aa exhibited significant nematicidal activity against A. besseyi with a lethal concentration (LC50) value of 131.80 μg/mL. Furthermore, the results of in vitro experiments (i.e., rhodamine and propidium iodide (PI) experiments) revealed that the Cry31Aa protein was taken up by A. besseyi, which caused damage to the nematode's intestinal cell membrane, indicating that the Cry31Aa produced a pore-formation toxin. In pot experiments, the selected strains GBAC46, NMTD81, and FZB42 significantly reduced the lesions on leaves by up to 33.56%, 45.66, and 30.34% and also enhanced physiological growth parameters such as root length (65.10, 50.65, and 55.60%), shoot length (68.10, 55.60, and 59.45%), and plant fresh weight (60.71, 56.45, and 55.65%), respectively. The number of nematodes obtained from the plants treated with the selected strains (i.e., GBAC46, NMTD81, and FZB42) and A. besseyi was significantly reduced, with 0.56, 0.83., 1.11, and 5.04 seedling mL-1 nematodes were achieved, respectively. Moreover, the qRT-PCR analysis showed that the defense-related genes were upregulated, and the activity of hydrogen peroxide (H2O2) increased while malondialdehyde (MDA) decreased in rice leaves compared to the control. Therefore, it was concluded that the Bt strains GBAC46 and NMTD81 can promote rice growth, induce high expression of rice defense-related genes, and activate systemic resistance in rice. More importantly, the application of the novel Cry31Aa protein has high potential for the efficient and safe prevention and green control of plant parasitic nematodes.
Collapse
Affiliation(s)
- Zhao Liang
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qurban Ali
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie Wang
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangyuan Mu
- Shenzhen Batian Ecotypic Engineering Co., Ltd., Shenzhen 518057, China; (G.M.); (X.K.)
| | - Xuefei Kan
- Shenzhen Batian Ecotypic Engineering Co., Ltd., Shenzhen 518057, China; (G.M.); (X.K.)
| | - Yajun Ren
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China;
| | - Qin Gu
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Huijun Wu
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuewen Gao
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: ; Tel.: +86-025-8439-5268
| |
Collapse
|
8
|
Diyapoglu A, Oner M, Meng M. Application Potential of Bacterial Volatile Organic Compounds in the Control of Root-Knot Nematodes. Molecules 2022; 27:4355. [PMID: 35889228 PMCID: PMC9318376 DOI: 10.3390/molecules27144355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Plant-parasitic nematodes (PPNs) constitute the most damaging group of plant pathogens. Plant infections by root-knot nematodes (RKNs) alone could cause approximately 5% of global crop loss. Conventionally, chemical-based methods are used to control PPNs at the expense of the environment and human health. Accordingly, the development of eco-friendly and safer methods has been urged to supplement or replace chemical-based methods for the control of RKNs. Using microorganisms or their metabolites as biological control agents (BCAs) is a promising approach to controlling RKNs. Among the metabolites, volatile organic compounds (VOCs) have gained increasing attention because of their potential in the control of not only RKNs but also other plant pathogens, such as insects, fungi, and bacteria. This review discusses the biology of RKNs as well as the status of various control strategies. The discovery of VOCs emitted by bacteria from various environmental sources and their application potential as BCAs in controlling RKNs are specifically addressed.
Collapse
Affiliation(s)
- Ali Diyapoglu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan;
| | - Muhammet Oner
- Department of Life Science, National Chung Hsing University, Taichung 402, Taiwan;
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan;
| |
Collapse
|
9
|
Ju S, Chen H, Wang S, Lin J, Ma Y, Aroian RV, Peng D, Sun M. C. elegans monitor energy status via the AMPK pathway to trigger innate immune responses against bacterial pathogens. Commun Biol 2022; 5:643. [PMID: 35773333 PMCID: PMC9246835 DOI: 10.1038/s42003-022-03589-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Pathogen recognition and the triggering of host innate immune system are critical to understanding pathogen-host interaction. Cellular surveillance systems have been identified as an important strategy for the identification of microbial infection. In the present study, using Bacillus thuringiensis-Caenorhabditis elegans as a model, we found an approach for surveillance systems to sense pathogens. We report that Bacillus thuringiensis Cry5Ba, a typical pore-forming toxin, caused mitochondrial damage and energy imbalance by triggering potassium ion leakage, instead of directly targeting mitochondria. Interestingly, we find C. elegans can monitor intracellular energy status to trigger innate immune responses via AMP-activated protein kinase (AMPK), secreting multiple effectors to defend against pathogenic attacks. Our study indicates that the imbalance of energy status is a prevalent side effect of pathogen infection. Furthermore, the AMPK-dependent surveillance system may serve as a practicable strategy for the host to recognize and defense against pathogens. Bacillus thuringiensis toxin Cry5Ba triggers potassium ion leakage, causing mitochondrial damage and energy imbalance. C. elegans can monitor this intracellular energy imbalance via AMP-activated protein kinase to trigger innate immune responses.
Collapse
Affiliation(s)
- Shouyong Ju
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanqiao Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoying Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Lin
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanli Ma
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Raffi V Aroian
- Program in Molecular Medicine, University of Massachusetts Chan Medical School Worcester, Worcester, MA, 01605-2377, USA
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
Guo Y, Weng M, Sun Y, Carballar-Lejarazú R, Wu S, Lian C. Bacillus thuringiensis toxins with nematocidal activity against the pinewood nematode Bursaphelenchus xylophilus. J Invertebr Pathol 2022; 189:107726. [PMID: 35122837 DOI: 10.1016/j.jip.2022.107726] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 11/29/2022]
Abstract
The pine wilt disease is caused by the pinewood nematode Bursaphelenchus xylophilus and it results in serious ecological and economic losses. Therefore, effective prevention and control methods for the pinewood nematode are urgently required. Bacillus thuringiensis (Bt), a widely used microbial insecticide, produces toxins that are toxic to several species of parasitic nematodes, however, its effects on B. xylophilus have not been determined. In this study, Cry5Ba3, App6Aa2, Cry12Aa1, Cry13Aa1, Cry14Aa1, Cry21Aa3, Cry21Fa1, Xpp55Aa1, and Cyt8Aa1 toxins' nematocidal activity against B. xylophilus was evaluated, six toxins with high toxicity were identified: App6Aa2 (LC50 = 49.71 μg/mL), Cry13Aa1 (LC50 = 53.17 μg/mL), Cry12Aa1 (LC50 = 58.88 μg/mL), Cry5Ba3 (LC50 = 63.99 μg/mL), Xpp55Aa1 (LC50 = 65.14 μg/mL), and Cyt8Aa1 (LC50 = 96.50 μg/mL). The six toxins caused shrinkage and thinning of the intestinal cells, contraction of the intestine from the body wall, vacuolization, and degenerated appearance of the pinewood nematodes. The results of this study provide basic information to study the action mechanism of nematocidal toxins on the pinewood nematode and direction for the use of nematocidal toxins in the biological control of B. xylophilus.
Collapse
Affiliation(s)
- Yajie Guo
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 188-0002, Japan; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Mingqing Weng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Yunzhu Sun
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Rebeca Carballar-Lejarazú
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4025, USA
| | - Songqing Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350000, China.
| | - Chunlan Lian
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 188-0002, Japan
| |
Collapse
|
11
|
Belousova ME, Malovichko YV, Shikov AE, Nizhnikov AA, Antonets KS. Dissecting the Environmental Consequences of Bacillus thuringiensis Application for Natural Ecosystems. Toxins (Basel) 2021; 13:toxins13050355. [PMID: 34065665 PMCID: PMC8155924 DOI: 10.3390/toxins13050355] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Bacillus thuringiensis (Bt), a natural pathogen of different invertebrates, primarily insects, is widely used as a biological control agent. While Bt-based preparations are claimed to be safe for non-target organisms due to the immense host specificity of the bacterium, the growing evidence witnesses the distant consequences of their application for natural communities. For instance, upon introduction to soil habitats, Bt strains can affect indigenous microorganisms, such as bacteria and fungi, and further establish complex relationships with local plants, ranging from a mostly beneficial demeanor, to pathogenesis-like plant colonization. By exerting a direct effect on target insects, Bt can indirectly affect other organisms in the food chain. Furthermore, they can also exert an off-target activity on various soil and terrestrial invertebrates, and the frequent acquisition of virulence factors unrelated to major insecticidal toxins can extend the Bt host range to vertebrates, including humans. Even in the absence of direct detrimental effects, the exposure to Bt treatment may affect non-target organisms by reducing prey base and its nutritional value, resulting in delayed alleviation of their viability. The immense phenotypic plasticity of Bt strains, coupled with the complexity of ecological relationships they can engage in, indicates that further assessment of future Bt-based pesticides' safety should consider multiple levels of ecosystem organization and extend to a wide variety of their inhabitants.
