1
|
Ning Z, Cai P, Zhang M. Metagenomic analysis revealed highly diverse carbon fixation microorganisms in a petroleum-hydrocarbon-contaminated aquifer. ENVIRONMENTAL RESEARCH 2024; 247:118289. [PMID: 38266905 DOI: 10.1016/j.envres.2024.118289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/23/2023] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
As one of the ultimate products of hydrocarbon biodegradation, inorganic carbon always be used to evaluate hydrocarbon biodegradation rates in petroleum-hydrocarbon-contaminated (PHC) aquifers. The evaluation method was challenged because of the existence of carbon fixation microorganisms, which may uptake inorganic carbons and consequently cause the biodegradation rates to be underestimated. We wonder if there are carbon fixation microorganisms in PHC aquifers. Although an extremely limited number of carbon fixation microorganisms in PHC sites have been studied in previous studies, the vast majority of microorganisms that participate in carbon fixation have not been systematically identified. To systematically reveal carbon fixation microorganisms and their survival environmental conditions, high-throughput metagenomic sequencing technologies, which are characterized by culture-independent, unbiased, and comprehensive methods for the detection and taxonomic characterization of microorganisms, were introduced to analyze the groundwater samples collected from a PHC aquifer. Results showed that 1041 genera were annotated as carbon fixation microorganisms, which accounted for 49% of the total number of genera in the PHC aquifer. Carbon fixation genes involved in Calvin-Benson-Bassham (CBB), 3-hydroxy propionate (3HP), reductive tricarboxylic acid (rTCA), and Wood-Ljungdahl (WL) cycles accounted for 2%, 41%, 34%, and 23% of the total carbon fixation genes, respectively, and 3HP, rTCA, and WL can be deemed as the dominant carbon fixation pathways. Most of the identified carbon fixation microorganisms are potential hydrocarbon biodegraders, and the most abundant carbon fixation microorganisms, such as Microbacterium, Novosphingobium, and Reyranella, were just the most abundant microorganisms in the aquifer system. It's deduced that most of the microorganisms in the aquifer were facultative autotrophic, and undertaking the dual responsibilities of degrading hydrocarbons to inorganic carbon and uptaking inorganic carbon to biomass.
Collapse
Affiliation(s)
- Zhuo Ning
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, China; Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, China.
| | - Pingping Cai
- School of Water Resources and Environment, Hebei GEO University, China.
| | - Min Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, China; Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, China.
| |
Collapse
|
2
|
Ekpe OD, Choo G, Choi Y, Jeon J, Oh JE. Long-term degradation of toluene and phenol in soil: Identification of transformation products and pathways via HRMS-based suspect and non-target screening. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128429. [PMID: 35739654 DOI: 10.1016/j.jhazmat.2022.128429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 06/15/2023]
Abstract
In this study, the long-term fate of toluene and phenol in the soil was investigated, and the transformation products (TPs) and pathways of these compounds were studied by a high resolution mass spectrometry (HRMS)-based suspect and non-target screening approach for the first time, and 9 and 12 transformation products were identified for toluene and phenol, respectively in the lab-exposed soil samples. Salicylaldehyde, 4-hydroxybenzaldehyde, and benzaldehyde were identified in toluene-contaminated field soil samples for the first time, and the main mechanisms involved in the biodegradation and detoxification of toluene and phenol in soil were oxidation, carboxylation, dehydroxylation, and ring fission amongst others. 2-oxoglutarate, TP165-A, TP165-B, TP172, and TP195 were identified as novel phenol transformation products, while salicylaldehyde, 2-oxoglutarate, TP165-A, and TP165-B were identified as novel toluene transformation products, providing new possible evidence for additional degradation pathways, which could give new insights into the fate of toluene and phenol during the natural attenuation process in the environment. Finally, salicylaldehyde, 4-OH-benzaldehyde, and 4-OH-benzoic acid which were detected at Level 1 identification confidence were suggested as indicator chemicals of toluene and phenol exposure in the contaminated field.
Collapse
Affiliation(s)
- Okon Dominic Ekpe
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Gyojin Choo
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; National Fishery Products Quality Management Service, Busan 51140, Republic of Korea
| | - Younghun Choi
- Department of Environmental Engineering, Changwon National University, Changwon, Republic of Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Republic of Korea.