Collapse
Affiliation(s)
- Maria E. Belousova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (M.E.B.); (Y.V.M.); (A.E.S.); (A.A.N.)
| | - Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (M.E.B.); (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (M.E.B.); (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (M.E.B.); (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (M.E.B.); (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
12
|
Khanna K, Kohli SK, Ohri P, Bhardwaj R. Plants-nematodes-microbes crosstalk within soil: A trade-off among friends or foes. Microbiol Res 2021; 248:126755. [PMID: 33845302 DOI: 10.1016/j.micres.2021.126755] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 11/28/2022]
Abstract
Plants interact with enormous biotic and abiotic components within ecosystem. For instance, microbes, insects, herbivores, animals, nematodes etc. In general, these interactions are studied independently with plants, that condenses only specific information about the interaction. However, the limitation to study the cross-interactions masks the collaborative role of organisms within ecosystem. Beneficial microbes are most prominent organisms that are needed to be studied due to their bidirectional nature towards plants. Fascinatingly, Plant-Parasitic Nematodes (PPNs) have been profoundly observed to cause mass destruction of agricultural crops worldwide. The huge demand for agriculture for present-day population requires optimization of production potential by curbing the damage caused by PPNs. Chemical nematicides combats their proliferation, but their extended usage has abruptly affected flora, fauna and human populations. Because of consistent pressing issues in regard to environment, the use of biocontrol agents are most favourable alternatives for managing agriculture. However, this association is somehow, tug of war, and understanding of plant-nematode-microbial relation would enable the agriculturists to monitor the overall development of plants along with limiting the use of agrochemicals. Soil microbes are contemporary bio-nematicides emerging in the market, that stimulates the plant growth and impedes PPNs populations. They form natural enemies and trap nematodes, henceforth, it is crucial to understand these interactions for ecological and biotechnological perspectives for commercial use. Moreover, acquiring the diversity of their relationship and molecular-based mechanisms, outlines their cascade of signaling events to serve as biotechnological ecosystem engineers. The omics based mechanisms encompassing hormone gene regulatory pathways and elicitors released by microbes are able to modulate pathogenesis-related (PR) genes within plants. This is achieved via Induced Systemic Resistance (ISR) or acquired systemic channels. Taking into account all these validations, the present review mainly advocates the relationship among microbes and nematodes in plants. It is believed that this review will boost zest and zeal within researchers to effectively understand the plant-nematodes-microbes relations and their ecological perspectives.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
13
|
Zhou X, Chen S, Lu F, Guo K, Huang L, Su X, Chen Y. Nematotoxicity of a Cyt-like protein toxin from Conidiobolus obscurus (Entomophthoromycotina) on the pine wood nematode Bursaphelenchus xylophilus. PEST MANAGEMENT SCIENCE 2021; 77:686-692. [PMID: 32841476 DOI: 10.1002/ps.6060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/04/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The pine wood nematode Bursaphelenchus xylophilus is a destructive pest on Pinus trees and lacks effective control measures. The present study identified a novel nematotoxic cytolytic (Cyt)-like protein originating from the entomopathogenic fungus Conidiobolus obscurus. RESULTS The protein was successfully purified using heterologous expression in Escherichia coli and affinity chromatography. N-hydroxysuccinimide-rhodamine-labeled Cyt-like protein was used to establish the route of toxin uptake, and revealed that the toxin can enter the nematode via the stylet. In bioassays, the purified protein had high nematicide activity against B. xylophilus, with a median lethal concentration at 24 h of 15.8 and 29.4 μg mL-1 for juveniles and adults, respectively. Compared with the deionized water control, fecundity, thrashing, and egg hatching were significantly reduced by 97%, 98%, and 83%, respectively, with 40 μg mL-1 Cyt-like protein at 24-36 h. Staining with Oil-Red-O showed a decrease in large lipid droplet formation in the protein-treated adult nematodes. CONCLUSION The Cyt-like protein toxin possesses high nematicide activity against B. xylophilus with effects on nematode vitality and fecundity. The potential exists to use the Cyt-like protein for the control of B. xylophilus.
Collapse
Affiliation(s)
- Xiang Zhou
- Collaborative Innovation Center of Zhejiang Green Pesticide, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Shani Chen
- Collaborative Innovation Center of Zhejiang Green Pesticide, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Feng Lu
- Collaborative Innovation Center of Zhejiang Green Pesticide, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Kai Guo
- Collaborative Innovation Center of Zhejiang Green Pesticide, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Linlin Huang
- Collaborative Innovation Center of Zhejiang Green Pesticide, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Xiu Su
- Collaborative Innovation Center of Zhejiang Green Pesticide, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Ye Chen
- Collaborative Innovation Center of Zhejiang Green Pesticide, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| |
Collapse
|
14
|
Shi J, Zhang F, Chen L, Bravo A, Soberón M, Sun M. Systemic mitochondrial disruption is a key event in the toxicity of bacterial pore-forming toxins to Caenorhabditis elegans. Environ Microbiol 2020; 23:4896-4907. [PMID: 33368933 DOI: 10.1111/1462-2920.15376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/28/2020] [Accepted: 12/21/2020] [Indexed: 11/29/2022]
Abstract
Pore-forming toxins (PFTs) are important weapons of multiple bacterial pathogens to establish their infections. PFTs generally form pores in the plasma membrane of target cells; however, the intracellular pathogenic processes triggered after pore-formation remain poorly understood. Using Caenorhabditis elegans as a model and Bacillus thuringiensis nematicidal Cry PFTs, we show here that the localized PFT attack causes a systemic mitochondrial damage, important for the PFT toxicity. We find that PFTs punch pores only in gut cells of nematodes, but unexpectedly mitochondrial disruption is able to occur in distal unperforated regions, such as the head and muscle tissues. We demonstrate that PFTs affect the activity of the mitochondrial respiratory chain (MRC) complex I resulting in the loss of mitochondrial membrane potential (ΔΨm ), which causes further mitochondrial fragmentation and the reduction of total mitochondrial content. Worms with decreased ΔΨm or inhibited MRC activity show higher sensitivity to PFTs. The inhibition of mitochondrial fission or the increase of mitochondrial content markedly improves the survival of animals treated with PFTs. These findings suggest that mitochondrial changes underpin PFT-mediated toxicity against nematodes and that systemic mitochondrial disruption caused by localized pore-formation represents a conserved key intracellular event in the mode of action of PFTs.
Collapse
Affiliation(s)
- Jianwei Shi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fengjuan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ling Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
In Silico Analysis Highlights the Diversity and Novelty of Circular Bacteriocins in Sequenced Microbial Genomes. mSystems 2020; 5:5/3/e00047-20. [PMID: 32487738 PMCID: PMC8534725 DOI: 10.1128/msystems.00047-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Consumer demand for “fresh food” with no chemical preservatives has prompted researchers to pay more attention to natural antimicrobial peptides such as bacteriocins. Nisin is currently the most widely used food biopreservative among the bacteriocins; however, its applications are restricted due to its low stability at neutral and alkaline pH values. Circular bacteriocins have potent antimicrobial activity against foodborne pathogens, show exceptional stability, and have great potential to be developed as biopreservatives. Here, we take advantage of the precursor peptides of 15 reported circular bacteriocins to devise an in silico approach to identify potential circular bacteriocins in sequenced microbial genomes. A total of nearly 7,000 putative precursor peptides were identified from 86 species of bacteria and further classified into 28 groups based on their amino acid similarity. Among the groups, 19 showed low similarity (less than 50%) to any known precursor peptide of circular bacteriocins. One novel circular bacteriocin in group 11, cerecyclin, showed the highest identity (34%) to the known circular bacteriocin enterocin NKR-5-3B and was selected for verification. Cerecyclin showed antimicrobial activity against several Gram-positive bacteria, inhibited the outgrowth of Bacillus cereus spores, and did not exhibit hemolysis activity. Moreover, it showed 4-fold- to 8-fold-higher antimicrobial activity against B. cereus and Listeria monocytogenes than nisin A. Cerecyclin also had increased stability compared to nisin A under neutral or alkaline conditions. This work not only identified a promising food biopreservative but also provided a rich source for novel circular bacteriocins. IMPORTANCE Circular bacteriocins are promising biopreservatives, and it is important to identify more novel circular bacteriocins to enhance the current arsenal of antimicrobials. In this study, we used an in silico approach to identify a large number of novel circular bacteriocins and classified these bacteriocins into 28 groups rather than the 2 groups that were described in previous studies. Nineteen groups were novel and had low similarity (less than 50%) to any known precursor peptides of circular bacteriocins; this finding greatly expands the awareness of the novelty and diversity of circular bacteriocins. A novel circular bacteriocin which we named cerecyclin was identified in the B. cereus group; this circular bacteriocin had great antimicrobial activity against some foodborne pathogens and showed extreme stability. This study not only identified a promising food biopreservative but also provided a rich source for the identification of novel circular bacteriocins and the development of new biopreservatives.
Collapse
|
16
|
Shi J, Peng D, Zhang F, Ruan L, Sun M. The Caenorhabditis elegans CUB-like-domain containing protein RBT-1 functions as a receptor for Bacillus thuringiensis Cry6Aa toxin. PLoS Pathog 2020; 16:e1008501. [PMID: 32369532 PMCID: PMC7228132 DOI: 10.1371/journal.ppat.1008501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/15/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
Plant-parasitic nematodes cause huge agricultural economic losses. Two major families of Bacillus thuringiensis crystal proteins, Cry5 and Cry6, show nematicidal activity. Previous work showed that binding to midgut receptors is a limiting step in Cry toxin mode of action. In the case of Cry5Ba, certain Caenorhabditis elegans glycolipids were identified as receptors of this toxin. However, the receptors for Cry6 toxin remain unknown. In this study, the C. elegans CUB-like-domain containing protein RBT-1, released by phosphatidylinositol-specific phospholipase C (PI-PLC), was identified as a Cry6Aa binding protein by affinity chromatography. RBT-1 contained a predicted glycosylphosphatidylinositol (GPI) anchor site and was shown to locate in lipid rafts in the surface of the midgut cells. Western ligand blot assays and ELISA binding analysis confirmed the binding interaction between Cry6Aa and RBT-1 showing high affinity and specificity. In addition, the mutation of rbt-1 gene decreased the susceptibility of C. elegans to Cry6Aa but not that of Cry5Ba. Furthermore, RBT-1 mediated the uptake of Cry6Aa into C. elegans gut cells, and was shown to be involved in triggering pore-formation activity, indicating that RBT-1 is required for the interaction of Cry6Aa with the nematode midgut cells. These results support that RBT-1 is a functional receptor for Cry6Aa. Bacillus thuringiensis (Bt) crystal proteins belong to pore-forming toxins (PFTs), which display virulence against target hosts by forming holes in the cell membrane. Cry6A is a nematicidal PFT, which exhibits unique protein structure and different mode of action than Cry5B, another nematicidal PFT. However, little is known about the mode of action of Cry6A. Although an intracellular nematicidal necrosis pathway of Cry6A was reported, its extracellular mode of action remains unknown. We here demonstrate that the CUB-like-domain containing protein RBT-1 acts as a functional receptor of Cry6A, which mediates the intestinal cell interaction and nematicidal activity of this toxin. RBT-1 represents a new class of crystal protein receptors. RBT-1 is dispensable for Cry5B toxicity against nematodes, consistent with that Cry6A and Cry5B have different nematicidal mechanisms. We also find that Cry6A kills nematodes by complex mechanism since rbt-1 mutation did not affect Cry6A-mediated necrosis signaling pathway. This work not only enhances the understanding of Bt crystal protein-nematode mechanism, but is also in favor for the application of Cry6A in nematode control.