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
3
|
Jimoh AA, Ikhimiukor OO, Adeleke R. Prospects in the bioremediation of petroleum hydrocarbon contaminants from hypersaline environments: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35615-35642. [PMID: 35247173 DOI: 10.1007/s11356-022-19299-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Hypersaline environments are underappreciated and are frequently exposed to pollution from petroleum hydrocarbons. Unlike other environs, the high salinity conditions present are a deterrent to various remediation techniques. There is also production of hypersaline waters from oil-polluted ecosystems which contain toxic hydrophobic pollutants that are threat to public health, environmental protection, and sustainability. Currently, innovative advances are being proposed for the remediation of oil-contaminated hypersaline regions. Such advancements include the exploration and stimulation of native microbial communities capable of utilizing and degrading petroleum hydrocarbons. However, prevailing salinity in these environments is unfavourable for the growth of non-halophylic microorganisms, thus limiting effective bioremediation options. An in-depth understanding of the potentials of various remediation technologies of hydrocarbon-polluted hypersaline environments is lacking. Thus, we present an overview of petroleum hydrocarbon pollution in hypersaline ecosystems and discuss the challenges and prospects associated with several technologies that may be employed in remediation of hydrocarbon pollution in the presence of delimiting high salinities. The application of biological remediation technologies including the utilization of halophilic and halotolerant microorganisms is also discussed.
Collapse
Affiliation(s)
- Abdullahi Adekilekun Jimoh
- Unit for Environmental Sciences and Management, North-West University (Potchefstroom Campus), Potchefstroom, 2520, South Africa.
- Institute for Microbial Biotechnology and Metagenomics, Department of Biotechnology, University of the Western Cape, Bellville, Cape Town, 7535, South Africa.
| | - Odion Osebhahiemen Ikhimiukor
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University (Potchefstroom Campus), Potchefstroom, 2520, South Africa
| |
Collapse
|
4
|
Biodegradation of 4-hydroxybenzoic acid by Acinetobacter johnsonii FZ-5 and Klebsiella oxytoca FZ-8 under anaerobic conditions. Biodegradation 2021; 33:17-31. [PMID: 34609628 DOI: 10.1007/s10532-021-09963-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
4-Hydroxybenzoic acid (4-HBA) is a common organic compound that is prevalent in the environment, and the persistence of 4-HBA residues results in exertion of pollution-related detrimental effects. Bioremediation is an effective method for the removal of 4-HBA from the environment. In this study, two bacterial strains FZ-5 and FZ-8 capable of utilizing 4-HBA as the sole carbon and energy source under anaerobic conditions were isolated from marine sediment samples. Phylogenetic analysis identified the two strains FZ-5 and FZ-8 as Acinetobacter johnsonii and Klebsiella oxytoca, respectively. The strains FZ-5 and FZ-8 degraded 2000 mg·L-1 4-HBA in 72 h with degradation rates of 71.04% and 80.10%, respectively. The optimum culture conditions for degradation by the strains and crude enzymes were also investigated. The strains FZ-5 and FZ-8 also exhibited the ability to degrade other lignin-derived compounds, such as protocatechuic acid, cinnamic acid, and vanillic acid. Immobilization of the two strains showed that they could be used for the bioremediation of 4-HBA in an aqueous environment. Soils inoculated with the strains FZ-5 and FZ-8 showed higher degradation of 4-HBA than the uninoculated soil, and the strains could survive efficiently in anaerobic soil. This is the first report of 4-HBA-degrading bacteria, belonging to the two genera, which showed degradation ability under anaerobic conditions. This study expound the strains could efficiently degrade 4-HBA in anaerobic soil and will help in the development of 4-HBA anaerobic bioremediation systems.
Collapse
|
5
|
Mainka T, Weirathmüller D, Herwig C, Pflügl S. Potential applications of halophilic microorganisms for biological treatment of industrial process brines contaminated with aromatics. J Ind Microbiol Biotechnol 2021; 48:kuab015. [PMID: 33928348 PMCID: PMC9113102 DOI: 10.1093/jimb/kuab015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022]
Abstract
Saline wastewater contaminated with aromatic compounds can be frequently found in various industrial sectors. Those compounds need to be degraded before reuse of wastewater in other process steps or release to the environment. Halophiles have been reported to efficiently degrade aromatics, but their application to treat industrial wastewater is rare. Halophilic processes for industrial wastewater treatment need to satisfy certain requirements: a continuous process mode, low operational expenditures, suitable reactor systems and a monitoring and control strategy. The aim of this review is to provide an overview of halophilic microorganisms, principles of aromatic biodegradation, and sources of saline wastewater containing aromatics and other contaminants. Finally, process examples for halophilic wastewater treatment and potential process monitoring strategies are discussed. To further illustrate the significant potential of halophiles for saline wastewater treatment and to facilitate development of ready-to-implement processes, future research should focus on scale-up and innovative process monitoring and control strategies.
Collapse
Affiliation(s)
- Thomas Mainka
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
- Competence Center CHASE GmbH,
Altenbergerstraße 69, 4040 Linz, Austria
| | - David Weirathmüller
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
| | - Christoph Herwig
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
- Competence Center CHASE GmbH,
Altenbergerstraße 69, 4040 Linz, Austria
| | - Stefan Pflügl
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
| |
Collapse
|
6
|
Marsh WS, Heise BW, Krzmarzick MJ, Murdoch RW, Fathepure BZ. Isolation and characterization of a halophilic Modicisalibacter sp. strain Wilcox from produced water. Sci Rep 2021; 11:6943. [PMID: 33767228 PMCID: PMC7994583 DOI: 10.1038/s41598-021-86196-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
We report the isolation a halophilic bacterium that degrades both aromatic and aliphatic hydrocarbons as the sole sources of carbon at high salinity from produced water. Phylogenetic analysis of 16S rRNA-gene sequences shows the isolate is a close relative of Modicisalibacter tunisiensis isolated from an oil-field water in Tunisia. We designate our isolate as Modicisalibacter sp. strain Wilcox. Genome analysis of strain Wilcox revealed the presence of a repertoire of genes involved in the metabolism of aliphatic and aromatic hydrocarbons. Laboratory culture studies corroborated the predicted hydrocarbon degradation potential. The strain degraded benzene, toluene, ethylbenzene, and xylenes at salinities ranging from 0.016 to 4.0 M NaCl, with optimal degradation at 1 M NaCl. Also, the strain degraded phenol, benzoate, biphenyl and phenylacetate as the sole sources of carbon at 2.5 M NaCl. Among aliphatic compounds, the strain degraded n-decane and n-hexadecane as the sole sources of carbon at 2.5 M NaCl. Genome analysis also predicted the presence of many heavy metal resistance genes including genes for metal efflux pumps, transport proteins, and enzymatic detoxification. Overall, due to its ability to degrade many hydrocarbons and withstand high salt and heavy metals, strain Wilcox may prove useful for remediation of produced waters.
Collapse
Affiliation(s)
- William S Marsh
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Brenden W Heise
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Mark J Krzmarzick
- Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Robert W Murdoch
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, 37996, USA
- Battelle Memorial Institute, Columbus, OH, 43201, USA
| | - Babu Z Fathepure
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
7
|
Sun N, Li M, Liu G, Jing M, He F, Cao Z, Zong W, Tang J, Gao C, Liu R. Toxic mechanism of pyrene to catalase and protective effects of vitamin C: Studies at the molecular and cell levels. Int J Biol Macromol 2021; 171:225-233. [PMID: 33418042 DOI: 10.1016/j.ijbiomac.2020.12.169] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 11/17/2022]
Abstract
Polycyclic aromatic hydrocarbons, distributing extensively in the soil, would potentially threaten the soil organisms (Eisenia fetida) by triggering oxidative stress. As a ubiquitous antioxidant enzyme, catalase can protect organisms from oxidative damage. To reveal the potential impact of polycyclic aromatic hydrocarbon pyrene (Pyr) on catalase (CAT) and the possible protective effect of Ascorbic acid (vitamin C), multi-spectral and molecular docking techniques were used to investigate the influence of structure and function of catalase by pyrene. Fluorescence and circular dichroism analysis showed that pyrene would induce the microenvironmental changes of CAT amino acid residues and increase the α-helix in the secondary structure. Molecular simulation results indicated that the main binding force of pyrene around the active center of CAT is hydrogen bonding force. Furthermore, pyrene inhibited catalase activity to 69.9% compared with the blank group, but the degree of inhibition was significantly weakened after vitamin C added into the research group. Cell level experiments showed that pyrene can increase the level of ROS in the body cavity cell of earthworms, and put the cells under the threat of potential oxidative damage. Antioxidants-vitamin C has a protective effect on catalase and maintains the stability of intracellular ROS levels to a certain extent.