Collapse
Affiliation(s)
- Jianwei Shi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail: (DP); (MS)
| | - Fengjuan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lifang Ruan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail: (DP); (MS)
| |
Collapse
|
17
|
Peng D, Luo X, Zhang N, Guo S, Zheng J, Chen L, Sun M. Small RNA-mediated Cry toxin silencing allows Bacillus thuringiensis to evade Caenorhabditis elegans avoidance behavioral defenses. Nucleic Acids Res 2019; 46:159-173. [PMID: 29069426 PMCID: PMC5758910 DOI: 10.1093/nar/gkx959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 10/09/2017] [Indexed: 11/14/2022] Open
Abstract
Pathogen avoidance behavior protects animal hosts against microbial pathogens. Pathogens have evolved specific strategies during coevolution in response to such host defenses. However, these strategies for combatting host avoidance behavioral defenses remain poorly understood. Here, we used Caenorhabditis elegans and its bacterial pathogen Bacillus thuringiensis as a model and determined that small RNA (sRNA)-mediated Cry toxin silencing allowed pathogens to evade host avoidance behavioral defenses. The B. thuringiensis strain YBT-1518, which encodes three nematicidal cry genes, is highly toxic to C. elegans. However, the expression of the most potent toxin, Cry5Ba, was silenced in this strain when YBT-1518 was outside the host. Cry5Ba silencing was due to the sRNA BtsR1, which bound to the RBS site of the cry5Ba transcript via direct base pairing and inhibited Cry5Ba expression. Upon ingestion by C. elegans, Cry5Ba was expressed in vivo by strain YBT-1518. Cry5Ba silencing may allow B. thuringiensis to avoid nematode behavioral defenses and then express toxins once ingested to kill the host and gain a survival advantage. Our work describes a novel model of sRNA-mediated regulation to aid pathogens in combating host avoidance behavioral defenses.
Collapse
Affiliation(s)
- Donghai Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiaoxia Luo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ni Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Suxia Guo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ling Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
18
|
BenFarhat-Touzri D, Jemli S, Driss F, Tounsi S. Molecular and structural characterization of a novel Cry1D toxin from Bacillus thuringiensis with high toxicity to Spodoptera littoralis (Lepidoptera: Noctuidae). Int J Biol Macromol 2019; 126:969-976. [PMID: 30593807 DOI: 10.1016/j.ijbiomac.2018.12.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/08/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
The investigation of new Bacillus thuringiensis (Bt) insecticidal proteins (Cry) with specific toxicity is one of the alternative measures used for Lepidopteran pest control. In the present study, a new Cry toxin was identified from a promising Bt strain BLB250 which was previously selected for its high toxicity against Spodoptera littoralis. The corresponding gene, designated cry1D-250, was cloned. It showed an ORF of 3498bp, encoding a protein of 1165 amino acid residues with a putative molecular mass of 132kDa which was confirmed by SDS-PAGE and Western blot analyses. The corresponding toxin named Cry1D-250 showed a higher insecticidal activity towards S. littoralis than Cry1D-133 (LC50 of 224.4ngcm-2) with an LC50 of only 166ngcm-2. Besides to the 65kDa active toxin, proteolysis activation of Cry1D-133 protein with S. littoralis midgut juice generated an extra form of 56kDa, which was the result of a second cleavage. Via activation study and 3D structure analysis, novel substitutions found in the Cry1D-250 protein compared to Cry1D-133 toxin were shown to be involved in the protein stability and toxicity. Therefore, the Cry1D-250 toxin can be considered to be an effective alternative for the control of S. littoralis.
Collapse
Affiliation(s)
- Dalel BenFarhat-Touzri
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box. "1177", 3018 Sfax, Tunisia
| | - Sonia Jemli
- Laboratory of Microbial Biotechnology and Enzyme Engineering, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box. "1177", 3018 Sfax, Tunisia
| | - Fatma Driss
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box. "1177", 3018 Sfax, Tunisia.
| | - Slim Tounsi
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box. "1177", 3018 Sfax, Tunisia
| |
Collapse
|
19
|
Wan L, Lin J, Du H, Zhang Y, Bravo A, Soberón M, Sun M, Peng D. Bacillus thuringiensistargets the host intestinal epithelial junctions for successful infection ofCaenorhabditis elegans. Environ Microbiol 2019; 21:1086-1098. [DOI: 10.1111/1462-2920.14528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/02/2018] [Accepted: 12/12/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Liting Wan
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 Hubei People's Republic of China
| | - Jian Lin
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 Hubei People's Republic of China
| | - Hongwen Du
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 Hubei People's Republic of China
| | - Yulan Zhang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 Hubei People's Republic of China
| | - Alejandra Bravo
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de México Apdo. postal 510‐3, Cuernavaca, 62250 Morelos Mexico
| | - Mario Soberón
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de México Apdo. postal 510‐3, Cuernavaca, 62250 Morelos Mexico
| | - Ming Sun
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 Hubei People's Republic of China
| | - Donghai Peng
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 Hubei People's Republic of China
| |
Collapse
|
20
|
Whole-Genome Analysis of Bacillus thuringiensis Revealing Partial Genes as a Source of Novel Cry Toxins. Appl Environ Microbiol 2018; 84:AEM.00277-18. [PMID: 29752275 DOI: 10.1128/aem.00277-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 05/05/2018] [Indexed: 12/20/2022] Open
Abstract
Despite the successful application of crystal proteins (Cry) from Bacillus thuringiensis as biological control agents against insects, there is an increasing demand to identify new Cry toxins having higher toxicity and broad-spectrum activity against insects and plant-parasitic nematodes. To find novel Cry toxins, we screened 100 whole-genome sequences of B. thuringiensis Surprisingly, in addition to full Cry toxins, we found partial sequences, such as typical N-terminal or C-terminal regions with conserved domains, widely distributed among 20 strains of B. thuringiensis In order to further elucidate the functions of partial genes, here, we selected a partial sequence from strain C15, having 28% similarity with the N terminus of Cry5Ba and lacking a typical C terminus, and denoted it Cry5B-like N terminus. This fragment when coexpressed as a fusion protein with the C terminus of Cry5Ba (N-C fusion protein) produces pyramidal crystals. A recombinant N-C fusion protein having a 50% lethal concentration (LC50) of 23.7 μg/ml severely affected the life span, growth, and survival rate of nematodes. Light microscopy showed damage to the intestine of nematodes, confirming the pathogenicity of the N-C fusion protein. Last, the green fluorescent protein (GFP)-labeled mutant Caenorhabditis elegans FT63 showed significant damage to the intestine upon feeding N-C fusion toxin compared to the control. These results imply that partial genes can be a source of new Cry toxins, and further understanding about functions of partial cry genes can help in the study of the evolutionary strategy of B. thuringiensis to produce the multidomain toxins.IMPORTANCE Genomic analysis revealed that coding sequences for N termini and C termini of crystal proteins are widely distributed in B. thuringiensis We found Cry5B-like N terminus, lacking typical C terminus, was unable to be expressed in wild-type strain C15. However, its fusion with the C terminus of Cry5Ba not only was successfully expressed but also exhibited activity against the nematodes. This study provides insight into a potential source for novel Cry toxins.
Collapse
|
21
|
Huang T, Lin Q, Qian X, Zheng Y, Yao J, Wu H, Li M, Jin X, Pan X, Zhang L, Guan X. Nematicidal Activity of Cry1Ea11 from Bacillus thuringiensis BRC-XQ12 Against the Pine Wood Nematode (Bursaphelenchus xylophilus). PHYTOPATHOLOGY 2018; 108:44-51. [PMID: 28945518 DOI: 10.1094/phyto-05-17-0179-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The nematicidal activity of 92 Bacillus thuringiensis strains against the pine wood nematode Bursaphelenchus xylophilus, one of the world's top 10 plant-parasitic nematodes, was determined. The insecticidal crystal proteins (ICPs) from Bacillus thuringiensis BRC-XQ12 were the most toxic to Bursaphelenchus xylophilus, with a lethal concentration 50 (LC50) of 32.13 μg/ml. Because the ICPs expressed by Bacillus thuringiensis BRC-XQ12 were closest to Cry1Ea6 and B. thuringiensis BRC-XQ12 contained four kinds of cry1 subgenes (cry1Aa, cry1Cb, cry1Ea, and cry1Ia), Cry1Ea was most likely to be the key active component against the nematode. The 3,516-bp cry1Ea11 gene from BRC-XQ12, as designated by the B. thuringiensis δ-endotoxin nomenclature committee, was expressed in Escherichia coli. Purified Cry1Ea11 showed an LC50 of 32.53 and 23.23 μg/ml at 24 and 48 h, with corresponding virulence equations of Y = 32.15X + 1.38 (R2 = 0.9951) and Y = 34.29X + 3.16 (R2 = 0.9792), respectively. In order to detect the pathway of B. thuringiensis Cry1Ea11 into Bursaphelenchus xylophilus, the nematode was fed with NHS-rhodamine-labeled GST-Cry1Ea11. The results of confocal laser-scanning microscopy showed that the 159-kDa GST-Cry1Ea11 could be detected in the stylet and the esophageal lumen of the pine wood nematode, indicating that GST-Cry1Ea11 could enter into the nematode through the stylet. As far as we know, no Cry1 proteins have been shown to have activity against plant-parasitic nematodes before. These results demonstrate that Cry1Ea11 is a promising nematicidal protein for controlling pine wilt disease rendered by B. xylophilus, further dramatically broadening the spectrum of Bacillus thuringiensis ICPs.