Collapse
Affiliation(s)
- Ning Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Meifei Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Guiliang Liu
- Shandong Institute for Food and Drug Control, Jinan 250101, PR China
| | - Mingyang Jing
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Zhaozhen Cao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Canzhu Gao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
8
|
Cauduro GP, Leal AL, Lopes TF, Marmitt M, Valiati VH. Differential Expression and PAH Degradation: What Burkholderia vietnamiensis G4 Can Tell Us? Int J Microbiol 2020; 2020:8831331. [PMID: 32908529 PMCID: PMC7474390 DOI: 10.1155/2020/8831331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/04/2020] [Accepted: 07/31/2020] [Indexed: 11/17/2022] Open
Abstract
Petroleum is the major energy matrix in the world whose refining generates chemical byproducts that may damage the environment. Among such waste, polycyclic aromatic hydrocarbons (PAH) are considered persistent pollutants. Sixteen of these are considered priority for remediation, and among them is benzo(a)pyrene. Amid remediation techniques, bioremediation stands out. The genus Burkholderia is amongst the microorganisms known for being capable of degrading persistent compounds; its strains are used as models to study such ability. High-throughput sequencing allows researchers to reach a wider knowledge about biodegradation by bacteria. Using transcripts and mRNA analysis, the genomic regions involved in this aptitude can be detected. To unravel these processes, we used the model B. vietnamiensis strain G4 in two experimental groups: one was exposed to benzo(a)pyrene and the other one (control) was not. Six transcriptomes were generated from each group aiming to compare gene expression and infer which genes are involved in degradation pathways. One hundred fifty-six genes were differentially expressed in the benzo(a)pyrene exposed group, from which 33% are involved in catalytic activity. Among these, the most significant genomic regions were phenylacetic acid degradation protein paaN, involved in the degradation of organic compounds to obtain energy; oxidoreductase FAD-binding subunit, related to the regulation of electrons within groups of dioxygenase enzymes with potential to cleave benzene rings; and dehydrogenase, described as accountable for phenol degradation. These data provide the basis for understanding the bioremediation of benzo(a)pyrene and the possible applications of this strain in polluted environments.
Collapse
Affiliation(s)
| | - Ana Lusia Leal
- Companhia Riograndense de Saneamento, Biology Laboratory, Triunfo, RS, Brazil
| | - Tiago Falcón Lopes
- Centro de Terapia Gênica, Centro de Pesquisa Experimental, Hospital de Clínicas, Porto Alegre, RS, Brazil
| | - Marcela Marmitt
- Universidade do Vale do Rio dos Sinos, Biology Graduate Program, São Leopoldo, RS, Brazil
| | - Victor Hugo Valiati
- Universidade do Vale do Rio dos Sinos, Biology Graduate Program, São Leopoldo, RS, Brazil
| |
Collapse
|
9
|
Xu X, Liu W, Wang W, Tian S, Jiang P, Qi Q, Li F, Li H, Wang Q, Li H, Yu H. Potential biodegradation of phenanthrene by isolated halotolerant bacterial strains from petroleum oil polluted soil in Yellow River Delta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:1030-1038. [PMID: 30901777 DOI: 10.1016/j.scitotenv.2019.02.080] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