Collapse
Affiliation(s)
- Tianpei Huang
- All authors: State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Life Sciences, Fujian Agriculture and Forestry University, and first, fifth, sixth, seventh, eighth, ninth, tenth, and eleventh authors: Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fuzhou, Fujian, People's Republic of China, 350002
| | - Qunxin Lin
- All authors: State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Life Sciences, Fujian Agriculture and Forestry University, and first, fifth, sixth, seventh, eighth, ninth, tenth, and eleventh authors: Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fuzhou, Fujian, People's Republic of China, 350002
| | - Xiaoli Qian
- All authors: State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Life Sciences, Fujian Agriculture and Forestry University, and first, fifth, sixth, seventh, eighth, ninth, tenth, and eleventh authors: Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fuzhou, Fujian, People's Republic of China, 350002
| | - Ying Zheng
- All authors: State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Life Sciences, Fujian Agriculture and Forestry University, and first, fifth, sixth, seventh, eighth, ninth, tenth, and eleventh authors: Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fuzhou, Fujian, People's Republic of China, 350002
| | - Junmin Yao
- All authors: State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Life Sciences, Fujian Agriculture and Forestry University, and first, fifth, sixth, seventh, eighth, ninth, tenth, and eleventh authors: Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fuzhou, Fujian, People's Republic of China, 350002
| | - Huachuan Wu
- All authors: State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Life Sciences, Fujian Agriculture and Forestry University, and first, fifth, sixth, seventh, eighth, ninth, tenth, and eleventh authors: Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fuzhou, Fujian, People's Republic of China, 350002
| | - Mengmeng Li
- All authors: State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Life Sciences, Fujian Agriculture and Forestry University, and first, fifth, sixth, seventh, eighth, ninth, tenth, and eleventh authors: Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fuzhou, Fujian, People's Republic of China, 350002
| | - Xin Jin
- All authors: State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Life Sciences, Fujian Agriculture and Forestry University, and first, fifth, sixth, seventh, eighth, ninth, tenth, and eleventh authors: Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fuzhou, Fujian, People's Republic of China, 350002
| | - Xiaohong Pan
- All authors: State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Life Sciences, Fujian Agriculture and Forestry University, and first, fifth, sixth, seventh, eighth, ninth, tenth, and eleventh authors: Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fuzhou, Fujian, People's Republic of China, 350002
| | - Lingling Zhang
- All authors: State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Life Sciences, Fujian Agriculture and Forestry University, and first, fifth, sixth, seventh, eighth, ninth, tenth, and eleventh authors: Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fuzhou, Fujian, People's Republic of China, 350002
| | - Xiong Guan
- All authors: State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Life Sciences, Fujian Agriculture and Forestry University, and first, fifth, sixth, seventh, eighth, ninth, tenth, and eleventh authors: Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fuzhou, Fujian, People's Republic of China, 350002
| |
Collapse
|
22
|
Rabha M, Sharma S, Acharjee S, Sarmah BK. Isolation and characterization of Bacillus thuringiensis strains native to Assam soil of North East India. 3 Biotech 2017; 7:303. [PMID: 28944151 PMCID: PMC5591175 DOI: 10.1007/s13205-017-0935-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/02/2017] [Indexed: 11/29/2022] Open
Abstract
We have identified both crystalliferous and acrystalliferous Bt isolates from the Assam soil of North East India for the first time. A total of 301 Bacillus type colonies were selected based on their appearance and colony morphology. Out of these colonies, 42 isolates had characteristics similar to Bt isolates on MYP (Mannitol Egg Yolk Polymyxin) agar base medium. The ERIC-PCR and 16S rDNA analyses confirmed that 42 isolates are Bacillus thuringiensis. Phase contrast microscopy showed that 37 isolates produced crystal endospore during the sporulation phase and 5 acrystalliferous isolates were also found. Amplification of cry gene was carried out using general Cry primers along with one cry2 gene specific primer. Out of 42 isolates, 50% of the isolates showed presence of cry2 gene followed by cry9 (40.47) and cry1 (40.47). Moreover, 21.42% of isolates showed the presence of more than one cry genes. We also screened these isolates for the possibility of having new Bt genes using universal primer and found two strains having a new type of Cry1I gene with 82 and 85% similarities with the available Cry1I gene sequences. Thus, these new types of Bt gene could be useful for Bt-based bioformulations and generation of transgenic plants.
Collapse
Affiliation(s)
- Mihir Rabha
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013 India
| | - Shaswati Sharma
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013 India
| | - Sumita Acharjee
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013 India
- DBT-AAU Centre, Assam Agricultural University, Jorhat, Assam 785013 India
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013 India
- DBT-AAU Centre, Assam Agricultural University, Jorhat, Assam 785013 India
| |
Collapse
|
23
|
Dissimilar Crystal Proteins Cry5Ca1 and Cry5Da1 Synergistically Act against Meloidogyne incognita and Delay Cry5Ba-Based Nematode Resistance. Appl Environ Microbiol 2017; 83:AEM.03505-16. [PMID: 28710264 DOI: 10.1128/aem.03505-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 06/09/2017] [Indexed: 01/20/2023] Open
Abstract
Cry proteins of Bacillus thuringiensis (Bt) have been successfully used as biopesticides and in transgenic crops throughout the world. However, resources against the most serious agricultural pathogens, plant root-knot nematodes, are limited. The genomes of several highly nematicidal virulent Bt strains from our laboratory have been sequenced, facilitating the identification of novel Cry proteins and other virulence factors. We identified two novel Cry proteins, Cry5Ca1 and Cry5Da1, that exhibit high toxicity against Meloidogyne incognita Using the Caenorhabditis elegans model, the two Cry5 toxins were shown to negatively affect nematode life span, fertility, and survival. The 50% lethal concentrations (LC50s) of Cry5Ca1 and Cry5Da1 were 57.22 μg/ml and 36.69 μg/ml, respectively. Moreover, a synergistic effect (synergism factor, 1.61 to 2.04) was observed for nematicidal toxicity of Cry5Ca1 and Cry5Da1, which is accordant with the phylogenetic results suggesting that domain II of the two novel Cry5 toxins evolved into two independent clades. Through comparison of the depressed degree of toxicity in the β-methylgalactoside detoxification test, we found that the novel toxin Cry5D possesses a different galactose-binding epitope; meanwhile, the finding that Cry5D does not share a motif (GXXXE) in the corresponding loop of domain II with Cry5B could explain the different galactose binding performance. Additionally, low-level cross-resistance of C. elegans bre mutant strains was evident between Cry5B and Cry5D. These results suggest that Cry5D can be used as an alternative to delay the potential resistance of nematodes to Cry5B.IMPORTANCE Although proper gene resources for Bt crops against the most serious agricultural pathogens, plant root-knot nematodes, are limited, we have identified two novel nematicidal toxins, Cry5Ca1 and Cry5Da1, against M. incognita, which have supplied more gene candidates for Bt crops designed against nematodes. Moreover, the association of the dissimilarity between Cry5Da1 and Cry5Ba1 and their low cross-resistance can be attributed not only to a low sequence similarity of domain II but also to the structural difference of the key motif and receptor-binding epitope in the loops. This association facilitates the selection of a proper candidate for the prospective design of pyramided Bt crops that can delay potential resistance.
Collapse
|
24
|
Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Appl Microbiol Biotechnol 2017; 101:2691-2711. [PMID: 28235989 DOI: 10.1007/s00253-017-8175-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 12/15/2022]
Abstract
Bacillus thuringiensis (Bt) is known as the most successful microbial insecticide against different orders of insect pests in agriculture and medicine. Moreover, Bt toxin genes also have been efficiently used to enhance resistance to insect pests in genetically modified crops. In light of the scientific advantages of new molecular biology technologies, recently, some other new potentials of Bt have been explored. These new environmental features include the toxicity against nematodes, mites, and ticks, antagonistic effects against plant and animal pathogenic bacteria and fungi, plant growth-promoting activities (PGPR), bioremediation of different heavy metals and other pollutants, biosynthesis of metal nanoparticles, production of polyhydroxyalkanoate biopolymer, and anticancer activities (due to parasporins). This review comprehensively describes recent advances in the Bt whole-genome studies, the last updated known Bt toxins and their functions, and application of cry genes in plant genetic engineering. Moreover, the review thoroughly describes the new features of Bt which make it a suitable cell factory that might be used for production of different novel valuable bioproducts.
Collapse
|
25
|
Castaneda-Alvarez C, Aballay E. Rhizobacteria with nematicide aptitude: enzymes and compounds associated. World J Microbiol Biotechnol 2016; 32:203. [PMID: 27804103 DOI: 10.1007/s11274-016-2165-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/26/2016] [Indexed: 10/20/2022]
Abstract
The use of rhizobacteria to control plant parasitic nematodes has been widely studied. Currently, the research focuses on bacteria-nematode interactions that can mitigate this complex microbiome in agriculture. Various enzymes, toxins and metabolic by-products from rhizobacteria antagonize plant parasitic nematodes, and many different modes of action have been proposed. Hydrolytic enzymes, primarily proteases, collagenases and chitinases, have been related to the nematicide effect in rhizobacteria, proving to be an important factor involved in the degradation of different chemical constituents of nematodes at distinct developmental stages. Exuded metabolites may also alter the nematode-plant recognition process or create a hostile environment for nematodes in the rhizosphere. Specific bacteria strains responsible for the production of toxins, such as Cry proteins, are one of the strategies used by rhizobacteria. Characterization of the rhizobacteria mode of action could strengthen the development of commercial products to control populations of plant parasitic nematodes. This review aims to provide an overview of different enzymes and compounds produced by rhizobacteria related to the process of antagonism to plant-parasitic nematodes.
Collapse
Affiliation(s)
- C Castaneda-Alvarez
- Department of Crop Protection, Faculty of Agronomical Sciences, University of Chile, P.O. Box 1004, Santiago, Chile.
| | - E Aballay
- Department of Crop Protection, Faculty of Agronomical Sciences, University of Chile, P.O. Box 1004, Santiago, Chile
| |
Collapse
|
26
|
Huang J, Guan Z, Wan L, Zou T, Sun M. Crystal structure of Cry6Aa: A novel nematicidal ClyA-type α-pore-forming toxin from Bacillus thuringiensis. Biochem Biophys Res Commun 2016; 478:307-313. [DOI: 10.1016/j.bbrc.2016.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 07/01/2016] [Indexed: 01/30/2023]
|
27
|
Dementiev A, Board J, Sitaram A, Hey T, Kelker MS, Xu X, Hu Y, Vidal-Quist C, Chikwana V, Griffin S, McCaskill D, Wang NX, Hung SC, Chan MK, Lee MM, Hughes J, Wegener A, Aroian RV, Narva KE, Berry C. The pesticidal Cry6Aa toxin from Bacillus thuringiensis is structurally similar to HlyE-family alpha pore-forming toxins. BMC Biol 2016; 14:71. [PMID: 27576487 PMCID: PMC5004264 DOI: 10.1186/s12915-016-0295-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/10/2016] [Indexed: 12/02/2022] Open
Abstract
Background The Cry6 family of proteins from Bacillus thuringiensis represents a group of powerful toxins with great potential for use in the control of coleopteran insects and of nematode parasites of importance to agriculture. These proteins are unrelated to other insecticidal toxins at the level of their primary sequences and the structure and function of these proteins has been poorly studied to date. This has inhibited our understanding of these toxins and their mode of action, along with our ability to manipulate the proteins to alter their activity to our advantage. To increase our understanding of their mode of action and to facilitate further development of these proteins we have determined the structure of Cry6Aa in protoxin and trypsin-activated forms and demonstrated a pore-forming mechanism of action. Results The two forms of the toxin were resolved to 2.7 Å and 2.0 Å respectively and showed very similar structures. Cry6Aa shows structural homology to a known class of pore-forming toxins including hemolysin E from Escherichia coli and two Bacillus cereus proteins: the hemolytic toxin HblB and the NheA component of the non-hemolytic toxin (pfam05791). Cry6Aa also shows atypical features compared to other members of this family, including internal repeat sequences and small loop regions within major alpha helices. Trypsin processing was found to result in the loss of some internal sequences while the C-terminal region remains disulfide-linked to the main core of the toxin. Based on the structural similarity of Cry6Aa to other toxins, the mechanism of action of the toxin was probed and its ability to form pores in vivo in Caenorhabditis elegans was demonstrated. A non-toxic mutant was also produced, consistent with the proposed pore-forming mode of action. Conclusions Cry6 proteins are members of the alpha helical pore-forming toxins – a structural class not previously recognized among the Cry toxins of B. thuringiensis and representing a new paradigm for nematocidal and insecticidal proteins. Elucidation of both the structure and the pore-forming mechanism of action of Cry6Aa now opens the way to more detailed analysis of toxin specificity and the development of new toxin variants with novel activities. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0295-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jason Board
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff, CF15 8FA, UK
| | - Anand Sitaram
- University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA, 01605-2377, USA
| | - Timothy Hey
- Dow AgroSciences, LLC, Indianapolis, IN, USA.,Present address: Indiana State Department of Health Laboratories, Indianapolis, IN, USA
| | - Matthew S Kelker
- Dow AgroSciences, LLC, Indianapolis, IN, USA.,Present address: Xylogenics, LLC, Indianapolis, IN, USA
| | - Xiaoping Xu
- Dow AgroSciences, LLC, Indianapolis, IN, USA
| | - Yan Hu
- University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA, 01605-2377, USA
| | - Cristian Vidal-Quist
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff, CF15 8FA, UK.,Present address: Laboratorio de Interacción Planta-Insecto, Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas - CSIC, Madrid, Spain
| | | | | | | | - Nick X Wang
- Dow AgroSciences, LLC, Indianapolis, IN, USA
| | | | - Michael K Chan
- School of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, HK SAR, China
| | - Marianne M Lee
- School of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, HK SAR, China
| | - Jessica Hughes
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff, CF15 8FA, UK.,Present address: Antimicrobial Reference Laboratory, Southmead Hospital, Westbury-on-Trym, Bristol, BS10 5NB, UK
| | - Alice Wegener
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff, CF15 8FA, UK
| | - Raffi V Aroian
- University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA, 01605-2377, USA
| | | | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff, CF15 8FA, UK.
| |
Collapse
|
28
|
Madeira JP, Omer H, Alpha-Bazin B, Armengaud J, Duport C. Deciphering the interactions between the Bacillus cereus linear plasmid, pBClin15, and its host by high-throughput comparative proteomics. J Proteomics 2016; 146:25-33. [PMID: 27321915 DOI: 10.1016/j.jprot.2016.06.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/22/2016] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED The pathogen, Bacillus cereus, is able to adapt its metabolism to various environmental conditions. The reference strain, Bacillus cereus ATCC 14579, harbors a linear plasmid, pBClin15, which displays a cryptic prophage behavior. Here, we studied the impact of pBClin15 on the aerobic respiratory metabolism of B. cereus by curing its host strain. We compared, by means of a high-throughput shotgun proteomic approach, both the cellular proteome and the exoproteome of B. cereus ATCC 14579 in the presence and absence of pBClin15 at the early, late and stationary growth phases. The results were visualized through a hierarchical cluster analysis of proteomic data. We found that pBClin15 contributes significantly to the metabolic efficiency of B. cereus by restricting the production of chromosome-encoded phage proteins in the extracellular milieu. The data also revealed intricate regulatory mechanisms between pBClin15 and its host. Finally, we show that pBClin15 provides benefit to its host to adapt to different ecologic niches. BIOLOGICAL SIGNIFICANCE Bacteria belonging to the Bacillus cereus group include B. cereus, a notorious food borne pathogen which causes gastroenteritis. The B. cereus type, strain ATCC 14579, harbors a linear plasmid, pBClin15, which displays cryptic prophage behavior. Here, we present data supporting the idea that pBClin15 may have a much greater role in B. cereus metabolism that has hitherto been suspected. Specifically, our comparative proteomic analyses reveal that pBClin15 manages B. cereus central metabolism to optimize energy and carbon utilization through the repression of several chromosome-encoded phage proteins. These results suggest that pBClin15 provides benefit to the host for surviving adverse environmental conditions.
Collapse
Affiliation(s)
- Jean-Paul Madeira
- SQPOV, UMR0408, Avignon Université, INRA, F-84914 Avignon, France; CEA, DSV, IBiTec-S, SPI, Li2D, Laboratory "Innovative technologies for Detection and Diagnostics", Bagnols-sur-Cèze F-30200, France
| | - Hélène Omer
- SQPOV, UMR0408, Avignon Université, INRA, F-84914 Avignon, France; CEA, DSV, IBiTec-S, SPI, Li2D, Laboratory "Innovative technologies for Detection and Diagnostics", Bagnols-sur-Cèze F-30200, France
| | - Béatrice Alpha-Bazin
- CEA, DSV, IBiTec-S, SPI, Li2D, Laboratory "Innovative technologies for Detection and Diagnostics", Bagnols-sur-Cèze F-30200, France
| | - Jean Armengaud
- CEA, DSV, IBiTec-S, SPI, Li2D, Laboratory "Innovative technologies for Detection and Diagnostics", Bagnols-sur-Cèze F-30200, France
| | - Catherine Duport
- SQPOV, UMR0408, Avignon Université, INRA, F-84914 Avignon, France.