The Yellow River Delta (YRD), being close to Shengli Oilfield, is at high risk for petroleum oil pollution. The aim of this study was to isolate halotolerant phenanthrene (PHE) degrading bacteria for dealing with this contaminates in salinity environment. Two bacterial strains assigned as FM6-1 and FM8-1 were successfully screened from oil contaminated soil in the YRD. Morphological and molecular analysis suggested that strains FM6-1 and FM8-1 were belonging to Delftia sp. and Achromobacter sp., respectively. Bacterial growth of both strains was not dependent on NaCl, however, grew well under extensive NaCl concentration. The optimum NaCl concentration for bacterial production of strain FM8-1 was 4% (m/v), whereas for strain FM6-1, growth was not affected within 2.5% NaCl. Both strains could use the tested aromatic hydrocarbons (naphthalene, phenanthrene, fluoranthene and pyrene) and aliphatic hydrocarbons (C12, C16, C20 and C32) as sole carbon source. The optimized biodegradation conditions for strain FM6-1 were pH 7, 28 °C and 2% NaCl, for strain FM8-1 were pH 8, 28 °C and 2.5% NaCl. The highest biodegradation rate of strains FM6-1 and FM8-1 was found at 150 mg/L PHE and 200 mg/L, respectively. In addition, strainsFM8-1 showed a superior biodegradation ability to strain FM6-1 at each optimized condition. The PHE biodegradation process by both strains well fitted to first-order kinetic models and the k1 values were calculated to be 0.1974 and 0.1070 per day. Strain FM6-1 metabolized PHE via a "phthalic acid" route, while strain FM8-1 metabolized PHE through the "naphthalene" route. This project not only obtained two halotolerant petroleum hydrocarbon degraders but also provided a promising remediation approach for solving oil pollutants in salinity environments.
Collapse
Affiliation(s)
- Xingjian Xu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, Inner Mongolia 137400, China.
| | - Wenming Liu
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, Inner Mongolia 137400, China
| | - Wei Wang
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, Inner Mongolia 137400, China
| | - Shuhua Tian
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, Inner Mongolia 137400, China
| | - Pan Jiang
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, Inner Mongolia 137400, China
| | - Qige Qi
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, Inner Mongolia 137400, China
| | - Fengjiao Li
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, Inner Mongolia 137400, China
| | - Haiyan Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Changchun University of Science and Technology, Changchun 130022, China
| | - Quanying Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Huai Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hongwen Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
10
|
Li Z, Zhang Y, Wang Y, Mei R, Zhang Y, Hashmi MZ, Lin H, Su X. A New Approach of Rpf Addition to Explore Bacterial Consortium for Enhanced Phenol Degradation Under High Salinity Conditions. Curr Microbiol 2018; 75:1046-1054. [DOI: 10.1007/s00284-018-1489-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 04/03/2018] [Indexed: 01/10/2023]
|
11
|
Morlett Chávez JA, Ascacio Martínez JÁ, Haskins WE, Acuña Askar K. Gene Expression during BTEX Biodegradation by a Microbial Consortium Acclimatized to Unleaded Gasoline and a Pseudomonas putida Strain (HM346961) Isolated from It. Pol J Microbiol 2017; 66:189-199. [DOI: 10.5604/01.3001.0010.7836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas putida strain (HM346961) was isolated from a consortium of bacteria acclimatized to unleaded gasoline-contaminated water. The consortium can efficiently remove benzene, toluene, ethylbenzene and xylene (BTEX) isomers, and a similar capability was observed with the P. putida strain. Proteome of this strain showed certain similarities with that of other strains exposed to the hydrocarbon compounds. Furthermore, the toluene di-oxygenase (tod) gene was up-regulated in P. putida strain when exposed to toluene, ethylbenzene, xylene, and BTEX. In contrast, the tod gene of P. putida F1 (ATCC 700007) was up-regulated only in the presence of toluene and BTEX. Several differences in the nucleotide and protein sequences of these two tod genes were observed. This suggests that tod up-regulation in P. putida strain may partially explain their great capacity to remove aromatic compounds, relative to P. putida F1. Therefore, new tod and P. putida strain are promising for various environmental applications.