| |
Collapse
|
29
|
Wang P, Zhu Y, Zhang Y, Zhang C, Xu J, Deng Y, Peng D, Ruan L, Sun M. Mob/oriT, a mobilizable site-specific recombination system for unmarked genetic manipulation in Bacillus thuringiensis and Bacillus cereus. Microb Cell Fact 2016; 15:108. [PMID: 27286821 PMCID: PMC4902927 DOI: 10.1186/s12934-016-0492-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/23/2016] [Indexed: 11/29/2022] Open
Abstract
Background Bacillus thuringiensis and Bacillus cereus are two important species in B. cereus group. The intensive study of these strains at the molecular level and construction of genetically modified bacteria requires the development of efficient genetic tools. To insert genes into or delete genes from bacterial chromosomes, marker-less manipulation methods were employed. Results We present a novel genetic manipulation method for B. thuringiensis and B. cereus strains that does not leave selection markers. Our approach takes advantage of the relaxase Mob02281 encoded by plasmid pBMB0228 from Bacillus thuringiensis. In addition to its mobilization function, this Mob protein can mediate recombination between oriT sites. The Mob02281 mobilization module was associated with a spectinomycin-resistance gene to form a Mob-Spc cassette, which was flanked by the core 24-bp oriT sequences from pBMB0228. A strain in which the wild-type chromosome was replaced with the modified copy containing the Mob-Spc cassette at the target locus was obtained via homologous recombination. Thus, the spectinomycin-resistance gene can be used to screen for Mob-Spc cassette integration mutants. Recombination between the two oriT sequences mediated by Mob02281, encoded by the Mob-Spc cassette, resulted in the excision of the Mob-Spc cassette, producing the desired chromosomal alteration without introducing unwanted selection markers. We used this system to generate an in-frame deletion of a target gene in B. thuringiensis as well as a gene located in an operon of B. cereus. Moreover, we demonstrated that this system can be used to introduce a single gene or an expression cassette of interest in B. thuringiensis. Conclusion The Mob/oriT recombination system provides an efficient method for unmarked genetic manipulation and for constructing genetically modified bacteria of B. thuringiensis and B. cereus. Our method extends the available genetic tools for B. thuringiensis and B. cereus strains. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0492-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pengxia Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yiguang Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yuyang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Chunyi Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jianyi Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yun Deng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Lifang Ruan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.
| |
Collapse
|
30
|
Geng C, Nie X, Tang Z, Zhang Y, Lin J, Sun M, Peng D. A novel serine protease, Sep1, from Bacillus firmus DS-1 has nematicidal activity and degrades multiple intestinal-associated nematode proteins. Sci Rep 2016; 6:25012. [PMID: 27118554 PMCID: PMC4846997 DOI: 10.1038/srep25012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/08/2016] [Indexed: 12/02/2022] Open
Abstract
Plant-parasitic nematodes (PPNs) cause serious harm to agricultural production. Bacillus firmus shows excellent control of PPNs and has been produced as a commercial nematicide. However, its nematicidal factors and mechanisms are still unknown. In this study, we showed that B. firmus strain DS-1 has high toxicity against Meloidogyne incognita and soybean cyst nematode. We sequenced the whole genome of DS-1 and identified multiple potential virulence factors. We then focused on a peptidase S8 superfamily protein called Sep1 and demonstrated that it had toxicity against the nematodes Caenorhabditis elegans and M. incognita. The Sep1 protein exhibited serine protease activity and degraded the intestinal tissues of nematodes. Thus, the Sep1 protease of B. firmus is a novel biocontrol factor with activity against a root-knot nematode. We then used C. elegans as a model to elucidate the nematicidal mechanism of Sep1, and the results showed that Sep1 could degrade multiple intestinal and cuticle-associated proteins and destroyed host physical barriers. The knowledge gained in our study will lead to a better understanding of the mechanisms of B. firmus against PPNs and will aid in the development of novel bio-agents with increased efficacy for controlling PPNs.
Collapse
Affiliation(s)
- Ce Geng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Xiangtao Nie
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Zhichao Tang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Yuyang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Jian Lin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| |
Collapse
|
31
|
Alcaligenes faecalis ZD02, a Novel Nematicidal Bacterium with an Extracellular Serine Protease Virulence Factor. Appl Environ Microbiol 2016; 82:2112-2120. [PMID: 26826227 DOI: 10.1128/aem.03444-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/21/2016] [Indexed: 11/20/2022] Open
Abstract
Root knot nematodes (RKNs) are the world's most damaging plant-parasitic nematodes (PPNs), and they can infect almost all crops. At present, harmful chemical nematicides are applied to control RKNs. Using microbial nematicides has been proposed as a better management strategy than chemical control. In this study, we describe a novel nematicidal bacterium named Alcaligenes faecalis ZD02. A. faecalis ZD02 was isolated from Caenorhabditis elegans cadavers and has nematostatic and nematicidal activity, as confirmed by C. elegans growth assay and life span assay. In addition, A. faecalis ZD02 fermentation broth showed toxicity against C. elegans and Meloidogyne incognita. To identify the nematicidal virulence factor, the genome of strain ZD02 was sequenced. By comparing all of the predicted proteins of strain ZD02 to reported nematicidal virulence factors, we determined that an extracellular serine protease (Esp) has potential to be a nematicidal virulence factor, which was confirmed by bioassay on C. elegans and M. incognita. Using C. elegans as the target model, we found that both A. faecalis ZD02 and the virulence factor Esp can damage the intestines of C. elegans. The discovery that A. faecalis ZD02 has nematicidal activity provides a novel bacterial resource for the control of RKNs.
Collapse
|
32
|
Bacillus thuringiensis Crystal Protein Cry6Aa Triggers Caenorhabditis elegans Necrosis Pathway Mediated by Aspartic Protease (ASP-1). PLoS Pathog 2016; 12:e1005389. [PMID: 26795495 PMCID: PMC4721865 DOI: 10.1371/journal.ppat.1005389] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/18/2015] [Indexed: 02/07/2023] Open
Abstract
Cell death plays an important role in host-pathogen interactions. Crystal proteins (toxins) are essential components of Bacillus thuringiensis (Bt) biological pesticides because of their specific toxicity against insects and nematodes. However, the mode of action by which crystal toxins to induce cell death is not completely understood. Here we show that crystal toxin triggers cell death by necrosis signaling pathway using crystal toxin Cry6Aa-Caenorhabditis elegans toxin-host interaction system, which involves an increase in concentrations of cytoplasmic calcium, lysosomal lyses, uptake of propidium iodide, and burst of death fluorescence. We find that a deficiency in the necrosis pathway confers tolerance to Cry6Aa toxin. Intriguingly, the necrosis pathway is specifically triggered by Cry6Aa, not by Cry5Ba, whose amino acid sequence is different from that of Cry6Aa. Furthermore, Cry6Aa-induced necrosis pathway requires aspartic protease (ASP-1). In addition, ASP-1 protects Cry6Aa from over-degradation in C. elegans. This is the first demonstration that deficiency in necrosis pathway confers tolerance to Bt crystal protein, and that Cry6A triggers necrosis represents a newly added necrosis paradigm in the C. elegans. Understanding this model could lead to new strategies for nematode control. Necrosis contributes to many devastating pathological conditions, such as neurodegenerative diseases and microbial pathogenesis. Bacillus thuringiensis crystal proteins are effective biopesticides. Our study reveals that B. thuringiensis Cry6Aa protein triggers the necrosis pathway using Caenorhabditis elegans as a model. We show that aspartic protease ASP-1 is required for Cry6Aa protein-induced necrosis, whereas intrinsic insults induce necrosis mediated by ASP-3 and ASP-4. Our findings contribute to the understanding of the mechanism of Bt crystal protein action and host-pathogen interactions. Because necrosis mechanisms are conserved from nematodes to humans, the fact that necrosis can be induced by Cry6Aa provides a model system for studying necrosis mechanisms in human diseases.
Collapse
|
33
|
Peng D, Lin J, Huang Q, Zheng W, Liu G, Zheng J, Zhu L, Sun M. A novel metalloproteinase virulence factor is involved in Bacillus thuringiensis pathogenesis in nematodes and insects. Environ Microbiol 2015; 18:846-62. [PMID: 26995589 DOI: 10.1111/1462-2920.13069] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/25/2015] [Indexed: 11/29/2022]
Abstract
The Gram-positive soil bacterium Bacillus thuringiensis has been developed as the leading microbial insecticide for years. The pathogenesis of B. thuringiensis requires common extracellular factors that depend on the PlcR regulon, which regulates a large number of virulence factors; however, the precise role of many of these proteins is not known. In this study, we describe the complete lifecycle of a nematicidal B. thuringiensis strain in the free living nematode Caenorhabditis elegans using in vitro and in vivo molecular techniques to follow host and bacterial effectors during the infection process. We then focus on the metalloproteinase ColB, a collagenase, which was found highly important for destruction of the intestine thereby facilitates the adaptation and colonization of B. thuringiensis in C. elegans. In vivo green fluorescent protein (GFP) reporter-gene studies showed that ColB expression is highly induced and regulated by the global activator PlcR. Finally, we demonstrated that ColB also takes part in B. thuringiensis virulence in an insect model following injection and oral infection. Indeed, addition of purified ColB accelerates the action of Cry toxin proteins in insects, too. These results give novel insights into host adaptation for B. thuringiensis and other B. cereus group bacteria and highlight the role of collagenase metalloproteases to synergize infection process.
Collapse
Affiliation(s)
- Donghai Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jian Lin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qiong Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wen Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guoqiang Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lei Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
34
|
Li Q, Zou T, Ai P, Pan L, Fu C, Li P, Zheng A. Complete genome sequence of Bacillus thuringiensis HS18-1. J Biotechnol 2015; 214:61-2. [DOI: 10.1016/j.jbiotec.2015.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
|
35
|
Garcia-Ramon DC, Luque-Navas MJ, Molina CA, Del Val C, Osuna A, Vilchez S. Identification, sequencing and comparative analysis of pBp15.S plasmid from the newly described entomopathogen Bacillus pumilus 15.1. Plasmid 2015; 82:17-27. [PMID: 26416357 DOI: 10.1016/j.plasmid.2015.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 01/18/2023]
Abstract
The Bacillus pumilus 15.1 strain, a recently described entomopathogenic strain active against Ceratitis capitata, contains at least two extrachromosomal elements, pBp15.1S and pBp15.1B. Given that B. pumilus is not a typical entomopathogenic bacterium, the acquisition of this extrachromosomal DNA may explain why B. pumilus 15.1 is toxic to an insect. One of the plasmids present in the strain, the pBp15.1S plasmid, was sub-cloned, sequenced and analyzed using bioinformatics to identify any potential virulence factor. The pBp15.1S plasmid was found to be 7785 bp in size with a GC content of 35.7% and 11 putative ORFs. A replication module typical of a small rolling circle plasmid and a sensing and regulatory system specific for plasmids was found in pBp15.1S. Additionally, we demonstrated the existence of ssDNA in plasmid preparations suggesting that pBp15.1S replicates by the small rolling circle mechanism. A gene cluster present in plasmid pPZZ84 from a distantly isolated B. pumilus strain was also present in pBp15.1S. The plasmid copy number of pBp15.1S in exponentially growing B. pumilus cells was determined to be 33 copies per chromosome. After an extensive plasmid characterization, no known virulence factor was found so a search in the other extrachromosomal elements of the bacteria is needed.