Collapse
Affiliation(s)
- Jesús A. Morlett Chávez
- Laboratory of Genomics and Bioinformatics, Autonomous University of Nuevo Leon, Monterrey Nuevo León, Mexico; Laboratory of Biotechnology, Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey Nuevo León, Mexico
| | - Jorge Á. Ascacio Martínez
- Laboratory of Biotechnology, Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey Nuevo León, Mexico
| | - William E. Haskins
- Departments of Biology and Chemistry, University of Texas at San Antonio, San Antonio, TX, USA; RCMI Proteomics, University of Texas at San Antonio, San Antonio, TX, USA; Protein Biomarkers Cores, University of Texas at San Antonio, San Antonio, TX, USA
| | - Karim Acuña Askar
- Laboratory of Environmental Bioremediation, Department of Microbiology, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey Nuevo León, Mexico
| |
Collapse
|
12
|
Jackson CA, Couger MB, Prabhakaran M, Ramachandriya KD, Canaan P, Fathepure BZ. Isolation and characterization of Rhizobium sp. strain YS-1r that degrades lignin in plant biomass. J Appl Microbiol 2017; 122:940-952. [PMID: 28092137 DOI: 10.1111/jam.13401] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 11/28/2022]
Abstract
AIMS The aim of this work was to isolate novel lignin-degrading organisms. METHODS AND RESULTS Several pure cultures of bacteria that degrade lignin were isolated from bacterial consortia developed from decaying biomass. Among the isolates, Rhizobium sp. strain YS-1r (closest relative of Rhizobium petrolearium strain SL-1) was explored for its lignin-degrading ability. Microcosm studies showed that strain YS-1r was able to degrade a variety of lignin monomers, dimers and also native lignin in switchgrass and alfalfa. The isolate demonstrated lignin peroxidase (LiP) activity when grown on alkali lignin, p-anisoin, switchgrass or alfalfa, and only negligible activity was measured in glucose-grown cells suggesting inducible nature of the LiP activity. Analysis of the strain YS-1r genome revealed the presence of a variety of genes that code for various lignin-oxidizing, H2 O2 -producing as well as polysaccharide-hydrolysing enzymes. CONCLUSIONS This study shows both the genomic and physiological capability of bacteria in the genus Rhizobium to metabolize lignin and lignin-like compounds. This is the first detailed report on the lignocellulose-degrading ability of a Rhizobium species and thus this study expands the role of alpha-proteobacteria in the degradation of lignin. SIGNIFICANCE AND IMPACT OF THE STUDY The organism's ability to degrade lignin is significant since Rhizobia are widespread in soil, water and plant rhizospheres and some fix atmospheric nitrogen and also have the ability to degrade aromatic hydrocarbons.
Collapse
Affiliation(s)
- C A Jackson
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - M B Couger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - M Prabhakaran
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - K D Ramachandriya
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK, USA
| | - P Canaan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - B Z Fathepure
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
13
|
Jiang Y, Wei L, Zhang H, Yang K, Wang H. Removal performance and microbial communities in a sequencing batch reactor treating hypersaline phenol-laden wastewater. BIORESOURCE TECHNOLOGY 2016; 218:146-152. [PMID: 27359064 DOI: 10.1016/j.biortech.2016.06.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/12/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
Hypersaline phenol-rich wastewater is hard to be treated by traditional biological systems. In this work, a sequencing batch reactor was used to remove phenol from hypersaline wastewater. The removal performance was evaluated in response to the variations of operating parameters and the microbial diversity was investigated by 454 pyrosequencing. The results showed that the bioreactor had high removal efficiency of phenol and was able to keep stable with the increase of initial phenol concentration. DO, pH, and salinity also affected the phenol removal rate. The most abundant bacterial group was phylum Proteobacteria in the two working conditions, and class Gammaproteobacteria as well as Alphaproteobacteria was predominant subgroup. The abundance of bacterial clusters was notably different along with the variation of operation conditions, resulting in changes of phenol degradation rates. The high removal efficiency of phenol suggested that the reactor might be promising in treating phenol-laden industrial wastewater in high-salt condition.