Collapse
Affiliation(s)
- Diana C Garcia-Ramon
- Institute of Biotechnology, Campus Fuentenueva s/n, University of Granada, 18071 Granada, Spain.
| | - Maria Jose Luque-Navas
- Institute of Biotechnology, Campus Fuentenueva s/n, University of Granada, 18071 Granada, Spain.
| | - C Alfonso Molina
- International Center for Zoonoses (CIZ), Faculty of Veterinary Medicine and Zootechnic, Central University of Ecuador, PO Box.17-03-100, Quito, Ecuador.
| | - Coral Del Val
- Department of Computer Science and Artificial Intelligence, Campus Fuentenueva s/n, University of Granada, 18071 Granada, Spain.
| | - Antonio Osuna
- Institute of Biotechnology, Campus Fuentenueva s/n, University of Granada, 18071 Granada, Spain.
| | - Susana Vilchez
- Institute of Biotechnology, Campus Fuentenueva s/n, University of Granada, 18071 Granada, Spain; Department of Biochemistry and Molecular Biology I, Campus Fuentenueva s/n, University of Granada, 18071 Granada, Spain.
| |
Collapse
|
36
|
Ruan L, Crickmore N, Peng D, Sun M. Are nematodes a missing link in the confounded ecology of the entomopathogen Bacillus thuringiensis? Trends Microbiol 2015; 23:341-6. [DOI: 10.1016/j.tim.2015.02.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/29/2015] [Accepted: 02/25/2015] [Indexed: 01/23/2023]
|
37
|
The expression and crystallization of Cry65Aa require two C-termini, revealing a novel evolutionary strategy of Bacillus thuringiensis Cry proteins. Sci Rep 2015; 5:8291. [PMID: 25656389 PMCID: PMC4319155 DOI: 10.1038/srep08291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/14/2015] [Indexed: 11/11/2022] Open
Abstract
The insecticidal crystal protein (Cry) genes of Bacillus thuringiensis are a key gene resource for generating transgenic crops with pest resistance. However, many cry genes cannot be expressed or form crystals in mother cells. Here, we report a novel Cry protein gene, cry65Aa1, which exists in an operon that contains a downstream gene encoding a hypothetical protein ORF2. We demonstrated that ORF2 is required for Cry65Aa1 expression and crystallization by function as a C-terminal crystallization domain. The orf2 sequence is also required for Cry65Aa expression, because orf2 transcripts have a stabilizing effect on cry65Aa1 transcripts. Furthermore, we found that the crystallization of Cry65Aa1 required the Cry65Aa1 C-terminus in addition to ORF2 or a typical Cry protein C-terminal region. Finally, we showed that Cry65Aa1 has a selective cytotoxic effect on MDA-MB231 cancer cells. This report is the first description of a 130-kDa mass range Cry protein requiring two C-termini for crystallization. Our findings reveal a novel evolutionary strategy of Cry proteins and provide an explanation for the existence of Cry protein genes that cannot form crystals in B. thuringiensis. This study also provides a potential framework for isolating novel cry genes from “no crystal” B. thuringiensis strains.
Collapse
|
38
|
Yu Z, Xiong J, Zhou Q, Luo H, Hu S, Xia L, Sun M, Li L, Yu Z. The diverse nematicidal properties and biocontrol efficacy of Bacillus thuringiensis Cry6A against the root-knot nematode Meloidogyne hapla. J Invertebr Pathol 2014; 125:73-80. [PMID: 25556591 DOI: 10.1016/j.jip.2014.12.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/13/2014] [Accepted: 12/23/2014] [Indexed: 11/18/2022]
Abstract
Cry6A toxin from Bacillus thuringiensis is a representative nematicidal crystal protein with a variety of nematicidal properties to free-living nematode Caenorhabditis elegans. Cry6A shares very low homology and different structure with Cry5B, another representative nematicidal crystal protein, and probably acts in a distinct pathway. All these strongly indicate that Cry6A toxin is likely a potent candidate for nematicide. The present study dealt with global investigation to determine the detrimental impacts of Cry6Aa2 toxin on Meloidogyne hapla, a root-knot nematode, and evaluated its biocontrol efficacy in pot experiment. Obtained results indicated that Cry6Aa2 toxin exhibits obvious toxicity to second-stage juvenile of M. hapla, and significantly inhibits egg hatch, motility, and penetration to host plant. Pot experiment suggested that soil drenching with spore-crystal mixture of Cry6Aa2 can clearly lighten the disease of root-knot nematode, including reduction of galling index and egg masses on host plant root, decreasing final population of nematode in soil. Moreover, application of Cry6Aa2 can obviously promote plant growth. These results demonstrated that Cry6Aa2 toxin is a promising nematicidal agent, and possesses great potential in plant-parasitic nematode management and construction of transgenic crop with constant resistance to nematode.
Collapse
Affiliation(s)
- Ziquan Yu
- State Key Laboratory of Breeding Base of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, PR China.
| | - Jing Xiong
- State Key Laboratory of Breeding Base of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Qiaoni Zhou
- State Key Laboratory of Breeding Base of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Haiyan Luo
- State Key Laboratory of Breeding Base of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Shengbiao Hu
- State Key Laboratory of Breeding Base of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Liqiu Xia
- State Key Laboratory of Breeding Base of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
39
|
Li Y, Shu C, Zhang X, Crickmore N, Liang G, Jiang X, Liu R, Song F, Zhang J. Mining rare and ubiquitous toxin genes from a large collection of Bacillus thuringiensis strains. J Invertebr Pathol 2014; 122:6-9. [PMID: 25108136 DOI: 10.1016/j.jip.2014.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/15/2014] [Accepted: 07/30/2014] [Indexed: 11/15/2022]
Abstract
There has been considerable effort made in recent years for research groups and other organizations to build up large collections of strains of Bacillus thuringiensis in the search for genes encoding novel insecticidal toxins, or encoding novel metabolic pathways. Whilst next generation sequencing allows the detailed genetic characterization of a bacterial strain with relative ease it is still not practicable for large strain collections. In this work we assess the practicability of mining a mixture of genomic DNA from a two thousand strain collection for particular genes. Using PCR the collection was screened for both a rare (cry15) toxin gene as well as a more commonly found gene (vip3A). The method was successful in identifying both a cry15 gene and multiple examples of the vip3A gene family including a novel member of this family (vip3Aj). A number of variants of vip3Ag were cloned and expressed, and differences in toxicity observed despite extremely high sequence similarity.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xuewen Zhang
- Northeast Agricultural University, Harbin 150030, PR China
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xingfu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Rongmei Liu
- Northeast Agricultural University, Harbin 150030, PR China
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
40
|
Iatsenko I, Nikolov A, Sommer RJ. Identification of distinct Bacillus thuringiensis 4A4 nematicidal factors using the model nematodes Pristionchus pacificus and Caenorhabditis elegans. Toxins (Basel) 2014; 6:2050-63. [PMID: 25025708 PMCID: PMC4113741 DOI: 10.3390/toxins6072050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/02/2014] [Accepted: 06/27/2014] [Indexed: 01/10/2023] Open
Abstract
Bacillus thuringiensis has been extensively used for the biological control of insect pests. Nematicidal B. thuringiensis strains have also been identified; however, virulence factors of such strains are poorly investigated. Here, we describe virulence factors of the nematicidal B. thuringiensis 4A4 strain, using the model nematodes Pristionchus pacificus and Caenorhabditis elegans. We show that B. thuringiensis 4A4 kills both nematodes via intestinal damage. Whole genome sequencing of B. thuringiensis 4A4 identified Cry21Ha, Cry1Ba, Vip1/Vip2 and β-exotoxin as potential nematicidal factors. Only Cry21Ha showed toxicity to C. elegans, while neither Cry nor Vip toxins were active against P. pacificus, when expressed in E. coli. Purified crystals also failed to intoxicate P. pacificus, while autoclaved spore-crystal mixture of B. thuringiensis 4A4 retained toxicity, suggesting that primary β-exotoxin is responsible for P. pacificus killing. In support of this, we found that a β-exotoxin-deficient variant of B. thuringiensis 4A4, generated by plasmid curing lost virulence to the nematodes. Thus, using two model nematodes we revealed virulence factors of the nematicidal strain B. thuringiensis 4A4 and showed the multifactorial nature of its virulence.