Collapse
Affiliation(s)
- Yu Jiang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Li Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huining Zhang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China; School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730000, China
| | - Kai Yang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
14
|
Zhou W, Guo W, Zhou H, Chen X. Phenol degradation by Sulfobacillus acidophilus TPY via the meta -pathway. Microbiol Res 2016; 190:37-45. [DOI: 10.1016/j.micres.2016.05.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 11/30/2022]
|
15
|
Li G, Xiong J, Wong PK, An T. Enhancing tetrabromobisphenol A biodegradation in river sediment microcosms and understanding the corresponding microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 208:796-802. [PMID: 26602791 DOI: 10.1016/j.envpol.2015.11.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/30/2015] [Accepted: 11/01/2015] [Indexed: 06/05/2023]
Abstract
In situ remediation of contaminated sediment using microbes is a promising environmental treatment method. This study used bioaugmentation to investigate the biodegradation of tetrabromobisphenol A (TBBPA) in sediment microcosms collected from an electronic-waste recycling site. Treatments included adding possible biodegradation intermediates of TBBPA, including 2,4-dibromophenol (2,4-DBP), 2,4,6-tribromophenol (TBP), and bisphenol A (BPA) as co-substrates. Bioaugmentation was done with Ochrobactrum sp. T (TBBPA-degrader) and a mixed culture of Ochrobactrum sp. T, Bacillus sp. GZT (TBP-degrader) and Bacillus sp. GZB (BPA-degrader). Results showed that bioaugmentation with Ochrobactrum sp. T significantly improved TBBPA degradation efficiencies in sediment microcosms (P < 0.01); aerobic conditions increased the microbes' degradation activities. Co-substrates 2,4-DBP, TBP and BPA inhibited biodegradation of TBBPA. A metagenomic analysis of total 16S rRNA genes from the treated sediment microcosms showed that the following dominant genera: Ochrobactrum, Parasegetibacter, Thermithiobacillus, Phenylobacterium and Sphingomonas. The genus level of Ochrobactrum increased with increased degradation time, within 10-week of incubation. Microbes from genus Ochrobactrum are mainly linked to enhance the TBBPA biodegradation.
Collapse
Affiliation(s)
- Guiying Li
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jukun Xiong
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Po Keung Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region
| | - Taicheng An
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
16
|
Guo G, Fang T, Wang C, Huang Y, Tian F, Cui Q, Wang H. Isolation and characterization of two novel halotolerant Catechol 2, 3-dioxygenases from a halophilic bacterial consortium. Sci Rep 2015; 5:17603. [PMID: 26621792 PMCID: PMC4664950 DOI: 10.1038/srep17603] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 11/03/2015] [Indexed: 02/08/2023] Open
Abstract
Study of enzymes in halophiles will help to understand the mechanism of aromatic hydrocarbons degradation in saline environment. In this study, two novel catechol 2,3-dioxygenases (C23O1 and C23O2) were cloned and overexpressed from a halophilic bacterial consortium enriched from an oil-contaminated saline soil. Phylogenetic analysis indicated that the novel C23Os and their relatives formed a new branch in subfamily I.2.A of extradiol dioxygenases and the sequence differences were further analyzed by amino acid sequence alignment. Two enzymes with the halotolerant feature were active over a range of 0–30% salinity and they performed more stable at high salinity than in the absence of salt. Surface electrostatic potential and amino acids composition calculation suggested high acidic residues content, accounting for their tolerance to high salinity. Moreover, two enzymes were further characterized. The enzymes activity both increased in the presence of Fe3+, Fe2+, Cu2+ and Al3+ and showed no significant inhibition by other tested metal ions. The optimal temperatures for the C23Os were 40 °C and 60 °C and their best substrates were catechol and 4-methylcatechol respectively. As the firstly isolated and characterized catechol dioxygenases from halophiles, the two halotolerant C23Os presented novel characteristics suggesting their potential application in aromatic hydrocarbons biodegradation.
Collapse
Affiliation(s)
- Guang Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tingting Fang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chongyang Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yong Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Fang Tian
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Qijia Cui
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
17
|
Khemili-Talbi S, Kebbouche-Gana S, Akmoussi-Toumi S, Angar Y, Gana ML. Isolation of an extremely halophilic arhaeon Natrialba sp. C21 able to degrade aromatic compounds and to produce stable biosurfactant at high salinity. Extremophiles 2015; 19:1109-20. [PMID: 26334644 DOI: 10.1007/s00792-015-0783-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/20/2015] [Indexed: 12/30/2022]
Abstract
Natrialba sp. strain C21 was isolated from oil contaminated saline water in Ain Salah (Algeria) and has exhibited a good potential for degrading phenol (3% v/v), naphthalene (3% v/v), and pyrene (3% v/v) at high salinity with high growth, enzymatic activity and biosurfactant production. Successful metabolism of aromatic hydrocarbon compounds of the strain Natrialba sp. C21 appears to require the ortho-cleavage pathway. Indeed, assays of the key enzymes involved in the ring cleavage of catechol 1, 2-dioxygenase indicated that degradation of the phenol, naphthalene and pyrene by strain Natrialba sp. C21 was via the ortho-cleavage pathway. Cells grown on aromatic hydrocarbons displayed greater ortho-activities mainly towards catechol, while the meta-activity was very low. Besides, biosurfactants derived from the strain C21 were capable of effectively emulsifying both aromatic and aliphatic hydrocarbons and seem to be particularly promising since they have particular adaptations like the increased stability at high temperature and salinity conditions. This study clearly demonstrates for the first time that strain belonging to the genera Natrialba is able to grow at 25% (w/v) NaCl, utilizing phenol, naphthalene, and pyrene as the sole carbon sources. The results suggest that the isolated halophilic archaeon could be a good candidate for the remediation process in extreme environments polluted by aromatic hydrocarbons. Moreover, the produced biosurfactant offers a multitude of interesting potential applications in various fields of biotechnology.
Collapse
Affiliation(s)
- Souad Khemili-Talbi
- Laboratoire Conservation et Valorisation des Ressources Biologiques (VALCOR), Faculté des Sciences, Université M'Hamed Bougara de Boumerdes, Avenue de l'Indépendance, 35000, Boumerdès, Algeria.
| | - Salima Kebbouche-Gana
- Laboratoire Conservation et Valorisation des Ressources Biologiques (VALCOR), Faculté des Sciences, Université M'Hamed Bougara de Boumerdes, Avenue de l'Indépendance, 35000, Boumerdès, Algeria.
| | - Siham Akmoussi-Toumi
- Laboratoire Conservation et Valorisation des Ressources Biologiques (VALCOR), Faculté des Sciences, Université M'Hamed Bougara de Boumerdes, Avenue de l'Indépendance, 35000, Boumerdès, Algeria
| | - Yassmina Angar
- Faculté des Sciences, Université M'Hamed Bougara de Boumerdes, Avenue de l'Indépendance, 35000, Boumerdès, Algeria
| | - Mohamed Lamine Gana
- Centre de Recherche et de Développement, SONATRACH, 35000, Boumerdès, Algeria
| |
Collapse
|
18
|
DasSarma S, DasSarma P. Halophiles and their enzymes: negativity put to good use. Curr Opin Microbiol 2015; 25:120-6. [PMID: 26066288 PMCID: PMC4729366 DOI: 10.1016/j.mib.2015.05.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/20/2015] [Accepted: 05/15/2015] [Indexed: 12/24/2022]
Abstract
Halophilic microorganisms possess stable enzymes that function in very high salinity, an extreme condition that leads to denaturation, aggregation, and precipitation of most other proteins. Genomic and structural analyses have established that the enzymes of halophilic Archaea and many halophilic Bacteria are negatively charged due to an excess of acidic over basic residues, and altered hydrophobicity, which enhance solubility and promote function in low water activity conditions. Here, we provide an update on recent bioinformatic analysis of predicted halophilic proteomes as well as experimental molecular studies on individual halophilic enzymes. Recent efforts on discovery and utilization of halophiles and their enzymes for biotechnology, including biofuel applications are also considered.
Collapse
Affiliation(s)
- Shiladitya DasSarma
- Institute of Marine and Environmental Technology, Department of Microbiology and Immunology, University of Maryland School of Medicine, 701 East Pratt Street, Columbus Center, Baltimore, MD 21202, USA.
| | - Priya DasSarma
- Institute of Marine and Environmental Technology, Department of Microbiology and Immunology, University of Maryland School of Medicine, 701 East Pratt Street, Columbus Center, Baltimore, MD 21202, USA
| |
Collapse
|