Collapse
Affiliation(s)
- Igor Iatsenko
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstrasse 37, 72076 Tuebingen, Germany.
| | - Angel Nikolov
- Institute for Chemistry and Biochemistry, Free University of Berlin, Thielallee 63, 14195 Berlin, Germany.
| | - Ralf J Sommer
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstrasse 37, 72076 Tuebingen, Germany.
| |
Collapse
|
41
|
Bacillus thuringiensis DB27 produces two novel protoxins, Cry21Fa1 and Cry21Ha1, which act synergistically against nematodes. Appl Environ Microbiol 2014; 80:3266-75. [PMID: 24632254 DOI: 10.1128/aem.00464-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacillus thuringiensis has been widely used as a biopesticide, primarily for the control of insect pests, but some B. thuringiensis strains specifically target nematodes. However, nematicidal virulence factors of B. thuringiensis are poorly investigated. Here, we describe virulence factors of nematicidal B. thuringiensis DB27 using Caenorhabditis elegans as a model. We show that B. thuringiensis DB27 kills a number of free-living and animal-parasitic nematodes via intestinal damage. Its virulence factors are plasmid-encoded Cry protoxins, since plasmid-cured derivatives do not produce Cry proteins and are not toxic to nematodes. Whole-genome sequencing of B. thuringiensis DB27 revealed multiple potential nematicidal factors, including several Cry-like proteins encoded by different plasmids. Two of these proteins appear to be novel and show high similarity to Cry21Ba1. Named Cry21Fa1 and Cry21Ha1, they were expressed in Escherichia coli and fed to C. elegans, resulting in intoxication, intestinal damage, and death of nematodes. Interestingly, the effects of the two protoxins on C. elegans are synergistic (synergism factor, 1.8 to 2.5). Using purified proteins, we determined the 50% lethal concentrations (LC50s) for Cry21Fa1 and Cry21Ha1 to be 13.6 μg/ml and 23.9 μg/ml, respectively, which are comparable to the LC50 of nematicidal Cry5B. Finally, we found that signaling pathways which protect C. elegans against Cry5B toxin are also required for protection against Cry21Fa1. Thus, B. thuringiensis DB27 produces novel nematicidal protoxins Cry21Fa1 and Cry21Ha1 with synergistic action, which highlights the importance of naturally isolated strains as a source of novel toxins.
Collapse
|
42
|
Yu Z, Luo H, Xiong J, Zhou Q, Xia L, Sun M, Li L, Yu Z. Bacillus thuringiensis
Cry6A exhibits nematicidal activity to Caenorhabditis elegans bre
mutants and synergistic activity with Cry5B to C
. elegans. Lett Appl Microbiol 2014; 58:511-9. [DOI: 10.1111/lam.12219] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 01/12/2014] [Accepted: 01/12/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Z. Yu
- State Key Laboratory of Breeding Base of Microbial Molecular Biology; The Cooperative Innovation Center of Engineering and New Products for Developmental Biology of Hunan Province; College of Life Science; Hunan Normal University; Changsha China
| | - H. Luo
- State Key Laboratory of Breeding Base of Microbial Molecular Biology; The Cooperative Innovation Center of Engineering and New Products for Developmental Biology of Hunan Province; College of Life Science; Hunan Normal University; Changsha China
| | - J. Xiong
- State Key Laboratory of Breeding Base of Microbial Molecular Biology; The Cooperative Innovation Center of Engineering and New Products for Developmental Biology of Hunan Province; College of Life Science; Hunan Normal University; Changsha China
| | - Q. Zhou
- State Key Laboratory of Breeding Base of Microbial Molecular Biology; The Cooperative Innovation Center of Engineering and New Products for Developmental Biology of Hunan Province; College of Life Science; Hunan Normal University; Changsha China
| | - L. Xia
- State Key Laboratory of Breeding Base of Microbial Molecular Biology; The Cooperative Innovation Center of Engineering and New Products for Developmental Biology of Hunan Province; College of Life Science; Hunan Normal University; Changsha China
| | - M. Sun
- State Key Laboratory of Agricultural Microbiology; College of Life Science and Technology; Huazhong Agricultural University; Wuhan China
| | - L. Li
- State Key Laboratory of Agricultural Microbiology; College of Life Science and Technology; Huazhong Agricultural University; Wuhan China
| | - Z. Yu
- State Key Laboratory of Agricultural Microbiology; College of Life Science and Technology; Huazhong Agricultural University; Wuhan China
| |
Collapse
|
43
|
Complete genome sequence of Bacillus thuringiensis YBT-1518, a typical strain with high toxicity to nematodes. J Biotechnol 2014; 171:1-2. [DOI: 10.1016/j.jbiotec.2013.11.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 11/29/2013] [Indexed: 11/19/2022]
|
44
|
Wang Y, Peng D, Dong Z, Zhu L, Guo S, Sun M. Cloning and analysis of a large plasmid pBMB165 from Bacillus thuringiensis revealed a novel plasmid organization. PLoS One 2013; 8:e81746. [PMID: 24312580 PMCID: PMC3847046 DOI: 10.1371/journal.pone.0081746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 10/16/2013] [Indexed: 11/18/2022] Open
Abstract
In this study, we report a rapid cloning strategy for large native plasmids via a contig linkage map by BAC libraries. Using this method, we cloned a large plasmid pBMB165 from Bacillus thuringiensis serovar tenebrionis strain YBT-1765. Complete sequencing showed that pBMB165 is 77,627 bp long with a GC-content of 35.36%, and contains 103 open reading frames (ORFs). Sequence analysis and comparison reveals that pBMB165 represents a novel plasmid organization: it mainly consists of a pXO2-like replicon and mobile genetic elements (an inducible prophage BMBTP3 and a set of transposable elements). This is the first description of this plasmid organization pattern, which may result from recombination events among the plasmid replicon, prophage and transposable elements. This plasmid organization reveals that the prophage BMBTP3 may use the plasmid replicon to maintain its genetic stability. Our results provide a new approach to understanding co-evolution between bacterial plasmids and bacteriophage.
Collapse
Affiliation(s)
- Yueying Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Zhaoxia Dong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Lei Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Suxia Guo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- * E-mail:
| |
Collapse
|
45
|
Bacillus thuringiensis subsp. sichuansis strain MC28 produces a novel crystal protein with activity against Culex quinquefasciatus larvae. World J Microbiol Biotechnol 2013; 30:1417-21. [DOI: 10.1007/s11274-013-1548-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 10/29/2013] [Indexed: 10/26/2022]
|
46
|
Luo H, Xiong J, Zhou Q, Xia L, Yu Z. The effects of Bacillus thuringiensis Cry6A on the survival, growth, reproduction, locomotion, and behavioral response of Caenorhabditis elegans. Appl Microbiol Biotechnol 2013; 97:10135-42. [DOI: 10.1007/s00253-013-5249-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 08/07/2013] [Accepted: 09/07/2013] [Indexed: 11/27/2022]
|
47
|
Wang P, Zhang C, Zhu Y, Deng Y, Guo S, Peng D, Ruan L, Sun M. The resolution and regeneration of a cointegrate plasmid reveals a model for plasmid evolution mediated by conjugation and oriT site-specific recombination. Environ Microbiol 2013; 15:3305-18. [PMID: 23826996 DOI: 10.1111/1462-2920.12177] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/26/2013] [Accepted: 06/01/2013] [Indexed: 11/30/2022]
Abstract
Cointegrate plasmids are useful models for the study of plasmid evolution if their evolutionary processes can be replicated under laboratory conditions. pBMB0228, a 17 706 bp native plasmid originally isolated from Bacillus thuringiensis strain YBT-1518, carries two nematicidal crystal protein genes, cry6Aa and cry55Aa. In this study, we show that pBMB0228 is in fact a cointegrate of two plasmids and contains two functional replication regions and two functional mobilization regions. Upon introduction into B. thuringiensis strain BMB171, pBMB0228 spontaneously resolves into two constituent plasmids via recombination at its oriT1 and oriT2 sites. The resolution does not require conjugation but can be promoted by conjugation. We further confirm that the resolution is mediated by oriT site-specific recombination requiring Mob02281 or Mob02282. Additionally, the two constituent plasmids of pBMB0228 are mobilizable, and can fuse back via oriT site-specific integration after entering into the same cell by conjugation. Our study confirms that native plasmid can reversibly interconvert between a cointegrate structure and its constituent plasmids. This study provides insight into the evolution of cointegrate plasmids, linking plasmid evolution with conjugation and the oriT site-specific recombination function of relaxase.
Collapse
Affiliation(s)
- Pengxia Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
van Frankenhuyzen K. Cross-order and cross-phylum activity of Bacillus thuringiensis pesticidal proteins. J Invertebr Pathol 2013; 114:76-85. [PMID: 23747826 DOI: 10.1016/j.jip.2013.05.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 10/26/2022]
Abstract
The increasing number of Bacillus thuringiensis proteins with pesticidal activities across orders and phyla raises the question how widespread cross-activities are and if they are of sufficient biological significance to have implications for ecological safety of those proteins in pest control applications. Cross-activity is reported for 27 proteins and 69 taxa and is substantiated by reasonable evidence (mortality estimates) in 19 cases involving 45 taxa. Cross-activities occur in 13 primary rank families across three classes of pesticidal proteins (Cry, Cyt and Vip), and comprise 13 proteins affecting species across two orders, five proteins affecting three orders and one protein affecting four orders, all within the class Insecta. Cross-activity was quantified (LC50 estimates) for 16 proteins and 25 taxa. Compared to toxicity ranges established for Diptera-, Coleoptera-, Lepidoptera- and Nematoda-active proteins, 13 cross-activities are in the low-toxicity range (10-1000μg/ml), 12 in the medium - (0.10-10μg/ml) and two in the high-toxicity range (0.01-0.10μg/ml). Although cross-activities need to be viewed with caution until they are confirmed through independent testing, current evidence suggests that cross-activity of B. thuringiensis pesticidal proteins needs to be taken into consideration when designing and approving their use in pest control applications.
Collapse
Affiliation(s)
- Kees van Frankenhuyzen
- Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1219 Queen Street East, Sault Ste. Marie, Ontario P6A 2E5, Canada.
| |
Collapse
|
49
|
Jisha VN, Smitha RB, Benjamin S. An Overview on the Crystal Toxins from <i>Bacillus thuringiensis</i>. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/aim.2013.35062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
A Bacillus thuringiensis host strain with high melanin production for preparation of light-stable biopesticides. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0570-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|